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Spin-triplet superconducting pairing due to local Hund’s rule and Dirac exchange
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We discuss general implications of the local spin-triplet pairing among fermions induced by local ferromag-
netic exchange, an example of which is the Hund’s rule coupling. The quasiparticle energy and their wave
function are determined for the three principal phases with the gap, which is momentum independent. We
utilize the Bogolyubov–Nambu–de Gennes approach, which in the case of triplet pairing in the two-band case
leads to the four-components wave function. Both gapless modes and those with an isotropic gap appear in the
quasiparticle spectrum. A striking analogy with the Dirac equation is briefly explored. This type of pairing is
relevant to relativistic fermions as well, since it reflects the fundamental discrete symmetry-particle inter-
change. A comparison with the local interband spin-singlet pairing is also made.
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I. INTRODUCTION

The discovery1 of superconductivity in the orbitally de
generate system Sr2RuO4, which is closely related to both
ferromagnetic2 SrRuO3 and antiferromagnetic and Mo
insulating3 Ca2RuO4, poses a question about the role
short-range Coulomb and exchange interactions in stab
ing the spin-triplet superfluid state.3 In the case of Mott-
Hubbard insulators the kinetic exchange interaction4 plays an
essential role in stabilizing antiferromagnetism. This inter
tion is also instrumental in the form ofreal-space pairing5 in
driving the system close to the Mott-Hubbard boundary
wards spin-singlet superconducting state. In the case of
bitally degenerate systems, the ferromagnetic6 and antiferro-
magnetic kinetic exchange interactions compete with e
other7 for the number of electrons per atomn.1. Ferromag-
netism ~with a possible orbital ordering! usually wins8 for
n→1, whereas the antiferromagnetism takes over when
→d, whered is the orbital degeneracy. This type of comp
tition should also be present in Sr2RuO4, in which 4d4 con-
figuration of Ru41 contains two holes int2g shell composed
of nominally triply degeneratede5(dxy ,dyz ,dzx) orbitals.
The two-dimensional antiferromagnetic spin fluctuatio
have been indeed observed in Sr2RuO4 system.9 From the
symmetry point of viewdxy does not mix withdyz anddzx ,
so the fluctuations can be ascribed10 as solely due to the
electrons indxy band. The Hund’s rule coupling betweendxy
and the remaining two bands (dyz ,dzx) must than suppres
the formation of the antiferromagnetic state. In effect, we
left with two electronic liquids: the doubly degenerate a
hybridizeddyz2dzx band containing approximately one ho
and thedxy band containing the other. It must be underlin
that all t2g holes are delocalized, since one observes a w
defined Baber-Landau-Pomeranchuk (;T2) contribution to
the resistivity in both x2y (RuO2) plane and in c
direction.11

From what has been said above it is important to form
late first the model of local pairing represented a dou
degenerate~or almost degenerate! band coupled by the
Hund’s rule and characterize the possible spin-triplet so
tions induced by the Hund’s rule~ferromagnetic! exchange.
This type of model has been formulated by us recently.12 We
have shown there that sizeable~of the order of bare band
0163-1829/2001/63~10!/104513~9!/$15.00 63 1045
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width! Coulomb correlations renormalize the system prop
ties, i.e., lead to analmost localized Fermi liquidwith a
nonretarded real-space and spin-triplet pairing. The value
the transition temperature has been estimated there in
situation when the magnitude of the Coulomb interaction a
the bare bandwidth are comparable and at the proper b
filling. The renormalized Fermi-liquid nature of our ferm
onic system will be a starting point in this paper, in which w
consider basic features of the superconducting state suc
the quasiparticle wave function~in the Fock space! and their
energies. We list the possible solutions for our effect
model with interorbital pairing. The question of coexisten
of the A1 state with ferromagnetism, as well as the com
tition with the orbitally ordered-spin ferromagnetic state h
been discussed separately.13 We believe that the present two
band model stands on its own ground,independentlyof the
detailed nature of Sr2RuO4 superconductivity~which should
include the third band and the anisotropic interband hyb
ization! and must be considered separately, to amplify
physical plausibility of this mechanism of spin-triplet pairin
in a concrete situation~see also the discussion at the en!.
This is particularly so because the Hund’s rule and ass
ated with it ferromagnetic fluctuations14 represent probably
the most natural determinants of spin-triplet pairing und
these circumstances. Also, the present real-space pair13

represents is formally analogous to the spin-singlet pairi5

and additionally, reflects a fundamental symmetry—the p
ticle interchange. So, it contains fundamental physics in
sense, that the nature of the ground state, i.e., that of
spin-triplet superconductor, can appear instead of or toge
with an itinerant ferromagnetism.

