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Extensive eigenvalues in spin-spin correlations: A tool for counting pure states in Ising spin glasses
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We study the nature of the broken ergodicity in the low temperature phase of Ising spin glass systems, using
as a diagnostic tool the spectrum of eigenvalues of the spin-spin correlation function. We show that multiple
extensive eigenvalues of the correlation matEix=(S;S;) occur if and only if there is replica symmetry
breaking. We support our arguments with Exchange Monte Carlo results for the infinite-range problem. Here
we find multiple extensive eigenvalues in the replica symmetry bredR&®) phase folN=200, but only a
single extensive eigenvalue for phases with long-range order but no RSB. Numerical results for the short-range
model in four spatial dimensions, fdi<1296, are consistent with the presence of a single extensive eigen-
value, with the subdominant eigenvalue behaving in agreement with expectations derived from the droplet
model. Because of the small system sizes we cannot exclude the possibility of replica symmetry breaking with
finite size corrections in this regime.
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I. INTRODUCTION which becomes nonzefa.e., of O(1)] for T<T.. HereS
==*1 is the spin at sité, N is the number of spins in the

In three spatial dimensions or higher it is now acceptedsystem][ ],, indicates an average over disorder realizations
that Ising spin systems with random exchange interactionsand( ) indicates a thermal average. The order paramegter
exhibiting disorder and frustration, undergo a transition frommay also be obtained as the first moment of the overlap
a paramagnetic phase to a glass phase at a finitgistribution function
temperaturé. By contrast, the nature of the glass phase at
finite dimensions is still a subject of much debate in the
literature, with two main competing points of view. One fol- P(q)=| >, wwhs(q—q*f)| , )
lows Parisi’s solution of the Sherrington-KirkpatrigsK) ap av
modef using a replica symmetry breakin@®kSB) ansatz’
The Parisi solution involves broken ergodicity of a subtlerwhereq, 8 label pure stateq)*’ =3 (S)%(S)#/N indicates
form than that found in a conventional ferromagnet: configuthe overlap between the local magnetizations in two pure
ration space is broken into many ergodic regions, separatesiates, anav® is the thermodynamic weight of pure state
by energy barriers which diverge in the thermodynamicin the thermodynamic limitP(q) is predicted to have very
limit. Most of these regions—which we will also call pure different behaviors in the two pictures mentioned above. For
states—are unrelated to one another by any symmetry of the single PSPP(q) approaches a pair of delta functions at
Hamiltonian. However, in the case of a Hamiltonian with +q_ whereq,,,, is the self-overlap of each pure state in
global spin inversion symmetry, each of these regions has ae pair, and—q,,,, is the overlap between one pure state
associated region related to it by global spin inversion, theyng the other. For the divergirigountablg¢ number of PSPs
pair forming together what we will call a pure state pairin the SK problemP(q) is nonzero over a finite interval
(PSP. This RSB picture is almost certainly correct in the _q  <q<q,. ., [this property depends essentially on the
limit of infinite spatial dimension; and it has been argued tha, ¢ thatP(q) is a disorder averaged quaniiygo far, the
the RSB picture also applies, more or less unchanged, to thgain tool for detecting nontrivial broken ergodicity in finite
frozen phase of finite-dimensional Spin glasses. The oth&fimension at nonzero temperatures has been the scaling of
point of view is the “droplet” picture; which, in sharp con-  he overlap distribution functio(q) atq=0 as a function
trast to the picture just described, postulates the presence ofg sysiem size: for a single PSP it must scale to zero, while it
single PSP in the low-temperature phase. In this paper Wesmains nonzero in the thermodynamic limit if there is RSB.
focus on the fundamental difference between these two picgeyeral numerical studies have suggested a behavior in finite
tures, namely, the nature of the ergodicity breaking in spiryimensions similar to the one at the mean field I&eDther
glasses—or, put more simply, the number of ‘valleysf- gy gies using the Migdal-Kadanoff approximatioand still

godic regiongin the low-temperature phase. others investigating the ground state susceptibility to bound-
The glass transition is characterized by the Edwardsyy congition€ have suggested otherwise and favor the drop-
Anderson spin-glass order parameter let model. None of these studies have conclusively resolved
1 which type of broken ergodicity takes place in the low tem-
q= N E (Si>2 , (1) perature phase in finite dimensions, motivating a search for
: av new approaches.
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In this paper we propose and apply a rather direct methotike the numerical results for the SK model. In Sec. V we
for determining the number of PSPs for an Ising spin glasspresent and discuss the results of our EMC simulations for
Our main ideas were introduced in a previous Lelteere  the short-range Edwards-Anders¢@BA) model in four di-
we provide an extended development of these ideas, alorigensions. Finally, in Sec. VI we present our conclusions.
with further analytical and numerical results. Our method
involves the study of the spectral properties of the spin-spin  Il. SPIN-SPIN CORRELATORS AND PURE STATES
correlation function(S;S;)=C;j; . It is inspired by Yang's IN ISING SYSTEMS

. 0 . . _ .
analysig® of correlation functions to detect off-diagonal Guided by the analogy to Yang’s analysis of the matrix

long-range ordefODLRO) in superfluids. In the case of su- . . o ;

. . ._elements of the one particle density matrix in a superfluid
perfluids, Yang showed that the existence of ODLRO IScvstem. we study the s ectrim ]} of the Spin-spin
equivalent to the presence of an extensive eigenvalue in theY ' y P i=1,... N pIn-sp

spectrum of the one-particle density matrix. We argue thatcorrelatlon matrixC;; of an Ising spin system. This matrix

in the case of classical spin glasses, the spectrum of thfg:as an extensive trace Tr=2(S;)=N. In addition, it is

spin-spin correlation function contains a distinct signature?©Sitive semi-definite: for an arbitrary re&l-dimensional
which allows one to determine unambiguously whether oM€Ctr[v),

not there are many pure state pairs, i.e., whether or not RSB

occurs. First of all, it is clear that the presence of at least one <U|c|v>:2 UiCijijZ vi(SS)v;
extensive eigenvalue signals the presence of long-range or- i i

der. What we further show is that thmumberof extensive 2

eigenvalues determines unambiguously the number of pure :<(2 visi) >>o_

state pairs: the spectrum contaiesactly oneextensive ei- [

genvalue if and only if there isxactly onepure state pair,
and it containsmore than oneextensive eigenvalue if and

only if there aremore tha!" onepure state pairs. We also (or for T>T, in the SK model, for which distance is not
ol thal the nonextensive cigenvalies acalo wilh e nambJS2nINGfU. the correlaion matrix reduces o the identiy
N of spins in the system with a power lower than 1. We =9, and consequently all its eigenvalues are equal to

) ; one. BelowT, however,C;; is nonzero almost everywhere
confirm these arguments by performing Exchange Mont

