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Comment on ‘‘Analytical expressions for zero-field splittings of 3d5 ions in low-symmetry fields
and their applications’’
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The aims of this paper are~i! to elucidate the properties of the physical Hamiltonians and the effective spin
Hamiltonians used in electron magnetic resonance and~ii ! to clarify the confusion in the microscopic spin
Hamiltonian approach of Zhaoet al. @Phys. Rev. B52, 10 043 ~1995!; 55, 8955 ~1997!#. The confusion
consists in anerroneousidentification ~or ‘‘approximate equivalence’’! of the wave functions of the two
Hamiltonians and leads toinvalid relations for the zero-field-splitting parameters for theS-state 3d5 ions at
axial symmetry and the spurious numerical results.
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I. INTRODUCTION

The concept of the spin Hamiltonian~SH!1,2 used by Zhao
et al.3–6 is central to electron magnetic resonance~EMR!.7–11

The microscopic spin Hamiltonian~MSH! approach1,2,12,13

enables derivation of the expressions relating the parame
of an effective spin Hamiltonian with those of the physic
Hamiltonian. Hence the inter-relationships between the
types of Hamiltonians are crucial. Yet, as discussed in
comprehensive review2 on the SH concept, some terms a
often confused in the literature with each other, e.g., phys
versus effective Hamiltonian, real versus effective versus
titious spin, microscopic SH, zero-field-splitting~ZFS!
Hamiltonian, generalized SH~GSH!, and phenomenologica
SH ~PSH!. The general aim of this paper is to elucidate t
properties of the physical Hamiltonians and the effect
spin Hamiltonians, especially those relevant for theS-state
3d5 ions~Sec. II!. The specific aim is to discuss critically th
MSH approach for the transition-metal 3dn ions proposed by
Zhaoet al. 3,4 and utilized for Mn21 and Fe31(3d5) ions3,4,6

and Cr31(3d3) ions5 at axial symmetry~Sec. III!. It appears
that a serious confusion has occurred in Refs. 3–6 du
mixing up the properties of the wavefunctions of the physi
Hamiltonian and those of the effective spin Hamiltonia
This has lead to~i! anerroneousidentification~or ‘‘approxi-
mate equivalence’’3,4! of the two sets of wave functions an
hence~ii ! the invalid relations derived using the MSH ap
proach for the zero-field-splitting~ZFS! parameters for the
S-state 3d5 ions at axial symmetry.3,4

II. EFFECTIVE NATURE OF SPIN HAMILTONIAN
DERIVED USING MSH APPROACH

A brief overview of the pertinent notions and procedur
is necessary for clarification of the confusion in questio
The physical HamiltonianH is defined as a full electronic
Hamiltonian describing the various physical interactions
volving the space and spin coordinates. It acts in its o
basis of states. For the transition-metal ions with the 3dn

electronic configurationH is ~for details see, e.g., Refs. 1, 2
7–11!:
0163-1829/2001/63~10!/106401~7!/$15.00 63 1064
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H5He1HSO1Hc f5~H05He1Hc f!1~V5HSO!, ~1!

including, respectively, the electron-electron repulsion~rep-
resented, e.g., by the Racah parametersB, C!, the spin-orbit
~SO! interaction~represented by the SO parameterjd), and
the crystal-field~CF! potential~represented, e.g., by the C
parametersBkq). Other interactions may be added to the t
tal physical Hamiltonian in Eq.~1!, e.g., the electronic spin
spin (HSS) and the electronic Zeeman (HZe)
interaction.1,2,7–11The explicit forms of the Hamiltonians in
volved depend on whether the calculations are carried
within a given 25– 1L multiplet of a free 3dn ion, for which
case simplified forms exists, or within the whole basis
states of a 3dn configuration, e.g.,$u2S11L,MS ,ML&% in the
intermediate CF-coupling scheme,7–11 for which case more
general forms must be used.1,2,7–11There are two methods o
solving H: ~i! approximate solutions based on degener
perturbation theory,12 which consider specific restricted bas
of states, and~ii ! full numerical diagonalization, which is
nowadays possible due to fast computers. The first met
has resulted in the introduction of the concept of an effect
SH13 in the early years of EMR.