II. NAMBU-DE GENNES METHOD FOR THE TRIPLET
PAIRING IN THE TWO-BAND CASE

We consider a degenerate two-band Fermi-liquid sys
coupled by a local triplet pairing. The corresponding effe
tive Hamiltonian is of the simple form12

H5 (
ks l 51,2

Eklakls
† akls22J̃(

im
Aim

† Aim , ~1!

where Ekl are the quasiparticle energies with enhanc
masses by the band narrowing factorq21 ~calculated
©2001 The American Physical Society13-1
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JOZEF SPAŁEK PHYSICAL REVIEW B 63 104513
self-consistently15! in the bandsl 51,2, J̃;Jt2 is the effec-
tive Hund’s rule coupling~the local interorbital exchange!,
and t2 is the probability of having interorbital local spin
triplet configurations, characterized by the creation opera
A1

†5ail ↑
† ail 8↑

† , A21
† 5ail ↓

† ail 8↓
† , and A0

†5(1/A2)(ail ↑
† ail 8↓

†

1ail ↓
† ail 8↑

† ) for lÞ l 8. The local exchange origin of the se
ond term derives from the exact relation between the pai
operators in real space and the full exchange operator
jecting the corresponding two-particle state onto the sp
triplet configuration,

(
m521

1

Aim
† Aim5Si l •Si l 81

3

4
nil nil 8 , ~2!

whereSi l and nil are respectively the spin and the partic
number operators for electron on sitei and orbitall. Explic-
itly nil 5(snil s , nil s5ail s

† ail s , whereas the spin
operators Si l [(Sil

1 ,Sil
2 ,Sil

z )[@ail ↑
† ail ↓ ,ail ↓

† ail ↑ ,(1/2)(nil ↑
2nil ↓)#. The right-hand side of Eq.~3! represents thus th
full exchange operator.

After making the BCS-type approximation in the loc
form14

Aim
† Aim.Aim

† ^Aim&1^Aim
† &Aim2^Aim

† &^Aim& ~3!

we can cast Hamiltonian~1! into the four-component form
which in the reciprocal (k) space takes the form12

HBCS5(
k

fk
†Hkfk1(

k
Ek2 , ~4!

where the corresponding Nambu operators take the formfk
†

5( f k1↑
† , f k1↓ , f 2k2↑ , f 2k2↓), fk5(fk

†)†, and the Hamiltonian
matrix for selectedk state reads

Hk5S Ek12m, 0, D1 , D0

0, Ek12m, D0 , D21

D1* , D0* , 2Ek21m, 0

D0* , D21* , 0, 2Ek21m

D
[S Ek1ŝ0 , D̂

D̂* , 2Ek2ŝ0
D , ~5!

whereŝ0[1 is the unit 232 matrix, andm is the chemical
potential. The superconducting gap is parametrized asDm

[22J̃(k^ f k1s
† f 2k2s8

† &, with m5(s1s8)/2, and s,s8

561. The 232 matrix D̂ is parametrized in the usua
form,16

D̂5 i ~d•s̃ !sy5S 2dx1 idy , dz

dz , dx1 idy
D , ~6!

wheres̃ is composed of the three Pauli matrices, whereas
vector d in spin space has the componentsdx5(D21
2D1)/2, dy5(D211D1)/2, anddz5D0. The form ~5! is a
generalization of the Nambu representation to the triplet c
with three, in general different, gapsDm .
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It is straightforward to introduce the 434 Dirac matrices

b̃[S 1, 0

0, 21D and ã i5S 0, s i

s i , 0 D ,

and then rewrite Eq.~5! for the degenerate caseEk15Ek2

and forDm5Dm* in the form

Hk5b̃~Ek2m!1 i ~d•ã !S2 , ~7!

where

S25S 0, sy

sy , 0 D
is they component of the relativistic spin operator. We d
cuss in detail the simple situation of degenerate electr
(Ek15Ek2) with a real gapDm in the next section.

