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Spin-triplet superconducting pairing due to local Hund’s rule and Dirac exchange
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We discuss general implications of the local spin-triplet pairing among fermions induced by local ferromag-
netic exchange, an example of which is the Hund’s rule coupling. The quasiparticle energy and their wave
function are determined for the three principal phases with the gap, which is momentum independent. We
utilize the Bogolyubov—Nambu—de Gennes approach, which in the case of triplet pairing in the two-band case
leads to the four-components wave function. Both gapless modes and those with an isotropic gap appear in the
quasiparticle spectrum. A striking analogy with the Dirac equation is briefly explored. This type of pairing is
relevant to relativistic fermions as well, since it reflects the fundamental discrete symmetry-particle inter-
change. A comparison with the local interband spin-singlet pairing is also made.
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I. INTRODUCTION width) Coulomb correlations renormalize the system proper-
ties, i.e., lead to aralmost localized Fermi liquidvith a
The discovery of superconductivity in the orbitally de- nonretarded real-space and spin-triplet pairing. The value of
generate system SRuQ,, which is closely related to both the transition temperature has been estimated there in the
ferromagneti¢ SrRuQ, and antiferromagnetic and Mott situation when the magnitude of the Coulomb interaction and
insulating Ca,RuQ,, poses a question about the role of the bare bandwidth are comparable and at the proper band
short-range Coulomb and exchange interactions in stabilizfilling. The renormalized Fermi-liquid nature of our fermi-
ing the spin-triplet superfluid stafeln the case of Mott- onic system will be a starting point in this paper, in which we
Hubbard insulators the kinetic exchange interaétjgays an  consider basic features of the superconducting state such as
essential role in stabilizing antiferromagnetism. This interacthe quasiparticle wave functigim the Fock spageand their
tion is also instrumental in the form ofal-space pairingin ~ energies. We list the possible solutions for our effective
driving the system close to the Mott-Hubbard boundary to-model with interorbital pairing. The question of coexistence
wards spin-singlet superconducting state. In the case of oef the Al state with ferromagnetism, as well as the compe-
bitally degenerate systems, the ferromagfietitd antiferro-  tition with the orbitally ordered-spin ferromagnetic state has
magnetic kinetic exchange interactions compete with eacheen discussed separat&lwe believe that the present two-
other for the number of electrons per atan» 1. Ferromag- band model stands on its own grouridependentlyof the
netism (with a possible orbital orderingusually winé for detailed nature of SRuQ, superconductivitfwhich should
n—1, whereas the antiferromagnetism takes over when include the third band and the anisotropic interband hybrid-
—d, whered is the orbital degeneracy. This type of compe-ization) and must be considered separately, to amplify the
tition should also be present in &RuQ,, in which 4d* con-  physical plausibility of this mechanism of spin-triplet pairing
figuration of Rd* contains two holes i,, shell composed in a concrete situatiofisee also the discussion at the end
of nominally triply degeneratel = (d,,,d,,.d,,) orbitals. This is.pa_rticularly SO bccause thc Hund’s rule and associ-
The two-dimensional antiferromagnetic spin fluctuationsated with it ferromagnetic fluctuatiotfsrepresent probably
have been indeed observed in,BuO, systen® From the the most natural determinants of spin-triplet pairing under
symmetry point of viewd,, does not mix withd,, andd,, these circumstances. Also, the present rcal-s_pace pﬁir_ing
so the fluctuations can be ascrib®ds solely due to the represents is formally analogous to the spin-singlet pairing
electrons ind,, band. The Hund’s rule coupling betwedy, ~ @nd additionally, reflects a fundamental symmetry—the par-
and the remaining two bandsly(,,d,,) must than suppress ticle interchange. So, it contains fundamentallphysms in the
the formation of the antiferromagnetic state. In effect, we aresense, that the nature of the ground state, i.e., that of the
left with two electronic liquids: the doubly degenerate andSPin-triplet superconductor, can appear instead of or together
hybridizedd, ,—d, band containing approximately one hole with an itinerant ferromagnetism.
and thed,, band containing the other. It must be underlined
that all t,4 holes are delocalized, since one observes a well !l. NAMBU-DE GENNES METHOD FOR THE TRIPLET
defined Baber-Landau-Pomeranchuk %) contribution to PAIRING IN THE TWO-BAND CASE

