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Ballistic versus diffusive magnetoresistance of a magnetic point contact
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The quasiclassical theory of a nanosize point contacts~PC’s! between two ferromagnets is developed. The
maximum available magnetoresistance values in PC’s are calculated for ballistic versus diffusive transport
through the area of a contact. In the ballistic regime the magnetoresistance in excess of a few hundred percent
is obtained for the iron-group ferromagnets. The necessary conditions for realization of so large a magnetore-
sistance in PC’s, and the experimental results by Garcı´a et al. are discussed.
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In recent experiments studying Ni-Ni and Co-Co po
contacts~PC’s!, a surprisingly high negative magnetores
tance exceeding 200% has been discovered.1,2 The setup of
the experiment was typical for the observation of giant m
netoresistance~GMR!, the effect observed earlier in hybri
systems involving ferromagnetic and normal multilay
metals.3,4 However, for multilayer structures the typica
change of the resistance reached 10% –30%, which is
siderably lower than the corresponding values of Refs. 1
2. So one can come easily to the conclusion that the m
contribution to the MR comes from the region of the PC’

A negative magnetoresistance can be due to scatterin
domain walls~DW’s! and this effect has been considered
a number of works5–8 giving typical values of MR in the
range of a few percent. Such considerably low values of
MR were obtained assuming that realistic widths of t
DW’s were large, which resulted in low scattering amp
tudes. Considering sharp DW’s in the ballistic regime o
comes to values;70%.8

The fact that a sharp DW may give large MR was used
Ref. 2 to explain the anomalously large values of MR in t
experiments on point contacts.1,2 However, the theory in Ref
2 is perturbation theory, and it cannot be applied to a exp
nation of the 300% effect. A diminishing of the width o
DW’s, when decreasing the size of the constriction, w
demonstrated by Bruno.9 The DW width becomes compa
rable to the PC length, and magnetization rotates alm
abruptly inside the constriction. This conclusion holds un
the diameter of the PC is smaller than its actual length. W
a further increase of constriction size~diameter! the wall will
bend outside of the PC, and simple energy considerat
show that the DW width will be of the order of the PC size10

The regime of conductance quantization in magnetic P
has been considered by Imamuraet al.11 They obtained that,
if the spin of the conduction electron cannot rotate in DW
pinned to the constriction, then magnetoresistance acqu
oscillations as a function of PC size with the amplitude e
ceeding 1000%.

In this paper we develop a quasiclassical theory of elec
transport through magnetic PC’s taking into account scat
ing by impurities, thus covering the ballistic (l .a) and dif-
fusive (l ,a) regimes (l is the mean free path anda is the
0163-1829/2001/63~10!/104428~4!/$15.00 63 1044
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radius of the contact!. The typical PC size, which is beyon
the quantization regime, 2a>8 Å, may be well described
within the quasiclassical~QC! approximation (2a@lF
52p/pF;6 Å; lF and pF are the Fermi wavelength an
momentum!.

We believe that extremely large magnetoresistance ca
obtained if the strong reflection of spin-polarized current c
riers on the PC area is achieved atantiparallel ~AP! align-
ment of magnetizations in contacting ferromagnets. This
realized if there is mismatch in the spin-subband Fermi m
menta of contacting magnets. For AP alignment,pF1↑
5pF2↓ and pF1↓5pF2↑ . Let us assume thatpF1↑@pF1↓ .
Then a subband with a smaller value of the Fermi mome
which is the minority subband, cannot accept momenta tra
ferred from the opposite side of the PC, which is a major
subband with the same spin projection. As a result, onl
narrow incidence angle cone around the normal to the in
face is responsible for the charge transport across the
Electrons with more inclined trajectories are completely
flected. Thus, the partial transmission at the steep incide
and the total reflection at slanting incidence provide the h
boundary resistance of PC’s.

The necessary condition for realization of the above s
nario is the conservation of electron spin orientation wh
crossing the domain wall. The orientation conserves if
DW width dw is shorter than the lengthds , at which the
electron spin quantization axis adjusts the varying direct
of the local exchange field. For ballistic transmission throu
PC’s,ds5vFT1, whereT1 is the longitudinal relaxation time
of the conduction electron magnetization—the Overhau
time.12 At this condition the transmission process looks li
transmission through abrupt DW’s, and the description of
electron transport through PC’s with boundary conditions
the PC interface is valid.