Carld*! (EMC) simulations for the SK model in various Bue to the ordering of the spins. For one PSP, in the low

. f hich K th i f th dicit temperature limitT—0, C;— =1, C has one eigenvalue
regimes, for which we know the hature ot the ergodicity i, approachell asT—0, and the rest of the eigenvalues
breaking in the equilibrium state. That is, we find multiple

. . . . 0 to zero. Hence, there is a transition in the distribution of
extensive eigenvalues in the spin-glass phase, but only

; . . . .~ the eigenvalues of,;; asT crossesT.. Specifically, just as
single such eigenvalue in the ferromagnetic phase and in thl% the case of su erfJIuids and ferromagnets and antiferromag-
paramagnetic phase in a field. In the RSB phageere one P g g

expects many PSPsve find that, for the range of system nets, we can detect the existence of long range order below

; . . ; T. by the presence of on@r more extensive eigenvalys.
sizes that we have studied, the eigenvalue spectrum is donlrﬁisyapprgach based orr1( examir?ing the spectgr]um oflat?\e cor-

nated by a small number of extensive eigenvalues. Makingelation functions has a definite advantage in the study of
the simplifying assumption that the thermal average is domi- 9 y

nated by onlyiwo PSPs, we are able to introduce an analyti_qisordered systems: we can eI.iminate thg necessity for guess-
cally calculable model which reproduces the eigenvaluéng the nature of the order—i.e., the eigenvectors corre-
spectrum for the SK model surprisingly well. Finally, we usesp_ondmg to the_extensw_e elgenval_ues—and sl detept Its
EMC simulations to study the Edwards-Anders(ﬁear- existence We will also find that this spectrum can give

neighboj model in four spatial dimensions. Our results, for gnique and C'?af information about thember of pure states
system sizesB<N=<6*, are compatible with the presence of in a frozen, disordered phase.

only oneextensive eigenvalue d€. The second largest ei- Although _the spin-spin correfation functioy;; has not
) o been extensively used to probe the nature of the broken er-
genvalue ofC is very well fit (with y©=0.132) by a power-

law scaling withN, with an exponentsmaller than onjethat godicity in the spin-glass phase, many related quantities have

is consistent with the value predicted by the droplet theory.bfen US?:d to StUdﬁ/ sohme of the static properties of spin

An alternative fit with a form that allows for an extensive 9 2>>c> FOf €xampie, the quantity

piece in the second largest eigenvalue®fis possiblé?, q@=[TrC?/N?] 3)

although it would imply that the ratio of the eigenvalue over &

N saturates to a finite value, something that is not observei$ a commonly used order parameter in spin-glass systems.

in our data. Also, the spin-glass susceptibilify2 for one disorder real-
We organize this paper as follows. In Sec. Il we showization (i.e., for a fixed set of spin couplingk;)

how the properties of the spectrum Gf; below T can be

used to distinguish between RSB and a single PSP in the low ; 1 )

temperature phase. In Sec. lll we discuss numerical results XsGeTN ; (SS)—(SHS)) (4)

for the SK model in its various regimes. In Sec. IV we in-

troduce a two-PSP model and show that it gives results mucis given, forT>T,, by

Above the ordering temperatu(@; decays exponentially to
zero at larger;;, so it has no large eigenvalues. Fbr %
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,; 1 5 ) Let us ignore for the moment the connected parand
Xse= > Cij=TrC?/N. (5)  concentrate on the matri@°. This matrix is proportional to
. the projector onto the vectsr=(S;), thus it has exactly one

We see that the disorder averageG# contains interesting €Xt€nsive eigenvalue

information about the freezing of the spifwhile in contrast
the disorder average @ contains no information—it is just ki =TrCo%=(s|s)= > (S)?=Ng'! (10)
the unit matriy. ForT<T,, q® becomes of orde®(1), the i

| t ei lua, of Cb f ordeN, and TrC? : o
arges) slgenvarua, o ecomes o ordet, an (whereq'! is the self-overlap of the pure stataith eigen-

:Ei)\iz becomes of ordeN®. Hence our measure of order vector proportional t@;, andN— 1 eigenvectors with eigen
(A 1~N) is consistent with earlier measures used for spin prop " 9 9

value zero.
glasses.

We wish further to obtain new and independent informa-ei \évagwsgsasg h?hvg tgﬁsr?ear?;h( cr;f(;\)ngis tg;s ?Jlrsemsbti;tle(t)g of
tion from the spectrum o€; towards this goal, in the fol- 9 - BY g properly of p e

lowing two subsections we will argue that one can detect théypmal element oV vamshe; adl—co; hence It Is reason-
presence or absence of order wittanyvalleys (i.e., RSB able to assume that the typical value of the ratio between the

; ; 0
simply by counting the number of extensive eigenvalues o*ac:ggstge'g?;yr?ltﬁee ?;;;g%tzzrlg.?ﬁif 'gengzléug.g dC aria-
C. To make this connection, the main idea used will be tha onal rz mln( A ngix R Iit ! nl b y hown Ith t\{h '
pure states are characterized by thgirstering? property,  ona argumentsee Appe can be sho atthe

i.e. that the spin-spin correlation function at long distanceéargeSt eigenvalud, of C is bounded betweer, and «,

can be approximately decomposed as a linear combination ?J\fzv(,)fgdismbtgfn((:j?esde;EZI\ZKSJ?i;:annduL?L%erithgggeggzl?oe

(possibly nonorthogonaprojectors onto the subspaces asso- i :
ciated with the pure states present in the system, i.e. one. In other words, the largest eigenvalue of the correlation
T matrix remains extensiv@nd, in fact, it changes very little

when the effect ofV is included. This result can also be
<SiSj>“2 w(S)(S;)*, (6) recovered more int_uitiv_ely by applying perturbation theory to
a the problem of estimating the effect bf
) The problem that remains to be solved is, therefore, the
where( ) denotes a thermal average restricted to the pur@siimation of the largest eigenvalue\bfA possible assump-
state «. From this relation, a connection will be obtained tjon would be that the off-diagonal parts Wfhave a typical
between the number of extensive eigenvalues of the left hangenavior in the largéd limit of V;; ~N~?, with 5>0. (The
side and the number of pure state pairs present in the rig'H-iagonal elements are aIwaysNd, but they have an effect
hand side. The rest of this section is devoted to deriving thig)s 5derN® on the eigenvaluesThe largest eigenvalue o
connection, and to estimating the effects on the spectrum dug,q therefore the second largest eigenvalu€,ddre then of
to the terms neglected in E¢F). orderN*~?. One can also view this result in the following
way. V can at most reweight the eigenvaluesés if it is
A. Single pure state pair an additional pure state with thermodynamic weigtt ™ °

We first consider the case of a single PSP. We show th Pee Sec. 1y, in which case it gives rise to an eigenvalue

H 1-6 H 1—8 i LT
in this case there is only one extensive eigenvalue that dom ggglrj OfN -An e|genvqlue of ordeN™ s, n principle,
nates the trace of. distinguishable from an eigenvalue of ordérsince 5>0.