the resistivity in bothx—y (RuG,) plane and inc We consider a degenerate two-band Fermi-liquid system

direction? : s .
. o coupled by a local triplet pairing. The corresponding effec-
From what has been said above it is important to formu'tivepHamiI%/onian is ofF:he Eimplg fortA P 9

late first the model of local pairing represented a doubly
degenerate(or almost degenerateband coupled by the -
Hund’s rule and characterize the possible spin-triplet solu- H= 2 Enafi,an,— 232 AlAim, (1)
tions induced by the Hund's rulderromagnetit exchange. kol=12 m

This type of model has been formulated by us recefftile ~ where E,, are the quasiparticle energies with enhanced
have shown there that sizealjlef the order of bare band- masses by the band narrowing factgr! (calculated
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self-consistent}?) in the bandd =1,2, 3~ Jt? is the effec- It is straightforward to introduce the>44 Dirac matrices
tive Hund’s rule couplingthe local interorbital exchange

and t? is the probability of having interorbital local spin- Zf_( L0 ) and a_:( 0,
triplet configurations characterized by the creation operators 0, -1 "l\loy, 0

Tt ot to=
A= "Tal’i’ Ali=aj i, and Al=(1N2)@hai, g then rewrite Eq(5) for the degenerate casg=Ey,
+al|la”, ) for |7ﬁ|’ The local exchange origin of the sec- g fora =A% in the form

ond term derives from the exact relation between the pairing

aj

operators in real space and the full exchange operator pro- Ho=B(E,— w)+i(d-@)3,, @
jecting the corresponding two-particle state onto the spin-
triplet configuration, where

' + 3 s = 0 oy

;1 AimAim=Si- S+ 7 MmNy, 2 2“lo,, 0

is they component of the relativistic spin operator. We dis-

number operators for electron on sitand orbitall. Explic- cuss in detail the simple situation of degenerate electrons

. - T . (Ex1=Ey,) with a real gapA, in the next section.
ity ny =Ny, Nito™ i1l whereas  the  spin One can also look at the approach from a different pro-

=ral . a  al.a _
operatorsThS, (hS“h’ "d’ 'd)_[?il'ziagl (&t &l ’(1/2%(”|Irh spective. Let us introduce the four-component wave function
Nii|)] e right-hand side of E¢3) represents thus the for a single quasiparticle in the suprconducting phase propa-

full exchange operator. P .
i L ating in the real space as follows:
After making the BCS-type approximation in the local gafing P

where S, andn; are respectively the spin and the particle

form'*
P f
Al A=A (Aim) + (AT YA — (AL YA (3) wlkfkli )
iltoni ' 2kTk1) .
we can cast Hamiltoniafil) into the four-component form, (Xt =—= >, o exr{i(k-x— ?kt” )
which in the reciprocalK) space takes the forfh \/— K | Yakfk2p
‘/’4kf1k2i

Heocs= 2 fiHifit 2 Bie, @)
where,, are the quasiparticle amplitudes which are deter-
where the corresponding Nambu operators take the feym: mined for each eigenstateee below. In this representation
:(flm Fra f oo foka), fu=(f1)T, and the Hamiltonian the Bogoliubov—de Gennes equation for a single quasiparti-

matrix for selectek state reads cle in the superconducting states reads
Ekl_ My 0, Aln A0 \vj
o 0, Epi— u, Ao, Ay iﬁat\P:Z{Ek( k:>i—)—;i V+i(d-a)3,¥, (9
K AT, 0 —Eot+ u, 0
o Ay, 0, ~Etu where E,(k=V/i) represents now the differential operator

