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Extensive eigenvalues in spin-spin correlations: A tool for counting pure states in Ising spin glasse

Jairo Sinova,1,2 Geoff Canright,1,2 Horacio E. Castillo,3,4 and Allan H. MacDonald2
1Department of Physics, University of Tennessee, Knoxville, Tennessee 37996

2Department of Physics, Indiana University, Bloomington, Indiana 47405-4201
3CNRS-Laboratoire de Physique The´orique de l’Ecole Normale Supe´rieure, 75231 Paris, France

4Department of Physics, Boston University, Boston, Massachusetts 02215
~Received 19 October 2000; published 20 February 2001!

We study the nature of the broken ergodicity in the low temperature phase of Ising spin glass systems, using
as a diagnostic tool the spectrum of eigenvalues of the spin-spin correlation function. We show that multiple
extensive eigenvalues of the correlation matrixCi j [^SiSj& occur if and only if there is replica symmetry
breaking. We support our arguments with Exchange Monte Carlo results for the infinite-range problem. Here
we find multiple extensive eigenvalues in the replica symmetry breaking~RSB! phase forN*200, but only a
single extensive eigenvalue for phases with long-range order but no RSB. Numerical results for the short-range
model in four spatial dimensions, forN<1296, are consistent with the presence of a single extensive eigen-
value, with the subdominant eigenvalue behaving in agreement with expectations derived from the droplet
model. Because of the small system sizes we cannot exclude the possibility of replica symmetry breaking with
finite size corrections in this regime.
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I. INTRODUCTION

In three spatial dimensions or higher it is now accep
that Ising spin systems with random exchange interactio
exhibiting disorder and frustration, undergo a transition fro
a paramagnetic phase to a glass phase at a fi
temperature.1 By contrast, the nature of the glass phase
finite dimensions is still a subject of much debate in t
literature, with two main competing points of view. One fo
lows Parisi’s solution of the Sherrington-Kirkpatrick~SK!
model2 using a replica symmetry breaking~RSB! ansatz.3

The Parisi solution involves broken ergodicity of a subt
form than that found in a conventional ferromagnet: config
ration space is broken into many ergodic regions, separ
by energy barriers which diverge in the thermodynam
limit. Most of these regions—which we will also call pur
states—are unrelated to one another by any symmetry o
Hamiltonian. However, in the case of a Hamiltonian w
global spin inversion symmetry, each of these regions ha
associated region related to it by global spin inversion,
pair forming together what we will call a pure state pa
~PSP!. This RSB picture is almost certainly correct in th
limit of infinite spatial dimension; and it has been argued t
the RSB picture also applies, more or less unchanged, to
frozen phase of finite-dimensional spin glasses. The o
point of view is the ‘‘droplet’’ picture,4 which, in sharp con-
trast to the picture just described, postulates the presence
single PSP in the low-temperature phase. In this paper
focus on the fundamental difference between these two
tures, namely, the nature of the ergodicity breaking in s
glasses—or, put more simply, the number of ‘valleys’~er-
godic regions! in the low-temperature phase.

The glass transition is characterized by the Edwar
Anderson spin-glass order parameter
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which becomes nonzero@i.e., of O(1)] for T,Tc . HereSi
561 is the spin at sitei, N is the number of spins in the
system,@ #av indicates an average over disorder realizatio
and ^ & indicates a thermal average. The order parameteq
may also be obtained as the first moment of the over
distribution function

P~q!5F(
ab

wawbd~q2qab!G
av

, ~2!

wherea,b label pure states,qab[( i^Si&
a^Si&

b/N indicates
the overlap between the local magnetizations in two p
states, andwa is the thermodynamic weight of pure statea.
In the thermodynamic limit,P(q) is predicted to have very
different behaviors in the two pictures mentioned above.
a single PSP,P(q) approaches a pair of delta functions
6qmax, whereqmax is the self-overlap of each pure state
the pair, and2qmax is the overlap between one pure sta
and the other. For the diverging~countable! number of PSPs
in the SK problemP(q) is nonzero over a finite interva
2qmax<q<qmax @this property depends essentially on t
fact that P(q) is a disorder averaged quantity#. So far, the
main tool for detecting nontrivial broken ergodicity in finit
dimension at nonzero temperatures has been the scalin
the overlap distribution functionP(q) at q50 as a function
of system size: for a single PSP it must scale to zero, whil
remains nonzero in the thermodynamic limit if there is RS
Several numerical studies have suggested a behavior in fi
dimensions similar to the one at the mean field level.5,6 Other
studies using the Migdal-Kadanoff approximation,7 and still
others investigating the ground state susceptibility to bou
ary conditions8 have suggested otherwise and favor the dr
let model. None of these studies have conclusively resol
which type of broken ergodicity takes place in the low te
perature phase in finite dimensions, motivating a search
new approaches.
©2001 The American Physical Society27-1
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In this paper we propose and apply a rather direct met
for determining the number of PSPs for an Ising spin gla
Our main ideas were introduced in a previous Letter;9 here
we provide an extended development of these ideas, a
with further analytical and numerical results. Our meth
involves the study of the spectral properties of the spin-s
correlation function^SiSj&[Ci j . It is inspired by Yang’s
analysis10 of correlation functions to detect off-diagon
long-range order~ODLRO! in superfluids. In the case of su
perfluids, Yang showed that the existence of ODLRO
equivalent to the presence of an extensive eigenvalue in
spectrum of the one-particle density matrix. We argue th
in the case of classical spin glasses, the spectrum of
spin-spin correlation function contains a distinct signat
which allows one to determine unambiguously whether
not there are many pure state pairs, i.e., whether or not R
occurs. First of all, it is clear that the presence of at least
extensive eigenvalue signals the presence of long-range
der. What we further show is that thenumberof extensive
eigenvalues determines unambiguously the number of p
state pairs: the spectrum containsexactly oneextensive ei-
genvalue if and only if there isexactly onepure state pair,
and it containsmore than oneextensive eigenvalue if an
only if there aremore than onepure state pairs. We als
argue that the extensive eigenvalues dominate the traceC,
and that the nonextensive eigenvalues scale with the num
N of spins in the system with a power lower than 1. W
confirm these arguments by performing Exchange Mo
Carlo6,11 ~EMC! simulations for the SK model in variou
regimes, for which we know the nature of the ergodic
breaking in the equilibrium state. That is, we find multip
extensive eigenvalues in the spin-glass phase, but on
single such eigenvalue in the ferromagnetic phase and in
paramagnetic phase in a field. In the RSB phase~where one
expects many PSPs! we find that, for the range of system
sizes that we have studied, the eigenvalue spectrum is d
nated by a small number of extensive eigenvalues. Mak
the simplifying assumption that the thermal average is do
nated by onlytwo PSPs, we are able to introduce an analy
cally calculable model which reproduces the eigenva
spectrum for the SK model surprisingly well. Finally, we u
EMC simulations to study the Edwards-Anderson~near-
neighbor! model in four spatial dimensions. Our results, f
system sizes 34<N<64, are compatible with the presence
only oneextensive eigenvalue ofC. The second largest ei
genvalue ofC is very well fit ~with x250.132) by a power-
law scaling withN, with an exponent~smaller than one! that
is consistent with the value predicted by the droplet theo
An alternative fit with a form that allows for an extensiv
piece in the second largest eigenvalue ofC is possible12,
although it would imply that the ratio of the eigenvalue ov
N saturates to a finite value, something that is not obser
in our data.