Without loss of generality, we can consider the case of N SOMe cases it is possible to obtain a stronger bound on
only one pure state. This applies directly if one of the puretn® éjecay exponerd. For instance, if we assume thgsc
states in the pair is selected by an external field or a bound=N"» then we get6=1/2 by simple power counting. This
ary condition. But even when the two pure states are presergould be the case everywhere above the Almeida-Thouless
the spin-spin correlation matrix for the system is the same a&*T) line”in the phase diagrathfor the SK model. Above

if only one of them was present, simply because it involves &NiS line there is a paramagnetic phase with a single pure
product of anevennumber of spin variable¥ state, with long-range order trivially induced when the exter-

Hence we can rewnt€:: as nal magnetic fielch is nonzero. There is also a conventional
. ferromagnetic phase with a single PSP, in another part of the

C.=COt V. @) phase diagram but still above the AT instability. Either of
e e these phases should havg decaying with6=1/2. For a
0 pure ferromagnet with no frustration or disorder, assuming
Cij=(SXS). (8)  (as appropriate for a single PSthe uniform susceptibility
x=(1IN)Z;;(SS;). is of O(1) gives the stronger constraint
Vii=(SS))c. (99  6=1.We expect this latter limit to be approached for the SK

problem, when either the external magnetic fidlcdr the
where(S;S;).=(SS;) —(S)(S;) is the connected correlation average ferromagnetic couplidg are sufficiently large.
function. By arguments similar to the one used to show that While the above arguments make no direct reference to
C is positive semi-definite, botB° andV are positive semi- spatial dimension, they do rely on the notion of a “typical”
definite (see Appendix A element ofV. This idea is certainly appropriate for infinite-
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range models such as the SK problem; and the above argor

ments may also be applied to any finite-dimensional problem

for which a typical behavior o¥/;; can be defined. For ex- (Ngev>1)=(Npsp>1)=(RSB). (12
ample, one can define a typicdl; =(S;S;). for any mag-
netic system with a finite correlation length; here the typical
V;; is exponentially small and so the matixdoes not have
significant effects on the eigenvalues@t. However, corre-
lations in finite-dimensional spin glasses, in the frozen phas
are thought to fall off more slowly than exponentiatfygiv-
ing an infinite spin-glass susceptibility in the spin-glass
phasé&!® and rendering the notion of a typical element\bf

problematic. dynamic weight§w}, with =1 p. Here we only in-
Hence we examine carefully the “droplet” theotyyhich ciude pure states whose thermodynamic weight is

is the outstanding candidate for a theory of finite- e . .

dimensional spin glasses without RSB. In this theory the lownonvamshmg: W_e now dgcompose the correlation function
L spin g : y Into the contributions coming from each pure state:

energy excitations at large distances are assumed to be large

droplets of collectively overturned spins of size whose p

energy scales as’. It follows that the majority of the ele- Cij= > WSS (13

ments ofV;; are exponentially small; however there is also a a=1

set of “big” elements which are ofO(1) in magnitude.

These elements occur whemndj lie within the same “ac- =Ci+V, (14

tive” (coherently flipping droplet; this makeg¢S;) and(S;)

Now we would like to argue that the converse is also valid,
i.e., to find some necessary consequence of RSB in the ei-
genvalue spectrum. Hence we will assume R8BBt there is
more than one pure state pair pre$eand then determine
Show many extensive eigenvalues there should be in the spec-
trum of the spin-spin correlation matrix.

Let us suppose that there gre=1 pure states, character-
ized by the magnetizationgn*} (m*=(S;)¢), and thermo-

small, while leaving S;S;) and(S;S;).. large. The fraction of with
these big elements is of orderLf/ whereL is the system p
size and@ is a scaling exponent from the zero-temperature Cﬂ - 21 wememe, (15)

fixed point. Although this “big” fraction vanishes in the
thermodynamic limit, it still can have large effects at laNje
For example, let us suppose that a finite sample of Isize
dominated by one large active droplet of size of ordem
such a case the big elements\fappearing with probability
~1/1L%=1/N?? are coherent, so that the largest eigenvalue VE=(SS)? 1n

of V is of orderNx N~ ?9=N1-%d (We have verified this . e

with simple numerical experimenisGiven this bound on the By the clustering property of pure states, we may assume
eigenvalues o¥/, the largest eigenvalue &f is again much  thatV is small compared witic®. As in the case of one PSP,
smaller than the largest eigenvalue@f, and again the sec- we will proceed in two steps. First we will study the spec-
ond largest eigenvalue, of C=C°+V is of orderN*~?? or  trum of C°, and later we will include the effect of.

p
Vi = 21 weve, (16)

smaller. Hence one gets a decay expor&ifor A, /N equal Let us define the vectors{|¢,)}r-1 . p
to 6/d. Given the assumptions leading to this conclusion, this ;
value is a lower bound for the rate of decay)af/N. It is ;
. . = Pm?
plausible however that, for a range of system $izeL.9 not (¢r); 521 Cpywomg, (18)

too large, the assumption of dominance by a single active

droplet can hold, giving this lower bound fak,. Further-  with the coefficients), to be determined later. For an appro-
more, the numerical value of the latter can be quite smallpriate choice of the:;g, these vectors can be shown to be
about 0.19/3-0.063 in three dimensiort$,and about 0.7/4  eigenvectors oCin . In fact,

~0.17 in four?® Hence one needs good numerical data for . N

N\o(N) in a finite-dimensional spin glass to distinguish RSB P

(with 8,=0) from a\,/N which is weakly decaying due to > Cldnj=2 X wmimichwPmf

droplet excitations. =1 J=1 a.p=1

p p

B. Many pure state pairs =N \/VFmI“Z Aaﬂcrﬂy (19
In the previous subsection we have presented strong argu- ot pet

ments, assuming there is only a single PSP in the low temwhere we have defined the real, symmetpix p matrix

perature phase, that there can be only one extensive eigea; ,=w*q*?\wP. The matrix A,z has p orthonormal

value ofC. It follows from our argument that the observation eigenvectors{crﬁ} with eigenvaluega, },—, . ,. By insert-

of more than one extensive eigenvalue directly implies RSBing one of these eigenvectors in E48) we obtain

In short, lettingNpgp be the number of PSPs, aittgy be

the number of extensive eigenvalues, we found

N
0 L= .
(Npsp=1)=(Nggy=1) (11 ng Cif( @i =Na( o). @0
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Thus, for each nonzero eigenvalaeof A, an eigenvector of  for any numbem<N (whereN is the dimension of the vec-

C is obtained with eigenvalue,=Na, . Let us denote by_) tor spacg a set ofn vectors which are both linearly inde-
the number of linearly independent magnetization vectorpendent and ultrametric; but one can also construct a set

among the magnetizations of tigepure states (£p<p). which is linearly dependent and ultrametric.

