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The aims of this paper ar@) to elucidate the properties of the physical Hamiltonians and the effective spin
Hamiltonians used in electron magnetic resonance (ahdo clarify the confusion in the microscopic spin
Hamiltonian approach of Zhaet al. [Phys. Rev. B52, 10043 (1995; 55, 8955 (1997]. The confusion
consists in arerroneousidentification (or “approximate equivalence’of the wave functions of the two
Hamiltonians and leads tmwvalid relations for the zero-field-splitting parameters for Sstate 2i° ions at
axial symmetry and the spurious numerical results.
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|. INTRODUCTION H=He+Hsot Hei=(Ho=Het+ Her) +H(V=Hso), (1)

The concept of the spin Hamiltonig8H)“2 used by Zhao including, respectively, the electron-electron repu_lsﬁmrp-_
et al3~8is central to electron magnetic resonafE#R).’ 1t resented, e.g., by the Racah parameRer§), the spin-orbit
The microscopic spin HamiltoniatMSH) approach?1213 (SO mterac_tlon(representgd by the SO paramegg), and
enables derivation of the expressions relating the parametef@e crystal-field(CF) potential (represented, e.g., by the CF
of an effective spin Hamiltonian with those of the physical Parameters, ). Other interactions may be added to the to-
Hamiltonian. Hence the inter-relationships between the twd@! Physical Hamiltonian in E¢(1), e.g., the electronic spin-
types of Hamiltonians are crucial. Yet, as discussed in th&PN (Hslﬁm ﬁmd the electronic Zeeman Hgo)
comprehensive revietwon the SH concept, some terms are Intéraction. ="~ The explicit forms of the_ Hamllton|an§ in-
often confused in the literature with each other, e.g., physicayolved depend on whether the calculations are carried out
versus effective Hamiltonian, real versus effective versus ficwithin @ given #*~!L multiplet of a free &" ion, for which
titious spin, microscopic SH, zero-field-splittingZFS) case simplified for_ms e?qsts, or within the whole_ basis of
Hamiltonian, generalized SKGSH), and phenomenological States of a 8" configuration, e.g4|?**L,Ms,M)} in the
SH (PSH. The general aim of this paper is to elucidate theintermediate CF-coupling 307hﬂﬁ731,1 for which case more
properties of the physical Hamiltonians and the effectivedeneral forms must be uséd’~*'There are two methods of
spin Hamiltonians, especially those relevant for thetate ~ Solving {: (i) approximate solutions based on degenerate
3d°® ions(Sec. I). The specific aim is to discuss critically the perturbation theory? which consider specific restricted basis

Zhaoet al.3* and utilized for MA* and F&"(3d%) ions4¢  nowadays possible due to fast computers. The first method

and CP*(3d?) iong at axial symmetry(Sec. Il). It appears has resulted in the introduction of the concept of an effective

that a serious confusion has occurred in Refs. 3—-6 due t§H13f in the early years of EMR. o

mixing up the properties of the wavefunctions of the physical FIrSt we discuss 'Fhe se_con_d method. V\/_|thm the _emtlﬂa
Hamiltonian and those of the effective spin Hamiltonian.(=3d" or 4f7) cor;flguratlo_n in, e.g., the intermediate CF-
This has lead tdi) an erroneousidentification(or “approxi- ~ coupling schemé;® the basis of states formed by the multi-
mate equivalence®? of the two sets of wave functions and electron Slater deterrﬂmlamt wave functibrmsin be _denoted
hence(ii) the invalid relations derived using the MSH ap- as {|**"'L,Mg,M)}.**"*® Although the calculations are

S-state 31° ions at axial symmetry? Several computer programs are now available to do the job

(see, e.g., Refs. 14—17, and references theesid to enable
analysis of optical spectroscopy data. In this method, calcu-
lating the matrix elements of the physical Hamiltonidnas,
e.g., in Eq.(1), within the basig|?>>"1L,Mg,M )} and car-
rying out numerical diagonalization, one obtains thi set