We organize this paper as follows. In Sec. II we sh
how the properties of the spectrum ofCi j below Tc can be
used to distinguish between RSB and a single PSP in the
temperature phase. In Sec. III we discuss numerical res
for the SK model in its various regimes. In Sec. IV we i
troduce a two-PSP model and show that it gives results m
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like the numerical results for the SK model. In Sec. V w
present and discuss the results of our EMC simulations
the short-range Edwards-Anderson~EA! model in four di-
mensions. Finally, in Sec. VI we present our conclusions

II. SPIN-SPIN CORRELATORS AND PURE STATES
IN ISING SYSTEMS

Guided by the analogy to Yang’s analysis of the mat
elements of the one particle density matrix in a superfl
system, we study the spectrum$l i% i 51, . . . ,N of the spin-spin
correlation matrixCi j of an Ising spin system. This matri
has an extensive trace TrC5( i^Si

2&5N. In addition, it is
positive semi-definite: for an arbitrary realN-dimensional
vector uv&,

^vuCuv&5(
i j

v iCi j v j5(
i j

v i ^SiSj& v j

5K S (
i

v iSi D 2L >0.

Above the ordering temperatureCi j decays exponentially to
zero at larger i j , so it has no large eigenvalues. ForT→`
~or for T.Tc in the SK model, for which distance is no
meaningful!, the correlation matrix reduces to the identi
Ci j 5d i j , and consequently all its eigenvalues are equa
one. BelowTc , however,Ci j is nonzero almost everywher
due to the ordering of the spins. For one PSP, in the
temperature limitT→0, Ci j →61, C has one eigenvalue
which approachesN asT→0, and the rest of the eigenvalue
go to zero. Hence, there is a transition in the distribution
the eigenvalues ofCi j asT crossesTc . Specifically, just as
in the case of superfluids and ferromagnets and antiferrom
nets, we can detect the existence of long range order be
Tc by the presence of one~or more! extensive eigenvalue~s!.
This approach based on examining the spectrum of the
relation functions has a definite advantage in the study
disordered systems: we can eliminate the necessity for gu
ing the nature of the order—i.e., the eigenvectors corr
sponding to the extensive eigenvalues—and still detect
existence. We will also find that this spectrum can giv
unique and clear information about thenumber of pure states
in a frozen, disordered phase.

Although the spin-spin correlation functionCi j has not
been extensively used to probe the nature of the broken
godicity in the spin-glass phase, many related quantities h
been used to study some of the static properties of s
glasses. For example, the quantity

q(2)5@Tr C2/N2#av ~3!

is a commonly used order parameter in spin-glass syste1

Also, the spin-glass susceptibilityxSG
J for one disorder real-

ization ~i.e., for a fixed set of spin couplingsJi j )

xSG
J 5

1

N (
i j

~^SiSj&2^Si&^Sj&!2 ~4!

is given, forT.Tc , by
7-2
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EXTENSIVE EIGENVALUES IN SPIN-SPIN . . . PHYSICAL REVIEW B63 104427
xSG
J 5

1

N (
i j

Ci j
2 5Tr C2/N. ~5!

We see that the disorder average ofC2 contains interesting
information about the freezing of the spins~while in contrast
the disorder average ofC contains no information—it is jus
the unit matrix!. ForT,Tc , q(2) becomes of orderO(1), the
largest eigenvaluel1 of C becomes of orderN, and TrC2

5( il i
2 becomes of orderN2. Hence our measure of orde

(l1;N) is consistent with earlier measures used for s
glasses.

We wish further to obtain new and independent inform
tion from the spectrum ofC; towards this goal, in the fol-
lowing two subsections we will argue that one can detect
presence or absence of order withmanyvalleys ~i.e., RSB!
simply by counting the number of extensive eigenvalues
C. To make this connection, the main idea used will be t
pure states are characterized by theirclustering13 property,
i.e. that the spin-spin correlation function at long distan
can be approximately decomposed as a linear combinatio
~possibly nonorthogonal! projectors onto the subspaces as
ciated with the pure states present in the system, i.e.,

^SiSj&'(
a

wa^Si&
a^Sj&

a, ~6!

where^ &a denotes a thermal average restricted to the p
statea. From this relation, a connection will be obtaine
between the number of extensive eigenvalues of the left h
side and the number of pure state pairs present in the r
hand side. The rest of this section is devoted to deriving
connection, and to estimating the effects on the spectrum
to the terms neglected in Eq.~6!.

A. Single pure state pair

We first consider the case of a single PSP. We show
in this case there is only one extensive eigenvalue that do
nates the trace ofC.

Without loss of generality, we can consider the case
only one pure state. This applies directly if one of the pu
states in the pair is selected by an external field or a bou
ary condition. But even when the two pure states are pres
the spin-spin correlation matrix for the system is the same
if only one of them was present, simply because it involve
product of anevennumber of spin variables.14

Hence we can rewriteCi j as

Ci j 5Ci j
0 1Vi j , ~7!

Ci j
0 [^Si&^Sj&, ~8!

Vi j 5^SiSj&c , ~9!

where^SiSj&c[^SiSj&2^Si&^Sj& is the connected correlatio
function. By arguments similar to the one used to show t
C is positive semi-definite, bothC0 andV are positive semi-
definite ~see Appendix A!.
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Let us ignore for the moment the connected partV, and
concentrate on the matrixC0. This matrix is proportional to
the projector onto the vectorsi5^Si&, thus it has exactly one
extensive eigenvalue

k1[Tr C05^sus&5(
i

^Si&
25Nq11 ~10!

~whereq11 is the self-overlap of the pure state! with eigen-
vector proportional tosi , andN21 eigenvectors with eigen
value zero.

We then ask how the matrixV changes this distribution o
eigenvalues. By the clustering property of pure states,13 the
typical element ofV vanishes asN→`; hence it is reason-
able to assume that the typical value of the ratio between
largest eigenvaluey of V and the largest eigenvaluek1 of C0

goes to zero in the thermodynamic limit. By a detailed var
tional argument~see Appendix B!, it can be shown that the
largest eigenvaluel1 of C is bounded betweenk1 and k1
1y, and in the case thaty!k1 the second largest eigenvalu
l2 of C is bounded above byy times a number that goes t
one. In other words, the largest eigenvalue of the correla
matrix remains extensive~and, in fact, it changes very little!
when the effect ofV is included. This result can also b
recovered more intuitively by applying perturbation theory
the problem of estimating the effect ofV.