This number need not be equal iofor example, the mag- It may be possible to derive tighter bounds on these quan-
netizations of the two pure states in a PSP are not linearljities via further theoretical work. In the following section
independent, since one of them-isl times the other. Hav- We provide some further information, obtained from equilib-

ing p=1 is equivalent to saying that there is either only one''um Monte Carlo studies, oNggy for a finite range oN in
pure state present, or there is exactly one PSP. Therefore, fi1€ SK problem.

the droplet pictureazl and for the RSB picturq?>1
strictly, i.e., ll. RESULTS FOR THE SK MODEL

— The SK model is described by the Hamiltonian
(Npsp>1)=(p>1). (2D y

It is an exercise in linear algebra to show tfede Appendix 1
A): (i) the number of nonzero eigenvalues/fs exactlyp, H==5 2 JijSiS— hz S (24)
. ! 2 1#] i
(i) all of these nonzero eigenvalues are positiiii) the
corre_spondlng el_ge_nvectgs_ ar arg linearly mdependent, with [J;]a=Jo/(N—1) and [Jizj]av_[Jij]ezlv:‘]Z/(N_l)
and (iv) the remaining\ — p linearly independent eigenvec- for any i and j. This model, which is equivalent to an
tors of C° have zero eigenvalue and are orthogonal to alfnfinite-dimensional model for which mean field theory is
pure state magnetizations. As a consequence, the number &act, has a phase diagrdiin (h/J,J,/J,T/J) space which
nonzero extensive eigenvalues®@t is equal top, the num- s reasonably well understood. In particular, there are insta-
ber of pure states with linearly independent magnetizationsbility lines (which presumably form a surfaceelow which
Next we assess the effects ¢f == ,w*V{j. We assume the replica_symmetric solution is unstable, and the Parisi
that the sum over pure states is finigee below, and Ref. RSB ansatz is believed to give the correct solution. The
21). Hence, even if th¥/! decay at different rates wit, we ~ “AT line” found by de Almeida and Thouless lies in the
can still take the typical element &f; to decay withN at  h-T plane (i.e., Jo=0); below this AT line there is RSB,
least as fast al~? for somed>0. Hence the largest eigen- While increasing eitheh or T brings one to a phase consist-
value ofV is of 0rderN1_5 or smaller. From this we can |ng of a single pure state. This phase is continuous with the

show (Appendix B that there are stilp extensive eigenval- Paramagnetic phaseat-0; it has long-range order which is
ues férgﬂ C0+VB) b g trivially induced by the field, and hence neither spontaneous

symmetry breaking nor broken ergodicity of any other sort.
Nevertheless we expect a large eigenvalueGatue to the

Neev=Pp. @2 long-range order. In another region of parameter spéce (
Combining this with Eq(21) it follows that =0, with a ferromagnetic bia3, sufficiently large there is
a ferromagnetic phase with one PSP. Here one has the famil-
(Npsp>1)=(Nggy>1), (23)  iar version of broken ergodicity in the form of spontaneous
_ symmetry breaking; given that there is a single PSP, we ex-
that is, the converse of Eqell) and(12). pect a single extensive eigenvalue in this phase also. Thus

It is plausible, althougimot proven, that in geperal acom- \ve find three distinct phaseglass/RSB, paramagnetield,
plete set of pure states not related by spin inverstbns  ¢orromagnetwhich we can explore via Monte Carlo simula-

consti_tuting one_—half of thg total set of pure statedll all  tjons in order to test our ideas about correlation functions,
be, with probability one, linearly independent, so tipats  eigenvalue counting, and ergodicity breaking in Ising sys-
just the number of PSPs, i.&Npgsp=Nggy . tems.

Note that, in the Parisi RSB solutibhto the mean-field We have performed EM(Refs. 11 and Bsimulations for
problem, the number of PSPs grows with at a rate which the SK model at three points in the phase diagram. In glassy
is not known. The ultrametric structure of these pure statesystems with very long relaxation times, normal Monte Carlo
implies?? that they cannot grow in number faster thBih  simulations are limited to small system sizes because of the
However there is a stronger constraint, coming from (@) divergent relaxation and equilibration tim&sEMC simula-
of Ref. 21, which states that ,(w®)?=0(1). This tells us tions allow for the crossing of barriers in a reasonable simu-
that the diverging number of pure states does not have equkdtion time, via a stochastic walk of each simulated system
thermodynamic weight; instead a finite number of themnot only in configuration space but also in temperature. The
dominate the sum of the weightg®, with the rest having simulation consists of having many systems at different tem-
negligible weight. peratures for the same disorder realization running in unison,

One might ask whether the ultrametric structure of theand attempting to exchange the configurations between adja-
space of pure states might imply some constraint on theent temperatures after a given number of Monte Carlo steps
number which are linearly independent. However we find nodt. The exchange of neighboring temperature configurations
such constraint in general. For example, one can construdiakes place with the probability
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in thermal equilibrium—whether or not they exchange %
temperatures—at all times during the simulation. This is be-<
cause the configuration obtained from an exchange with &
higher temperature is still accepted with the normal Boltz-
mann probability for the lower(accepting temperature;
hence an exchange drives neither system out of equilibrium
If the temperature difference between neighboring systems it
not too large, then exchanges are accepted at a reasonak
rate, and each system explores the full range of temperature:
Hence each system is effectively cooled and heated man,
ttl,r::ns gflfggﬁ/é:;e Cisrlgjl:,l]a\tlt;rtléde’ nﬁg{'gg 2?323?2 gb';]rgrirsbl:]tag; FIG._ 1. Distribution (_)f the first(thick lines and secondthin

. o . . . lines) eigenvalues ofS;; in the SK model ah/J=0 (RSB phase;
falling within their boundaries from a higher temperature. An__-~ o : : .

. . o . - . solid line) and h/J=1.2 (paramagnetic phase; dashed Jindere
Important pgrameter in this SImUIatI_On is the spacing be"I'/J=O.4 andN=128. These distributions, and the ones shown in
tween th_e different temperatures, Wh!Ch must be adjusted t?ig. 5. are a smoothed fit to binned data.

get a high enough acceptance ratio for the temperature

exchange§!!