First we discuss the second method. Within the entirenln

(53dn or 4f n) configuration in, e.g., the intermediate CF
coupling scheme,7–9 the basis of states formed by the mul
electron Slater determinant wave functions7 can be denoted
as $u2S11L,MS ,ML&%.14–16 Although the calculations are
fairly tedious, the physics behind is rather straightforwa
Several computer programs are now available to do the
~see, e.g., Refs. 14–17, and references therein! and to enable
analysis of optical spectroscopy data. In this method, ca
lating the matrix elements of the physical HamiltonianH, as,
e.g., in Eq.~1!, within the basis$u2S11L,MS ,ML&% and car-
rying out numerical diagonalization, one obtains thefull set
of eigenvalues and eigenfunctions ofH. For certain spectro-
scopic techniques, especially EMR,7–11 only the energies of
the ground orbital singlet~well separated from the excite
states! are of importance. The basis of states consists in
case of the subset of real 2S11 states$uGa&uS,MS&%[ua&
arising from the ground2S11L(3dn) multiplet split byHc f .
The energy levels of the physical Hamiltonian,e i , within the
ground orbital singlet describe, what can be defined as,the
©2001 The American Physical Society01-1
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COMMENTS PHYSICAL REVIEW B 63 106401
zero-field splitting~see below!. Here the eigenvaluese i of H,
within the restricted basis of states$uGa&uS,MS&% of the
ground-state orbital singlet, are obtained numerically
functions of the parameters of the physical Hamiltonian c
sidered, e.g.,B, C, jd , andBkq as defined in Eq.~1!.

The links between the results of numeric
diagonalization3,4,14–16 of a physical HamiltonianH and
those of perturbation method leading to an effective
~Refs. 1, 2, 12 and 13! are not so straightforward. In order t
elucidate these links below we briefly recap the MS
method originated by Pryce,13 which has lead to an effectiv
spin Hamiltonian for a ground orbital singlet well separat
from the excited states. The effective Hamiltonian of Pryc13

involvesonly the spin operators1,2,7–11and hence later it be
come known as the spin Hamiltonian:

H̃spin5S̃•D•S̃1mBB•g•S̃[H̃ZFS1H̃Zs. ~2!

The matrix elements of the orbital operators, arising from
perturbationV5HSO5lL•S, and the energy denominator
Db[E(Gb)2E(Ga), within the ground multiplet
2S11L(3dn), were lumped in Eq.~2! into the tensorL i j
[^GauL i uGb&^GbuL j uGa&/Db . Then the components ofDi j
andgi j are obtained~see, e.g., Refs. 7–11! as

Di j 52l2L i j and gi j 5~ged i j 2lL i j !, ~3!

wherei, j 5(x,y,z) anduGa&,uGb& are the orbital parts of the
wave functions of the ground orbital singlet and the exci
orbital states, respectively. Theconventional1,2 ZFS term,7–11

S̃•D•S̃ in Eq. ~2!, describes the splitting of the spin states
the ground orbital singlet in the absence of an external m
netic field. Hence the componentsDi j represent thezero-field
splitting ~ZFS! or the fine structure parameters. The ZF
Hamiltonian and its parameters have been represented
plicitly in various forms in the literature2,18 and often con-
fusingly named as the ‘‘crystal field’’ ones.2 The conven-
tional form of ZFS Hamiltonian,1,2,7–11 HZFS, for the 3dn

ions with the spinS>2 at tetragonal symmetry sites with th
cubic axes~j, h, z! along the tetragonal axes~x, y, z!. is:

HZFS5DFSz
22

1

3
S~S11!G

1
a

6 FSj
41Sh

41Sz
42

1

5
S~S11!~3S213S21!G

1
F

180
@35Sz

42„30S~S11!225…Sz
226S~S11!

13S2~S11!2#. ~4!