A brief overview of the pertinent notions and proceduresof eigenvalues and eigenfunctions’f For certain spectro-
is necessary for clarification of the confusion in question.scopic techniques, especially EMR:! only the energies of
The physical Hamiltoniari{ is defined as a full electronic the ground orbital singlefwell separated from the excited
Hamiltonian describing the various physical interactions in-state$ are of importance. The basis of states consists in this
volving the space and spin coordinates. It acts in its owrcase of the subset of reab2 1 states{|T",)|S,Mg)}=|a)
basis of states. For the transition-metal ions with tl#® 3 arising from the ground>"1L(3d") multiplet split by H;.
electronic configuratiofi is (for details see, e.g., Refs. 1, 2, The energy levels of the physical Hamiltonian, within the
7-11: ground orbital singlet describe, what can be definedtss,

Il. EFFECTIVE NATURE OF SPIN HAMILTONIAN
DERIVED USING MSH APPROACH
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zero-field splitting'see below. Here the eigenvalues of H, multiplet 2L and the spin-orbit coupling paramet&r
within the restricted basis of statd$l’,)|S,Mg)} of the  Hence the Pryce’$ method constitutes a derivation of the
ground-state orbital singlet, are obtained numerically asnicroscopic spin HamiltoniatMSH). The readers may ben-
functions of the parameters of the physical Hamiltonian conefit from the general definition of an “effective Hamil-
sidered, e.g.B, C, &, andB,q as defined in Eq(l). tonian” by Stevens(Ref. 1, p. 70 as “an operator which
The links between the results of numerical acts only within the lowest unperturbed manifold and yet
diagonalizatiod*'*~%6 of a physical HamiltonianX and  which has eigenvalues that coincide with those expected to
those of perturbation method leading to an effective SHcome from it when the perturbation is switched on.” The
(Refs. 1, 2, 12 and J3are not so straightforward. In order to meaning of the “effectiveness” of the spin operators in the
elucidate these links below we briefly recap the MSHspin Hamiltonian is also well reflected by Athert@Ref. 19,
method originated by Prycé which has lead to an effective p. 35/38: “What the spin Hamiltonian does is to mimic
spin Hamiltonian for a ground orbital singlet well separatedthese energy level&Cz.R.: i.e., of the full electronic Hamil-
from the excited states. The effective Hamiltonian of Ptjce tonian, and comparison of the two calculations leads to
involvesonly the spin operator§?’~**and hence later it be- identification of the structure of the coupling coefficients
come known as the spin Hamiltonian: used in the spin Hamiltonian. In some case the coefficients
can be understood as integrals of the full Hamiltonian over
the electronic wave functions which would imply that the
ﬁspmzé. D-S+ wgB- g.EEHZFSJF Hys. 2 operators in the spin Hamiltonian are the true spin operators.
However, this is not generally true: strictly speaking the op-
The matrix elements of the orbital operators, arising from thesrators in the spin Hamiltonian are effective spin operators
perturbationV="Hso=AL - S, and the energy denominators, which givethe right number of energy levetehose disposi-
esafl E(I'p) —E(I'p), within the ground multiplet tjon is such as to account for the observed spectrum.”

L(3d"), were lumped in Eq(2) into the tensorA;; The Prycé® method can be used only for the special case
=(I'JLi|T g)(I'g|L;|T",)/A g Then the components @;;  of the lowest orbital singlefe) being well separated in en-
andg;; are obtainedsee, e.g., Refs. 7-1hs ergy (by Ap) from the excited state§|T" )|S,Mg)t=|B)

within the ground statéS* 1L multiplet. This conventional
) method® was later extendetf. A more general method of
Dij=—A"Aj; and gi;=(gedij —MAjj), (3 derivation of MSH from perturbation thedhas been pro-

wherei, j = (x,y,z) and|T",),|T' ;) are the orbital parts of the posed for the 8* and 31° transition ions with an orbital