Our criteria for having reached thermal equilibrium in our Probability distribution for the first two eigenvalues Gf;
measured quantities involve calculating the spin-glass sudor N=128 at zero field and ah=1.2) (above the AT
ceptibility for a single disorder realization using two distinct line)—all at T=0.4)—are shown in Fig. 1. These distribu-
methods. One method, discussed extensively in previou#ons have been obtained from 3400 disorder realizations. It

studies>® uses the averaging of the overlap of two uncoupleds clear from Fig. 1 that, at least in the RSB phase, the dis-
replicas tributions forh; and\, are extremely broad; also they show

significant skew. Hence we have studied b¢i],, and
[Ailyp=exfdIn Aj]4, for smalli in each phase.
}, 27 We show the average of the ten largest eigenvalues as a
function of system size in Fig. 2 for different points of the
and the other uses the standard way of calculating the theBK phase diagram(a) h=0, T/J=0.4, J,=0, the RSB
mal average in Monte CarlMC) simulations: phase;(b) h/J=1.2, T/J=0.4, J,=0, the paramagnet in
field with one pure state; antt) h=0, T/J=0.4, Jy/J
21 i 2 =1.5, the ferromagnet with a single PSP. The system sizes
XS6=Y % P ;1 Sitet8)S(to+t) 1 . (28 considered areN=32,64,128,192,256, and 512 with
3400, 3400, 3400, 1400, 1100, and 400 disorder realizations
Here 7, and t, have to be chosen large enough to obtainperformed respectively. It is clear from Fig(a@ that two
thermally equilibrated results. We also demand full symme-eigenvalues are of ordé¥ for N=200. This is extremely
try of the overlap distribution functioi(q), and that all  strond® numerical evidence for more than one PSP, and
initial configurations visit all temperatures evenly. We havehence nontrivial ergodicity breaking. We expect further
also checked our results using commonly studied quantitie®(N) eigenvalues to emerge for largs as suggested by
such asP(qg) and ys¢ doing standard Monte Carlo simula- the behavior of \3],, in the figure.
tions for the smaller system sizes; here our results are in In contrast, there is only one large eigenvalue in Figl) 2
agreement with previous wofR:?* In our simulations we and(c). We find further thaf\,],,/N may be fit to a power
have used a temperature spacingAdf=0.05], t,=3-5 law N~ 22 for some range oN in cases(b) and (c). In the
X 10%, 7o=10—40x10% and t=10-20. (Here all times paramagnetic phas@) &,~0.52 while in the ferromagnet
are in units of Monte Carlo steps per spin. (c) &, is somewhat larger;-0.58. While we do not expect
We find that the eigenvalue spectrum ©fis strongly  these power laws to have reached their asymptotic values for
dependent on disorder realization, such that it is impossibléhe system sizes considered here, we do expect any observed
to observe any regular dependence of xheon N with in-  decay for large enoug to be consistent with our argu-
creasingN for a single set of);’s. (See Fig. 6 below for ments in the previous section, where we obtaidge 1/2 in
examples of similar behavior in four space dimensipns.this regime. MC results for the paramagnetic phase, in a
Hence it is necessary to accumulate statistics on the eigetarger field than in(b), show that[x,],,/N decays with a
value spectra for many disorder realizations. The eigenvalukarger exponenfwe have observed up te 0.75), which we

P(Sn St Bm Bmer) =€ 2, (25 200 ' — |
with 1‘ E
B ! —— P(A) ath=0.0 J for N=128
A=(Bm= Bm+1)(E(Sm+1) —E(Sw)), (26) 15 ) —— P(A,) at h=0.0 J for N=128 :
and Sy, indicating the instantaneous spin configuration at3 1 : - E&S :: EZ]E‘J’IZ:NZSE
temperature J3,,. With this probability of exchange one &£ |
ensures that the systems at the different temperatures remag 10 P .
L] M 7

1 1 70 5 2
xsd=1 {(E SB(te+1) S (te+1)

N TO t=1
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FIG. 3. Scaling of the typical valug X;]y,=ex{dIn \;jJ,,) of the
ten largest eigenvalues @f; as a function of system siz¢ in the
SK model below the AT linet{=0, T/J=0.4).
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3
E 0.01 of them dominate the thermodynam?éswe see some of

these emerging in Figs.(& and 3. A possible consequence
of this would be that, for large enoud¥h Ny might satu-
rate at a finite constant. The present data show no clear sign
SK model ] of this, although they are clearly beyond the thresholdNof
h=0.0J for which Nggy begins to exceed 1. Fot in the vicinity of
Milo=15 1010 this threshold, we expect that bly view th

] , pect that one can reasonably view the
. ] glass phase as having justo PSPs; and we explore the

] consequences of this assumption next.

Foee e 4 o
oo s & ¢
IR )
sqbe e
(]

et e o
LN T X )

(©

[Al/N

el

1 0.01 IV. TWO PURE STATE PAIRS

AC IR I
(LR B ]
LU )
Waew w

s ] As suggested by Figs. 1, 2, and 3, the spectrur® édr
1000 the SK problem is dominated by two large eigenvalues, each
N coming from a broad distribution of values, for the system
) ) _ sizes considered here. We can understand much of this be-
FIG. 2. Scaling of the disorder average of the ten largest eigennavior with a simple two-PSP model which can be computed
values ofC;; as a function of system sizé in the SK m_odel(a) analytically. We begin with a very simple model for two
below the AT line ©=0, T/J=0.4), (b) above the AT line k/J pgpg 4 = 0. Suppose that phase space consists of only two
:1'2’ T”“i“)’ and(c) in the fe"qmagnet'c phasé €0, T/.‘] spin configurations 1 and 2, and ignore all others. Take
=0.4, [Jj;]a=1.80). The error bars in this and subsequent flguresC(w)=wCO+(1—w)C° with 0 and c0 corresponding to
come from the disorder averaging. 1 A ! ‘1 2 0 po 9
the C;; of the two different configurationS;; andS,; at zero

expect to approach 1 for large enoughWe also show in temperature, and (a thermodynamic weightanging from
Fig. 3 the scaling of the typical valje\;]y,/N for the first 0 to 1/2. The overlap between the wo states is given by
ten eigenvalues in the RSB phase. Here the behavior is quafli2= ZiS1;S;/N. It can be easily shown that this matrix has
tatively similar to that of \;].,/N in Fig. 2a): both figures ~ only two nonzero eigenvalues, corresponding to

show clearly thaf\,]/N (av or typ is flat as a function oN

10

—_
o
o

above a threshold value fod which is of order 100—200, Ne(QW)  15glt (1-gi)(2w—1)° -
plus strong signs thai ;]/N and[A,]/N are also approach- N - 2 - (29
ing a flat behavior. Hence we see graphically, in these fig-

ures, the emergence of multiple PSPs with increasing Note that\ ;. ranges fromN atw=0 to (1+[q;2)N/2 atw