One can also look at the approach from a different p
spective. Let us introduce the four-component wave funct
for a single quasiparticle in the suprconducting phase pro
gating in the real space as follows:

Ĉ~x,t !5
1

AN
(

k S c1k f k1↑
c2k f k1↓

c3k f 2k2↑
†

c4k f 2k2↓
†

D expF i S k•x2
Ek

\
t D G , ~8!

wherecmk are the quasiparticle amplitudes which are det
mined for each eigenstate~see below!. In this representation
the Bogoliubov–de Gennes equation for a single quasipa
cle in the superconducting states reads

i\] tĈ5b̃FEkS k⇒¹

i D2mGĈ1 i ~d•ã !S2Ĉ, ~9!

whereEk(k⇒¹/ i ) represents now the differential operat
(1/i )¹ replacing the wave vectork in the dispersion relation
Ek for quasiparticles. In the effective-mass approximati
and in the stationary case this wave equation for quasip
cles in the superconducting phase has the following form

lS c1

c2

c3

c4

D 52S \2

2m*
¹21m D S c1

c2

2c3

2c4

D 1S D1c31D0c4

D0c31D21c4

D1c11D0c2

D0c11D21c2

D ,

~10!

where cm[cm(x) and l is an eigenvalue of quasiparticl
state in the superconducting state with the above fo
component wave function (Dm are regarded as real!. The
validity of this equation goes beyond the simple solution~8!,
as one can include the magnetic and electric fields and o
3-2
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inhomogeneities if they appear on the mesoscopic or ma
scopic scale. In the next section we will use explicitly t
momentum representation of Eq.~10!, as we will discuss
exclusively homogeneous superconducting states. We
return to Eq.~10! when discussing the general features
this Hamiltonian in Sec. IV. One should also note that fin
ing the eigenvalues for Hamiltonian in the forms~4! or ~7!
can be achieved by diagonalizing of the matrix 434 in gen-
eral case, as discussed in analytic terms in Appendix A.
o

er

10451
o-

ill
f
-

III. SUPERCONDUCTING STATES AND THEIR
QUASIPARTICLES

We now discuss three principal solutions of Eq.~10! by
takingcm(x)5cmexp(ik•x)/AV, whereV is the system vol-
ume. We also assume thatDm5Dm* ~e.g., neglect the applied
magnetic fields!, since we consider only spatially homog
neous solutions. Namely, rewriting Eq.~10! in components
we obtain the combinations
H l~c11c2!5~Ek2m!~c11c2!1~D11D0!c31~D01D21!c4

l~c31c4!52~Ek2m!~c31c4!1~D11D0!c11~D01D21!c2 ,
~11!

and

H l~c12c2!5~Ek2m!~c12c2!1~D12D0!c31~D02D21!c4

l~c32c4!52~Ek2m!~c32c4!1~D12D0!c11~D02D21!c2 .
~12!
ons
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Such combinations of particle (c1 andc2) and hole (c3 and
c4) components contain basic symmetry, as we will see
example of particular solutions, which we discuss next.

A. Isotropic solution: D0ÄDÀ1ÄD1ÆD

In that situation Eqs.~11! and ~12! take a simple form,

H l~c11c2!5~Ek2m!~c11c2!12D~c31c4!

l~c31c4!52~Ek2m!~c31c4!12D~c11c2!,
~13!

and

H l~c12c2!5~Ek2m!~c12c2!

l~c32c4!52~Ek2m!~c32c4!.
~14!

The first two equations lead to the modes with a gap

l5lk1,256A~Ek2m!214D2[6lk . ~15!