. - . 5
wave functions of the ground orbital singlet and the excited®NJlet §§_—222) ground Stgtgo_g”s'”g from theD
orbital states, respectively. Ticenventional? ZFS term’-1t ~ Mmultiplet™=*" The method"'*#"*are not applicable for

= = . " . the S-state (31°:Fe** Mn?";4f:Gd®";EL?*) ions character-
S-D-Sin Eq. (2.)' de_scrlbe_s the splitting of the spin states Ofized by the( orbital angular momentum=2) in the ground
the.grpund orbital singlet in the absence of an external Malstate. For these systems the MSH derivations must be carried
netic field. Hence the componerids, represent theero-field o+ \yithin the basis of states of the entirtd (=3d" or 4f")
splitting (ZFS) or the fine structure parameters. The ZFSconfigurationzs Hence the procedure is much more complex
Hamiltonian and its parameters have been represented efan that for.a round multiple?S* 1L (3d"), 1322 since
plicitly in various forms in the literatufe'® and often con- 9 P ’

fusinalv named as the “crvstal field” onésThe conven- then calculations require using, instead of the simplified
" ?fy f 7FS H 'Ity 2710 for the 2" forms of the physical Hamiltoniarfs, ' the respective gen-
tonai form of 2 amiftonart; zrs, 10 e - 71417 which involve the individual electronic
ions with the spirS=2 at tetragonal symmetry sites with the

eral forms!
' . i . H for th i it i i i
cubic axesié, #, ¢) along the tetragonal axés, y, 2. is: spinss . Hence for theS-state ions it is not possible, using

either the conventional perturbatiSrt®’~1or the tensor
method?®?? to derive directly an explicit form ofi gy, in

terms of the total effective spis corresponding to the total
electronic spinS=3Xs.

Nevertheless the concept of the effective SH applies also
to the S-state ions. The final result of derivation of MSH can
be considered as a “replacement,” for the purpose of de-
scription of thefine structurewithin any ground orbital sin-

F glet with true spirsS, of the physical Hamiltoniari{y+V, by
180 the effective spin Hamiltoniarf;lspm as defined above. The
+332(S+1)2]. 4) mathematicalzﬁructure cﬁlspin can be represented in a gen-
eral form as-?

In the Prycé® MSH approach the components of the
“tensor” Dj; and the “matrix” g;; in Eq. (3) are expressed
directly in terms of themicroscopicquantities, i.e., the pa- O 0. = 2 a.
rametgrs of the physical Hamiltr())ni(;m, comprising in tﬁe Ho®V=Hspin HZFS+HZ€_% XamXan(S) + 4sB-0-S,
above case the energy-level splittinys within the ground (5

1
HZFS: D Sg_ §S(S+ 1)

1
Si+S,+ S~ £ S(S+1)(357+35-1)

@
6

+ —[355;— (30S(S+1)— 25)S2— 6S(S+1)
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where X,,, denote the ZFS parameters associated with @t al>* serve as an example. To obtain similar expressions
given generictype of the tensor operatorg;,, which here  for orthorhombic or lower symmetry additional approxima-
are functions of the components of the effective spin operations are required.
tor S, with the rank 1 even (%2,4,6, depending on the Third, by comparing the actual quantities with the corre-
value of spinS) and the components 1<m<1 (m depend- SPonding effective ones the microscopic relations can be ob-
ing on the site symmetiywith specific restrictions on 1, m tained. The major difference between the approa¢heand
for a given symmetry case'® Genericsymbol v, andX,,, (i) lies in the actual and the corresponding effective quanti-
in Eq. (5) represents any tensor operators and associated ptes used.
rameters, respectively, thus these symlutmsnotdefine yet The particular details of each approackare now de-
another tensor-operator notation, an abundance of which ascribed. Approach (i) uses the equivalencer “compari-
ready exists in literaturé!® The spherical-tensor and son,” see, Ref. 19, p 36, as quoted abpwé eigenvalues
tesseral-tensor operator notations as well as the conventionattual=the zero-field splitting energy levelsf the physical
notations used in EMR and related areas have been classifigthmiltonian, €;, obtained either by numerical diagonaliza-
in Refs. 2 and 18. tion or degenerate perturbation theory, i.e., its eigenvalues
Two indirect approachesi) and (i), exist to relate the within the restricted basis of statd$l',)|S,Mg)} of the
parameters of the phys_ical Hamiltonian to those of the effecground orbital singlet as explained aboaed effective=the
t'r‘]’e one folr theSstate ions. Both approaches are based oRjjgenvaluesE; , of the assumedZFS Hamiltonian in the
the equivalence of the actual and the corresponding eﬁecuvgasis{|~s,l\~/ls>}. Approachiii) uses the equivalence ofatrix