E.o A (1M)V replacing the wave vectdx in the dispersion relation

_ [ Fra%o (5) Ey for quasiparticles. In the effective-mass approximation

A* . —Epp0 ' and in the stationary case this wave equation for quasiparti-

R cles in the superconducting phase has the following form:
whereoy=1 is the unit 2<2 matrix, andu is the chemical
potential. The superconducting gap is parametrized\gs

= 35 (f o), with m=(c+0')/2, and 0,0 4 ¥ Arst Aol

==+1. The 22 matrix A is parametrized in the usual Uz h? 2 2 Aopst A1y

form,!® . 3 =—<2m*V e — 3 ! Argn+Agty |
L —d,+idy, d, Y4 2! Aopr+A 142
A=i(d-o)oy= d,. d,+id, (6) (10

wherec is composed of the three Pauli matrices, whereas thashere ,=4,(x) and X is an eigenvalue of quasiparticle
vector d in spin space has the componerdg=(A_;  state in the superconducting state with the above four-
—A4)/2,dy=(A_1+A,)/2, andd,=A,. The form(5) isa  component wave functionA(, are regarded as rgalThe
generalization of the Nambu representation to the triplet casealidity of this equation goes beyond the simple soluiign

with three, in general different, gaps,, . as one can include the magnetic and electric fields and other
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IIl. SUPERCONDUCTING STATES AND THEIR
QUASIPARTICLES

inhomogenetities if they appear on the mesoscopic or macro-
scopic scale. In the next section we will use explicitly the
momentum representation of E¢LO), as we will discuss . o .
exclusively homogeneous superconducting states. We will W& now discuss three principal solutions of Efj0) by

return to Eq.(10) when discussing the general features oft@king ¥,.(x)=,exptk-x)/\V, l/vherev is the system vol-
this Hamiltonian in Sec. IV. One should also note that find-ume. We also assume thif,= A}, (e.g., neglect the applied

ing the eigenvalues for Hamiltonian in the forr® or (7)
can be achieved by diagonalizing of the matrix 4 in gen-
eral case, as discussed in analytic terms in Appendix A.

[ Nt b)) =(Ex—u) (1t )+ (A1 +Ag) ha+ (Ap+A_1) iy

and

Such combinations of particle/f and,) and hole ¢/; and

magnetic fields since we consider only spatially homoge-
neous solutions. Namely, rewriting EQLO) in components
we obtain the combinations

11
N st ha)=—(Ex— ) (Pt ) + (A1 +A0) h1+ (AgT A1) iy, a9
[ Nr— ) =(Ex—u) (1= )+ (A1 —Ag) h3+ (Ap—A_1) iy 12
Nipz—hg)=—(Ex— ) (Y3— hg) + (A1 —Ag) 1+ (Ag— A1) 5.
|

o 3 - 1 ( Ek_“>1/2 B 1 ( Ek_M)l/Z

;) components contain basic symmetry, as we will see on Uk_ﬁ 1+ v N 1- v .
(18

example of particular solutions, which we discuss next.

A. Isotropic solution: Ag=A_;=A;=A

In that situation Eqs(11) and(12) take a simple form,

[ AN+ o) = (BEx— p) (1 + o) + 2A(h3+ ha)
N3t ha) = — (Ex— u) (Pt a) + 20 (1 + 1), 13

and

{ N(p1— ) = (Ex— u) (1 — )
(14

N(z3=ha) = — (Ex=p) (3= tha).
The first two equations lead to the modes with a gap

)\:)\kl,Zz *+ \/(Ek—M)2+4AZE i)\k .

(19

For those two modeg, = ¢, and 3= i, and their eigen-

The quasiparticle operators contain symmetric combinations
(frar+fia)/V2 and o1+ _y2)/V/2. The wave func-
tion is symmetric with respect to particle-spin interchange
(T« ) and describes quasiparticle states of enetgy,
respectively.