In the Pryce13 MSH approach the components of th
‘‘tensor’’ Di j and the ‘‘matrix’’ gi j in Eq. ~3! are expressed
directly in terms of themicroscopicquantities, i.e., the pa
rameters of the physical HamiltonianH, comprising in the
above case the energy-level splittingsDa within the ground
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multiplet 2S11L and the spin-orbit coupling parameterl.
Hence the Pryce’s13 method constitutes a derivation of th
microscopic spin Hamiltonian~MSH!. The readers may ben
efit from the general definition of an ‘‘effective Hamil-
tonian’’ by Stevens~Ref. 1, p. 70! as ‘‘an operator which
acts only within the lowest unperturbed manifold and y
which has eigenvalues that coincide with those expecte
come from it when the perturbation is switched on.’’ Th
meaning of the ‘‘effectiveness’’ of the spin operators in t
spin Hamiltonian is also well reflected by Atherton~Ref. 19,
p. 35/36!: ‘‘What the spin Hamiltonian does is to mimi
these energy levels~Cz.R.: i.e., of the full electronic Hamil-
tonian!, and comparison of the two calculations leads
identification of the structure of the coupling coefficien
used in the spin Hamiltonian. In some case the coefficie
can be understood as integrals of the full Hamiltonian o
the electronic wave functions which would imply that th
operators in the spin Hamiltonian are the true spin operat
However, this is not generally true: strictly speaking the o
erators in the spin Hamiltonian are effective spin operat
which givethe right number of energy levelswhose disposi-
tion is such as to account for the observed spectrum.’’

The Pryce13 method can be used only for the special ca
of the lowest orbital singletua& being well separated in en
ergy ~by Db) from the excited states$uGb&uS,MS&%[ub&
within the ground state2S11L multiplet. This conventional
method13 was later extended.12 A more general method o
derivation of MSH from perturbation theory12 has been pro-
posed for the 3d4 and 3d6 transition ions with an orbital
singlet (S52) ground state arising from the5D
multiplet.20–22 The methods12,13,20–22are not applicable for
theS-state (3d5:Fe31,Mn21;4 f 7:Gd31;Eu21) ions character-
ized by the orbital angular momentumL50 in the ground
state. For these systems the MSH derivations must be ca
out within the basis of states of the entirenln (53dn or 4f n)
configuration.23 Hence the procedure is much more compl
than that for a ground multiplet2S11L(3dn),13,20–22 since
then calculations require using, instead of the simplifi
forms of the physical Hamiltonians,2,7–11the respective gen
eral forms,7,14–17 which involve the individual electronic
spinssi . Hence for theS-state ions it is not possible, usin
either the conventional perturbation12,13,7–11 or the tensor
method,20–22 to derive directly an explicit form ofH̃spin in
terms of the total effective spinS̃ corresponding to the tota
electronic spinS5Ssi .

Nevertheless the concept of the effective SH applies a
to theS-state ions. The final result of derivation of MSH ca
be considered as a ‘‘replacement,’’ for the purpose of
scription of thefine structurewithin any ground orbital sin-
glet with true spinS, of the physical Hamiltonian,H01V, by
the effective spin Hamiltonian,H̃spin as defined above. The
mathematical structure ofH̃spin can be represented in a ge
eral form as:1,2,18

H01V→H̃spin5H̃ZFS1H̃Ze[(
1,m

X1mx1m~S̃!1mBB•g•S,

~5!
1-2
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COMMENTS PHYSICAL REVIEW B 63 106401
where X1m denote the ZFS parameters associated wit
given generictype of the tensor operators,x1m , which here
are functions of the components of the effective spin ope
tor S̃, with the rank 1 even (152,4,6, depending on the
value of spinS̃) and the components21<m<1 ~m depend-
ing on the site symmetry! with specific restrictions on 1, m
for a given symmetry case.2,18 Genericsymbolx1m andX1m
in Eq. ~5! represents any tensor operators and associated
rameters, respectively, thus these symbolsdo notdefine yet
another tensor-operator notation, an abundance of which
ready exists in literature.2,18 The spherical-tensor an
tesseral-tensor operator notations as well as the convent
notations used in EMR and related areas have been class
in Refs. 2 and 18.

Two indirect approaches:~i! and ~ii !, exist to relate the
parameters of the physical Hamiltonian to those of the eff
tive one for theS-state ions. Both approaches are based
the equivalence of the actual and the corresponding effec
quantities.Each approachrequiresassumingcertain form
for the effective SH usually characterized by the same, o
an approximation, higher, symmetry as that of the full phy
cal Hamiltonian. In this sense, both approaches are base
a prior knowledge of the ZFS part~and the Ze part! of SH,
which have been obtained either from the MSH derivatio
discussed above or from the generalized SH method.1,2 In
each approachthe derivation follows thethree similar
stagesoutlined below, however, they differ in the ‘‘equiva
lence’’ used.