For those two modesc15c2 and c35c4 and their eigen-
states are characterized by the following quasiparticle op
tors:

ak5uk

1

A2
~ f k1↑1 f k1↓!2vk

1

A2
~ f 2k2↑

† 1 f 2k2↓!, ~16!

and

b2k
† 5vk

1

A2
~ f k1↑1 f k1↓!1uk

1

A2
~ f 2k2↑

† 1 f 2k2↓!,

~17!

with the Bogoliubov coherence factors
n

a-

uk5
1

A2
S 11

Ek2m

lk
D 1/2

, vk5
1

A2
S 12

Ek2m

lk
D 1/2

.

~18!

The quasiparticle operators contain symmetric combinati
( f k1↑1 f k1↓)/A2 and (f 2k2↑1 f 2k2↓)/A2. The wave func-
tion is symmetric with respect to particle-spin interchan
(↑↔↓) and describes quasiparticle states of energy6lk ,
respectively.

Equations~14! lead to the gapless modes of the form,

l5lk3,456~Ek2m!, ~19!

and correspond to the eigenstates characterized by the o
tors

gk5
1

A2
~ f k1↑2 f k1↓!, and d2k

† 5
1

A2
~ f 2k2↑

† 2 f 2k2↓
† !

~20!

and constitute the antisymmetric-in-spin operators, rep
senting the unpaired electrons. These gapless modes d
pear when the gap components are not equal, as show
Appendix A. One should note that the gapless modes ap
even though the superconducting gap here isk independent.

Combining the solutions~16!–~18! and ~19! and ~20! we
can express the original~‘‘old’’ ! particle operators in terms
of quasiparticle~‘‘new’’ ! operators in the following manner

S f k1↑
f k1↓

f 2k2↑
†

f 2k2↓
†

D 5
1

A2 S uk , vk , 1, 0

uk , vk , 21, 0

2vk , uk , 0, 1

2vk , uk , 0, 21

D S ak

b2k
†

gk

d2k
†

D .

~21!
3-3
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This transformation is necessary for determining the s
consistent equation for the gap and for the chemical poten
m. First, we rewrite the Hamiltonian~4! in the diagonal form

H5(
k

lk~ak
†ak2b2kb2k

† !1Ek~gk
†gk2d2kd2k

† !1(
k

Ek

5(
k

lk~ak
†ak1b2k

† b2k21!1Ek~gk
†gk1d2k

† d2k!.

~22!

The equation for the gap, e.g.,D15^ f k1↑
† f 2k2↑

† & is obtained
by substituting the relevant transformed operators in Eq.~21!
to D1. In effect, we obtain the usual BCS form (Ek[Ek
2m)

^ f k1↑
† f 2k2↑

† &52
1

2

D

AEk
214D2

tanhS bAEk
214D2

2
D ,

~23!

whereb[(kBT)21. So, the gap equation has two solution
1°, D[0,

2°, 15
J

N (
k

1

AEk
214D2

tanhS bAEk
214D2

2
D . ~24!

The last equation tells us that the physical gap is 2D. The
self-consistent equation for the chemical potential must
clude gapless modes, i.e., takes the form

n5
1

N (
ks

^ f k1s
† f k1s1 f k2s

† f k2s&5
2

N (
k

^ak
†ak1gk

†gk&.

~25!

Normally, as we shall see,D!umu, and hence approximatel
half of all particles will have the spectrum gapped. The d
tails must be analyzed numerically for a concrete structur
the density of states. In the limitW̃! J̃ we have the estimate
of the gap value atT50 in the form D5(W̃/2)exp
(2W̃/(2J̃); this yields the valueD/W̃;102321024, or in the
regime 1210 K for W̃.1 eV andJ̃;0.1W̃.

We need also the expression for the ground-state ene
as various solutions are possible. In the present case,
energy can be written as

EG

N
5

2

N (
k

~AEk
21D̃2^ak

†ak&1Ek^gk
†gk&

2AEk
21D̃2!1

D̃2

2J
, ~26!

whereD̃52D.

B. Equal-spin pairing: D0Æ0

To obtain the explicit solution we now combine sep
rately the first and third components of Eq.~10! on one side,
and the second and the fourth on the other. Adding and s
tracting the corresponding terms we obtain
10451
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H ~D12l!~c11c3!1~Ek2m!~c12c3!50

~Ek2m!~c11c3!2~D11l!~c12c3!50,
~27!

and

H ~D212l!~c21c4!1~Ek2m!~c22c4!50

~Ek2m!~c21c4!2~D211l!~c22c4!50.
~28!