The PC model we consider is the circular hole of t
radiusa made in a membrane, which divides the space
two half-spaces, occupied by single-domain ferromagn
metals. The membrane is impenetrable for quasiparticles
rying a current; however, the thickness of the membrane
the model is assumed to be vanishing. Thez axis of the
coordinate system is chosen perpendicular to the memb
plane. The electron motion on both sides of the contact
©2001 The American Physical Society28-1
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be described by the equations for QC Green functions~GF’s!
derived by Zaitsev.13 They are in fact the Boltzmann equa
tions in thet approximation:

vz

]ga

]z
1vi

]gs

]rW
1

1

t
~gs2ḡs!50,

vz

]gs

]z
1vi

]ga

]rW
1

ga

t
50. ~1!

gs andga are symmetric and antisymmetric with respect tz
projection of the quasiparticle momentum QC GF~Green
functions integrated over the energy variable!, v is the vector
of the Fermi velocity,vz5vFcosu, v i

25vF
22vz

2 , the angleu
is measured from thez axis,vF is the modulus ofv, the over-
bar overḡc means averaging over the solid angle. We
sume that the spin-mixing process is weak; therefore we c
sider spin channels as independent and omit the spin-cha
indices in Eqs.~1! and expressions below.

The boundary conditions to Eqs.~1! for the specular scat
tering (pF1asinu15pF2asinu2[pi) at the interfacez50 are13

ga1~0!5ga2~0!5H ga~0!, pi,pF1 ,pF2 ,

0, min~pF1 ,pF2!,pi ,

2Rga~0!52D~gs22gs1!, ~2!

where a subscript 1 or 2 labels the left- or right-hand side
the contact, respectively,pFi is the Fermi momentum of the
i th side, andpi is the projection of the Fermi momentum
vector on the PC plane.D andR512D are the exact quan
tum mechanical transmission and reflection coefficients
can be considered either as phenomenological paramete
calculated for the models of interest. The second line in
first boundary condition in Eqs.~2! explicitly quantifies the
total reflection for inclined trajectories, described quali
tively above.

The density of a current through the contact may be w
ten as

j z~z,rW ,t !52
epF min

2

2p E
0

p/2

dVucosuga~z,rW ,t !. ~3!

The total current through the area of the contact is

I z~z→0,t !5aE
0

`

dkJ1~ka! j z~0,k,t !. ~4!

In the above equationspF min5min(pF1,pF2), J1(x) are the
Bessel functions, andj z(0,k,t) is the Fourier transform of the
current density, Eq.~3!, over the in-plane coordinater. The
cylindrical symmetry of the problem has been used up
derivation of Eq.~4!.

We search a solution forgs in the form (kB5\51):

gs~«!5tanh
«

2T
1 f s~«!, ~5!
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where the first term is the equilibrium value ofgs in the leads
far away from of PC’s. Substitution of Eq.~5! into Eqs.~1!
and Fourier transformation over the variabler leads to equa-
tions, the exact solution of which reads

f s~z!5ga~z!sgn~z!1
1

l z
E

2`

`

dje2¸uj2zu f̄ s~j,k!, ~6!

where

¸5
12 ikl i

l z
, ~7!

l 5tvF is the mean free path,l z5 l cosu, and l i
25 l 22 l z

2 .
Integrating Eq.~6! over the solid angle we obtain

f̄ s~z.0!5ḡa1E
z

`

djK~j2z! f̄ s~j,k!, ~8!

where the kernelK(h) is (x5cosu)

K~h!5
1

l E0

1

dx
e2h/ lx

x
J0S kh

A12x2

x D . ~9!

If the mean free pathl is short (l !a), the second term in
Eqs.~6! and~8! dominates and the integrand of Eq.~8! is the
product of a rapidly decreasing on the distancel kernelK(h)
and slowly decreasing functionf̄ s . That is why we may take
out f̄ c(k,j) from the integral~8! at the pointj5z. Within
this approximation we obtain

f̄ s~z,k!5ḡa~z,k!@12l~k!#21, ~10!

where

l~k!5E
0

`

djK~j2z!5
1

kl
arctankl. ~11!