The problem that remains to be solved is, therefore,
estimation of the largest eigenvalue ofV. A possible assump-
tion would be that the off-diagonal parts ofV have a typical
behavior in the large-N limit of Vi j ;N2d, with d.0. ~The
diagonal elements are always;N0, but they have an effec
of orderN0 on the eigenvalues.! The largest eigenvalue ofV,
and therefore the second largest eigenvalue ofC, are then of
order N12d. One can also view this result in the followin
way. V can at most reweight the eigenvalues ofC as if it is
an additional pure state with thermodynamic weight}N2d

~see Sec. IV!, in which case it gives rise to an eigenvalu
~again! }N12d. An eigenvalue of orderN12d is, in principle,
distinguishable from an eigenvalue of orderN, sinced.0.

In some cases it is possible to obtain a stronger bound
the decay exponentd. For instance, if we assume thatxSG
;N0, then we getd>1/2 by simple power counting. This
should be the case everywhere above the Almeida-Thou
~AT! line15 in the phase diagram16 for the SK model. Above
this line there is a paramagnetic phase with a single p
state, with long-range order trivially induced when the ext
nal magnetic fieldh is nonzero. There is also a convention
ferromagnetic phase with a single PSP, in another part of
phase diagram but still above the AT instability. Either
these phases should haveVi j decaying withd>1/2. For a
pure ferromagnet with no frustration or disorder, assum
~as appropriate for a single PSP! the uniform susceptibility
x5(1/N)( i j ^SiSj&c is of O(1) gives the stronger constrain
d51. We expect this latter limit to be approached for the S
problem, when either the external magnetic fieldh or the
average ferromagnetic couplingJ0 are sufficiently large.

While the above arguments make no direct reference
spatial dimension, they do rely on the notion of a ‘‘typica
element ofV. This idea is certainly appropriate for infinite
7-3
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SINOVA, CANRIGHT, CASTILLO, AND MACDONALD PHYSICAL REVIEW B 63 104427
range models such as the SK problem; and the above a
ments may also be applied to any finite-dimensional prob
for which a typical behavior ofVi j can be defined. For ex
ample, one can define a typicalVi j 5^SiSj&c for any mag-
netic system with a finite correlation length; here the typi
Vi j is exponentially small and so the matrixV does not have
significant effects on the eigenvalues ofC0. However, corre-
lations in finite-dimensional spin glasses, in the frozen pha
are thought to fall off more slowly than exponentially,17 giv-
ing an infinite spin-glass susceptibility in the spin-gla
phase4,18 and rendering the notion of a typical element ofV
problematic.

Hence we examine carefully the ‘‘droplet’’ theory,4 which
is the outstanding candidate for a theory of finit
dimensional spin glasses without RSB. In this theory the l
energy excitations at large distances are assumed to be
droplets of collectively overturned spins of sizeL, whose
energy scales asLu. It follows that the majority of the ele-
ments ofVi j are exponentially small; however there is also
set of ‘‘big’’ elements which are ofO(1) in magnitude.
These elements occur wheni and j lie within the same ‘‘ac-
tive’’ ~coherently flipping! droplet; this makeŝSi& and^Sj&
small, while leavinĝ SiSj& and^SiSj&c large. The fraction of
these big elements is of order 1/Lu, whereL is the system
size andu is a scaling exponent from the zero-temperat
fixed point. Although this ‘‘big’’ fraction vanishes in the
thermodynamic limit, it still can have large effects at largeN.
For example, let us suppose that a finite sample of sizeL is
dominated by one large active droplet of size of orderL. In
such a case the big elements ofV, appearing with probability
;1/Lu51/Nu/d, are coherent, so that the largest eigenva
of V is of orderN3N2u/d5N12u/d. ~We have verified this
with simple numerical experiments.! Given this bound on the
eigenvalues ofV, the largest eigenvalue ofV is again much
smaller than the largest eigenvalue ofC0, and again the sec
ond largest eigenvaluel2 of C5C01V is of orderN12u/d or
smaller. Hence one gets a decay exponentd2 for l2 /N equal
to u/d. Given the assumptions leading to this conclusion, t
value is a lower bound for the rate of decay ofl2 /N. It is
plausible however that, for a range of system sizeN5Ld not
too large, the assumption of dominance by a single ac
droplet can hold, giving this lower bound ford2. Further-
more, the numerical value of the latter can be quite sm
about 0.19/3'0.063 in three dimensions,19 and about 0.7/4
'0.17 in four.20 Hence one needs good numerical data
l2(N) in a finite-dimensional spin glass to distinguish RS
~with d250) from al2 /N which is weakly decaying due to
droplet excitations.

B. Many pure state pairs

In the previous subsection we have presented strong a
ments, assuming there is only a single PSP in the low t
perature phase, that there can be only one extensive e
value ofC. It follows from our argument that the observatio
of more than one extensive eigenvalue directly implies RS
In short, lettingNPSP be the number of PSPs, andNEEV be
the number of extensive eigenvalues, we found

~NPSP51!⇒~NEEV51! ~11!
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~NEEV.1!⇒~NPSP.1![~RSB!. ~12!

Now we would like to argue that the converse is also va
i.e., to find some necessary consequence of RSB in the
genvalue spectrum. Hence we will assume RSB~that there is
more than one pure state pair present!, and then determine
how many extensive eigenvalues there should be in the s
trum of the spin-spin correlation matrix.

Let us suppose that there arep>1 pure states, characte
ized by the magnetizations$mi

a% (mi
a[^Si&

a), and thermo-
dynamic weights$wa%, with a51, . . . ,p. Here we only in-
clude pure states whose thermodynamic weightwa is
nonvanishing. We now decompose the correlation funct
into the contributions coming from each pure state:

Ci j 5 (
a51

p

wa^SiSj&
a ~13!

5Ci j
0 1Vi j , ~14!

with

Ci j
0 5 (

a51

p

wami
amj

a , ~15!

Vi j 5 (
a51

p

waVi j
a , ~16!

Vi j
a 5^SiSj&c

a . ~17!

By the clustering property of pure states, we may assu
thatV is small compared withC0. As in the case of one PSP
we will proceed in two steps. First we will study the spe
trum of C0, and later we will include the effect ofV.

Let us define thep vectors$uf r&% r 51, . . . ,p

~f r ! j5 (
b51

p

cb
r Awbmj

b , ~18!

with the coefficientscb
r to be determined later. For an appr

priate choice of thecb
r , these vectors can be shown to b

eigenvectors ofCi j
0 . In fact,

(
j 51

N

Ci j
0 ~f r ! j5(

j 51

N

(
a,b51

p

wami
amj

acb
r Awbmj

b

5N (
a51

p

Awami
a (

b51

p

Aabcb
r , ~19!

where we have defined the real, symmetricp3p matrix
Aab[AwaqabAwb. The matrix Aab has p orthonormal
eigenvectors$cb

r % with eigenvalues$ar%r 51, . . . ,p . By insert-
ing one of these eigenvectors in Eq.~18! we obtain

(
j 51

N

Ci j
0 ~f r ! j5Nar~f r ! i . ~20!
7-4
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Thus, for each nonzero eigenvaluear of A, an eigenvector of
C0 is obtained with eigenvaluek r5Nar . Let us denote byp̄
the number of linearly independent magnetization vect
among the magnetizations of thep pure states (1< p̄<p).
This number need not be equal top: for example, the mag-
netizations of the two pure states in a PSP are not line
independent, since one of them is21 times the other. Hav-
ing p̄51 is equivalent to saying that there is either only o
pure state present, or there is exactly one PSP. Therefore
the droplet picturep̄51 and for the RSB picturep̄.1
strictly, i.e.,

~NPSP.1!⇒~ p̄.1!. ~21!