Figures 2 and 3, taken together, give convincing evidence 1/2. It is also clear that, for small, A _ is linear inw;
that the eigenvalue spectrum f can clearly distinguish hence ifw is of lower order inN thanN° \_ ceases to be
trivial (one PSP from nontrivial broken ergodicity. This extensive. At the same time, even if the two PSPs have equal
spectrum allows one, for large enoubhto detect multiple ~ thermodynamic weight, the second eigenvalNe ap-
PSPs simply by counting the number of extensive eigenvalProaches zero ggj;j —1 andN/2 as|qy;—0. This is con-
uesNggy. As discussed above, while the number of PSPs i§istent with our results from Sec. II, since [ag—1 the
believed to diverge in the thermodynamic limit, only a few two states become linearly dependent @nidecomes 1. We
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can proceed further with this two-PSP model by calculating  4.00 . . . .

the probability distribution of; and\,, as follows: + P(q) from SK model at T=0.4
o P,,(q) from simulation

2 P,,(q) from simulation

E’W(M)If dq Pi(q) (N =N (q,w)) 3.00 | |~ P@ from simulation 1

_ 2Japt (1-ap*(2w—1)°

L))

Qo(1—(2w—1)?) 2 200
X O(N1=N 4 min) P12 do), (30
where P15(q) is the probability distribution ofj;5, N min 1.00
depends o, andqq is an implicit function ofA; given by '
N+ (g, w)=A\;. For the case ofv=1/2 this simplifies to
Pu=1201) = 2P1( 20 IN=1) 0Ny =N s min), - (3T) 00060 020 0.40 0.60 0.80 1.00
and Iql

~ FIG. 4. Overlap distribution function obtained from MC calcu-

Pu=1202) = 2P 11~ 285 /N) O(N - max—N2);  (32) lations in the SK F:nodel at=0.4 andh=0 (filled circles, self-

here ; min=X\ _max= 1/2. At this simple level of approxima- ©Vverlap distribution functiofP1,(q) (open squargsmutual overlap

tion we already have the first indication that the probabilitydistribution functionP,5(q) (open triangles and the totalP(q)

distribution of the first and second eigenvalues will be veryused in the two-PSP model simulatiofselid line).

broad in the case of nontrivial broken ergodicity—as we

have seen in the MC results. Note however that despite ahreshold where RSB first appears. We also believe that this

the breadth of the distribution .. ],, are still proportional to  assumption will fail for largemN; our Monte Carlo results

N. Let us now augment this picture with finite-temperaturestrongly suggest that the numberof significant PSPs will

effects. An approximate way to introduce temperature intQaxceed two adl grows. It is interesting to ask what the large-

the wo-PSP model is as follows. We let N limit of p is. We obtain no answer to this question from
1 for i=j the considerations of Sec. II; while our numerical results

c®=1 12 W@ o (33)  suggest only thap is at least as large as 3 or 4. We note here

oy et for i, that Fig. 5 itself may be viewed as giving some indication of

wherecri(l):<3)(1) and Ui(z):<si>(2) are Gaussian random @ third large eigenvalue, if we assures is plagsible from

variables with the mean Qf'iz equal tog,,.,. We adjust the our two-PSP resulighat the third PSP robs weight from the

distribution of & and o{? such thaig,, agrees with that UPPer part ofP(xy).
obtained from our MC runs, while also demanding that the

overlap distributon (M)Z;cPe®  agree  with 10.00 : : , ,
P1-(q)—which can also be extracted from our MX%q), by — A, from MC

subtracting a Gaussian part due to the self-oveRagq) i - ;:zggﬁg’fspmodel
=P,,(q). The result of this decomposition procedure is il- 8% ~ X from 2 PSP model 1

lustrated in Fig. 4. This gives us a means of generating &
realistic sample ofC matrices corresponding to two PSPs.
We can then obtain the first few eigenvalues @f (w)
=wC{P+(1-w)C{? and compare them with the eigenval-
ues obtained directly from the MC simulations of the SK ~
model. The former eigenvalues may be obtained either by ar<
approximate analytical perturbation approdcking only the 5
diagonal part o), or by direct numerical diagonalization of 200
the matrixC(w)—which must in any event be generated by
a random number generator. Figure 5 shows the eigenvalu
distributions obtained from our two-PSP model witi 0.00 . el . .
=1/2, compared with those obtained directly from the EMC 0.0 02 0'4x 06 08 1.0
runs, for the SK model in the glass phaseNst 64. It is NN
encouraging that our simple picture of two PSPs, with a FG. 5. Distribution of the firstsolid line) and seconddashed
minimal set of assumptions, reproduces both the position anghe) eigenvalues of;; obtained from the MC simulation of the SK
the shape of the two distributions. model atN=64 andT/J=0.4 (thin line), and the respective distri-
We believe—and Fig. 5 supports this belief—that the asbutions obtained from the two pure state model simulatitick
sumption of two PSPs has validity for a rangeNofear the  line) with w=1/2.

600 [ 1

A,) and PA)

400 |
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V. RESULTS FOR THE EA MODEL IN FOUR -

1 0.01
DIMENSIONS ]

LRI A ]

LLY X B I ]

We have performed EMC studies of the four-dimensional 10 100 1000
Ising spin glass on a hypercubic lattice, with nearest- N

neighbor interactions, periodic boundary conditions, and a FIG. 7. Scaling of the averag@) and the typicaib) value of

Gaussian distribution of thg;'s with zero mean. The pa- q ten Jargest eigenvalues ©f; as a function of system sia¢ for
rameters of the calculation follow closely those of Ref. 6. Wey,_ g andT/J=1.0 for the EA model in four dimensions.

have focused on the poiiit=J andh=0. These simulations
are rather deep in the frozen phase, sifice-1.75). We
choose this low temperature in order to try to avoid spuriou
effects from closeness to the critical region; such effects ar
likely to make it difficult to distinguish multiple PSPs from a
single PSP. The price we pay is that our MC runs are slow t
converge, while—according to the estimates of Ref. 17—wi
are still not fully out of the critical region. Our criteria for
convergence are the same here as those we used for the . !

raw any conclusion abow,, and so we again resort to

model(Sec. 11). disorder averaging
We have only examined the frozen phase for this prob- In Fig. 7 we show(@ [A;]a/N and(b) [A;]y,/N for the

lem. We find that a plot of the distributions far, and\, , .
: o rst ten eigenvalues o€, at T=J and h=0. The system
gives broad and skewed forms similar to those seen for thgizes shown in Fig. 7 arN—81, 256, 625, and 1256 with

RSB phase in Fig. 1. To complement the picture given in : o .
Fig. 1, we show in Fig. 6 some examples of the typical4000' 1600, 1300, and 400 disorder realizations respectively.