Substituting Eq.~10! into Eq. ~6!, and using the boundary
conditions~2!, we obtain the equation for the antisymmetr
combinationga :

ga~0,k!52
1

2
DS tanh

«

2T
2tanh

«2eV

2T Dgk

2
D

12l1

1

2l z1
E

2`

0

dje¸1jḡa1~j!

2
D

12l2

1

2l z2
E

0

`

dje2¸2jḡa2~j!, ~12!

where

gk5E
0

a

rdrE
0

2p

eik r¢dw5
2pa

k
J1~ka!, ~13!

andV is the bias voltage.
To find ga(0,k) we average Eq.~12! over the solid angle,

exploit the continuity ofga at the interface, Eq.~2!, and
again use the fact that in the limitl !a the kernel in the
integral overx in the second and third terms of the averag
8-2
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equation~12! is a function, rapidly decreasing at distancel.
Of course, in the ballistic regime (l .a) this approximation
is no longer valid, but in this regime the first~exact! term in
Eq. ~12! dominates the approximate terms with integrals.
in the ballistic limit the approximation does not bring a lar
error either. Although the approximation may not be valid
the intermediate regime, the suggested scheme can be
as an interpolation.

Now we find easilyḡa(0,k), make consecutive substitu
tions into Eqs.~12!, ~3!, and ~4!, and, finally, obtain the
general expression for the current through PC’s:

I z5
e2pF min

2 a2V

2p E
0

`dk

k
J1

2~ka!^D F~k,u!cosu&, ~14!

where

F~k,u!512F 1

2~12l1!¸1l z1
1

1

2~12l2!¸2l z2
G

3
D̄

11
l̃1

2~12l1!
1

l̃2

2~12l2!

, ~15!

l̃ i5 K D

¸ i l zi
L 5E

0

1

dx
D~x!

A11k2l i
2~12x2!

, ~16!

^•••& means averaging over the solid angle. Equations~14!
and ~15! are the basic analytical result of the paper, wh
expresses the current in terms of the parametersD, l, a, and
pF characterizing the system.

Now we calculate the magnetoresistance of PC’s betw
two identical ferromagnets. It can be expressed via the c
ductancess5I /V as follows:

MR5
RAP2RP

RP
5

sP2sAP

sAP
, ~17!

where RP (sP) stands for the resistance~conductance! at
parallel alignment of magnetizations of contacting ferroma
nets, andRAP (sAP) is for the antiparallel alignment of
magnetizations. For theparallel alignment the net current i
the sum of currents for both~independent! spin channels,
D51, l̃ i5l i . Labeling the quantities by arrow-up an
down notation we write

sP5s↑↑
z 1s↓↓

z 5
e2~pF↑

2 1pF↓
2 !~pa2!

4p2 E
0

`dk

k
J1

2~ka!

3H pF↑
2

pF↑
2 1pF↓

2

k2l ↑
2

~11A11k2l ↑
2!2

1~↑�↓ !J . ~18!

The prefactor in Eq.~18! is nothing but the sum of Sharvin14

conductances for the spin channels. For the AP alignmen
magnetizations the conductance is
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sAP5
e2pF↓

2 ~pa2!

p2 E
0

`dk

k
J1

2~ka!E
0

1

dxx„D~x!…↑↓

3H 12F 12l↑

A11k2l ↑
2~12x2!

1
12l↓

A11k2l ↓
2~12x2!

G
3

~D̄ !↑↓
2~12l↑!~12l↓!1l̃↑↓

↑ ~12l↓!1l̃↑↓
↓ ~12l↑!

J ,

~19!

where„D(x)…↑↓ stands for the transmission coefficient of th
interface at AP alignment. For the mechanism of magneto
sistance discussed above,„D(x)…↑↓ can be found from the
solution of the Schro¨dinger equation for the particle movin
in the steplike potential landscape:15

~D~x!!↑↓5
4~vz1

↑ !↑~vz2
↑ !↓

@~vz1
↑ !↑1~vz2

↑ !↓#2
5„D~x!…↓↑ , ~20!

with vz2
↑ 5vz1

↓ for the antiparallel alignment. The transmis
sion coefficient~20! gives maximum available magnetoresi
tance values for a particular parameters choice. Neglec
the difference of the effective masses in the spin-subba
we may write down

„D~x!…↑↓.
4xAb21x2

~x1Ab21x2!2
, ~21!

where

b25
12d2

d2
, d5

pF↓
pF↑

5
vF↓
vF↑

<1. ~22!