Equations(14) lead to the gapless modes of the form,

A=z 4= T (Ex—p), (19

and correspond to the eigenstates characterized by the opera-
tors

1
')’kzﬁ(fkﬂ_fkll)r and 5tkzﬁ(ftk21_fik21)
(20)

and constitute the antisymmetric-in-spin operators, repre-

states are characterized by the following quasiparticle opers&2€nting the unpaired electrons. These gapless modes disap-

tors:

1 1
ak:ukﬁ(fle—’_fkll)_vkﬁ(ftsz—’_f*kzl)’ (16)
and
T 1 1
B—k:vkﬁ(fkn"'fk11)+ukﬁ(f—k2T+f—k21)y

17

with the Bogoliubov coherence factors

pear when the gap components are not equal, as shown in

Appendix A. One should note that the gapless modes appear

even though the superconducting gap here isdependent.
Combining the solution$16)—(18) and (19) and (20) we

can express the originéfold” ) particle operators in terms

of quasiparticlg“new” ) operators in the following manner:

fle Ue, Uk, 1, 0 ay
flr | 1 we v -1, 0| BL
o | V2] —vke w00 1 ]| wm
e vk, U, 0, —1/\48",

(21)
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This transformation is necessary for determining the self- (A=N) (1 + h3) + (Ex— ) (b1 — ) =0
consistent equation for the gap and for the chemical potential { _ _ P (27)
. First, we rewrite the Hamiltonia@) in the diagonal form (Bx= ) (41 + ¢3) = (A1 F M) (41 = h5) =0,
_ t t T t and
H—Ek: )\k(akak_ﬁfkﬁfk)""Ek(')’k')’k_57k57k)+§k: Ex
(A1 =N) (ot ) +(BEx— ) (o= 44) =0
= Mlefay+ BB = D+Ed( vyt 81 6-0). ’ 28
2 Makact LB DT BGont 8400 (B ) (0t )~ (At N ) (- ) =0, 29

22
. et et i (, ) Thus the two pairs of componentg7) and (28) separate
The equation for the gap, e.ghq =(fiy;f \z;) is obtained  grom each other and it is sufficient to solve, e.g., the first
by substituting the relevant transformed operators in(Zg). system(27) to be able to reproduce the other. Explicitly, the
to A;. In effect, we obtain the usual BCS fornE(=E«  two solutions can be combined into the form, in which the

1) eigenvalues take the form
(fl . f1 ):—E A +an)-('8 Eicraa? e 27 A2 (0)
k17" —k27 2 \/Ei+4A2 2 ! )\E)\kl~~4:i (Ek_/.L) +A0.5i)\ku- , (29)
(23)
where 8= (ksT) L. So, the gap equation has two solutions: Where for each sp'in orieptatiomz +1 of the quasiparticles
1°, A=0, we have two solutions with the gap+/(E,— )2+ AZ. The

quasiparticle operatorSaQU,,BikU) diagonalizing Hamil-
1 tan)’('B‘/EEHmz) 24 tonian (4) in this case are
VEZ2+4A? 2 '

J
2, 1=N;

((r)i (o

. . 1
The last equation tells us that the physical gap & Zhe = U \/E(fkl(rJr fthrr)_Uk )E(fklu_ ftkzg),

self-consistent equation for the chemical potential must in-

clude gapless modes, i.e., takes the form (30
1 + + 2 t + d
n=y kE <fk1<rfkla+fk2<rfk2<r>zﬁ ; (et vvi)- an
(29