Thus the two pairs of components~27! and ~28! separate
from each other and it is sufficient to solve, e.g., the fi
system~27! to be able to reproduce the other. Explicitly, th
two solutions can be combined into the form, in which t
eigenvalues take the form

l[lk1•••456A~Ek2m!21Ds
2[6lk

(s) , ~29!

where for each spin orientations561 of the quasiparticles
we have two solutions with the gap6A(Ek2m)21Ds

2. The
quasiparticle operators (aks ,b2ks

† ) diagonalizing Hamil-
tonian ~4! in this case are

aks5uk
(s) 1

A2
~ f k1s1 f 2k2s

† !2vk
(s) 1

A2
~ f k1s2 f 2k2s

† !,

~30!

and

b2ks
† 52vk

(s) 1

A2
~ f k1s1 f 2k2s

† !1uk
(s) 1

A2
~ f k1s2 f 2k2s

† !,

~31!

with the coherence factors

uk
(s)5

1

A2
S 11

Ds

lk
(s)D 1/2

, vk
(s)5

1

A2
S 12

Ds

lk
(s)D 1/2

.

~32!

In general, we have two gapsDs5(D1 ,D21). In the situa-
tion Ds5D2s5D we have a doubly~spin! degenerate solu
tions. It can be easily verified that the operators~30! and~31!
obey the fermion anticommutation relations. The diagon
ized Hamiltonian has the form

H5(
k

lk
(s)~aks

† aks1bks
† bks21!1E0. ~33!

To determine the gap equation we have to find the trans
mation which is reverse of Eqs.~30! and ~31!. It is of the
form
3-4
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S f k1↑
f k1↓

f 2k2↑
†

f 2k2↓
†

D 5
1

A2 S uk
(1)1vk

(1) , uk
(1)2vk

(1) , 0, 0

0, 0, uk
(2)1vk

(2) , uk
(2)2vk

(2)

uk
(1)2vk

(1) , 2uk
(1)2vk

(1) , 0, 0

0, 0, uk
(2)2vk

(2) , 2uk
(2)2vk

(2)

D S ak↑
b2k↑

†

ak↓
b2k↓

†

D . ~34!
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The difference with the isotropic pairing~21! is that here the
coherence factors appear in combinations. Those appear
in the self-consistent equation for the gap

^ f 2k2s
† f k1s

† &52~uk
(s)22vk

(s)2!@12^aks
† aks&2^bks

† bks&#.
~35!

In result, the self-consistent equation will have the followi
three solutions: 1°Ds[0, 2° D (2s)50, butDsÞ0 is the
solution of equation

15
J

N (
k

1

A~Ek2m!21Ds
2
tanhS b

2
A~Ek2m!21Ds

2 D
~36!

3° DsÞ0, D2sÞ0, and each of them is determined fro
Eq. ~36!.

One should note that the coupling constant above~J! is
the same as for the isotropic phase@cf. Eq. ~24!#. For the
sake of completeness, we reproduce the ground-state-en
expression which is

EG

N
5

2

N (
ks

A~Ek2m!21Ds
2^aks

† aks&1
D1

21D21
2

2J

2
1

N (
ks

A~Es2m!21Ds
21

1

N (
k

Ek . ~37!

This phase represents a starting point when discussing
coexistence of ferromagnetism and the spin-triplet superc
ductivity.

C. Spin-polarized phase:D0ÄD`Ä0

In this limit the system is totally spin polarized, i.e., is
spin-saturated superconductor. In that limit we recover
again the spectrum both with and without gap, i.e.,lk1,25

6A(Ek2m)21D↑
2, lk3,456(Ek2m). Thus paired and un

paired states coexist also in this phase, as can be easily
from Eqs.~30! and ~31!, which yield the form written there
for s5↑ andak↓5 f k1↓ andb2k↓

† 52 f k2↓
† .