guantities.Each approachrequiresassumingcertain form | Eth _ ) .
for the effective SH usually characterized by the same, or a§lementsactua=the matrix elements of the physical Hamil-

an approximation, higher, symmetry as that of the full physi-tonian in the basig|I" ,)|S,Ms)} and effective=the matrix

cal Hamiltonian. In this sense, both approaches are based Gi¢Mentsof the assumeceffective ZFS Hamiltonian in the

a prior knowledge of the ZFS pafand the Ze paytof SH,  basis{|S,Mg)}. The derivations are then more cumbersome

which have been obtained either from the MSH derivationghan those in the approach.

discussed above or from the generalized SH mettoih An important point is that the resulting effective SH in

each approachthe derivation follows thethree similar Egs.(2), (4), or (5) no longer acts within the basis of states of

stagesoutlined below, however, they differ in the “equiva- the Hamiltonian in Eq(1). The eigenstates of tHall Hamil-

lence” used. tonian in Eq.(1), denoted{|T" ;)|S,Mg)}, are linear combi-
First, the eigenvalues; , of the physical Hamiltonian as, nations of the eigenstates ofHo=He+Hcr, i€,

e.g., in Eq.(1), H=H,+V, are calculated either exactly by {|>>"L,Mg,M)}. The effective spin Hamiltonian acts

numerica_l diagonalization or_appl_roximately by degeneratgyithin its own basis of states, i.dé,l?/l@ of the effective
perturbation theory. The solutions include the eigenvalaes, spiné. This fact is denoted by the tilde-) to distinguish the

with i=1 to (2S+1), corresponding to the states . . ~ . ~ ~
R ; ; i ffectivespin operatoiS and its state$S,Ms) from thereal
I',)|ISM thin the ground orbital singlet; some € ) . . S :
Ul 8)} withi grou ! ng energy otal electronic spin operatd and its state$S,Mg). This

levels may turn out to be degenerate. In order to explain the. <. ~° ) i .
observed ZFS, various mechanisms are taken into accourfi'Stinction can be mad_e more evident comparing t_he_ multi-
’ lectron Slater determinant wave functidrté;’ defining

including admixtures of higher-lying states into the ground . . ; 2
state orgital singlet due to ?:rysta)I/ figld and/or spin-orgit cou-the basis of states pertinent t‘i tbe physical Hamiltonian in
pling, relativistic effects responsible for the mixing of statesEd. (1), with the basis of stateé§S,Mg)}, as, e.g., in Eq(7)
with different spin multiplicity, and overlap and covalency below, of the effective SH in Eqg2), (4), or (5). As an
effects’~%” Most MSH applications for the spin systems €xample we consider the resditéor Mn®* (3d° S=5/2) at
considered in the literature deal with the ZFS part of SH withthe Nb site in LiNbQ. The CF prograrf~'®has been used
S=1, whereas the Ze part applicable §=1/2 has been to diagonalize within the basis staté$*'L,Mg,M ) the
considered only in a few cases. full Hamiltonian?® similar to the one in Eq(1), including
Second the (25+1)x(2S+1) matrix elements of the e possessingC, symmetry and additionally the Trees
assumedkffective SHrHspina in its own basis{|§,l\7l§} (or correction:. Then the six actual spin states defining the

. o ~ o~ S ground multiplet and the corresponding six lowest energy
using the §ymmetry-ad0pted co'mblnatlons|SfMS)) are __ levels can be obtainéd.These states can lbkenotedby their
calculated in parametric form, since the values of the ZF

