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Quasicondensate and superfluid fraction in the two-dimensional charged boson gas
at finite temperature
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The Bogoliubov—de Gennes equations are solved for the Coulomb Bose gas describing a fluid of charged
bosons at finite temperature. The approach is applicable in the weak-coupling regime and the extent of its
quantitative usefulness is tested in the three-dimensional fluid, for which diffusion Monte Carlo data are
available on the condensate fraction at zero temperature. The one-body density matrix is then evaluated by the
same approach for the two-dimensional fluid wéfir interactions, to demonstrate the presence of a quasi-
condensate from its power-law decay with increasing distance and to evaluate the superfluid fraction as a
function of temperature at weak coupling.
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[. INTRODUCTION temperature. They further showed from a DMC study that
the noncondensed fluid exhibits a power-law decay of the
The fluid of pointlike spinless charged bosons embedde@ne-body density matrix and that above a threshold density
in a uniform neutralizing background has attracted attentiothe momentum distribution diverges at low momenta, al-
in the literature mainly as a model in quantum statisticalthough no condensate forms.
mechanics, which is complementary to the physically more [nthe 2D CBF withe?/r interactionghenceforth referred
relevant fermionic gas of electrohslt was proposed by 0 as quasi-2D or Q2D CBFa condensate is present in the
SchafrotR as a model for superconductors prior to the BCSgrqund state, but its density vanishes at finite temperature.
theory and has received renewed interest after the discove&1IS behavior parallels that of the neutral 2D Bose s,
of ceramic superconductofsin some viewpoints a Bose- he theory of correlatpns in the latter system has been de-
Einstein condensate of tightly bound pairs of small polaron eloped by 3lfagan,_SV|stunov, and _Shlyapnﬁ%b(/see also
could be a relevant model for high: superconductivity in aganetal.”). As its temperature is lowered at constant

. density(or as its density is increased at constant temperature
the Iayered_ cupratésj’he model als_,o has some as_trophysmalacross the Kosterlitz-Thouless transition, a weakly interact-
relevance in describing pressure-ionized helium in cold stel

57 s : N ing gas enters the superfluid regime in which the phase cor-
lar matter™* and the fusion of particles inside a dense g|ation lengthR, is much larger than the density correlation
helium plasma: _ _ _ lengthr. In this situation the one-body density matigr)

A number of theoretical an(_JI com_putatmnal studies ha"“t'jecays asymptotically to zero with an inverse-power law
been addressed to the three-dimensional charged-boson flyigiher than exponentialf?* The idea of a “quasiconden-
(3D CBF) at zero temperature. The properties of main inter-gge” emerges from the behavior @fr) at intermediate
est for the theory have been the ground-state energy anlstances.<r<R,.. The local properties of the quasicon-
structure and the static and dynamic dielectric response. Thensate are the same as those of a genuine condensate, so
early theoretical work was concerned with evaluating thethat it turns to the latter as the phase correlation length starts
ground-state energy and the elementary excitations in th@ exceed the dimensions of the sample.
weak-coupling high density limit. °~*?Both variational cal- The main purpose of the present work is to study this
culations based on Jastrow-Feenberg wave functfotfs behavior in the Q2D CBF, using the Bogoliubov approach to
and self-consistent treatments of correlatfdn$' have sub-  describe the charged fluid both in the ground state and at
sequently been used to evaluate the intermediate and stronfinite temperature in the weak-coupling regite@rrespond-
coupling regime. Quantum Monte Carlo studies of the 3Ding in this case to high densityThe Bogoliubov—de Gennes
CBF (Refs. 16 and 22—-2%ave covered the whole range of equations are presented for convenience in Sec. Il and are
coupling strength up to the regime of Wigner crystallizationfirst solved for the 3D CBF in Sec. lll, where the approach is
driven by the Coulomb repulsions. Extensive data on theuantitatively tested af=0 by comparing its results for the
condensate fraction and the momentum distribution in decondensate fraction with the available DMC data. Section IV
pendence of the coupling strength have become availableports our main results regarding the quasicondensate and
through the diffusion Monte CarldDMC) work of Moroni  the superfluid fraction in the Q2D CBF. Finally, Sec. V gives

etal® a brief summary and our conclusions.

