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Quasicondensate and superfluid fraction in the two-dimensional charged boson gas
at finite temperature

E. Strepparola, A. Minguzzi, and M. P. Tosi
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~Received 18 October 2000; published 14 February 2001!

The Bogoliubov–de Gennes equations are solved for the Coulomb Bose gas describing a fluid of charged
bosons at finite temperature. The approach is applicable in the weak-coupling regime and the extent of its
quantitative usefulness is tested in the three-dimensional fluid, for which diffusion Monte Carlo data are
available on the condensate fraction at zero temperature. The one-body density matrix is then evaluated by the
same approach for the two-dimensional fluid withe2/r interactions, to demonstrate the presence of a quasi-
condensate from its power-law decay with increasing distance and to evaluate the superfluid fraction as a
function of temperature at weak coupling.
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I. INTRODUCTION

The fluid of pointlike spinless charged bosons embed
in a uniform neutralizing background has attracted atten
in the literature mainly as a model in quantum statisti
mechanics, which is complementary to the physically m
relevant fermionic gas of electrons.1 It was proposed by
Schafroth2 as a model for superconductors prior to the BC
theory and has received renewed interest after the disco
of ceramic superconductors.3 In some viewpoints a Bose
Einstein condensate of tightly bound pairs of small polaro
could be a relevant model for high-Tc superconductivity in
the layered cuprates.4 The model also has some astrophysi
relevance in describing pressure-ionized helium in cold s
lar matter5–7 and the fusion ofa particles inside a dens
helium plasma.8,9

A number of theoretical and computational studies ha
been addressed to the three-dimensional charged-boson
~3D CBF! at zero temperature. The properties of main int
est for the theory have been the ground-state energy
structure and the static and dynamic dielectric response.
early theoretical work was concerned with evaluating
ground-state energy and the elementary excitations in
weak-coupling~high density! limit.10–12Both variational cal-
culations based on Jastrow-Feenberg wave functions13–18

and self-consistent treatments of correlations19–21 have sub-
sequently been used to evaluate the intermediate and str
coupling regime. Quantum Monte Carlo studies of the
CBF ~Refs. 16 and 22–25! have covered the whole range
coupling strength up to the regime of Wigner crystallizati
driven by the Coulomb repulsions. Extensive data on
condensate fraction and the momentum distribution in
pendence of the coupling strength have become avail
through the diffusion Monte Carlo~DMC! work of Moroni
et al.25

The properties of the 2D CBF at zero temperature h
also been investigated with bothe2/r and ln(r) interactions.
In the latter case Magro and Ceperley26 have shown, using a
sum-rule argument from Pitaevskii and Stringari,27 that the
presence of the long-wavelength plasmon in the excita
spectrum rules out the existence of a condensate even at
0163-1829/2001/63~10!/104509~6!/$15.00 63 1045
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temperature. They further showed from a DMC study th
the noncondensed fluid exhibits a power-law decay of
one-body density matrix and that above a threshold den
the momentum distribution diverges at low momenta,
though no condensate forms.

In the 2D CBF withe2/r interactions~henceforth referred
to as quasi-2D or Q2D CBF! a condensate is present in th
ground state, but its density vanishes at finite temperat
This behavior parallels that of the neutral 2D Bose gas.28,29

The theory of correlations in the latter system has been
veloped by Kagan, Svistunov, and Shlyapnikov30 ~see also
Kagan et al.31!. As its temperature is lowered at consta
density~or as its density is increased at constant temperat!
across the Kosterlitz-Thouless transition, a weakly intera
ing gas enters the superfluid regime in which the phase
relation lengthRc is much larger than the density correlatio
lengthr c . In this situation the one-body density matrixr(r )
decays asymptotically to zero with an inverse-power l
rather than exponentially.32,33 The idea of a ‘‘quasiconden
sate’’ emerges from the behavior ofr(r ) at intermediate
distancesr c!r !Rc . The local properties of the quasicon
densate are the same as those of a genuine condensa
that it turns to the latter as the phase correlation length st
to exceed the dimensions of the sample.

The main purpose of the present work is to study t
behavior in the Q2D CBF, using the Bogoliubov approach
describe the charged fluid both in the ground state and
finite temperature in the weak-coupling regime~correspond-
ing in this case to high density!. The Bogoliubov–de Genne
equations are presented for convenience in Sec. II and
first solved for the 3D CBF in Sec. III, where the approach
quantitatively tested atT50 by comparing its results for the
condensate fraction with the available DMC data. Section
reports our main results regarding the quasicondensate
the superfluid fraction in the Q2D CBF. Finally, Sec. V giv
a brief summary and our conclusions.