It is an exercise in linear algebra to show that~see Appendix
A!: ~i! the number of nonzero eigenvalues ofA is exactlyp̄,
~ii ! all of these nonzero eigenvalues are positive,~iii ! the
corresponding eigenvectors ofC0 are linearly independent
and ~iv! the remainingN2 p̄ linearly independent eigenvec
tors of C0 have zero eigenvalue and are orthogonal to
pure state magnetizations. As a consequence, the numb
nonzero extensive eigenvalues ofC0 is equal top̄, the num-
ber of pure states with linearly independent magnetizatio

Next we assess the effects ofVi j 5(awaVi j
a . We assume

that the sum over pure states is finite~see below, and Ref
21!. Hence, even if theVi j

a decay at different rates withN, we
can still take the typical element ofVi j to decay withN at
least as fast asN2d for somed.0. Hence the largest eigen
value of V is of orderN12d or smaller. From this we can
show~Appendix B! that there are stillp̄ extensive eigenval-
ues forC5C01V,

NEEV> p̄. ~22!

Combining this with Eq.~21! it follows that

~NPSP.1!⇒~NEEV.1!, ~23!

that is, the converse of Eqs.~11! and ~12!.
It is plausible, althoughnot proven, that in general a com

plete set of pure states not related by spin inversion~thus
constituting one-half of the total set of pure states! will all
be, with probability one, linearly independent, so thatp̄ is
just the number of PSPs, i.e.,NPSP5NEEV .

Note that, in the Parisi RSB solution13 to the mean-field
problem, the number of PSPs grows withN, at a rate which
is not known. The ultrametric structure of these pure sta
implies22 that they cannot grow in number faster thanN.
However there is a stronger constraint, coming from Eq.~47!
of Ref. 21, which states that(a(wa)25O(1). This tells us
that the diverging number of pure states does not have e
thermodynamic weight; instead a finite number of the
dominate the sum of the weightswa, with the rest having
negligible weight.

One might ask whether the ultrametric structure of
space of pure states might imply some constraint on
number which are linearly independent. However we find
such constraint in general. For example, one can const
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for any numbern<N ~whereN is the dimension of the vec
tor space!, a set ofn vectors which are both linearly inde
pendent and ultrametric; but one can also construct a
which is linearly dependent and ultrametric.

It may be possible to derive tighter bounds on these qu
tities via further theoretical work. In the following sectio
we provide some further information, obtained from equili
rium Monte Carlo studies, onNEEV for a finite range ofN in
the SK problem.

III. RESULTS FOR THE SK MODEL

The SK model is described by the Hamiltonian

H52
1

2 (
iÞ j

Ji j SiSj2h(
i

Si , ~24!

with @Ji j #av5J0 /(N21) and @Ji j
2 #av2@Ji j #av

2 5J2/(N21)
for any i and j. This model, which is equivalent to a
infinite-dimensional model for which mean field theory
exact, has a phase diagram16 in (h/J,J0 /J,T/J) space which
is reasonably well understood. In particular, there are in
bility lines ~which presumably form a surface! below which
the replica symmetric solution is unstable, and the Pa
RSB ansatz3 is believed to give the correct solution. Th
‘‘AT line’’ found by de Almeida and Thouless15 lies in the
h-T plane ~i.e., J050); below this AT line there is RSB
while increasing eitherh or T brings one to a phase consis
ing of a single pure state. This phase is continuous with
paramagnetic phase ath50; it has long-range order which i
trivially induced by the field, and hence neither spontane
symmetry breaking nor broken ergodicity of any other so
Nevertheless we expect a large eigenvalue forC due to the
long-range order. In another region of parameter spaceh
50, with a ferromagnetic biasJ0 sufficiently large! there is
a ferromagnetic phase with one PSP. Here one has the fa
iar version of broken ergodicity in the form of spontaneo
symmetry breaking; given that there is a single PSP, we
pect a single extensive eigenvalue in this phase also. T
we find three distinct phases~glass/RSB, paramagnet1field,
ferromagnet! which we can explore via Monte Carlo simula
tions in order to test our ideas about correlation functio
eigenvalue counting, and ergodicity breaking in Ising s
tems.

We have performed EMC~Refs. 11 and 6! simulations for
the SK model at three points in the phase diagram. In gla
systems with very long relaxation times, normal Monte Ca
simulations are limited to small system sizes because of
divergent relaxation and equilibration times.23 EMC simula-
tions allow for the crossing of barriers in a reasonable sim
lation time, via a stochastic walk of each simulated syst
not only in configuration space but also in temperature. T
simulation consists of having many systems at different te
peratures for the same disorder realization running in unis
and attempting to exchange the configurations between a
cent temperatures after a given number of Monte Carlo s
dt. The exchange of neighboring temperature configurati
takes place with the probability
7-5
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P~Sm↔Sm11 ;bm ,bm11!5e2D, ~25!

with

D[~bm2bm11!~E~Sm11!2E~Sm!!, ~26!

and Sm indicating the instantaneous spin configuration
temperature 1/bm . With this probability of exchange on
ensures that the systems at the different temperatures re
in thermal equilibrium—whether or not they exchan
temperatures—at all times during the simulation. This is
cause the configuration obtained from an exchange wit
higher temperature is still accepted with the normal Bo
mann probability for the lower~accepting! temperature;
hence an exchange drives neither system out of equilibri
If the temperature difference between neighboring system
not too large, then exchanges are accepted at a reaso
rate, and each system explores the full range of temperat
Hence each system is effectively cooled and heated m
times during the simulation, ensuring that all barriers ha
been effectively circumvented, not by crossing them but
falling within their boundaries from a higher temperature. A
important parameter in this simulation is the spacing
tween the different temperatures, which must be adjuste
get a high enough acceptance ratio for the tempera
exchanges.6,11

Our criteria for having reached thermal equilibrium in o
measured quantities involve calculating the spin-glass
ceptibility for a single disorder realization using two distin
methods. One method, discussed extensively in prev
studies,24 uses the averaging of the overlap of two uncoup
replicas

xSG
(1)5

1

N

1

t0
(
t51

t0 F S (
i

Si
(1)~ t01t !Si

(2)~ t01t ! D 2G , ~27!

and the other uses the standard way of calculating the t
mal average in Monte Carlo~MC! simulations:

xSG
(2)5

1

N (
i j

H 1

t0
(
t51

t0

Si~ t01t !Sj~ t01t !J 2

. ~28!