LeE . ominant components|®*S,Mg,M_ =0)=|°S,Mg) with
par.ameters are not knpvyn at this p0|l1t. Then solving alge-_ 5/2<Mg=<5/2. For illustration, we reproduce here the state
braically the charagtensuc equation feky,, its eigenval- |8S,+5/2) and|®S,+1/2), being an admixture of the states
ues,E;, i=1 to (25+1), with some energy levels being |?5"1L,Mg,M ), obtained on a computer using the param-
degenerate, can be obtained for some cases. For example, faer values (in cm™Y) pertinent for the full physical
transition-metal ions at tetragonal symmetry one obt&ins Hamiltonian?® Racah parameter8=911, C=3273, the
in terms of the ZFS parameters, eB;x(B] or b]) inthe  Trees correction parameter=65, the spin-orbit coupling
extended Stevens notatfdrf*®with k=2, q=0; k=4, and  parameter é=337, and CF parameters in Wybourne’s
q=0,4, or E;x(D,a,F) in terms of the conventional notatiot*1® B,;=—1524.3, Bgy=—14225.4, R&,;
notation?*?18 Eqs. (7) and (8) below derived by Zhao =21882.1, and InB,3=—370.3:
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|°S, +5/2)=(0.005495-10.000186|°S, — 0.5,0) + (0.999338-10.0016917/°S,2.5,0
+(0.029379-10.000497|*P,1.5,1 + (0.008012-i10.00027}|*G,1.5~ 2)
—(0.006212-i10.000105/*G,1.5,1 — (0.006118-i0.000000|*G,1.5,4;

S, + 1/2)=(0.005491-10.000279|°S, — 2.5,0) + (0.998882-10.033828| °S,0.5,0
+(0.009297-i0.000315|*P,1.5,— 1) +(0.023425-10.000793|*P,0.5,0
+(0.016095-10.000545|*P, —0.5,1) +(0.007171i0.000364|*G,0.5,— 3)
+(0.004378-10.000223|*G,— 0.5~ 2) — (0.00342110.000116/°G, — 0.5,1)
+(0.002531i0.000043|*G,1.5,2 + (0.007184-10.000122|*G,0.5,3 — (0.003342-10.000057|*G, — 0.5,4),
(6)

whereL=0,1,2,3,4,5,... are denoted 8sP, D, F, G,..., and =MHe+Hsot+ Hs. No explicit notation for the wave func-
i=,—1. The effective-spin representatioB=5/2) for the tions of the Hamiltonian in Eqg(1) was provided in Ref. 3,

) o~ ~ , however, the “CPD ground state” was given as:
effective Hamiltoniandd ;.5 and Hy., suitable forC; sym-

metry, has also been employed for a general derivatioh |5/2)(CDP= a1|65,5/2>+a2|65,_3/2>

the microscopic SH using the approaghdescribed above. - o

In no case the labeling based on the dominant component of +smaller contributions arising from the
the state$*>"1L,Mg,M ) implies any “equivalence” of the

actual stateq®S,Mg,M, =0)=|°S,M¢) and the effective S=3/2 and S=1/2states. (93

states{|S=5/2Mg)}. The six states of the physical Hamil- As “an equivalent approximation[supposedly to Eq9a)]
tonian, labeled{|®S,Ms)} and partially listed in Eq.(6), the following wave functions were stated:
are of quite different nature than the six spin states . .
{|S=5/12Mg)} of the effective SHigy, denoted® as |5/2)CDP=(a,/N)|6S,5/2) + (a,/N)|°S,—3/2) (9b)

{IMg)"Y={|=1/2)",|=3/2)" and| +5/2)'}. with the normalization constait=[(a;)?+ (a,)?]*2 The