II. BOGOLIUBOV APPROACH TO A CHARGED-BOSON
FLUID

The fluid of charged bosons on a uniform neutralizi
background is described by the Hamiltonian
©2001 The American Physical Society09-1
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H5E drc†~r !S 2
¹2

2m
2m Dc~r !

1
1

2E drE dr 8c†~r !c†~r 8!V~ ur2r 8u!c~r 8!c~r !,

~1!

where V(r )5e2/r , c(r ) is the field operator andm the
chemical potential. The role of the background is to set
zero the average potential felt by each particle. The coup
strength is measured by the dimensionless parameterr s , de-
fined byr saB5(4pn/3)21/3 in 3D and byr saB5(pn)21/2 in
2D with aB the Bohr radius andn the mean particle density

We consider first the fluid atT50. The Bogoliubov
transformation34 ~for recent presentations, see Refs. 35 a
36! introduces a macroscopic order parameterc0 by writing
the field operator asc(r )5c01c̃(r ). The operatorc̃(r )
describes the gas of Bose particles promoted out of the
densate. This gas is treated in the Hartree approxima
assuming that the contribution from terms nonlinear inc̃(r )
is small.

One findsm50 and, with the linear transformation

c̃~r ,t !5(
n

@un~r ,t !an1vn* ~r ,t !an
†# ~2!

for the Heisenberg field operator, one has to solve
coupled linear equations

i
]un~r ,t !

]t
52

1

2m
¹2un~r ,t !1n0E dr 8V~ ur2r 8u!@un~r ,t !

1un~r 8,t !1vn~r 8,t !# ~3!

and

2 i
]vn~r ,t !

]t
52

1

2m
¹2vn~r ,t !1n0E dr 8V~ ur2r 8u!

3@vn~r ,t !1vn~r 8,t !1un~r 8,t !#. ~4!

Here,n05c0
2 is the uniform condensate density. The subs

iary condition

(
n

@un~r ,t !un* ~r 8,t !2vn~r 8,t !vn* ~r ,t !#5d~r2r 8! ~5!

embodies the commutation rules on the field operators.
In a uniform fluid the state indexn is the wave vector

k. Equations ~3!–~5! are solved by taking uk(r ,t)
5uk exp@i(k•r2«kt)# and vk(r ,t)5vk exp@i(k•r2«kt)#,
with the results

uk
25

1

2 H 11«k
21Fn0V~k!1

k2

2mG J ~6!

and

vk
252

1

2 H 12«k
21Fn0V~k!1

k2

2mG J ~7!
10450
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where

«k5Fn0k2V~k!

m
1S k2

2mD 2G1/2

. ~8!

The condensate density is given by

n05n2^c̃†~r !c̃~r !&5n2 (
kÞ0

vk
2 ~9!

and the one-body density matrix is

r~r !5n01^c̃†~r !c̃~0!&5n01 (
kÞ0

vk
2 exp~ ik•r !. ~10!

We have assumed unitary volume in writing Eqs.~9! and
~10!.

After these transformations and approximations
Hamiltonian ~1! has been reduced to that of a system
independent Bosonic excitations described by the opera
ak andak

† . The extension of the theory to finite temperatu
is then effected by means of the Bose-Einstein distribut
function

f k5@exp~b«k!21#21. ~11!

In particular, Eqs.~9! and ~10! become

n05n2 (
kÞ0

@vk
21 f k~uk

21vk
2!#, ~12!

and

r~r !5n01 (
kÞ0

@vk
21 f k~uk

21vk
2!#exp~ ik•r !, ~13!

respectively.

III. THREE-DIMENSIONAL CHARGED-BOSON FLUID

We introduce the parameterA5(3n0 /nrs
3)1/2e2/(aBkBT)

and the reduced distanceR5(12n0 /nrs
3)1/4(r /aB). Then

Eqs.~9!, ~12!, and~13! can be rewritten as follows:

F S 12
n0

n D S n0

n D 23/4G
T50

5
21/2r s

3/4

31/4p
E

0

`

dxF f ~x!

g~x!
22x2G ,

~14!

F S 12
n0

n D S n0

n D 23/4G
TÞ0

5
21/2r s

3/4

31/4p
E

0

`

dxH f ~x!

g~x! F11
2

exp@Ag~x!#21G22x2J
~15!

and

r~r !

n
512

21/2

31/4p
S n0r s

n D 3/4E
0

`

dxF12
sin~Rx!