First, the eigenvalues,e j , of the physical Hamiltonian as
e.g., in Eq.~1!, H5H01V, are calculated either exactly b
numerical diagonalization or approximately by degener
perturbation theory. The solutions include the eigenvaluese i
with i 51 to (2S11), corresponding to the state
$uGa&uS,MS&% within the ground orbital singlet; some energ
levels may turn out to be degenerate. In order to explain
observed ZFS, various mechanisms are taken into acco
including admixtures of higher-lying states into the grou
state orbital singlet due to crystal field and/or spin-orbit co
pling, relativistic effects responsible for the mixing of stat
with different spin multiplicity, and overlap and covalenc
effects.7–9,17 Most MSH applications for the spin system
considered in the literature deal with the ZFS part of SH w
S>1, whereas the Ze part applicable toS>1/2 has been
considered only in a few cases.

Second, the (2S11)3(2S11) matrix elements of the
assumedeffective SH,H̃spin, in its own basis$uS̃,M̃S&% ~or
using the symmetry-adopted combinations ofuS̃,M̃S&) are
calculated in parametric form, since the values of the Z
parameters are not known at this point. Then solving al
braically the characteristic equation forH̃spin, its eigenval-
ues,Ei , i 51 to (2S̃11), with some energy levels bein
degenerate, can be obtained for some cases. For exampl
transition-metal ions at tetragonal symmetry one obtainsEi

in terms of the ZFS parameters, e.g.,Ei}(Bk
q or bk

q) in the
extended Stevens notation24,2,18with k52, q50; k54, and
q50,4, or Ei}(D,a,F) in terms of the conventiona
notation.24,2,18 Eqs. ~7! and ~8! below derived by Zhao
10640
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et al.3,4 serve as an example. To obtain similar expressi
for orthorhombic or lower symmetry additional approxim
tions are required.

Third, by comparing the actual quantities with the corr
sponding effective ones the microscopic relations can be
tained. The major difference between the approaches~i! and
~ii ! lies in the actual and the corresponding effective qua
ties used.

The particular details of each approachare now de-
scribed.Approach ~i! uses the equivalence~or ‘‘compari-
son,’’ see, Ref. 19, p 36, as quoted above! of eigenvalues:
actual5the zero-field splitting energy levelsof the physical
Hamiltonian,e i , obtained either by numerical diagonaliz
tion or degenerate perturbation theory, i.e., its eigenval
within the restricted basis of states$uGa&uS,MS&% of the
ground orbital singlet as explained above,andeffective5the
eigenvalues, Ei , of the assumedZFS Hamiltonian in the

basis$uS̃,M̃S&%. Approach~ii ! uses the equivalence ofmatrix
elements: actual5the matrix elements of the physical Hami
tonian in the basis$uGa&uS,MS&% and effective5the matrix
elementsof the assumedeffective ZFS Hamiltonian in the

basis$uS̃,M̃S&%. The derivations are then more cumbersom
than those in the approach~i!.

An important point is that the resulting effective SH
Eqs.~2!, ~4!, or ~5! no longer acts within the basis of states
the Hamiltonian in Eq.~1!. The eigenstates of thefull Hamil-
tonian in Eq.~1!, denoted$uGb&uS,MS&%, are linear combi-
nations of the eigenstates ofH05He1Hc f , i.e.,
$u2S11L,MS ,ML&%. The effective spin Hamiltonian act
within its own basis of states, i.e.,uS̃,M̃S& of the effective