: 1 1
Normally, as we shall se@ <|u|, and hence approximately T T f, . 4 fT +ul —f,. —¢t
half of all particles will have the spectrum gapped. The de- Fio K \/E( o F i) UG \/f( e~ Foizo):
tails must be analyzed numerically for a concrete structure of (3D

the density of states. In the limit/<J we have the estimate
of the gap value atT=0 in the form A=(W/2)exp  with the coherence factors
(—WI(2J); this yields the value\/W~10"3—10"%, or in the

regime 1- 10 K for W=1 eV andJ~0.1W. 1 A\ Y2 1 A\ Y2
We need also the expression for the ground-state energy, u(k0)=_< 1+ —2| v(k(r)z_( 1—- 2%
as various solutions are possible. In the present case, this \/E K(k”) \/E X(k”)
energy can be written as (32
Eg 2 - _ :
—s_= [E24 R2( ata)+ Eul v In general, we have two gags,=(A;,A_;). In the situa-
N N ; (VE& (e +Bi(vonm tion A,=A__=A we have a doublyspin) degenerate solu-

-5 tions. It can be easily verified that the operat@®) and(31)
_ /—E2+Zz)+ A_ (26) obey the fermion anticommutation relations. The diagonal-
K 2J ized Hamiltonian has the form

whereA =2A.
i 2 ( ) T(V g IE T(TIE (o8 1 E . E E
B. Equal-spin pairing: A,=0 o Tk (@ koK )*Eo 33

To obtain the explicit solution we now combine sepa-
rately the first and third components of E@0O) on one side, To determine the gap equation we have to find the transfor-
and the second and the fourth on the other. Adding and sulwnation which is reverse of Eq$30) and (31). It is of the
tracting the corresponding terms we obtain form
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fle U(k+)+v(k+), u(k+)—v(k+), 0, 0 ay
fla| 1 0, 0, uT o) u ol || By
o |~ 2] uP—ol?, —ul—ul?, 0, 0 e | (39
1) 0, 0, uO -0l —u =0 | B

The difference with the isotropic pairin@1) is that here the we present in Appendix B the case of spin-singlet pairing
coherence factors appear in combinations. Those appear alswluced by the same type of local interband pairing induced
in the self-consistent equation for the gap by antiferromagnetic exchange.

<fT—k20'f Ela’) == (u(kU)Z_ v(ko-)z)[l_ <aloak0'> - <Blo—ﬁka>] .
(35 IV. REMARK ON THE TRIPLET PAIRING FOR

. . . . RELATIVISTIC FERMIONS
In result, the self-consistent equation will have the following

three solutions: 1°A,=0, 2° A_,)=0, butA,#0 is the The two-band situation with a local ferromagnetic ex-
solution of equation change can be easily generalized to the explicitly relativistic
form modeling thus the triplet configuration of spin, isospin,

J 1 B — or color (the singlet case was considered by Nambu and
1= ; \/E—=)2+A2tan SV(E—w)+AG Jona-Lasini®® and in Ref. 19. The paired quasiparticlés
(Bx—n 4 (30) obey the following modified Dirac wave equation:
3° A,#0, A_,#0, and each of them is determined from

Eq. (36). ihd¥=(ca-p+BmA¥+i(d-a)3,¥, (39

One should note that the coupling constant ab@es . . .
the same as for the isotropic phags. Eq. (24)]. For the where the last term supplements the Dirac equation with the

sake of completeness, we reproduce the ground-state-energgntact pairing. By taking the analogy with the original ap-
expression which is proach by Nambtt one can write down the stationary ver-

sion of this equation as the following system in the two-
Af+ A2 N componentWeyl) representation:

Eo_2s (BT A%l
W_N% (Ex—n) +Ao—<akoaka>+T

1 1 )\( dll) (co-p—p) Vi +mcz< :,ng)
=(Co-pD—
-3 kE V(E,— )2+ A%+ N ; E. (37) 7 o U/ a
. . . . . Ariat Aoty
This phase represents a starting point when discussing the , (39
coexistence of ferromagnetism and the spin-triplet supercon- Aopat A1
ductivity.
3 -~ 3 1
C. Spin-polarized phase:A,=A =0 A =—(Co-p—p) +mc
Wy Vs U7
In this limit the system is totally spin polarized, i.e., is a
spin-saturated superconductotn that limit we recover A+ Ao (40)
again the spectrum both with and without gap, i\ ,= Agth1+A 1)