Here t0 and t0 have to be chosen large enough to obt
thermally equilibrated results. We also demand full symm
try of the overlap distribution functionP(q), and that all
initial configurations visit all temperatures evenly. We ha
also checked our results using commonly studied quant
such asP(q) andxSG doing standard Monte Carlo simula
tions for the smaller system sizes; here our results are
agreement with previous work.23,24 In our simulations we
have used a temperature spacing ofDT50.05J, t05325
3104, t05102403104, and dt510220. ~Here all times
are in units of Monte Carlo steps per spin.!

We find that the eigenvalue spectrum ofC is strongly
dependent on disorder realization, such that it is imposs
to observe any regular dependence of thel i on N with in-
creasingN for a single set ofJi j ’s. ~See Fig. 6 below for
examples of similar behavior in four space dimension!
Hence it is necessary to accumulate statistics on the ei
value spectra for many disorder realizations. The eigenva
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probability distribution for the first two eigenvalues ofCi j
for N5128 at zero field and ath51.2J ~above the AT
line!—all at T50.4J—are shown in Fig. 1. These distribu
tions have been obtained from 3400 disorder realizations
is clear from Fig. 1 that, at least in the RSB phase, the d
tributions forl1 andl2 are extremely broad; also they sho
significant skew. Hence we have studied both@l i #av and
@l i # typ[exp@ln li#av for small i in each phase.

We show the average of the ten largest eigenvalues
function of system size in Fig. 2 for different points of th
SK phase diagram:~a! h50, T/J50.4, J050, the RSB
phase;~b! h/J51.2, T/J50.4, J050, the paramagnet in
field with one pure state; and~c! h50, T/J50.4, J0 /J
51.5, the ferromagnet with a single PSP. The system s
considered areN532, 64, 128, 192, 256, and 512 wit
3400, 3400, 3400, 1400, 1100, and 400 disorder realizat
performed respectively. It is clear from Fig. 2~a! that two
eigenvalues are of orderN for N*200. This is extremely
strong25 numerical evidence for more than one PSP, a
hence nontrivial ergodicity breaking. We expect furth
O(N) eigenvalues to emerge for largerN, as suggested by
the behavior of@l3#av in the figure.

In contrast, there is only one large eigenvalue in Figs. 2~b!
and~c!. We find further that@l2#av/N may be fit to a power
law N2d2 for some range ofN in cases~b! and ~c!. In the
paramagnetic phase~b! d2;0.52 while in the ferromagne
~c! d2 is somewhat larger,;0.58. While we do not expec
these power laws to have reached their asymptotic values
the system sizes considered here, we do expect any obse
decay for large enoughN to be consistent with our argu
ments in the previous section, where we obtainedd2>1/2 in
this regime. MC results for the paramagnetic phase, i
larger field than in~b!, show that@l2#av/N decays with a
larger exponent~we have observed up to;0.75), which we

FIG. 1. Distribution of the first~thick lines! and second~thin
lines! eigenvalues ofCi j in the SK model ath/J50 ~RSB phase;
solid line! and h/J51.2 ~paramagnetic phase; dashed line!. Here
T/J50.4 andN5128. These distributions, and the ones shown
Fig. 5, are a smoothed fit to binned data.
7-6
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EXTENSIVE EIGENVALUES IN SPIN-SPIN . . . PHYSICAL REVIEW B63 104427
expect to approach 1 for large enoughh. We also show in
Fig. 3 the scaling of the typical value@l i # typ /N for the first
ten eigenvalues in the RSB phase. Here the behavior is q
tatively similar to that of@l i #av/N in Fig. 2~a!: both figures
show clearly that@l2#/N ~av or typ! is flat as a function ofN
above a threshold value forN which is of order 100–200
plus strong signs that@l3#/N and@l4#/N are also approach
ing a flat behavior. Hence we see graphically, in these
ures, the emergence of multiple PSPs with increasingN.

Figures 2 and 3, taken together, give convincing evide
that the eigenvalue spectrum ofC can clearly distinguish
trivial ~one PSP! from nontrivial broken ergodicity. This
spectrum allows one, for large enoughN, to detect multiple
PSPs simply by counting the number of extensive eigen
uesNEEV . As discussed above, while the number of PSP
believed to diverge in the thermodynamic limit, only a fe

FIG. 2. Scaling of the disorder average of the ten largest eig
values ofCi j as a function of system sizeN in the SK model~a!
below the AT line (h50, T/J50.4), ~b! above the AT line (h/J
51.2, T/J50.4), and~c! in the ferromagnetic phase (h50, T/J
50.4, @Ji j #av51.5J). The error bars in this and subsequent figu
come from the disorder averaging.
10442
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of them dominate the thermodynamics;21 we see some of
these emerging in Figs. 2~a! and 3. A possible consequenc
of this would be that, for large enoughN, NEEV might satu-
rate at a finite constant. The present data show no clear
of this, although they are clearly beyond the threshold oN
for which NEEV begins to exceed 1. ForN in the vicinity of
this threshold, we expect that one can reasonably view
glass phase as having justtwo PSPs; and we explore th
consequences of this assumption next.

IV. TWO PURE STATE PAIRS

As suggested by Figs. 1, 2, and 3, the spectrum ofC for
the SK problem is dominated by two large eigenvalues, e
coming from a broad distribution of values, for the syste
sizes considered here. We can understand much of this
havior with a simple two-PSP model which can be compu
analytically. We begin with a very simple model for tw
PSPs atT50. Suppose that phase space consists of only
spin configurations 1 and 2, and ignore all others. Ta
C(w)5wC1

01(12w)C2
0, with C1

0 andC2
0 corresponding to

theCi j of the two different configurationsS1i
0 andS2i

0 at zero
temperature, andw ~a thermodynamic weight! ranging from
0 to 1/2. The overlap between the two states is given
q125( iS1i

0 S2i
0 /N. It can be easily shown that this matrix ha

only two nonzero eigenvalues, corresponding to

l6~q12,w!

N
5

16Aq12
2 1~12q12

2 !~2w21!2

2
. ~29!

Note thatl1 ranges fromN at w50 to (11uq12u)N/2 at w
51/2. It is also clear that, for smallw, l2 is linear in w;
hence ifw is of lower order inN thanN0, l2 ceases to be
extensive. At the same time, even if the two PSPs have e
thermodynamic weight, the second eigenvaluel2 ap-
proaches zero asuq12u→1 andN/2 asuq12u→0. This is con-
sistent with our results from Sec. II, since asuq12u→1 the
two states become linearly dependent andp̄ becomes 1. We

n-

s

FIG. 3. Scaling of the typical value (@l i # typ[exp@ln li#av) of the
ten largest eigenvalues ofCi j as a function of system sizeN in the
SK model below the AT line (h50, T/J50.4).
7-7
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SINOVA, CANRIGHT, CASTILLO, AND MACDONALD PHYSICAL REVIEW B 63 104427
can proceed further with this two-PSP model by calculat
the probability distribution ofl1 andl2, as follows:

P̃w~l1!5E dq P12~q!d~l12l1~q,w!!