The properties of the 2D CBF at zero temperature have
also been investigated with bo#3/r and In¢) interactions. Il BOGOLIUBOV APPROACH TO A CHARGED-BOSON
In the latter case Magro and Cepef®jave shown, usinga FLUID

sum-rule argument from Pitaevskii and Stringdrthat the
presence of the long-wavelength plasmon in the excitation The fluid of charged bosons on a uniform neutralizing
spectrum rules out the existence of a condensate even at zdsackground is described by the Hamiltonian
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where

V2
=f drtp*(r)(—ﬁ—u)w(r)

nokZV(k) k2 27172
Ex= T+ ﬁ . (8)
t t _
J drf dr g (i rOVAr=r'hur)gm), The condensate density is given by
(1) o ,
where V(r)=e?/r, y(r) is the field operator ang. the o=n—(i (r)"/l(r»:n_kqﬁo Uk ©)

chemical potential. The role of the background is to set to
zero the average potential felt by each particle. The couplingnd the one-body density matrix is
strength is measured by the dimensionless paramgtete-
fined byr ag=(4mn/3)"Y3in 3D and byrag=(7n) *2in
2D with ag the Bohr radius and the mean particle density.
We consider first the fluid al=0. The Bogoliubov We have assumed unitary volume in writing E48) and
transformatiof* (for recent presentations, see Refs. 35 and10).
36) introduces a macroscopic order paramefgiby writing After these transformations and approximations the
the field operator asy(r)= o+ ¢(r). The operatory(r) Hamiltonian (1) has been reduced to that of a system of
describes the gas of Bose particles promoted out of the Corrpdependent Bosonic excitations described by the operators
densate This gas is treated in the Hartree apprOX|mat|0mk anday . The extension of the theory to finite temperature

p<r>=no+<¢*<r>@<0>>=no+k§0vﬁexmk-m. (10

is small. function
One findsu=0 and, with the linear transformation fo=[exp(Be) — 1] L (11)
~ | ticular, Eqs(9 d(10) b
B(r, =2 [u,(r,na,+vi(r,nal] 2 " particular, Eqs(9) and (10) become
—n— 2 2 2
for the Heisenberg field operator, one has to solve the No=N k;o Lokt (Uit vid ] (12
coupled linear equations
and
ou,(rt) 1 V2 fd "y )
o= " 2m " ulr Do | drrV(Ir=r'hluy(r. p(r)=no+ 3 [v+ fui+odlexptiken), (13
Fu,(r',t)+v,(r',1)] (3 respectively.
and
Ill. THREE-DIMENSIONAL CHARGED-BOSON FLUID
i (1Y _ ivzv V(r't)Jrnof dr'v(r=r’)) We introduce the parametér=(3n,/nr3)Y%?/(agkgT)
at 2m and the reduced distancR=(12n,/nrd)¥4(r/ag). Then
X[v,(F,t)+0,(r" )+u,(r' )] (4) Egs.(9), (12), and(13) can be rewritten as follows:
Here,n,= 3 is the uniform condensate density. The subsid- 1 Noj[Mo I _21/zr§/4 * f(x) o
iary condition “nlin) L T g Jo Tlao )
(14
2 [u(r DU (r D =o,(r Hus(r,H]=8r—r") (5) .
| (Bl
embodies the commutation rules on the field operators. nan T#0
In a uniform fluid the state index is the wave vector U e (f(x) 2
k. Equations (3)—(5) are solved by takingu(r,t) = s f dx( 1+ —ZXZ]
=ucexdi(k-r—et)] and vy(r,t)=vexdi(k-r—et)], 3%z Jo 19(X) exdAg(x)]—1
with the results (15)
, 1 L k2 and
UkZE 1+81: nOV(k)+2— (6)
m p(r) 22 [nerg 3’4de L sin(Rx)
and n = 3W_l n o 177 T Rx
2 L ilnvio+ @ 169 2x%), (16
vi= g e oVt 50 o0 |t exgagoo=1| 2 |r 19
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TABLE I. Condensate fraction in the 3D CBF at zero temperature from the Bogoliubov appBach (
compared with the diffusion Monte Carlo daaMC, from Moroni et al, Ref. 25.