Rx G
3H f ~x!

g~x! F11
2

exp@Ag~x!#21G22x2J , ~16!
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TABLE I. Condensate fraction in the 3D CBF at zero temperature from the Bogoliubov approachB),
compared with the diffusion Monte Carlo data~DMC, from Moroni et al., Ref. 25!.

r s 1 2 5 10 20 50 100 160

(n0 /n)B 0.818 0.722 0.549 0.401 0.264 0.132 0.072 0.047
(n0 /n)DMC 0.827 0.722 0.542 0.359 0.206 0.053 0.0104 0.00
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where we have definedf (x)5112x4 and g(x)5(1
1x4)1/2. Of course, Eq.~14! can also be obtained from Eq
~15! in the limit T→0. In the following we use the energ
e2/aB as the unit of the thermal energykBT.

A numerical solution of Eqs.~14! and~15! for n0 /n in the
physical range 0<n0 /n<1 can be found for all values of th
system parameters. We should bear in mind, however,
we are using a weak-coupling theory so that the results
be significant only when the depletion of the condensat
small ~i.e., for n0 /n close to unity, in line of principle!. This
statement is quantitatively tested in Table I, where we co
pare our results forn0 /n at T50 with the DMC data of
Moroni et al.25 over the whole fluid range up to Wigner cry
tallization. It is clear from Table I that, rather surprisingl
the Bogoliubov approach is almost fully quantitative up
r s.5, i.e., for values ofn0 /n down to almost 0.5. Very
similar results are obtained in the same range ofr s by the
integrodifferential equations approach of Cherny a
Shanenko.37

Table II reports our results forn0 /n as a function of tem-
perature forr s51 andr s52. In the lack of data for a quan
titative test, one may hope from the test shown in Tabl
that the Bogoliubov approach could again be reasona
accurate for values ofn0 /n larger than 0.5. According to thi
crude criterion, it appears from Table II that at such we
couplings the theory could perhaps be useful up to
fairly sizable value of the reduced temperatu
kBTaB /e2—perhaps as large as unity forr s.1.

Finally, the one-body density matrixr(r ) ~in units of the
particle densityn) is shown in Fig. 1 forr s51 ~left panel!
and r s52 ~right panel!, at various values of the reduce
temperature. The asymptotic value ofr(r )/n in the limit r
→` is the condensate fractionn0 /n, that we have already
presented in Table II.

TABLE II. Condensate fraction in the 3D CBF as a function
the reduced temperature from the Bogoliubov approach, for
values of the coupling strengthr s .

T (n0 /n) r s51 T (n0 /n) r s52

0 0.818 0 0.722
0.3 0.816 0.1 0.718
0.5 0.793 0.2 0.652
0.75 0.720 0.3 0.466
1.0 0.593 0.32 0.410
1.25 0.407 0.34 0.345
1.4 0.247 0.36 0.266
1.482 0.092 0.38 0.153
10450
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IV. QUASI-TWO-DIMENSIONAL CHARGED-BOSON
FLUID

TakingV(k)52pe2/k, Eq.~9! for the condensate fraction
at T50 yields

F S 12
n0

n D S n0

n D 22/3G
T50

5r s
2/3E

0

`

dxF f ~x!

g~x!
22x3G , ~17!

where we have definedf (x)5112x6 and g(x)5(1
1x6)1/2. The numerical solution of Eq.~17! yields the values
of the condensate fraction which are reported in Table
over a range of values for the coupling strength well bel
the Wigner phase transition38 at r s.35. We should expec
that the role of correlations becomes more important in lo
ered dimensionality, and indeed the crude criterion int
duced in Sec. III suggests that in the Q2D fluid atT50 the
Bogoliubov approach may be useful only up tor s.1.

It is easily seen that the condensate fraction must inst
vanish atTÞ0. Indeed, if we assumen0 /nÞ0 then Eq.~12!
yields

F S 12
n0

n D S n0

n D 22/3G
TÞ0

5r s
2/3E

0

`

dxH f ~x!

g~x! F11
2

exp@Axg~x!#21G22x3J ,

~18!

where we have setA52(n0 /nrs
2)2/3e2/(aBkBT). The second

term in the square brackets on the right-hand side of Eq.~18!
yields a contribution of orderx21 to the integrand forx
→0, so that the integral diverges. On the other hand,
solution n0 /n50 at TÞ0 is consistent with the
Bogoliubov–de Gennes equations: in this case they y
vk50 anduk51, and the particle density is related to th
~now finite! chemical potential by

n5 (
kÞ0

H expFbS k2

2m
2m D G21J 21

. ~19!