spinS̃. This fact is denoted by the tilde~;! to distinguish the
effectivespin operatorS̃ and its statesuS̃,M̃S& from the real
total electronic spin operatorS and its statesuS,MS&. This
distinction can be made more evident comparing the mu
electron Slater determinant wave functions,7,14–17 defining
the basis of states pertinent to the physical Hamiltonian
Eq. ~1!, with the basis of states$uS̃,M̃S&%, as, e.g., in Eq.~7!
below, of the effective SH in Eqs.~2!, ~4!, or ~5!. As an
example we consider the results23 for Mn21 (3d5; S55/2) at
the Nb site in LiNbO3. The CF program14–16 has been used
to diagonalize within the basis statesu2S11L,MS ,ML& the
full Hamiltonian,23 similar to the one in Eq.~1!, including
Hc f possessingC3 symmetry and additionally the Tree
correction.14–16 Then the six actual spin states defining t
6S ground multiplet and the corresponding six lowest ene
levels can be obtained.23 These states can bedenotedby their
dominant components u6S,MS ,ML50&[u6S,MS& with
25/2<MS<5/2. For illustration, we reproduce here the sta
u6S,15/2& and u6S,11/2&, being an admixture of the state
u2S11L,MS ,ML&, obtained on a computer using the para
eter values ~in cm21! pertinent for the full physical
Hamiltonian:23 Racah parametersB5911, C53273, the
Trees correction parametera565, the spin-orbit coupling
parameter j5337, and CF parameters in Wybourne
notation14–16 B20521524.3, B405214225.4, ReB43
521882.1, and ImB4352370.3:
1-3
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u6S,15/2&5~0.0054952 i0.000186!u6S,20.5,0&1~0.9993382 i0.0016917!u6S,2.5,0&

1~0.0293792 i0.000497!u4P,1.5,1&1~0.0080122 i0.000271!u4G,1.5,22&

2~0.0062122 i0.000105!u4G,1.5,1&2~0.0061181 i0.000000!u4G,1.5,4&;

u6S,11/2&5~0.0054912 i0.000279!u6S,22.5,0&1~0.9988822 i0.033828!u6S,0.5,0&

1~0.0092972 i0.000315!u4P,1.5,21&1~0.0234252 i0.000793!u4P,0.5,0&

1~0.0160952 i0.000545!u4P,20.5,1&1~0.0071712 i0.000364!u4G,0.5,23&

1~0.0043782 i0.000223!u4G,20.5,22&2~0.0034212 i0.000116!u6G,20.5,1&

1~0.0025312 i0.000043!u4G,1.5,2&1~0.0071842 i0.000122!u4G,0.5,3&2~0.0033422 i0.000057!u4G,20.5,4&,

~6!
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whereL50,1,2,3,4,5,... are denoted asS, P, D, F, G,..., and

i 5A21. The effective-spin representation (S̃55/2) for the
effective HamiltoniansH̃ZFS and H̃Ze, suitable forC3 sym-
metry, has also been employed for a general derivation23 of
the microscopic SH using the approach~i! described above
In no case the labeling based on the dominant componen
the statesu2S11L,MS ,ML& implies any ‘‘equivalence’’ of the
actual statesu6S,MS ,ML50&[u6S,MS& and the effective
states$uS̃55/2,M̃S&%. The six states of the physical Hami
tonian, labeled$u6S,MS&% and partially listed in Eq.~6!,
are of quite different nature than the six spin sta

$uS̃55/2,M̃S&% of the effective SHH̃spin, denoted23 as
$uMS&8%[$u61/2&8,u63/2&8 andu65/2&8%.

III. CRITICISM OF THE ZHAO et al. APPROACH TO
MICROSCOPIC SPIN HAMILTONIAN

The method used by Zhaoet al.3–6 is a modification of the
approach~i! described in Sect. II, where apart from thevalid
‘‘equivalence’’ of the eigenvalues also anincorrect ‘‘equiva-
lence’’ of the wave functions, as explained below, has b
invoked. Firstly, solving the secular equation forHZFS in Eq.
~4!, the eigenenergiesE(ms)}(D,a,F) and the eigenvector
were obtained3 as in their Eqs.~6!–~8!; for example:

E~65/2!}~D,a,F ! and its wave function:

uc3&5cosau65/2&1sinau63/2&, ~7!

together with the relation for tan 2a in terms of~D,a,F! @their
Eq. ~9!#:

tan 2a5A5a/@2~a12F/312D !#. ~8!

The ZFS transitions were defined3 as D15E(65/2)
2E(61/2) andD25E(63/2)2E(61/2). This has enabled
to derive3 the relations:D1 and D2}(D,a,F,tan 2a) @their
Eqs.~10! and ~11!#.