5
2Aq0

21~12q0!2~2w21!2

q0~12~2w21!2!

3u~l12l1min!P12~q0!, ~30!

where P12(q) is the probability distribution ofq12, l1min
depends onw, andq0 is an implicit function ofl1 given by
l1(q0 ,w)5l1. For the case ofw51/2 this simplifies to

P̃w51/2~l1!52P12~2l1 /N21!u~l12l1min!, ~31!

and

P̃w51/2~l2!52P12~122l2 /N!u~l2max2l2!; ~32!

herel1min5l2max51/2. At this simple level of approxima
tion we already have the first indication that the probabi
distribution of the first and second eigenvalues will be ve
broad in the case of nontrivial broken ergodicity—as
have seen in the MC results. Note however that despite
the breadth of the distribution@l6#av are still proportional to
N. Let us now augment this picture with finite-temperatu
effects. An approximate way to introduce temperature i
the two-PSP model is as follows. We let

Ci j
(1),(2)5H 1 for i 5 j

s i
(1),(2)s j

(1),(2) for iÞ j ,
~33!

wheres i
(1)5^Si&

(1) and s i
(2)5^Si&

(2) are Gaussian random
variables with the mean ofs i

2 equal toqmax. We adjust the
distribution ofs i

(1) ands i
(2) such thatqmax agrees with that

obtained from our MC runs, while also demanding that
overlap distribution (1/N)( is i

(1)s i
(2) agree with

P12(q)—which can also be extracted from our MCP(q), by
subtracting a Gaussian part due to the self-overlapP11(q)
5P22(q). The result of this decomposition procedure is
lustrated in Fig. 4. This gives us a means of generatin
realistic sample ofC matrices corresponding to two PSP
We can then obtain the first few eigenvalues ofCi j (w)
5wCi j

(1)1(12w)Ci j
(2) and compare them with the eigenva

ues obtained directly from the MC simulations of the S
model. The former eigenvalues may be obtained either by
approximate analytical perturbation approach~using only the
diagonal part ofV), or by direct numerical diagonalization o
the matrixC(w)—which must in any event be generated
a random number generator. Figure 5 shows the eigenv
distributions obtained from our two-PSP model withw
51/2, compared with those obtained directly from the EM
runs, for the SK model in the glass phase atN564. It is
encouraging that our simple picture of two PSPs, with
minimal set of assumptions, reproduces both the position
the shape of the two distributions.

We believe—and Fig. 5 supports this belief—that the
sumption of two PSPs has validity for a range ofN near the
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threshold where RSB first appears. We also believe that
assumption will fail for largerN; our Monte Carlo results
strongly suggest that the numberp̄ of significant PSPs will
exceed two asN grows. It is interesting to ask what the larg
N limit of p̄ is. We obtain no answer to this question fro
the considerations of Sec. II; while our numerical resu
suggest only thatp̄ is at least as large as 3 or 4. We note he
that Fig. 5 itself may be viewed as giving some indication
a third large eigenvalue, if we assume~as is plausible from
our two-PSP results! that the third PSP robs weight from th
upper part ofP̃(l2).

FIG. 4. Overlap distribution function obtained from MC calc
lations in the SK model atT50.4 andh50 ~filled circles!, self-
overlap distribution functionP11(q) ~open squares!, mutual overlap
distribution functionP12(q) ~open triangles!, and the totalP(q)
used in the two-PSP model simulations~solid line!.

FIG. 5. Distribution of the first~solid line! and second~dashed
line! eigenvalues ofCi j obtained from the MC simulation of the SK
model atN564 andT/J50.4 ~thin line!, and the respective distri
butions obtained from the two pure state model simulation~thick
line! with w51/2.
7-8
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EXTENSIVE EIGENVALUES IN SPIN-SPIN . . . PHYSICAL REVIEW B63 104427
V. RESULTS FOR THE EA MODEL IN FOUR
DIMENSIONS

We have performed EMC studies of the four-dimensio
Ising spin glass on a hypercubic lattice, with neare
neighbor interactions, periodic boundary conditions, an
Gaussian distribution of theJi j ’s with zero mean. The pa
rameters of the calculation follow closely those of Ref. 6. W
have focused on the pointT5J andh50. These simulations
are rather deep in the frozen phase, sinceTc'1.75J. We
choose this low temperature in order to try to avoid spurio
effects from closeness to the critical region; such effects
likely to make it difficult to distinguish multiple PSPs from
single PSP. The price we pay is that our MC runs are slow
converge, while—according to the estimates of Ref. 17—
are still not fully out of the critical region. Our criteria fo
convergence are the same here as those we used for th
model ~Sec. III!.

We have only examined the frozen phase for this pr
lem. We find that a plot of the distributions forl1 and l2
gives broad and skewed forms similar to those seen for
RSB phase in Fig. 1. To complement the picture given
Fig. 1, we show in Fig. 6 some examples of the typic
behavior of a single disorder realization at ‘‘fixed’’Ji j ’s and
increasingN. Here ‘‘fixed’’ is in quotation marks since~as is
well known for spin glasses! adding spins requires addin
bonds, and hence a change in the$Ji j %, which can often have
nontrivial effects. Figure 6 bears out this expectation:
eigenvalue spectrum ofC shows a highly irregular behavio
as a function ofN. If this irregularity were to persist in the
limit N→` ~such that the eigenvalues, and hence the co
lations, had no well-defined limit!, then according to New-
man and Stein,26 there must be more than a single pure-st
pair. That is, ‘‘chaotic size dependence’’ is believed to ch
acterize glasses with RSB, but not to occur for a single P

FIG. 6. Four examples of the behavior of the$l i /N%, 1< i<5,
for a single disorder realization but increasingN. Error bars are
from Monte Carlo fluctuations rather than disorder averagi
dashed lines connectingl1(N) points, andl2(N) points, are simply
guides to the eye. We see that the behavior is very irregular, al
ing no conclusions about the number of extensive eigenvalues
10442
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~unlike chaotic temperature dependence27!. While the behav-
ior shown in Fig. 6 is interesting in this regard, we do n
believe any conclusion can be drawn from these data du
the small size of the systems considered here. Instead we
focus on trying to count extensive eigenvalues—a strat
that worked well for the SK problem. Figure 6 sugges
rather strongly thatl1 is extensive; but it is impossible to
draw any conclusion aboutl2, and so we again resort t
disorder averaging.