Summarizing Secs. III A–C, the lowest energy will ha
the homogeneous state withD↑5D↓5D0 so that the effec-
tive gap is equal to 2D. The most interesting feature of th
results is that the gapless modes coexist in A and C
represent half of the spectrum. Also, the condensed ph
described by A–C above correspond roughly to the soluti
for superfluid3He, which are labeled17 B, A, and A1. How-
ever, under the present circumstances here we have mo
tum independentgaps, since the pairing is of the local~in-
trasite, but interorbital! nature. For the sake of compariso
10451
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we present in Appendix B the case of spin-singlet pair
induced by the same type of local interband pairing induc
by antiferromagnetic exchange.

IV. REMARK ON THE TRIPLET PAIRING FOR
RELATIVISTIC FERMIONS

The two-band situation with a local ferromagnetic e
change can be easily generalized to the explicitly relativis
form modeling thus the triplet configuration of spin, isosp
or color ~the singlet case was considered by Nambu a
Jona-Lasinio16 and in Ref. 19!. The paired quasiparticles20

obey the following modified Dirac wave equation:

i\] tC5~cã•p̂1b̃mc2!C1 i ~d•ã !S2C, ~38!

where the last term supplements the Dirac equation with
contact pairing. By taking the analogy with the original a
proach by Nambu21 one can write down the stationary ve
sion of this equation as the following system in the tw
component~Weyl! representation:

lS c1

c2
D 5~cs̃•p̂2m!S c1

c2
D 1mc2S c3

c4
D

1S D1c31D0c4

D0c31D21c4
D , ~39!

lS c3

c4
D 52~cs̃•p̂2m!S c3

c4
D 1mc2S c1

c2
D

1S D1c11D0c2

D0c11D21c2
D . ~40!

This system of equations can be directly compared with
~10! for nonrelativistic electrons. In the present situation t
mass term mixes the upper and the lower two component
the bispinor, as does the pairing part. Apart from a mod
cation in the kinetic-energy part, the system of Eqs.~39!–
~40! can be solved in the manner as discussed in Sec. III.
detailed discussion must include also the gauge fields, wh
lead to one-exchange pairing~analogous to the phonon
mediated pairing!, a topic intensively discussed in rece
literature.22 In general, the singlet pairing16,19–22is mutually
exclusive with the triplet pairing proposed here and theref
the latter requires first a detailed discussion of exchange
teractions represented by relativistic spin$S i%.
3-5
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V. DISCUSSION

In this paper we have formulated the quasiparticle l
guage for local triplet pairing between fermions~interband
pairing in the nonrelativistic case! induced by the local
~Hund’s rule or Dirac! exchange. In particular, we have d
termined explicitly the quasiparticle states and the de Gen
wave equation for them, which can be useful when cons
ering spatially inhomogeneous situations.23 The principal
feature of the results is the existence of the gapless mo
existence of which can also be proved on a phenomenol
cal level.24 The circumstance that the pairing is induced
the ferromagnetic exchange means that this interaction
lead not only to an itinerant ferromagnetic state, but also
either spin-triplet superconductor or to a coexistence of b
these states~for a brief discussion of this issue, see Ref. 1!.
The present paper represents only the first step in this d
tion. Furthermore, our mechanism of pairing expressing
fundamental symmetry~the particle interchange! may have
an important astrophysical application: the pairing in t
neutron-proton matter in pulsar, but this intriguing possib
ity requires a separate study.

Two problems should be tackled next. First, the analy
of the Meissner effect, since in the present situation the
bital diamagnetism will compete with the ferromagnetic sp
polarization~particularly, if the triplet superconducting an
ferromagnetic phases can coexist!. An intriguing question
here is: can we reach the limiting superconducting ph
~corresponding to A1 phase in the case of superfluid3He),
the critical temperatureTc of which can be enhanced by th
applied magnetic field?

Second, one should derive microscopically the Ginzbu
Landau equation for the condensed pairs. Note that the
Gennes Eqs.~9! or ~10! is useful in describing the quasipa
ticle tunneling, whereas the Ginzburg-Landau equation
useful when considering the Josephon~pair! tunneling. Here
an intriguing question to what extent the gapless quasip
cles influence the tunneling between the spin-singlet and
spin-triplet superconductors or between the triplet superc
ductor and normal metal. We should be able to see
progress in answering those questions in a near future.