+ J(Ex— )2+ A2, Aaq=*(Ex— ). Thus paired and un-
paired states coexist also in this phase, as can be easily seBhis system of equations can be directly compared with Eq.
from Egs.(30) and(31), which yield the form written there (10) for nonrelativistic electrons. In the present situation the
for o=1 anday | =fyq, andﬁiklz - fﬁu . mass term mixes the upper and the lower two components of
Summarizing Secs. Il A—C, the lowest energy will have the bispinor, as does the pairing part. Apart from a modifi-
the homogeneous state with,=A | =A, so that the effec- cation in the kinetic-energy part, the system of E(@2)—
tive gap is equal to &. The most interesting feature of the (40) can be solved in the manner as discussed in Sec. Ill. The
results is that the gapless modes coexist in A and C andetailed discussion must include also the gauge fields, which
represent half of the spectrum. Also, the condensed phasésad to one-exchange pairin@nalogous to the phonon-
described by A—C above correspond roughly to the solutionsnediated pairing a topic intensively discussed in recent
for superfluidHe, which are labeldd B, A, and Al. How- literature? In general, the singlet pairifg'°-?2is mutually
ever, under the present circumstances here we have momesxclusive with the triplet pairing proposed here and therefore
tum independengaps, since the pairing is of the loc@h-  the latter requires first a detailed discussion of exchange in-
trasite, but interorbitalnature. For the sake of comparison teractions represented by relativistic spiy}.
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V. DISCUSSION we neglect the realistic structure of, e.g., Sr systéme
. N should be able to see a progress in those matters in near
In this paper we havg formulated the qga§|part|cle Ian'future (the results will be presented separately, Rej. 27
guage fgr local triplet pairing betw-een fermiofiaterband Second, an important question concerns the nature of the
pairing in the nanelatlwstlc ca}senduged by the local pairing potential. In more standard approZct one intro-
(Hund's rule or Dirag exchange. In particular, we have de- quces the effective triplet pairing via the paramagnon ex-
termined explicitly the quasiparticle states and the de Gennggange. In that situation the coupling constant is determined
wave equation for them, which can be useful when considpy the susceptibility(q=k—k’) and hence, is wave-vector
ering spatially inhomogeneous situatidiisThe principal  (q) dependentin the approach developed here the exchange
feature of the results is the existence of the gapless modeteraction itself provides real-space pairing, as in the case of
existence of which can also be proved on a phenomenologhigh-temperature superconductdrén the case of Hund’s
cal level?* The circumstance that the pairing is induced byrule coupling the pairing potential is thémindependent. We
the ferromagnetic exchange means that this interaction capelieve that the latter approach is relevant when the particles
lead not only to an itinerant ferromagnetic state, but also t@re strongly correlated. gRuQ, is a systems close tthut
either spin-triplet superconductor or to a coexistence of botlbelow) the Mott-Hubbard localization threshold, i.e., the
these stateffor a brief discussion of this issue, see Ref).13 halfway between the weak-correlation and the strong-
The present paper represents only the first step in this direcorrelation asymptotic regimes. Therefore the real-space
tion. Furthermore, our mechanism of pairing expressing théairing is certainly worth of analyzing, as it allows for an
fundamental symmetrythe particle interchangemay have analytic approach.
an important astrophysical application: the pairing in the One methodological remark at the end. In the analytical
neutron-proton matter in pulsar, but this intriguing possibil-analysis of the spin-triplet pairing one usually uséSthed
ity requires a separate study. vector in expressing the pairing part. Here we decided to use
Two problems should be tackled next. First, the analysighe original BCS gap parameters, a completely equivalent
of the Meissner effect, since in the present situation the orprocedure, but probably a bit more direct, at least in the
bital diamagnetism will compete with the ferromagnetic spinspatially homogenous situation. In connection with this a dif-
polarization(particularly, if the triplet superconducting and ference of the present description with that for superfluid
ferromagnetic phases can coeisAn intriguing question helium—3 should be stressed. Namely, in thelium-3
here is: can we reach the limiting superconducting phaséase, the. =1 orbital moment and the spin vectod deter-
(corresponding to Al phase in the case of superfflkig), mine the(many-componeitnature of the gap. Thd.l and
the critical temperatur@, of which can be enhanced by the dxI combinations determine the order-parameter dynamics.
applied magnetic field? Here, nol vector appears and therefore the order parameter
Second, one should derive microscopically the Ginzburgcan have up to three independent components.
Landau equation for the condensed pairs. Note that the de One should note that the present pairing is operative for
Gennes Eqs9) or (10) is useful in describing the quasipar- arbitrary anisotropic bands, since the symmefy=E_
ticle tunneling, whereas the Ginzburg-Landau equation igakes place if only the time reversal symmetry is obeyed,
useful when considering the Josephpair tunneling. Here  e.g., in the absence of either applied magnetic field or if the
an intriguing question to what extent the gapless quasipartisuperconducting state does not coexist with ferromagnetism.
cles influence the tunneling between the spin-singlet and thi those situations the Fulde-Ferrell-Larkin-Ovchinnikov
spin-triplet superconductors or between the triplet supercorstate should be considerdd.
ductor and normal metal. We should be able to see the
progress in answering those questions in a near future.
Finally, returning to the question of the nature of the ACKNOWLEDGMENTS
paired statg in §RuQ4 one can make the foIIQW|ng two | am grateful to my student Andrzej Klejnberg for the
r_emarks. First, the existence Qf gapless mod_es in B- anq A]c'oopera'[ion which led to this effective model. | am also
like phases Igads o the per5|stence of the Ilne_ar term in thgrateful to Wiodek Wizik for many discussions and a tech-
specific heat in the superconducting phase at its 50% valu