s 1 2 5 10 20 50 100 160
(No/N)g 0.818  0.722 0549 0401 0264 0132  0.072 0.047
(No/M)ome 0.827 0722 0542 0359  0.206 0053  0.0104  0.004

where we have definedf(x)=1+2x* and g(x)=(1  IV. QUASI-TWO-DIMENSIONAL CHARGED-BOSON
+x% 2 Of course, Eq(14) can also be obtained from Eq. FLUID
(15) in the limit T—0. In the following we use the energy
e’/ag as the unit of the thermal energyT.

A numerical solution of Eqg14) and(15) for ng/n in the

TakingV(k) = 2mwe?/k, Eq.(9) for the condensate fraction
at T=0 yields

physical range &ny/n<1 can be found for all values of the No\(no| %3 s [ [F(X) .

system parameters. We should bear in mind, however, that 1-— —) =rs f dx| ——2x7|, (17)
: ) n/in -0 o [9(x)

we are using a weak-coupling theory so that the results can

be significant only when the depletion of the condensate isvhere we have definedf(x)=1+2x® and g(x)=(1
small(i.e., forny/n close to unity, in line of principle This ~ +x5)%2, The numerical solution of E¢17) yields the values
statement is quantitatively tested in Table I, where we comof the condensate fraction which are reported in Table il
pare our results fony/n at T=0 with the DMC data of over a range of values for the coupling strength well below
Moroni et al?° over the whole fluid range up to Wigner crys- the Wigner phase transitidhat r¢~35. We should expect
tallization. It is clear from Table | that, rather surprisingly, that the role of correlations becomes more important in low-
the Bogoliubov approach is almost fully quantitative up toered dimensionality, and indeed the crude criterion intro-
r<=5, i.e., for values ofny/n down to almost 0.5. Very duced in Sec. Ill suggests that in the Q2D fluidTat0 the
similar results are obtained in the same range Oby the  Bogoliubov approach may be useful only uprte=1.
integrodifferential equations approach of Cherny and |t is easily seen that the condensate fraction must instead

Shanenkd! vanish afT #0. Indeed, if we assum®,/n#0 then Eq.(12)
Table Il reports our results fary/n as a function of tem-  yields
n n —2/3
R
n/in

perature forrg=1 andrg =2. In the lack of data for a quan-
titative test, one may hope from the test shown in Table |
that the Bogoliubov approach could again be reasonably

accurate for values af,/n larger than 0.5. According to this T#0

crude criterion, it appears from Table Il that at such weak- o3 wd f(x) s
couplings the theory could perhaps be useful up to a =rg f X +ex AxaOO)1—1 —2x7,
fairly sizable value of the reduced temperature 0 9(x) HAXGX)]
ksTag/e’>—perhaps as large as unity foy=1. (18

Finally, the one-body density matrix(r) (in units of the 2
particle densityn) is shown in Fig. 1 for ;=1 (left pane) Wher_e we have se!tz2(no/nrs)2’3e2/_(aBkBT). The second
and rg=2 (right pane), at various values of the reduced term in the sqgare.brackets on Ehle rlght-h:_;md side of ).
temperature. The asymptotic value @fr)/n in the limit r yields a contrlbut_lon of orc_jex to the integrand forx
—oo s the condensate fractiam,/n, that we have already _’0’.30 that the integral d|verges. on .the othe( hand, the
presented in Table II. soluthn ng/n=0 at T#0 is  consistent with the_
Bogoliubov—de Gennes equations: in this case they yield

v,=0 andu,=1, and the particle density is related to the
TABLE Il. Condensate fraction in the 3D CBF as a function of (now finite) chemical potential by

the reduced temperature from the Bogoliubov approach, for two

values of the coupling strengtty . k2 -1
n=> [exp[ﬁ(—— ) —1] . (19
T (No/M)r -1 T (/) ko 2m
0 0.818 0 0.722 We can at this point introduce the quasicondensate for the
0.3 0.816 0.1 0.718 Q2D CBF at finite temperature. The essential point is the
0.5 0.793 0.2 0.652 power-law decay of the one-body density matrix, which be-
0.75 0.720 0.3 0.466 comes slow at sufficiently low temperature and weak
1.0 0.593 0.32 0.410 coupling®®—33 We first show this by an heuristic procedure
1.25 0.407 0.34 0.345 that we shall justify later below. We isolate the singular term
1.4 0.247 0.36 0.266 in p(r) and resum it to infinite order to obtain
1.482 0.092 0.38 0.153 -
p(r)=p(rjexd —A(r)], (20)