For purely ballistic transport@a/ l ↑→0, wherel ↑ ( l ↓) is the
majority ~minority! electrons mean free path# all integrals in
Eqs. ~18! and ~19! are evaluated analytically, and the ma
netoresistance reads

MR5
~12d!$5d3115d219d13%

8d3~d12!
. ~23!

If d51, then MR50; i.e., the magnetoresistance vanish
For the set ofd values we obtain, from Eq.~23!, d50.5,
MR5238%; d50.4, MR5455%; d50.33, MR5780%;
amdd50.3, MR51012%.

In the general case the angular integrals in Eqs.~16! and
~19! can be still evaluated analytically, whereas the integ
tions overk can be done only numerically. The results for t
magnetoresistance~17! as a function of the contact radius a
shown in Fig. 1. The curves show the maximum availa
MR, that could be realized in PC’s with physical paramet
displayed in the figure. MR exponentially drops when t
size of the contact approaches the mean free path of a m
rial. Then it shows a smooth crossover from ballistic to d
fusive regimes of conduction.

Let us discuss the experimental data on the magnetore
tance of magnetic PC’s by Garcı´a et al. Ni-Ni PC’s showed
maximal MR.280%,1 and Co-Co PC’s showed maxima
8-3
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MR.230%.2 In a recent paper16 they quote maximal MR
.33% for Fe-Fe PC’s. To obtain the MR values 280%~Ni!
and 230%~Co! we have to use the valuesd(Ni) .0.47 and
d(Co).0.5. These numbers are in the range of values
tained experimentally from the single-photon threshold p
toemission,d(Co).0.4,19 and from ferromagnet and supe
conductor point contact spectroscopy:d(Ni) .0.59–0.65,17

d(Ni) .0.71;18 d(Co).0.62–0.65,17 d(Co).0.68.18

If we use the experimental data of Ref. 17 for iro
d(Fe).0.59–0.65, then in our theory we obtain MR(F
5(100–140)%, which is larger than the experimenta
measured 33%.16 The justification of our model suggests th
the observed MR is not solely confined to a value of
polarizationd. We believe that the basic condition for th
observation of an upper MR limitdw!ds is not fulfilled in
the Fe-Fe PC experiment.16 T1 is proportional to the square
magnetic moment and the integral of exchange between

FIG. 1. The dependence of the magnetoresistance on the
radius.
ou

hy
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duction electrons and localized moments, and proportiona
conduction electrons density of states at the Fermi level.
these physical parameters for iron are larger than for cob
and especially than for nickel. Therefore we expect t
T1(Fe) is at least one order of magnitude shorter thanT1 for
Co and Ni. Whends(Fe);dw(Fe), the electron spin almos
tracks the local exchange field in the domain wall. As
result the reflection of the electrons from DW’s decreas
and the observed MR does not reach its maximal value.

Let us discuss now the magnetoresistance in the diffus
regime of transport, when the radius of the nanohole is m
larger than the mean free path (a@ l ↑ ,l ↓). The giant MR
values can be obtained if the condition of validity of o
model, dw!ds , will be realized in an experiment. In th
opposite limitdw.ds , when PC size is so large that the DW
becomes smooth and wide, the electron spin will track
local exchange field in the domain wall, and MR will lev
off at the Levy-Zhang7 impurity scattering enhancemen
mechanism, which can give 2–11 % magnetoresistance.
requirement of abrupt DW’s with constant width, irrespe
tive of the PC size, can be technologically controlled if
very thin ~two to four monolayers of thickness;lF) non-
magnetic interlayer is deposited on the PC plane before
positing the second electrode. Then, just like in CPP tra
port in multilayers,3,4 the contacting domains will be
exchange decoupled, so the magnetization will acquire a s
den reversal within spacer thickness;lF . In this case our
analysis is valid for anarbitrary size of PC.
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