£ th g is th n-tril f ol .“nical help. Additionally, | was partially motivated by the
i 1€ pairing 1S the pure spin-triplet state of electrons palrsquestion posed by Mark Jarrell from the University of Cin-
derived fromd,, bands. The recent measureméhis very

| di h i JEE half of cinnati, who asked if a simpler model representation of the
pure samples contradict such earlier ¢ atahalf of o presented in Ref. 12 was possible. The work was sup-

the linear specific heat survives in the sqperconducting)orted by KBN, Grant No. 2P03B 092 18.
phases. Does that mean that the full phase diagram involves

more than one phase depending on the doping degree, as in
the heavy fermion system ;U,Th.Be;3?° In connection APPENDIX A: GENERAL SOLUTION: A,#A,#A,#A,,

with this one can say that because of the reasons mentioned E. #E

. e . . .. k1 k2

in Sec. | it is conceivable that a singlet pairingdgp, band

induced by antiferromagnetic fluctuatiSnsan compete in The most general case of finding the eigenvalues for qua-

the triplet state in the other two bantisThe nature of the siparticles in the superconducting phase is to diagonalize ma-
resultant state should be determined then. Obviously, ourix 4X4, i.e., to solve the equatiofwe assume thaky; ,
approach is not directly applicable to any concrete system, as u=E, and thatA;=AY)
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Exi—\, 0, Ay, A Making subsequently, as in Sec. Il the BCS approximation,
0 Erie A A we obtain(the chemical potential is included B, =E,
’ k1™ Ny 0 -1
d =0. —H)
€ Alv AO! - Ekz_)\y O
Ao, Aoy, 0, “Bie—A Hacs= > [Ennot Af (Fly Tl =il 110 +H.e]
(Al) klo
By a straightforward evaluation one obtains the eigenvalues AZ
_ﬁN' (B4)
1 1 ~
)\kl"'4:§(Ekl_EkZ)iE[(Ekl+EK2)2+2A2 Whel‘e
= = 2J
=2VA4- 457, (A2) A=-T 2 (i) (B5)

where Introducing, as before, the four-dimensional vectdts

- =(fl, . fl, .f_k21.f_k2)) and their conjugate as one col-
A2 A2 2172 tofiay foker fokey
A=(AT1+AZ;+24p) (A3)  umn vectors, we can write down the Hamiltonian in the form

is the total gap, and of the following 4X 4 matrix:

HBcs:EoJF(fElm fluy f o2t fszi)

5= [AG— A4 ] (Ad)

. . . . . . Evi, O, 0, A frar

is its anisotropy in fermion-pair spin space. In this general ¢

case all four modes are each with a different gap and the % 0, Bk, —A, 0 kil
results reduce nicely to the eigenvalues discussed as Secs. 0, —A*, —Ey, 0 ftm
[A-C. In general, the superconducting coupling at the A* 0 0 _E £1

level of energies amounts to hybridizing the different fer- ’ ’ ’ k2/ 3 T -k2l
mion fields (= 1,2) and their spin¢=1,]) states. The gen- (B6)

eral form of the eigenstates can also be found in a straigh

- . . 2 . . - .
forward manner, but will not be discussed here. Wit Eo=23Ey, + A%/(2J). Diagonalization of this %4

matrix leads to the eigenvalues

2
IN TWO-BAND CASE > +|Al% (B7)
For the sake of comparison with the spin-triplet case Wegoth eigenmodes are doubly degenerate and with an isotro-

outline here the solution for the corresponding spin-singlepic gapA. We take the form of usual dispersion relation for
situation. In this case the Hamiltonian with the Sp'”'s'ngletdegenerate bandg, = E,..

APPENDIX B: LOCAL SPIN-SINGLET PAIRING 1 Ex1tEk
7\1,2:§(Ek1_ Evo) = —

exchange coupling has the form in the real space The corresponding combinatidfisof the wave-function
1 components aré€for A=A*)
= + =N il .
H ka|2:1,2 EwiNkio J% (S|S| 2 it (B1) | (Exq—N) (41 + tho) — A(hs— h4) =0 -
A+ )+ (Epp+ — i) =
Note that now the exchange operator in the present situation (Wt 2+ (Bt M (s ¢a) =0,
differs from Eq.(2) introduced in the triplet case. Introduc- and
ing the corresponding local pairing operators in the singlet
state | (Exa =N (1= ¢h2) + A(ihat h4) =0 (B9
A(1—h2) = (Exa+N) (3t ¢44) =0.
B?=i(aﬁna?21—ahafa) (B2) For the sake of simplicity we consider here only the case
V2 Exvi=Ew»,=Ey, as it provides the main character of the
) ) eigenstates. Moreover, it is sufficient to consider only the
we can Twnte down the second term in E(1) as system(B10) due to the double degeneracy of the eigenval-
—2JiBiB;. _ _ ~ ues. By standard methdéhcluding the wave-function nor-
After taking the space Fourier transform, and includingmalization we obtain the quasiparticle operators
only (k,—k) pairs we obtain
1(f +fq)+ 1(fT f_12))
J a=Ug—=(Tyap T Tk ) TO—= (T o1 = T2 )y
H=2 Elio— 5 2 (flletKZl_flllftKZT) V2 V2
ko N (B10)

X(F o) Frar = Fkarfra))- (B3) and

104513-7
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1 1
B\ = _Ukﬁ(fklfrfk11)+UkE(fikz¢—f7kzl),

(B11)
where
1 Ek 1/2
W=7 1t =5
V2 VEZ+A
Lo B " (B12)
V== F—
2 VEZ+ A2
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Bogoliubov—de Gennes equation for one-band singlet super-
conductor reads in the effective-mass approximation

U 2 Uy
2 _
i, o (_ h 2, o A 3
3 2m* — i3 Lz
Uy — i, U
(B13

We see that the pairing couples explicitly the particle and
hole components ; with ¢,, ¢, with — 3, etc). This

Again, we have a combination of the two types of states. Thequation forms a basis for the discussion of inhomogeneous

corresponding wave equation which replaces

thepaired states.
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