behavior of a single disorder realization at “fixedy;’s and These_ data_ sugggst thet 2], /N and [XZJ_%p/N are each
increasing. Here “fixed” is in quotation marks sincgas is ~ decaying withN, with a clean power lavN 2. A fit of th%
well known for spin glassesadding spins requires adding data in Fig. 7 gives@ for the average eigenvaluesy
bonds, and hence a change in {ig}, which can often have ~0.11 and(b) for the typical eigenvaluesy?~0.15. The
nontrivial effects. Figure 6 bears out this expectation: theexponentwe find fof\;]y,/N is close to that expected from
eigenvalue spectrum & shows a highly irregular behavior our argument of Sec. Il A, coupled with previous estimates
as a function oiN. If this irregularity were to persist in the for the exponentf. The latter rangé'* from 0.6 to 0.8,
limit N— o (such that the eigenvalues, and hence the correwhile a simple extrapolatidfi suggest$)~0.7. Our own ar-
lations, had no well-defined limitthen according to New- gument §,=6/4) predicts a minimum value fof, in the
man and SteiR® there must be more than a single pure-statgange 0.15 to 0.2; hence the behaviof ©f]y,,/N is roughly
pair. That is, “chaotic size dependence” is believed to charconsistent with this prediction, whilé3" for [\,].,/N is
acterize glasses with RSB, but not to occur for a single PSBomewhat smaller.

éunlike chaotic temperature dependezﬁ):eWhile the behav-
for shown in Fig. 6 is interesting in this regard, we do not
Believe any conclusion can be drawn from these data due to
the small size of the systems considered here. Instead we will
Socus on trying to count extensive eigenvalues—a strategy
hat worked well for the SK problem. Figure 6 suggests
her strongly thah; is extensive; but it is impossible to
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The decay of A,]/N is quite regular. Moreover, there is 3 is unique in its directness, clarity and lack of ambiguity.
rough agreement between the exponent obtained from the We have also applied these ideas to the near-neighbor
typical eigenvalues and the exponent estimated by assumiriging spin glass in four dimensions. Our data are consistent
the droplet picture to be valid. This evidence seems to favowith the presence of only one extensive eigenvalue,Nor
the scenario of only one PSP being present. <1296. Furthermore, the typical value ©§ /N decays with

Of course, it is in general difficult to settle from numerical a clean power law; and the exponent agrees roughly with the
simulations alone any question that involves behaviors of aalue expected from an argument based on the droplet pic-
physical system in the thermodynamic limit, since the resultsure, plus independent estimates of the scaling expofient
observed for some sizes can change when larger sizes af@ alternative analysis that assumes that a second extensive
simulated. In particular, any claim that RSB does not occurgigenvalue is present with large finite size corrections cannot
based on our method, is necessarily more tentative than lse completely excluded, although the lack of any restriction
conclusion that it does occ@t Thus the results we obtain for on the fitting parameters makes any conclusions drawn from
N=1296 cannot rule out the possibility of further PSPs ap-such fits(in general of highery?) questionable. Thus our
pearing at some largé, indicating that there is RSB in the results tend to support the ‘droplet’ picture of the frozen
spin-glass phase in four dimensions. By contrast, if the dropphase, with a single PSP, more strongly than they support the
let picture is correct for 4D spin glasses, then we believe thaRSB picture. We believe that studies of the kind reported
the decay exponend, should, for sufficiently largeN, in-  here should be extended to largdrin order to test this
crease from its lower bound as the dominance of a singléentative conclusion. Our present results encourage us to be-
droplet fails. Hence any sign of curvature of the log-log plotlieve that such studies can play an important role in settling
of A,/N vs N, in either direction, would be of significant the question, from the theoretical side, of the nature of the
interest. broken ergodicity in real spin glasses.

It is also of interest to push results like those of Fig. 6 to
largerN. Here one seeks signs of convergefmelack of i)
to a limit. This criterion is, we believe, more difficult to
assess than the criterion we have applied to Figs. 2, 3, and
The latter criterion has the nice property that one must only
ascertain whether an integer—the number of extensive
eigenvalues—is one, or greater than one. However studieS ApPpPENDIX A: PROPERTIES OF THE MATRICES
seeking chaotic size dependence can certainly complement C° V AND A
studies of disorder-averaged eigenvalue scaling.

The authors acknowledge helpful discussions with J. Hu,
E. Sorensen, and G. Parisi. This work was supported by the
ational Science Foundation under Grants No. DMR-

820816 and No. DMR-9714055.

In this appendix we show thafi) the symmetric matrices
defined in Sec. IIC°, V (both of sizeNxN) andA (of size
VI. CONCLUSIONS pXxp), are positive semi-definitdii) the rank ofA is equal

In this work we have applied the old idea of studying theto p (the number of pure states with linearly independent
eigenvalue spectrum of a correlation function—used bymagnetizationss (iii) the eigenvectors o€° constructed via
Yang'®to characterize ODLRO in superfluids—to a decadesEd. (18) from the linearly independent eigenvectors Af
old question in spin-glass physics, namely: how many purdVith positive eigenvalue are linearly independent, divd
states are there in the frozen phase, and how are they relatet2 remaining\N— p linearly independent eigenvectors ©f
The connection we have made is simple: for problems irhave zero eigenvalue and are orthogonal to all pure state
which the low-temperature phase has multiple pure stafes magnetizations.
non-negligible thermodynamic weighhot related by spin We start by showing thaE® is positive semi-definite: for
inversion symmetry, the broken ergodicity shows up as mulan arbitrary reaN-dimensional vectofv),
tiple extensive eigenvalues of the spin-spin correlation ma-
trix C. We have strong arguments in two directions: first, that
the presence of multiple extensive eigenvalues necessarily 0. _
oo . . ) : ' z viCi-v-—Z
implies nontrivial ergodicity breaking, i.e., multiple pure- Mg
state pairs; and second, that the presence of multiple pure- o ,
state pairs will give rise to multiple extensive eigenvalues. 1 W“(E vimia) ~0.

= i

p
Viv; 21 wrmm;*
&=

We have found striking support for these arguments from - (A1)

numerical (Monte Carlg studies of the Sherrington-

Kirkpatrick problem in three distinct phases—the paramag- _

netic, ferromagnetic, and replica-symmetry-brokéRSB) Similarly, in the case oV we have,

phases. Specifically, we find clear and unambiguous signs of

the different kinds of ergodicity breaking in these three p

phases via studies of thd dependence of the disorder- E UiVijUj:Z Uivjz WS —(S))(S—(S))®
averaged eigenvalues @—which essentially enable us to i i a=1

countthe number of extensive eigenvalues, and hence the p 2w

number of pure-state pairs in the configuration space. We — wé ( (e _/c\a ) =0. (A2
believe that the evidence for RSB displayed in Figs) 2nd Z’l Z vi(S=(S)%) (A2)

a
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We now concentrate in studying thex p matrix A. By P
convention, we enumerate the pure states so that thepfirst 21 (Ys) a W m'=0 (A9)
magnetization vector§m{'},_, ..., are linearly indepen- “
dent. Now, for any regb-dimensional vector) and|y) we by Eq.(A7). Combining this with Eq(A3) it follows that for
have, an arbitraryp-dimensional real vectdix)

P (x|Alys)=0. (A10)

(IAly)= 2 X VWGapwhy?