In Fig. 7 we show~a! @l i #av/N and ~b! @l i # typ /N for the
first ten eigenvalues ofC, at T5J and h50. The system
sizes shown in Fig. 7 areN581, 256, 625, and 1256 with
4000, 1600, 1300, and 400 disorder realizations respectiv
These data suggest that@l2#av/N and @l2# typ /N are each
decaying withN, with a clean power lawN2d2. A fit of the
data in Fig. 7 gives~a! for the average eigenvalues,d2

av

;0.11 and~b! for the typical eigenvalues,d2
typ;0.15. The

exponent we find for@l2# typ /N is close to that expected from
our argument of Sec. II A, coupled with previous estima
for the exponentu. The latter range28,11 from 0.6 to 0.8,
while a simple extrapolation20 suggestsu;0.7. Our own ar-
gument (d2>u/4) predicts a minimum value ford2 in the
range 0.15 to 0.2; hence the behavior of@l2# typ /N is roughly
consistent with this prediction, whiled2

av for @l2#av/N is
somewhat smaller.

;

-

FIG. 7. Scaling of the average~a! and the typical~b! value of
the ten largest eigenvalues ofCi j as a function of system sizeN for
h50 andT/J51.0 for the EA model in four dimensions.
7-9
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SINOVA, CANRIGHT, CASTILLO, AND MACDONALD PHYSICAL REVIEW B 63 104427
The decay of@l2#/N is quite regular. Moreover, there i
rough agreement between the exponent obtained from
typical eigenvalues and the exponent estimated by assum
the droplet picture to be valid. This evidence seems to fa
the scenario of only one PSP being present.

Of course, it is in general difficult to settle from numeric
simulations alone any question that involves behaviors o
physical system in the thermodynamic limit, since the res
observed for some sizes can change when larger sizes
simulated. In particular, any claim that RSB does not occ
based on our method, is necessarily more tentative tha
conclusion that it does occur.25 Thus the results we obtain fo
N<1296 cannot rule out the possibility of further PSPs a
pearing at some largerN, indicating that there is RSB in th
spin-glass phase in four dimensions. By contrast, if the dr
let picture is correct for 4D spin glasses, then we believe
the decay exponentd2 should, for sufficiently largeN, in-
crease from its lower bound as the dominance of a sin
droplet fails. Hence any sign of curvature of the log-log p
of l2 /N vs N, in either direction, would be of significan
interest.

It is also of interest to push results like those of Fig. 6
largerN. Here one seeks signs of convergence~or lack of it!
to a limit. This criterion is, we believe, more difficult t
assess than the criterion we have applied to Figs. 2, 3, an
The latter criterion has the nice property that one must o
ascertain whether an integer—the number of extens
eigenvalues—is one, or greater than one. However stu
seeking chaotic size dependence can certainly complem
studies of disorder-averaged eigenvalue scaling.

VI. CONCLUSIONS

In this work we have applied the old idea of studying t
eigenvalue spectrum of a correlation function—used
Yang10 to characterize ODLRO in superfluids—to a decad
old question in spin-glass physics, namely: how many p
states are there in the frozen phase, and how are they rela
The connection we have made is simple: for problems
which the low-temperature phase has multiple pure states~of
non-negligible thermodynamic weight! not related by spin
inversion symmetry, the broken ergodicity shows up as m
tiple extensive eigenvalues of the spin-spin correlation m
trix C. We have strong arguments in two directions: first, t
the presence of multiple extensive eigenvalues necess
implies nontrivial ergodicity breaking, i.e., multiple pure
state pairs; and second, that the presence of multiple p
state pairs will give rise to multiple extensive eigenvalu
We have found striking support for these arguments fr
numerical ~Monte Carlo! studies of the Sherrington
Kirkpatrick problem in three distinct phases—the param
netic, ferromagnetic, and replica-symmetry-broken~RSB!
phases. Specifically, we find clear and unambiguous sign
the different kinds of ergodicity breaking in these thr
phases via studies of theN dependence of the disorde
averaged eigenvalues ofC—which essentially enable us t
count the number of extensive eigenvalues, and hence
number of pure-state pairs in the configuration space.
believe that the evidence for RSB displayed in Figs. 2~a! and
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3 is unique in its directness, clarity and lack of ambiguity
We have also applied these ideas to the near-neigh

Ising spin glass in four dimensions. Our data are consis
with the presence of only one extensive eigenvalue, forN
<1296. Furthermore, the typical value ofl2 /N decays with
a clean power law; and the exponent agrees roughly with
value expected from an argument based on the droplet
ture, plus independent estimates of the scaling exponenu.
An alternative analysis that assumes that a second exten
eigenvalue is present with large finite size corrections can
be completely excluded, although the lack of any restrict
on the fitting parameters makes any conclusions drawn f
such fits ~in general of higherx2) questionable. Thus ou
results tend to support the ‘droplet’ picture of the froz
phase, with a single PSP, more strongly than they suppor
RSB picture. We believe that studies of the kind repor
here should be extended to largerN in order to test this
tentative conclusion. Our present results encourage us to
lieve that such studies can play an important role in settl
the question, from the theoretical side, of the nature of
broken ergodicity in real spin glasses.

The authors acknowledge helpful discussions with J. H
E. Sorensen, and G. Parisi. This work was supported by
National Science Foundation under Grants No. DM
9820816 and No. DMR-9714055.

APPENDIX A: PROPERTIES OF THE MATRICES
C0, V AND A

In this appendix we show that:~i! the symmetric matrices
defined in Sec. II,C0, V ~both of sizeN3N) andA ~of size
p3p), are positive semi-definite,~ii ! the rank ofA is equal
to p̄ ~the number of pure states with linearly independe
magnetizations!, ~iii ! the eigenvectors ofC0 constructed via
Eq. ~18! from the linearly independent eigenvectors ofA
with positive eigenvalue are linearly independent, and~iv!

the remainingN2 p̄ linearly independent eigenvectors ofC0

have zero eigenvalue and are orthogonal to all pure s
magnetizations.

We start by showing thatC0 is positive semi-definite: for
an arbitrary realN-dimensional vectoruv&,

(
i j

v iCi j
0 v j5(

i j
v iv j (

a51

p

wami
amj

a

5 (
a51

p

waS (
i

v imi
aD 2

>0. ~A1!

Similarly, in the case ofV we have,

(
i j

v iVi j v j5(
i j

v iv j (
a51

p

wa^~Si2^Si&
a!~Sj2^Sj&

a!&a

5 (
a51

p

waK S (
i

v i~Si2^Si&
a! D 2L a

>0. ~A2!
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We now concentrate in studying thep3p matrix A. By
convention, we enumerate the pure states so that the firp̄
magnetization vectors$mj

a%a51,•••,p̄ are linearly indepen-
dent. Now, for any realp-dimensional vectorsux& anduy& we
have,

^xuAuy&5 (
a,b51

p

xaAwaqabAwbyb

5
1

N (
j 51

N S (
a

p

xaAwamj
aD S (

b

p

ybAwbmj
bD .

~A3!

By choosing ux&5uy&5uv& we immediately see thatA is
positive semi-definite. Thus statement~i! is proven. We will
now study the eigenvectors of the matrixA. Consider Eq.
~A3! in the case thatux&5uy&5uv& and uv& is chosen such
that

va50, p̄,a<p,

(
a51

p

~va!2.0. ~A4!