We can at this point introduce the quasicondensate for
Q2D CBF at finite temperature. The essential point is
power-law decay of the one-body density matrix, which b
comes slow at sufficiently low temperature and we
coupling.30–33 We first show this by an heuristic procedu
that we shall justify later below. We isolate the singular te
in r(r ) and resum it to infinite order to obtain

r~r !5 r̃~r !exp@2L~r !#, ~20!

o

9-3
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FIG. 1. The one-body density
matrix r(r )/n as a function of
r /aB in the 3D CBF. Left: forr s

51 at values of the reduced tem
peratureT equal to 0, 0.5, 1.0,
1.25, and 1.482~from top to bot-
tom!. Right: for r s52 at T50,
0.2, 0.3, 0.34, and 0.38.
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where with the help of Eq.~13! we have set

L~r !5E d2k

~2p!2
@12cos~k•r !#

V~k!

«̃k

f ~ «̃k!

52S nrs
2

ñ0
D 1/3E

0

`

dx
12J0~x2R!

g~x!$exp@Ãxg~x!#21%
~21!

and

r̃~r !

n
512

1

nE d2k

~2p!2
@12cos~k•r !#

3F1

2 S ñ0V~k!1k2/2m

«̃k

21D 1
k2/2m

«̃k

f ~ «̃k!G
512S ñ0r s

n
D 2/3E

0

`

dx @12J0~x2R!#

3H f ~x!

g~x!
1

4x6

g~x!~exp@Ãxg~x!#21!
22x3J ,

~22!

the quasicondensate densityñ0 being defined by

ñ05 lim
r→`

r̃~r !. ~23!

In these equations «̃k5@ ñ0V(k)k2/m1k4/4m2#1/2, Ã

52(ñ0 /nrs
2)2/3e2/(aBkBT), R52(ñ0 /nrs

2)1/3(r /aB) and
J0(y) is the Bessel function of zeroth order.

Figure 2~upper panels! reports our numerical results fo
r(r ) at two values of the coupling strength and at vario
values of the reduced temperature. It is evident that at
10450
s
w

temperature the decay of the density matrix in space is s
and the notion of a quasicondensate thereby acquires ph
cal significance.

A power-law decay of the one-body density matrix at lo
temperature and coupling strength can be demonstrated
rectly from Eqs.~20!–~23!. The functionJ0(x2R) in the in-
tegrand in Eq.~21! provides a lower limit of integration go
ing as r 21/2, while the upper limit is set by a cutoff wav
vector k051/L associated with the quasicondensate reg
~see Popov32!. Equation~21! thus yields

L~r !→2Ã21~nrs
2/ñ0!1/3E

r 21/2

L21/2

dx
1

x

52Ã21~nrs
2/ñ0!1/3 ln~r /L !1/2. ~24!

Hence sincer̃(r )→ñ0 we find from Eq.~20!

r~r !→ñ0~r /L !2a ~25!

with the value of the exponent given by

a5
n

2ñ0

r s
2 kBT

e2/aB

. ~26!

Figure 2 ~bottom panels! evidentiates the power-law deca
of the density matrix by plotting the curves in log-log sca
as compared with the asympotic behavior predicted by E
~25! and ~26! ~dots in the figure!.

A. Asymptotic behavior of the single-particle Green’s function

We can actually show that the power-law decay ofr(r )
that we have obtained just above derives from the corr
tions between phase fluctuations in the Q2D CBF. We foll
the method proposed for the neutral 2D gas in the work
Popov32 ~see also Fisher and Hohenberg33!. The fluctuations
ch.

0

TABLE III. Condensate fraction in the Q2D CBF at zero temperature from the Bogoliubov approa

r s 0.01 0.1 0.2 0.4 0.6 0.8 1 2 5

n0 /n 0.968 0.863 0.794 0.700 0.633 0.580 0.537 0.398 0.23
9-4
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FIG. 2. The one-body density
matrix r(r )/n as a function of
r /aB in the Q2D CBF, both in lin-
ear scale~upper panels! and in
logarithmic scale~lower panels!.
Left panels: forr s50.1 at values
of the reduced temperatureT
equal to 0, 10, 15, 20, 30, and 4
~from top to bottom!. Right pan-
els: for r s51 at T50, 0.2, 0.3,
0.5, 0.7, and 0.8. The dots in th
lower panels give the asymptoti
behavior ofr(r )/n at large r as
evaluated analytically in Eqs.~25!
and~26!. The lengthL in Eq. ~25!,
which is not determined by the
asymptotic calculation, appears i
logarithmic scale as an additiv
constant and is here fixed by re
quiring that the analytic resul
overlaps the numerical one asr in-
creases.
’s

s

ra
i-

n

en-
the
is
of the phasef(x,t) determine the single-particle Green
function in the low-momentum regime~below the cutoff mo-
mentumk0) according to