Secondly, the complete diagonalization procedure~CDP!
has been employed3 to solve within the basis of states of th
3d5 configuration the physical Hamiltonian1,2 in Eq. ~1!, H
10640
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5He1HSO1Hc f . No explicit notation for the wave func
tions of the Hamiltonian in Eq.~1! was provided in Ref. 3,
however, the ‘‘CPD ground state’’ was given as:

u5/2&~CDP5a1u6S,5/2&1a2u6S,23/2&

1smaller contributions arising from the

S53/2 and S51/2states. ~9a!

As ‘‘an equivalent approximation’’@supposedly to Eq.~9a!#
the following wave functions were stated:

u5/2&CDP>~a1 /N!u6S,5/2&1~a2 /N!u6S,23/2& ~9b!

with the normalization constantN5@(a1)21(a2)2#1/2. The
CDP wave functions in Eq.~9b! and the SH wave functions
like those in Eq.~7! were then apparently treated as phy
cally identical entities. This presumption was used3 to obtain
‘‘by means of the approximate equivalence between the
and CDP’’ the relations@their Eqs.~17! and ~18!# between
the mixing coefficients of the wavefunctions of the tw
physically different Hamiltonians:

cosa>a1 /N, sina>a2 /N. ~10!

This procedure has lead to the identity@their Eq.~19!#:

T[tan 2a52a1a2 /@~a1!22~a2!2#, ~11!

which has been used in the derivation of the ‘‘the analyti
expressions’’@their Eqs.~20!–~22!# for the conventional ZFS
parameters for tetragonal symmetry:D, a12F/3, anda, in
terms of the ZFS transitionsD1 ,D2 , and the coefficientT
defined by the right-hand side of the Eq.~11!. The authors3

claim that ‘‘these expressions are general ones which
independent of the specific interaction model.’’

The same approach has been used in Ref. 3 for thed5

ions at trigonal symmetry to derive the analogous expr
sions@their Eqs.~40!–~42!# for the trigonal ZFS parameter
D, a–F, anda in terms of the corresponding ZFS transitio
D1 ,D2 and the coefficientT defined for this case@their Eq.
~43!# as:

T522a1a2 /@~a1!22~a2!2#. ~12!
1-4
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COMMENTS PHYSICAL REVIEW B 63 106401
The microscopic relations for the ZFS parameters3 involving
the coefficientT in Eqs.~11! and~12! were then applied for
Mn21 in the tetragonal ABF8 and A2BF4 crystals, and Fe31

in the trigonala-Al2O3, respectively. The latter relations3

were also reproduced in Ref. 4 and used for Mn21 at trigonal
symmetry sites in LiNbO3. The ‘‘approximate equivalence
between the SH and CDP’’ has also been invoked in Ref
and 6. Note that Hollidayet al.25 pointed out the errors o
different nature in theab initio calculations5 for Cr31 in
LiNbO3.

The physical framework set in Sec. II helps clarifying t
following misconceptions in Refs. 3–6.

A. The spurious nature of the ‘‘approximate equivalence
between SH and CDP’’

The authors have not explained or defined the ‘‘appro
mate equivalence between SH and CDP’’ used in their d
vation of the MSH relations. However, in view of the qua
tum mechanical properties of the wave functions a
Hamiltonians involved1,2 ~see Sec. II!, it turns out that the
wave functions of the two types of Hamiltonians, i.e., tho
of the effective spin Hamiltonian and those of the physi
Hamiltonian,cannot be made equivalent, irrespective of any
approximation used in obtaining either type of the wavefu
tions, as, e.g., in Eqs.~5a! and ~5b!. The wave functions in
Eq. ~7! and those in Eq.~9! constitutedifferent basis of
states. The major point overlooked in Refs. 3–6 is that
wave functions in Eq.~9!, i.e., ua&[$uGa&uS,MS&% in the
notation used here,do includethe orbital parts, i.e.,$uGa&%,
which cannot be arbitrarily neglected as done by Zhao
al.3–6