CDP wave functions in Eq9b) and the SH wave functions
. CRITICISM OF THE ZHAO et al. APPROACH TO like those in Eq.(7) were then apparently treated as physi-
MICROSCOPIC SPIN HAMILTONIAN cally identical entities. This presumption was uStxlobtain
“by means of the approximate equivalence between the SH
and CDP” the relationgtheir Eqgs.(17) and (18)] between
the mixing coefficients of the wavefunctions of the two
I;i)hysically different Hamiltonians:

The method used by Zhaa al3~®is a modification of the
approacH(i) described in Sect. I, where apart from thalid
“equivalence” of the eigenvalues also arcorrect“equiva-
lence” of the wave functions, as explained below, has bee
invoked. Firstly, solving the secular equation fdépesin Eq. cosa=a; /N, sina=a,/N. (10
(4), the eigenenergies(my) «(D,a,F) and the eigenvectors . : . .
were obtagilneﬁas I% tht(airsl)qu(G)—(Sg; for exampgle: This procedure has lead to the identitiieir Eq.(19)]:

T=tan 2o=2a,a,/[(a;)?—(a,)?], (11

which has been used in the derivation of the “the analytical
expressions’[their Eqs.(20)—(22)] for the conventional ZFS

E(*=5/2)«(D,a,F) and its wave function:

|1h3)=cosa| =5/2) +sina| £ 3/2), ™ parameters for tetragonal symmetfy; a+2F/3, anda, in
together with the relation for tar2in terms of(D,a,F) [their ~ terms of the ZFS transitiond,A,, and the coefficienT
Eq. (9)]: defined by the right-hand side of the E41). The authord
claim that “these expressions are general ones which are
tan 2= y5a/[2(a+ 2F/3+2D)]. (8)  independent of the specific interaction model.”

The same approach has been used in Ref. 3 for tie 3
ions at trigonal symmetry to derive the analogous expres-
sions[their Egs.(40)—(42)] for the trigonal ZFS parameters
D, a—F, andain terms of the corresponding ZFS transitions

. L A4,A, and the coefficienT defined for this casgtheir Eq.
Secondly, the complete diagonalization proced@BP) (43)] as:
has been employédo solve within the basis of states of the '
3d® configuration the physical HamiltoniaAin Eq. (1), H T=—2aa,/[(a;)°— (ay)?]. (12

The ZFS transitions were definedas A;=E(*+5/2)
—E(*=1/2) andA,=E(*+3/2)—E(*+1/2). This has enabled
to derivé the relations:A; and A, (D,a,F,tan ) [their
Egs.(10) and(11)].
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The microscopic relations for the ZFS parametémsolving
the coefficientT in Egs.(11) and(12) were then applied for
Mn?* in the tetragonal ABfand ABF, crystals, and F&
in the trigonal a-Al,O,, respectively. The latter relatichs
were also reproduced in Ref. 4 and used forMat trigonal
symmetry sites in LINb@ The “approximate equivalence
between the SH and CDP” has also been invoked in Refs
and 6. Note that Hollidayet al?® pointed out the errors of
different nature in theab initio calculations for Cr** in
LiNbOs3.

The physical framework set in Sec. Il helps clarifying the
following misconceptions in Refs. 3—6.

'S=5/2, whereas it is not true that “the effective spin ground
state approximately equalg3/2). The ground state of SH in
Eqg. (1) depends on the sign of the paramelerand, as it
follows from Eqs.(6) to (8) in Ref. 3, it may be eithelrt 1/2)
for D>0 or a combination of|+3/2) and |=5/2 for
<0—see Eq(7) above, but not even approximatef/2).
" The states of any half-integer spin are the so-called Kramers
doublets and can be split only by the magnetic field. Hence
the Kramers pair states: M), being the eigenstates of SH
in Eq. (4) must have the same energy and thus “the effective
spin ground state” is double degenerate, not ji&$2) or
|1/2). Such confusing terminology on the part of the authors
may be partially blamed for the resulting more substantial
A. The spurious nature of the “approximate equivalence misinterpretations.
between SH and CDP” The consequences of the above misconceptibase as