Finally, returning to the question of the nature of t
paired state in Sr2RuO4 one can make the following two
remarks. First, the existence of gapless modes in B- and
like phases leads to the persistence of the linear term in
specific heat in the superconducting phase at its 50% va
if the pairing is the pure spin-triplet state of electrons pa
derived fromdzx bands. The recent measurements25 in very
pure samples contradict such earlier claims11 that a half of
the linear specific heat survives in the superconduc
phases. Does that mean that the full phase diagram invo
more than one phase depending on the doping degree,
the heavy fermion system U12xThxBe13?

26 In connection
with this one can say that because of the reasons menti
in Sec. I it is conceivable that a singlet pairing indxy band
induced by antiferromagnetic fluctuations9 can compete in
the triplet state in the other two bands.27 The nature of the
resultant state should be determined then. Obviously,
approach is not directly applicable to any concrete system
10451
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we neglect the realistic structure of, e.g., Sr system.28 We
should be able to see a progress in those matters in
future ~the results will be presented separately, Ref. 27!.

Second, an important question concerns the nature of
pairing potential. In more standard approach28,14 one intro-
duces the effective triplet pairing via the paramagnon
change. In that situation the coupling constant is determi
by the susceptibilityx(q5k2k8) and hence, is wave-vecto
(q) dependent. In the approach developed here the exchan
interaction itself provides real-space pairing, as in the cas
high-temperature superconductors.5 In the case of Hund’s
rule coupling the pairing potential is thenk independent. We
believe that the latter approach is relevant when the parti
are strongly correlated. Sr2RuO4 is a systems close to~but
below! the Mott-Hubbard localization threshold, i.e., th
halfway between the weak-correlation and the stro
correlation asymptotic regimes. Therefore the real-sp
pairing is certainly worth of analyzing, as it allows for a
analytic approach.

One methodological remark at the end. In the analyti
analysis of the spin-triplet pairing one usually uses17,29 thed
vector in expressing the pairing part. Here we decided to
the original BCS gap parameters, a completely equiva
procedure, but probably a bit more direct, at least in
spatially homogenous situation. In connection with this a d
ference of the present description with that for superfl
helium23 should be stressed. Namely, in thehelium23
case, theL51 orbital momentl and the spin vectord deter-
mine the~many-component! nature of the gap. Thed.l and
dxl combinations determine the order-parameter dynam
Here, nol vector appears and therefore the order param
can have up to three independent components.

One should note that the present pairing is operative
arbitrary anisotropic bands, since the symmetryEk5E2k
takes place if only the time reversal symmetry is obey
e.g., in the absence of either applied magnetic field or if
superconducting state does not coexist with ferromagnet
In those situations the Fulde-Ferrell-Larkin-Ovchinniko
state should be considered.30
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APPENDIX A: GENERAL SOLUTION: D1ÅD2ÅD3ÅD1 ,
Ek1ÅEk2

The most general case of finding the eigenvalues for q
siparticles in the superconducting phase is to diagonalize
trix 434, i.e., to solve the equation~we assume thatEk1,2

2m[Ek and thatD15D1* )
3-6
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detS Ek12l, 0, D1 , D0

0, Ek12l, D0 , D21

D1 , D0 , 2Ek22l, 0

D0 , D21 , 0, 2Ek22l

D 50.

~A1!

By a straightforward evaluation one obtains the eigenval

lk1•••45
1

2
~Ek12Ek2!6

1

2
@~Ek11Ek2!212D̃2

62AD̃424d̃4#1/2, ~A2!

where

D̃5~D1
21D21

2 12D0
2!1/2 ~A3!

is the total gap, and

d̃5AuD0
22D1D21u ~A4!

is its anisotropy in fermion-pair spin space. In this gene
case all four modes are each with a different gap and
results reduce nicely to the eigenvalues discussed as S
III A–C. In general, the superconducting coupling at t
level of energies amounts to hybridizing the different fe
mion fields (l 51,2) and their spin (s5↑,↓) states. The gen
eral form of the eigenstates can also be found in a strai
forward manner, but will not be discussed here.