This means that all of théy,) are eigenvectors o with
LN D zero eigenvalue. By the Gram-Schmidt procedure, an ortho-
_ o frama B[ BB normal set{|vys1), ... |up)} Of linear combinations of

N 2 (z \/W_ml )(% y \/W_ml ) them can be constructed. By combining E46) and Eq.
(A10) we get

(A3)

By choosing|x)=|y)=|v) we immediately see thah is Alvry=a/lv,) forr=1,...p, (Al1)
positive semi-definite. Thus stateméntis proven. We will .
now study the eigenvectors of the matx Consider Eq. >0 forls<r=p,

(A3) in the case thatx)=|y)=|v) and|v) is chosen such &l — (A12)
that =0 for p<r=p,

_ and therefore statemefit) is proven.
v*=0, p<asp, Consider now the vectors of the form proposed in Eq.

p (18) associated with th@ eigenvectors ofA with positive

2 (v9)%>0. (A4) eigenvalue. Since the matrix (), (r,a=1,---,p) is invert-

a=1 ible, and the magnetization vectofm®},—,... ;) are lin-

early independent, it follows that the vectdié,},—; . o
are linearly independent. Thus statem@in) is proven.
The remainingN—p eigenvectors ofC® can be con-
p p structed as follows. Take an arbitrary vectay in the (N
21 vyweme= 2‘1 v Wem?# 0=(v|Alv)>0. —p)-dimensional subspace orthogonal to the magnetization
“ “ (A5) vectors{m“},_, ., (and consequently orthogonal to all of
o the p magnetization vectors of the pure stat&learly,|u) is
By the Gram-Schmidt procedure, we can obtpimormal-  a null vector forC° since
ized vectors{v,} that are orthogonal with respect g all

o . P
satisfying(A4). This means that e "

ing 2}: Cﬂujzz,lw m (EJ: m; uj)zo, (A13)

<Ur|A|vs>: Orsdyr (AB)

where the{a, },—, ., are positive numbers. Thig).} will

be shown below to be eigenvectors Afwith eigenvalues _ o
a, >0, but first it is necessary to construct the eigenvectors APPENDIX B: SPECTRUM OF C™+V

with zeroeigenvalue. To do that, let us consider the magne- | this appendix some bounds are shown to be satisfied by
tization vectorsm;" with p< a<p, that can be written as the changes in the eigenvalues of the spin-spin correlation

linear comb|nat|0ns of the firgt ones(i.e., the ones that are matrix due to the effect of.

Since by our assumptiongn{},—;
pendent andw®} -,

_____ p are linearly inde-
p are nonzero, we have that

and this proves statemefiv).

linearly independent For a given disorder realization, temperattirand sizeN,
B let us consider the eigenvalues and eigenvectors of the cor-
ZD relation matricesC=C°%+V andC°:
a__ a3
m’= zem? . (A7)
J B
p=1 Clxr)=Nelxr),
This allows to construct thp—p linearly independent vec- COl )= k,| b, (B1)

tors|ys), s=p+1,... p of the form . - _ _
where the eigenvalues are positive and labeled in descending

z _ order (the subscript 1 corresponding to the highest eigen-
- N fora=1,---,p, value for each matrix We label byv the largest eigenvalue
(Vo) o= w (A8) of the matrixV. We will use variational arguments to show
s e _ that:
N fora=p+1,--,p, « For any value of,
which satisfy kit v=\, =k, forr=1,...p. (B2)
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« For p=1, and if the ratiov/«, is small enough, then: ~ ated by|x1) and|»):

v 2) _ k1+(d1|VId1) (d1|VIn)
ki) | (7|V|¢1) (nVIn) |

Let us consider EqB?2) first. The upper bound is obvious The coefficientd that parametrizes E4B7) can be related to
onceC is decomposed as a sum@f andV, and use is made these matrix elements by
of the fact that any mean value for each one of them has to

v
1+ —+0

Ao=1
2 K1

(B3) (B8)

be smaller or equal than their respective maximum eigenval- tang= 2(¢1|V|n) (B9)
ues: k1t {(p1|V|d) —(n|V|n)’
A ={xe|Clxey =l COxe) + e VX ) < ey + v and therefore satisfies the bound
(B4)
2v

To prove the lower bound in the case=1, we just con- [tanf|<s —. (B10)
. . . . K1~V
sider the eigenvectdip,) corresponding to the largest eigen-
value «; of CP% and use it as a variational trial vector: We now consider the eigenvecﬂq{Z), corresponding to,,

B the second largest eigenvalue@fSince| y,) is normalized
N1=($1|Cl 1) = K1+ (| V|h1)= k1, (BS)  and orthogonal tdy,), it has the form
where we have used the fact thais positive semi-definite.

To prove the lower bound for generrak 1, . .. p, we use |X2)=co{f —sin( f)|¢1>+co{f)|,7> +sin f)|,7f>,
an inductive reasoning. We assume that @®) is valid for 2 2 2 2
allr'=1,...r—1, and propose as a variational trial vector (B11
a linear combinatior|y) of |¢,), ... |¢). Because it is where|7') is a normalized vector orthogonal both [tg,)
generated by linearly independent vectors, this linear com- and to| 7). From the expression fox,:
bination can be chosen to be orthogonal to all of thel
exact eigenvectorfys), - . . |x,-1). Then we have N2=(x2lClx2)=(x2IC°x2) + (x2|VIx2)

M= (xIC) =(XIC) +(XIVIX) =k, (B6) —cog g sinz(g)(¢1|00|¢1>+<X2|V|)(2> (B12)
where we have used the facts tifiatthe term corresponding
to C° hask, as a lower bound, an(ii) V is positive semi- we immediately obtain the bound
definite. This proves the inductive step, and therefore Eg.
(B2). .0

Let us consider the inequality E¢B3). To prove it, we 7‘2$S'”2<§) Kitv. (B13)
decompose the eigenvectpy,) into a part proportional to
|¢1> and a part orthogonal to it: From Eq.(B10), it is clear that forv<k; we have

6 (6 2 6\ [tane N v\ \?
|x1)=co > |p1)+sin > [7), (B7) sif| 5] = T(1+O(9 N| = P 1+0 <
. . (B14)
where | 7) is a normalized vector orthogonal te;). We
now write the matrix elements df in the subspace gener- which combined with Eq(B13) implies Eq.(B3).
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