Since by our assumptions$mj
a%a51, . . . ,p̄ are linearly inde-

pendent and$wa%a51, . . . ,p̄ are nonzero, we have that

(
a51

p

vaAwamj
a5 (

a51

p̄

vaAwamj
aÞ0⇒^vuAuv&.0.

~A5!

By the Gram-Schmidt procedure, we can obtainp̄ normal-
ized vectors$v r% that are orthogonal with respect toA, all
satisfying~A4!. This means that

^v r uAuvs&5d rsar , ~A6!

where the$ar%r 51, . . . ,p̄ are positive numbers. The$v r% will
be shown below to be eigenvectors ofA with eigenvalues
ar.0, but first it is necessary to construct the eigenvect
with zeroeigenvalue. To do that, let us consider the mag
tization vectorsmj

a with p̄,a<p, that can be written as

linear combinations of the firstp̄ ones~i.e., the ones that are
linearly independent!:

mj
a5 (

b51

p̄

zb
amj

b . ~A7!

This allows to construct thep2 p̄ linearly independent vec
tors uys&, s5 p̄11, . . . ,p of the form

~ys!a55 2
za

s

Awa
, for a51,•••,p̄,

dsa

Awa
for a5 p̄11,•••,p,

~A8!

which satisfy
10442
t

rs
-

(
a51

p

~ys!aAwamj
a50 ~A9!

by Eq.~A7!. Combining this with Eq.~A3! it follows that for
an arbitraryp-dimensional real vectorux&

^xuAuys&50. ~A10!

This means that all of theuys& are eigenvectors ofA with
zero eigenvalue. By the Gram-Schmidt procedure, an or
normal set $uv p̄11&, . . . ,uvp&% of linear combinations of
them can be constructed. By combining Eq.~A6! and Eq.
~A10! we get

Auv r&5ar uv r& for r 51, . . . ,p, ~A11!

arH .0 for 1<r< p̄,

50 for p̄,r<p,
~A12!

and therefore statement~ii ! is proven.
Consider now the vectors of the form proposed in E

~18! associated with thep̄ eigenvectors ofA with positive
eigenvalue. Since the matrix (v r)a (r ,a51,•••,p̄) is invert-
ible, and the magnetization vectors$ma%a51,•••,p̄) are lin-
early independent, it follows that the vectors$f r%r 51, . . . ,p̄
are linearly independent. Thus statement~iii ! is proven.

The remainingN2 p̄ eigenvectors ofC0 can be con-
structed as follows. Take an arbitrary vectoruu& in the (N
2 p̄)-dimensional subspace orthogonal to the magnetiza
vectors$ma%a51, . . . ,p̄ ~and consequently orthogonal to all o
thep magnetization vectors of the pure states!. Clearly,uu& is
a null vector forC0 since

(
j

Ci j
0 uj5 (

a51

p

wami
aS (

j
mj

auj D 50, ~A13!

and this proves statement~iv!.

APPENDIX B: SPECTRUM OF C0¿V

In this appendix some bounds are shown to be satisfied
the changes in the eigenvalues of the spin-spin correla
matrix due to the effect ofV.

For a given disorder realization, temperatureT and sizeN,
let us consider the eigenvalues and eigenvectors of the
relation matricesC5C01V andC0:

Cux r&5l r ux r&,

C0uf r&5k r uf r&, ~B1!

where the eigenvalues are positive and labeled in descen
order ~the subscript 1 corresponding to the highest eig
value for each matrix!. We label byy the largest eigenvalue
of the matrixV. We will use variational arguments to sho
that:

• For any value ofp̄,

k11y>l r>k r for r 51, . . . ,p̄. ~B2!
7-11
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• For p̄51, and if the ratioy/k1 is small enough, then:

l2<yF11
y

k1
1OS S y

k1
D 2D G . ~B3!

Let us consider Eq.~B2! first. The upper bound is obviou
onceC is decomposed as a sum ofC0 andV, and use is made
of the fact that any mean value for each one of them ha
be smaller or equal than their respective maximum eigen
ues:

l r5^x r uCux r&5^x r uC0ux r&1^x r uVux r&<k11y.
~B4!

To prove the lower bound in the caser 51, we just con-
sider the eigenvectoruf1& corresponding to the largest eige
valuek1 of C0, and use it as a variational trial vector:

l1>^f1uCuf1&5k11^f1uVuf1&>k1 , ~B5!

where we have used the fact thatV is positive semi-definite.
To prove the lower bound for generalr 51, . . . ,p̄, we use

an inductive reasoning. We assume that Eq.~B2! is valid for
all r 851, . . . ,r 21, and propose as a variational trial vect
a linear combinationux̃& of uf1&, . . . ,uf r&. Because it is
generated byr linearly independent vectors, this linear com
bination can be chosen to be orthogonal to all of ther 21
exact eigenvectorsux1&, . . . ,ux r 21&. Then we have

l r>^x̃uCux̃&5^x̃uC0ux̃&1^x̃uVux̃&>k r , ~B6!

where we have used the facts that~i! the term corresponding
to C0 hask r as a lower bound, and~ii ! V is positive semi-
definite. This proves the inductive step, and therefore
~B2!.

Let us consider the inequality Eq.~B3!. To prove it, we
decompose the eigenvectorux1& into a part proportional to
uf1& and a part orthogonal to it:

ux1&5cosS u

2D uf1&1sinS u

2D uh&, ~B7!

where uh& is a normalized vector orthogonal touf1&. We
now write the matrix elements ofC in the subspace gene
ev

10442
to
l-

q.

ated byux1& and uh&:

C5S k11^f1uVuf1& ^f1uVuh&

^huVuf1& ^huVuh&
D . ~B8!

The coefficientu that parametrizes Eq.~B7! can be related to
these matrix elements by

tanu5
2^f1uVuh&

k11^f1uVuf1&2^huVuh&
, ~B9!

and therefore satisfies the bound

utanuu<
2y

k12y
. ~B10!

We now consider the eigenvectorux2&, corresponding tol2,
the second largest eigenvalue ofC. Sinceux2& is normalized
and orthogonal toux1&, it has the form

ux2&5cosS f

2 D F2sinS u

2D uf1&1cosS u

2D uh&G1sinS f

2 D uh8&,

~B11!

where uh8& is a normalized vector orthogonal both toux1&
and touh&. From the expression forl2:

l25^x2uCux2&5^x2uC0ux2&1^x2uVux2&

5cos2S f

2 D sin2S u

2D ^f1uC0uf1&1^x2uVux2& ~B12!

we immediately obtain the bound

l2<sin2S u

2Dk11y. ~B13!

From Eq.~B10!, it is clear that fory!k1 we have

sin2S u

2D5F tanu

2
„11O~u2!…G2

5F y

k1
S 11OS y

k1
D D G2

,

~B14!

which combined with Eq.~B13! implies Eq.~B3!.
ev.
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