104509-3



E. STREPPAROLA, A. MINGUZZI, AND M. P. TOSI

PHYSICAL REVIEW B3 104509

02 T . 02|

FIG. 1. The one-body density
matrix p(r)/n as a function of
r/ag in the 3D CBF. Left: forrg
=1 at values of the reduced tem-
peratureT equal to 0, 0.5, 1.0,
1.25, and 1.48Zfrom top to bot-
tom). Right: for r¢=2 at T=0,
= 0.2, 0.3, 0.34, and 0.38.

where with the help of Eq.13) we have set

d?k V(k) -~
A(f)=f ) [1—-cogk-r)]—=—f(ex)

(2m)? e

(nrg)”3 - 1—Jo(X2R)
=2| == fdx — (21
No o g(x){exdAxg(x)]—1}
and
p(r) 1 d%
T—l ﬁf (277)2[1 cogk-r)]
1 [ MoV(k) +k2/2m k22m . ]
| =1+ —=—"f(gy)
2 Ek Ek
~ \23
Nof s 0
=1—< (;] ) fo dx[1—Jo(X2R)]
6
x[ 10 + zlx —2x3],
9(x)  g(x)(exd Axg(x)]—1)
(22)
the quasicondensate density being defined by
No= limp(r). (23

r—oo

In these equationse,=[ngV(k)k?m+k*4m?1*2 A
=2(ng/nr2)?%e?/(agksT), R=2(ny/nr2)*Y(r/ag) and
Jo(y) is the Bessel function of zeroth order.

0 2 4 6 8 10 0 2 4 6 8 10

temperature the decay of the density matrix in space is slow
and the notion of a quasicondensate thereby acquires physi-
cal significance.

A power-law decay of the one-body density matrix at low
temperature and coupling strength can be demonstrated di-
rectly from Eqgs.(20—(23). The functionJo(x?R) in the in-
tegrand in Eq(21) provides a lower limit of integration go-
ing asr Y2, while the upper limit is set by a cutoff wave
vector ky=1/L associated with the quasicondensate region
(see Popaotf). Equation(21) thus yields

- - 1/2 1
A(r)_>2A*1(nr§/n0)1’3f dx—

.
12 X
=2A"Y(nr2/ng)*3In(r/L)Y2. (24)

Hence since(r)—ngy we find from Eq.(20)
p(r)—no(r/L)~* (25

with the value of the exponent given by

n , kgT

—r .
2n, €%lag

(26)

a=

Figure 2 (bottom panelsevidentiates the power-law decay
of the density matrix by plotting the curves in log-log scale,
as compared with the asympotic behavior predicted by Egs.
(25 and(26) (dots in the figurg

A. Asymptotic behavior of the single-particle Green’s function

We can actually show that the power-law decayp6f)
that we have obtained just above derives from the correla-

Figure 2(upper panelsreports our numerical results for tions between phase fluctuations in the Q2D CBF. We follow
p(r) at two values of the coupling strength and at variousthe method proposed for the neutral 2D gas in the work of
values of the reduced temperature. It is evident that at loPopov’? (see also Fisher and Hohenb&)gThe fluctuations

TABLE lll. Condensate fraction in the Q2D CBF at zero temperature from the Bogoliubov approach.