B. The erroneous identification of the two sets of wave
functions

In the microscopic approach, the orbital parts of the wa
functions ‘‘disappear’’ only after the integration over the o
bital variables, which results in the effective Hamiltonia
expressed only in the spin variables. Only if one negle
erroneously so, the orbital parts$uGa&% in the wave functions
obtained from the CDP calculations, as e.g., in Eqs.~9! and
~6!, it is possible to make the ‘‘approximate equivalence b
tween SH and CDP’’ leading to Eqs.~10! and~11! as done in
Refs. 3 and 4. The convenient labeling used in both case
described above, although resembles ‘‘equivalency,’’ d
not entitle a replacement of the wave functions of one ty
by those of the other type. The two types of the wave fu
tions should not be confused with each other. Hence,
‘‘equivalence’’ used by Zhao et al.3–6 amounts to a seriou
confusion, which consists in mixing up the properties of t
wave functions of the effective spin Hamiltonian and tho
of the physical Hamiltonian. This confusion has lead to
erroneousidentification of the two sets of wave function
which is evident e.g., in the statements pertinent for tetra
nal symmetry in Ref. 3: ‘‘In the SH approximation, the e
fective spin ground state approximately equalsu5/2&. How-
ever, it is an admixture ofu5/2&, u3/2&, and u1/2& states in the
framework of CDP.’’ In fact, in the effective SH approac
for the d5 ions, ‘‘the effective ground-state spin’’ is exactl
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S̃55/2, whereas it is not true that ‘‘the effective spin grou
state approximately equals’’u5/2&. The ground state of SH in
Eq. ~1! depends on the sign of the parameterD and, as it
follows from Eqs.~6! to ~8! in Ref. 3, it may be eitheru61/2&
for D.0 or a combination ofu63/2& and u65/2& for
D,0—see Eq.~7! above, but not even approximatelyu5/2&.
The states of any half-integer spin are the so-called Kram
doublets and can be split only by the magnetic field. Hen
the Kramers pair states,u6Ms&, being the eigenstates of SH
in Eq. ~4! must have the same energy and thus ‘‘the effect
spin ground state’’ is double degenerate, not justu5/2& or
u1/2&. Such confusing terminology on the part of the autho3

may be partially blamed for the resulting more substan
misinterpretations.

The consequences of the above misconceptions3,4 are as
follows.

1. The invalid relations for the ZFS parameters

The coefficientT obtained from the ‘‘complete diagona
ization procedure’’~CDP! and defined in Eq.~11! for tetrag-
onal symmetry and in Eq.~12! for trigonal symmetry, ap-
pears erroneously in the relations for the effective ZFS
parameters in terms of the ZFS transitionsD1 , D2 , andT,
i.e., in their Eqs.~20!–~22! and Eqs.~40!–~42!, respectively.
This makes these relationsinvalid, in spite of the authors3

claim that ‘‘these expressions are general ones which
independent of the specific interaction mode.’’ On the oth
hand, Eqs.~12!–~14! of Ref. 3 for the tetragonal symmetry
$D,a12F/3,a%}(D1 ,D2 ,tan 2a), are given correctly in
terms of the ZFS transitionsD1 , D2 , and tan 2a obtained
from the effective SH calculations and defined in Eq.~8!.
The corresponding relations for trigonal symmetry, i.e., E
~40!–~42! of Ref. 3 forD, a–F, anda, are given directly in
terms ofD1 , D2 , andT. The major reason for theinadmis-
sible replacement in the relations for the effective ZF
parameters3 of ‘‘tan 2a’’ by ‘‘ T ’’ is that otherwise these re
lations could not be used for determination of the ZFS
rameters, since tan 2a is itself a function ofD, a, andF. Here
for thed5 ions at axial symmetry there are three ZFS para
eters but only two ZFS transitionsD1 andD2 , which can be
determined either experimentally or from the CDP calcu
tions. Hence it is not possible to solve analytically Eqs.~10!
and~11! of Ref. 3, i.e.,D1 andD2}(D,a,F,tan 2a) without
some approximations. For thed5 ions at trigonal symmetry
the expressions for the two ZFS transitionsDE(2→3)5D1
2D2 and DE(1→2)5D2 have been derived earlier23 in
terms of the extended Stevens parameters~Ref. 24! bk