G~x,t;x1 ,t1!.ñ0 expH 2
1

2
^@f~x,t!2f~x1 ,t1!#2&J .

~27!

From Eq.~19.16! in Chap. 6 of Popov’s book32 we find

^f~k,v!f~2k,2v!&→
V~k!

v21ñ0V~k!k2/m
~28!

for the Q2D CBF at long wavelengths and frequencies,
that

1

2
^@f~x,t!2f~x1 ,t1!#2&

→ 1

2b (
k,k0

(
v

V~k!

v21ñ0V~k!k2/m

3uexp@ i ~k•x2vt!#2exp@ i ~k•x12vt1!#u2.

~29!
10450
o

In Eq. ~29! we carry out the summation over the Matsuba
frequencies fort15t1 and keep the most diverging contr
bution in the integral over the momenta to obtain

1

2
^@f~x,t!2f~x1 ,t1!#2&→a ln

r

L
1const, ~30!

where r 5ux2x1u and the quantitya is given by Eq.~26!.
Using this result in Eq.~27! we see that the Green’s functio
decays to zero with the lawr 2a.

B. Superfluid fraction and quasicondensate fraction

As already noted in Sec. I, the notion of a quasicond
sate becomes meaningful at temperatures below
Kosterlitz-Thouless transition. A superfluid component
therefore present at these temperatures and its densityns is
given by33

ns

n
512

b

2nm (
kÞ0

k2
exp~b«k!

@exp~b«k!21#2
. ~31!

From Eq.~31! we have

ns

n
5122ÃS r sñ0

n
D 2/3E

0

`

dx
exp@Ã~x1x4!1/2#

$exp@Ã~x1x4!1/2#21%2
.

~32!
9-5
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The value of the superfluid fractionns /n that we obtain from
Eq. ~32! are reported in Table IV for two values of the co
pling strength and at various values of the reduced temp
ture.

In Table IV we also show the values taken by the qua
condensate fractionñ0 /n at the same values of the couplin
strength. The quasicondensate density is similar to the su
fluid density at very low coupling, but rapidly decreases
the coupling strength is increased.

V. SUMMARY AND OUTLOOK

Summarizing, we have studied quasicondensation and
perfluidity in a weakly interacting 2D fluid of charge

TABLE IV. Superfluid and quasicondensate fraction in the Q
CBF as a function of reduced temperature from the Bogoliub
approach, for two values of the coupling strengthr s .

T (ns /n) r s50.1 (ñ0 /n) r s50.1
T (ns /n) r s51 (ñ0 /n) r s51

0 1 0.863 0 1 0.537
10 0.991 0.861 0.2 0.995 0.536
15 0.972 0.854 0.3 0.979 0.533
20 0.944 0.843 0.5 0.905 0.517
30 0.865 0.809 0.7 0.779 0.482
40 0.763 0.758 0.8 0.696 0.457
la

tte

10450
a-

i-

er-
s

u-

bosons withe2/r interactions at finite temperature. By com
parison of results on the 3D fluid with diffusion Monte Car
data25 we have found that the Bogoliubov approach m
yield quantitatively useful predictions over a surprising
wide range of coupling strengths and of deviations of
condensate fraction from unity. At finite temperature the b
havior of the charged 2D gas is qualitatively wholly simil
to that of its better known neutral analog: well below t
Kosterlitz-Thouless transition a slow power-law decay
seen in the one-body density matrix, heralding extend
range correlations in phase fluctuations and the formation
a condensate over regions of finite size.

From the diffusion Monte Carlo results of Magro an
Ceperley26 it appears that the charged 2D fluid with logarit
mic interactions may also show quasicondensation, eve
the absence of macroscopic condensation in the ground s
Other interesting questions in this area regard how the t
sition from 3D to 2D behavior is effected and how one m
develop a sound theoretical description of the moment
distribution with increasing coupling strength.
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