APPENDIX B: LOCAL SPIN-SINGLET PAIRING
IN TWO-BAND CASE

For the sake of comparison with the spin-triplet case
outline here the solution for the corresponding spin-sing
situation. In this case the Hamiltonian with the spin-sing
exchange coupling has the form in the real space

H5 (
ks l 51,2

Eklnkls1J(
i l l 8

S Si l Si l 81
1

4
nil nil 8D . ~B1!

Note that now the exchange operator in the present situa
differs from Eq.~2! introduced in the triplet case. Introduc
ing the corresponding local pairing operators in the sing
state

Bi
†5

1

A2
~ai1↑

† ai2↓
† 2ai1↓

† ai2↑
† ! ~B2!

we can write down the second term in Eq.~B1! as
22J( iBi

†Bi .
After taking the space Fourier transform, and includi

only (k,2k) pairs we obtain

H5(
ks

Eklnkls2
J

N (
kk8

~ f k1↑
† f 2k2↓

† 2 f k1↓
† f 2k2↑

† !

3~ f 2k2↓ f k1↑2 f 2k2↑ f k1↓!. ~B3!
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Making subsequently, as in Sec. II the BCS approximati
we obtain ~the chemical potential is included inEkl[Ekl
2m)

HBCS5(
kls

@Eklnkls1Dk* ~ f k1↑
† f 2k2↓

† 2 f k1↓
† f 2k2↑

† !1H.c.#

2
D2

2J
N, ~B4!

where

D[2
2J

N (
k

^ f k1↑
† f 2k2↓

† &. ~B5!

Introducing, as before, the four-dimensional vectorsf†

[( f k1↑
† , f k1↓

† , f 2k2↑ , f 2k2↓) and their conjugate as one co
umn vectors, we can write down the Hamiltonian in the fo
of the following 434 matrix:

HBCS5E01~ f k1↑
† , f k1↓

† , f 2k2↑ , f 2k2↓!

3S Ek1 , 0, 0, D

0, Ek1 , 2D, 0

0, 2D* , 2Ek2 , 0

D* , 0, 0, 2Ek2

D S f k1↑
f k1↓

f 2k2↑
†

f 2k2↓
†

D
~B6!

with E052(kEk21D2/(2J). Diagonalization of this 434
matrix leads to the eigenvalues

l1,25
1

2
~Ek12Ek2!6AS Ek11Ek2

2 D 2

1uDu2. ~B7!

Both eigenmodes are doubly degenerate and with an iso
pic gapD. We take the form of usual dispersion relation f
degenerate bandsEk15Ek2.

The corresponding combinations18 of the wave-function
components are~for D5D* )

H ~Ek12l!~c11c2!2D~c32c4!50

D~c11c2!1~Ek21l!~c32c4!50,
~B8!

and

H ~Ek12l!~c12c2!1D~c31c4!50

D~c12c2!2~Ek21l!~c31c4!50.
~B9!

For the sake of simplicity we consider here only the ca
Ek15Ek25Ek , as it provides the main character of th
eigenstates. Moreover, it is sufficient to consider only
system~B10! due to the double degeneracy of the eigenv
ues. By standard method~including the wave-function nor-
malization! we obtain the quasiparticle operators

ak5uk

1

A2
~ f k1↑1 f k1↓!1vk

1

A2
~ f 2k2↑

† 2 f 2k2↓!,

~B10!

and
3-7
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b2k
† 52vk

1

A2
~ f k1↑1 f k1↓!1uk

1

A2
~ f 2k2↑

† 2 f 2k2↓!,

~B11!

where

uk5
1

A2
S 11

Ek

AEk
21D2D 1/2

,

vk5
1

A2
S 12

Ek

AEk
21D2D 1/2

. ~B12!

Again, we have a combination of the two types of states. T
corresponding wave equation which replaces
,

n

.

.

-
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Bogoliubov–de Gennes equation for one-band singlet su
conductor reads in the effective-mass approximation

i\] tS c1

c2

c3

c4

D 5S 2
\2

2m*
¹22m D S c1

c2

2c3

2c4

D 1DS c4

2c3

2c2

c1

D .

~B13!

We see that the pairing couples explicitly the particle a
hole components (c1 with c4 , c2 with 2c3, etc.!. This
equation forms a basis for the discussion of inhomogene
paired states.
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