The authors have not explained or defined the “approxifollows.
mate equivalence between SH and CDP” used in their deri-
vation of the MSH relations. However, in view of the quan- 1. The invalid relations for the ZFS parameters

tum mechanical properties of the wave functions and The coefficientT obtained from the “complete diagonal-

Hamiltonians involved? (see Sec. )| it turns out that the ... , s
wave functions of the two types of Hamiltonians, i.e., thoseIzatlon procedure’(CDP) and defined in Eq(11) for tetrag-

of the effective spin Hamiltonian and those of the physicalOnal symmetry and in Eq(12) for trigonal symmetry, ap-

Hamiltonian,cannot be made equivalerntrespective of any pgfa:fnzrt:;gei?wutsel Sr/rlr?s t;ethreelgflzosnfr;ﬁ;ititgg eZecu;/ﬁd %FS
approximation used in obtaining either type of the wavefunc? $ D2, ’

tions, as, e.g., in Eqg5a) and(5b). The wave functions in l.e., in their Eqs(20)~(22) and Eqs(40)—(42), respectively.

Eq. (7) and those in Eq(9) constitute different basis of This makes these relatiorisvalid, in spite of the authors

states. The major point overlooked in Refs. 3—-6 is that thé:Ialrn that “these expressions are general ones which are

: . : _ . independent of the specific interaction mode.” On the other
wave functions in Eq(9), i.e., |a)={|T',)|S,Mg)} in the _
notation used herejo includethe orbital parts, i.e{|T",)}, hand, Eqs(12)—~(14) of Ref. 3 for the tetragonal symmetry:

which cannot be arbitrarily neglected as done by Zhao eiD,a+2F/3,a}oc(Al,A2,tan &), are given corectly in

al3-6 erms of the ZFS transitiond;, A,, and tan 2 obtained
' from the effective SH calculations and defined in KE8).
The corresponding relations for trigonal symmetry, i.e., Egs.
B. The erroneous identification of the two sets of wave (40—(42) of Ref. 3 forD, a—F, anda, are given directly in

functions terms ofA;, A,, andT. The major reason for thimadmis-

In the microscopic approach' the orbital parts of the Wavéib'G replacement in the relations for the effective ZFS
functions “disappear” only after the integration over the or- Parametersof “tan 2a” by “ T" is that otherwise these re-
bital variables, which results in the effective Hamiltonian lations could not be used for determination of the ZFS pa-
expressed only in the spin variables. Only if one neglectstameters, since tands itself a function oD, a, andF. Here
erroneously so, the orbital paftd”,,)} in the wave functions ~ for the d® ions at axial symmetry there are three ZFS param-
obtained from the CDP calculations, as e.g., in E§sand  €ters but only two ZFS transitions; andA,, which can be
(6), it is possible to make the “approximate equivalence bedetermined either experimentally or from the CDP calcula-
tween SH and CDP” leading to Eq€l0) and(11) as done in  tions. Hence it is not possible to solve analytically EG<)
Refs. 3 and 4. The convenient labeling used in both cases @&hd(11) of Ref. 3, i.e.,A; andA,=(D,a,F,tan 2x) without
described above, although resembles “equivalency,” doesome approximations. For the® ions at trigonal symmetry
not entitle a replacement of the wave functions of one typdhe expressions for the two ZFS transitioh§(2—3)=A;
by those of the other type. The two types of the wave func—A, and AS(1—2)=A, have been derived earlférin
tions should not be confused with each other. Hence, théerms of the extended Stevens parameid&sf. 24 by.
“equivalence” used by Zhao et 4r® amounts to a serious These expressiofiscould not be solved analytically and
confusion, which consists in mixing up the properties of thehave been rather used to verify the correctness of the values
wave functions of the effective spin Hamiltonian and thoseof the ZFS transitions obtained from the simulation of the
of the physical Hamiltonian. This confusion has lead to anexperimental data. After conversion to the same form, the
erroneousidentification of the two sets of wave functions, expressiors could be compared with those in Eqg0)—
which is evident e.g., in the statements pertinent for tetragot42) for D, a—F, anda of Ref. 3, provided an explicit defi-
nal symmetry in Ref. 3: “In the SH approximation, the ef- nition of T in terms ofA;,A, was given in Ref. 3, which is
fective spin ground state approximately equigl®). How-  not the case. Resorting to the physicaihadmissiblere-
ever, it is an admixture db/2), |3/2), and|1/2) states in the placements used in Refs. 3 and 4, see Efj$) and (12
framework of CDP.” In fact, in the effective SH approach above, does not make it possible to solve these equations,
for the d® ions, “the effective ground-state spin” is exactly even in an approximate way. Note that fat*3and & ions
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with spin S=2 at orthorhombic symmet§ there are five may significantly vary from 1 depending on the approxima-
ZFS parameters but only four ZFS transitions. Suitable mathtions used. Some coefficients at the omitted terms in Eq.
ematical approximations have been propd8etthis case to  (13), e.g., 0.016095 at*P,—0.5,1), may be much larger
determine the ZFS parameters from the values of ZFS trarthan those included in Eq13), e.g., the real part of;
sitions. =0.005491. It follows from Eq(8) that to obtain the ZFS
parametera vanishing for tetragonal symmetry requires no
2. The spurious numerical results mixing of the states of the effective SH i.e., eps1 and