rs 0.01 0.1 0.2 0.4

0.6 0.8 1 2 5

Nng/n 0.968 0.863 0.794

0.700

0.633 0.580 0.537 0.398 0.230
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FIG. 2. The one-body density
matrix p(r)/n as a function of
r/ag in the Q2D CBF, both in lin-
ear scale(upper panels and in
logarithmic scale(lower panels
Left panels: forrg=0.1 at values
of the reduced temperaturd
equal to 0, 10, 15, 20, 30, and 40
(from top to bottom. Right pan-
els: forrg=1 at T=0, 0.2, 0.3,
0.5, 0.7, and 0.8. The dots in the
lower panels give the asymptotic
behavior ofp(r)/n at larger as
evaluated analytically in Eq$25)
and(26). The lengthL in Eq. (25),
which is not determined by the
asymptotic calculation, appears in
logarithmic scale as an additive
constant and is here fixed by re-
quiring that the analytic result
overlaps the numerical one afn-
creases.

of the phaseg(x,t) determine the single-particle Green’s In Eq. (29) we carry out the summation over the Matsubara

function in the low-momentum regiméelow the cutoff mo-

mentumky) according to

From Eq.(19.16 in Chap. 6 of Popov's bodk we find

- 1
G(X,T§X1,Tl)2noeXP{_ §<[¢(X,7)_¢(X1,7’1)]2> .

V(Kk)
w?+NV(K)k3/m

(k@) p(—k,~w))—

frequencies forr;=r* and keep the most diverging contri-

bution in the integral over the momenta to obtain

(27)

%([(ﬁ(x, = (%, 7 )] —a InE+const, (30

wherer =|x—x,| and the quantityw is given by Eq.(26).

Using this result in Eq(27) we see that the Green'’s function

decays to zero with the law™ “.

B. Superfluid fraction and quasicondensate fraction

(28)

As already noted in Sec. I, the notion of a quasiconden-
sate becomes meaningful

at temperatures below the

for the Q2D CBF at long wavelengths and frequencies s¢costerlitz-Thouless transition. A superfluid component is
' “therefore present at these temperatures and its demgity

that

1
§<[¢(X77)_¢(X1:7’1)]z>

1 V(K)

2B k5 T P+ MoV (K)k2m

X |exfdi(k-x—w7)]—exdi(k-x,—w7)]|?. n=1—2ﬁ( =

given by*

From Eq.(31) we have

Ng I’s‘ﬁo

(29
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TABLE IV. Superfluid and quasicondensate fraction in the Q2D bosons withe?/r interactions at finite temperature. By com-
CBF as a function of reduced temperature from the Bogoliubovparison of results on the 3D fluid with diffusion Monte Carlo
approach, for two values of the coupling strenggh dat£® we have found that the Bogoliubov approach may
yield quantitatively useful predictions over a surprisingly
wide range of coupling strengths and of deviations of the

T (/)i =01 (Ng/N) —o1 T (ns/n)i =1 (no/n) 4

0 1 0.863 0 1 0.537 condensate fraction from unity. At finite temperature the be-
10 0.991 0.861 02  0.995 053¢  havior of the charged 2D gas is qualitatively wholly similar
15 0.972 0.854 03  0.979 0533 to that of its better known neutral analog: well below the
20 0.944 0.843 05  0.905 0517 Kosterlitz-Thouless transition a slow power-law decay is
30 0.865 0.809 0.7 0.779 0.482 seen in the one-body density matrix, heralding extended-
40 0.763 0.758 08 0.696 0.457  range correlations in phase fluctuations and the formation of

a condensate over regions of finite size.

From the diffusion Monte Carlo results of Magro and
The value of the superfluid fraction,/n that we obtain from Ceperley® it appears that the charged 2D fluid with logarith-
Eq. (32 are reported in Table IV for two values of the cou- mic interactions may also show quasicondensation, even in
pling strength and at various values of the reduced temperdhe absence of macroscopic condensation in the ground state.
ture. Other interesting questions in this area regard how the tran-

In Table IV we also show the values taken by the quasisition from 3D to 2D behavior is effected and how one may
condensate fractiony/n at the same values of the coupling develop a sound theoretical description of the momentum
strength. The quasicondensate density is similar to the supethistribution with increasing coupling strength.
fluid density at very low coupling, but rapidly decreases as

the coupling strength is increased.

V. SUMMARY AND OUTLOOK
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