q .
These expressions23 could not be solved analytically an
have been rather used to verify the correctness of the va
of the ZFS transitions obtained from the simulation of t
experimental data. After conversion to the same form,
expressions23 could be compared with those in Eqs.~40!–
~42! for D, a–F, anda of Ref. 3, provided an explicit defi-
nition of T in terms ofD1 ,D2 was given in Ref. 3, which is
not the case. Resorting to the physicallyinadmissiblere-
placements used in Refs. 3 and 4, see Eqs.~11! and ~12!
above, does not make it possible to solve these equati
even in an approximate way. Note that for 3d4 and 3d6 ions
1-5
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with spin S52 at orthorhombic symmetry26 there are five
ZFS parameters but only four ZFS transitions. Suitable ma
ematical approximations have been proposed26 in this case to
determine the ZFS parameters from the values of ZFS t
sitions.

2. The spurious numerical results

Using the values of the coefficientT, which involves the
mixing coefficients between the states of the physical Ham
tonian, instead of tan 2a, which involves the mixing coeffi-
cients between the states of the effective Hamiltonianis not
justified. Yet, since in both cases the mixing coefficients,
properly normalized, obey similar constraints and in view
the number of adjustable parameters:B,C,jd ,Bkq , which
determineT, one may obtain apparently acceptable nume
cal results using the wrong method.3,4 However, the scientific
value of the method and the results3–6 remainsspurious. The
erroneous premise, on which the derivations a
calculations3–6 are based, makes the expressions of Ref. 3
the ZFS parameters in Eqs.~20!–~22! for tetragonal symme-
try and Eqs.~40!–~42! for trigonal symmetryinvalid. The
latter point can be verified by considering the consequen
of such equations3 and the properties of each type of th
mixing coefficients. The mixing coefficients of the effectiv
SH:cosa and sina in Eq. ~7!, arereal and obey exactly the
normalization condition: cos2 a1sin2 a51, whereas those o
the physical Hamiltonian in Eq.~9! are generallycomplex, as
it can be seen from Eq.~6!. For trigonal symmetry the
ground state of the physical Hamiltonian was given in Re
@their Eq.~49!# as:

u1/2&~CDP!5a1u6S,1/2&1a2u6S,25/2&

1small contributions arising from the

S53/2 and S51/2 states, ~13!

which structurally corresponds to the first line for the st
u6S,11/2& in Eq. ~6!. However, the ‘‘norm’’ of the truncated
wave functions in Eqs.~9b! and ~13!: (a1 /N)21(a2 /N)2,
e

e

ce
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may significantly vary from 1 depending on the approxim
tions used. Some coefficients at the omitted terms in
~13!, e.g., 0.016095 atu4P,20.5,1&, may be much larger
than those included in Eq.~13!, e.g., the real part ofa1
50.005491. It follows from Eq.~8! that to obtain the ZFS
parametera vanishing for tetragonal symmetry requires n
mixing of the states of the effective SH i.e., cosa51 and
sina50. No corresponding equation for trigonal symmet
has been given in Ref. 3, but our calculations show the sa
applies for this case. On the other hand, it follows from E
~19! of Ref. 3 @Eq. ~11! above# and Eq.~43! of Ref. 3 @Eq.
~12! above# defining the coefficientT for tetragonal and
trigonal symmetry, respectively, that to obtaina vanishing
requires either (a1 /N) or (a2 /N) to be zero. The latter situ
ation is rather unphysical in view of the nature of the mixi
coefficients obtained from full diagonalization of the phys
cal Hamiltonian as illustrated by the states given in Eq.~6!.

IV. CONCLUSIONS

The present paper explains the intricacies concerning
properties of the physical Hamiltonians and the effect
spin Hamiltonians used in EMR.1,2,7–11 This has enabled
clarification of the confusion in Refs. 3–6 consisting in mi
ing up the properties of the wavefunctions of the two Ham
tonians, i.e., an erroneous identification~or ‘‘approximate
equivalence’’! of the two sets of wave functions. The cons
quences of this confusion are the invalid relations for
ZFS parameters derived in the MSH approach for the 3d5

ions3,4 and the spurious numerical results.3–6 It is hoped that
this paper may help reducing the confusion concerning
not-too-well-understood properties of spin Hamiltonian, s
being proliferated in various ways in the literature as
viewed in Ref. 2.
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