Using the values of the coefficieit which involves the ~Sina=0. No corresponding equation for trigonal symmetry
mixing coefficients between the states of the physical Hamil'as been given in Ref. 3, but our calculations show the same
tonian, instead of tan® which involves the mixing coeffi- applies for this case. On the other hand, it follows from Eq.
cients between the states of the effective Hamiltoriganot (19 of Ref. 3[Eq. (11) above and Eq.(43) of Ref. 3[Eq.
justified Yet, since in both cases the mixing coefficients, if (12) abovd defining the coefficientT for tetragonal and
properly normalized, obey similar constraints and in view oftfigonal symmetry, respectively, that to obtanvanishing
the number of adjustable parameteBsC,é4,Byq, which ~ requires eitherd; /N) or (a,/N) to be zero. The latter situ-
determineT, one may obtain apparently acceptable numeri-ation is rather unphysical in view of the nature of the mixing
cal results using the wrong methdéiHowever, the scientific ~ cOefficients obtained from full diagonalization of the physi-
value of the method and the resgit$remainsspurious The cal Hamiltonian as illustrated by the states given in &j.
erroneous premise, on which the derivations and
calculationd=®are based, makes the expressions of Ref. 3 for IV. CONCLUSIONS
the ZFS parameters in EC(Q.O)_(ZZ) for tetrag_onal Symme- The present paper explains the intricacies concerning the
try and Eqs.(40)—(42) for trigonal symmetryinvalid. The o herties of the physical Hamiltonians and the effective
latter point can be verified by con§|der|ng the consequence§pin Hamiltonians used in EME27-! This has enabled
of such equatiorisand the properties of each type of the jaification of the confusion in Refs. 3—6 consisting in mix-
mixing coeﬁ|C|e-nts.. The mixing coefficients of the effective ing up the properties of the wavefunctions of the two Hamil-
SH:cosa and sinx in Eq. (7), arereal and obey exactly the  yonjans, j.e., an erroneous identificatiéor “approximate
normalization condition: cdsr+sin” a=1, whereas those of equivalence’ of the two sets of wave functions. The conse-
the physical Hamiltonian in Eq9) are generallcomplexas  quences of this confusion are the invalid relations for the
it can be seen from Eq(6). For trigonal symmetry the z7ps harameters derived in the MSH approach for thié 3
ground state of the physical Hamiltonian was given in Ref. 35,34 ang the spurious numerical resiité It is hoped that
[their Eq.(49)] as: this paper may help reducing the confusion concerning the

|1/2)(CDP) = al|®S,1/2) + a,|°S, — 5/2) nof[-too-we_ll-unders_tood properties of spin H_amiltonian, still

' ' being proliferated in various ways in the literature as re-
+small contributions arising from the viewed in Ref. 2.
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