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We consider a classical random-bond Ising mad&BIM) with binary distribution of=K bonds on the
square lattice at finite temperature. In the phase diagram of this model there is the so-called Nishimori line
which intersects the phase boundary at a multicritical point. It is known that the correlation functions obey
many exact identities on this line. We use a supersymmetry method to treat the disorder. In this approach the
transfer matrices of the model on the Nishimori line have an enhanced supersymmetrg-04p28), in
contrast to the rest of the phase diagram, where the symmetry isrd&€p)2(wheren is an arbitrary positive
intege). An anisotropic limit of the model leads to a one-dimensional quantum Hamiltonian describing a chain
of interacting superspins, which are irreducible representations of the s(2n) superalgebra. By gen-
eralizing this superspin chain, we embed it into a wider class of models. These include other models that have
been studied previously in one and two dimensions. We suggest that the multicritical behavior in two dimen-
sions of a class of these generalized modptssibly not including the multicritical point in the RBIM itsglf
may be governed by a single fixed point, at which the supersymmetry is enhanced still further ta osp(2
+2|2n). This suggestion is supported by a calculation of the renormalization-group flows for the correspond-

ing nonlinear sigma models at weak coupling.

DOI: 10.1103/PhysRevB.63.104422

I. INTRODUCTION

PACS nuniber75.10.Nr, 72.15.Rn, 73.43f

Later, we will also consider the anisotropic generalization of

the model, in whicltK takes different values on bonds in the

For many decades Ising models served as the simpleztandy directions.

nontrivial models for the description of magnetically ordered Let us summarize some of what is known about this

phases and phase transitions between them. This is true batiodel. The phase diagram of this model is still somewhat
for pure models and for Ising models with randomness. Ircontroversial, but is widely believed to be as in Fig?§.

particular, in the context of the spin-glass probtetime rel-
evant Ising models have random bonds of both si@eso-

First we note that fop=1, we have a pure antiferromag-
netic Ising model, which can be mapped onto the ferromag-

magnetic and antiferromagneticThis leads to frustration netic case by sendin§— —S; for i on one sublattice. More

and the possibility of spin glass order.

generally, this transformation is equivalent to sendimg

In this paper we consider a classical random-bond Ising—1—p. Hence we need show only the regiorsp<1/2.

model (RBIM) of Ising spins S==*=1 on the two-
dimensional (2D) square lattice with the Hamiltoniang(
=1/T is the inverse temperatyre

BH=—2> K;SS;, (1.0

(i)
where the bold indices=(i,iy) andj=(jy.j,) denote 2D
vectors of integer coordinates of the sites of the lattice, the
summation is over distinct nearest-neighbor bords.,
pairg, and the coupling constant§; are independent ran-
dom variables drawn from the distribution

That is, the couplings; are ferromagnetic K>0) with
probability 1-p and antiferromagnetic with probability.
Notice thatK varies inversely withT. In what follows we
will occasionally also consider Ising models with other dis-
tributions of the bond strengths. For simplicity, in most
cases, where it cannot lead to confusion, we will simply call
the model with the binary distributiofil.2) “the RBIM.”
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FIG. 1. Phase diagram of the random-bond Ising model of Eq.
(1.2), in terms of T 1/K andp.
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romagnetically ordered from the paramagnetic phase. Figurehile Nishimori's results do not apply to every possible dis-
1 can also be viewed as a schematic renormalization groupibution of disorder in the RBIM, the implications for uni-
(RG) flow diagram, in which the intersection points labeled versal critical properties must hold throughout a universality
T. (corresponding taK.=0.44 ..., thepure Ising transi- class, and it is believed that this class includes the generic
tion), p.=0.12(the T=0 transition, and another poirfl are  RBIM multicritical point.”
viewed as RG fixed points that govern the critical behavior More recently, Cho and Fishér proposed a network
for the portions of the phase boundary shown as flowing intanodel similar to the Chalker—Coddington model used to de-
these points is an unstable, hence multicritical, poinin ~ scribe transitions between integer quantum Hall platé4us.
2D, it is generally believed that no spin-glass phase exists athe Cho—Fisher model was supposed to be in the same uni-
finite temperature. At zero temperature, long-range spinversality class as the 2D RBIM. They simulated their net-
glass (Edwards—Andersonorder exists trivially when the work numerically and found a phase diagram with a multi-
distribution of bonds is continuous, since in a finite systemcritical point, with numerical critical exponents close to the
there is, with probability one, a unique ground state, up to @nes found by Singh and AdIéf.In her thesis?? Cho also
reversal of all the spingTaking the thermodynamic limit in  simulated another network model which is precisely equiva-
a fixed sample is a very subtle problem; for a very recentent to the RBIM, and again found exponents close to some
discussion, see Ref. 9 and references therélowever, for  of those in Ref. 12.
the discrete distribution with bonds taking valués —K, Here we will briefly sketch a version of the argument of
assumed here, the existence of such order in the rggion Ref. 7, since it provided motivation for our work. Let us
>p. is not clear because there will be many degenerateonsider the random-bond Ising model with Gaussian disor-
ground states. There is evidence for power-law spin-glasger,
correlations aff=0 in this region %! In three or more di-
mensions, there is a spin-glass ordered phase at temperatures 1 ) 5
below some temperaturésg(p), and which extends up to PLK;]= \/Z—ﬁexq_(Kij_KO) /[(2A%)], (1.9
p=1/2. The three phase boundaries meet in a multicritical
point at somer<T., p<1/2. The pointN in 2D is in some  so the mean oKj is Ky, and the standard deviation Zs.
sense a remnant of this multicriticality in higher dimensions.Taking the partition function

An interesting feature of this phase diagram is the so-
called Nishimori line(NL), shown dashed. Such a line can -
be defined for a broad class of distributioREK;], and in Z_g} exp% KiSS, (1.6
our special casél.?) is given by the condition '

we replicate and average to obtain

1-2p=tanhK. (1.3
_ 1
Nishimorf* found that the model on the NL has a local [Zn]:Z ex;{K 2 PR A2 acagh b}
(“gauge”) 7, symmetry. Using the symmetry he showed (% O<ij>,a 2 <ii>2'alb S995 )
that the internal energy of the RBIM is analytic along the (1.7

NL, and also established a special case of the following ideng . o =1
tities for correlation functiongproven generally in Ref.)7 ' .
which hold on the NL

...n. For finite n this has the form of the
Ashkin—Teller model, consisting af coupled Ising models.
Now compare this with the replicated spin-glass model,

[(S.--S)2 Y =[(S, - - S, )2]. (1.4) which is obtained by setting,=0:
1 k 1 k
Here{Sil, - ,Sik} is any set of the Ising spins, the angular Zmy— l{l 2 bab
= expg=A , 1.8
brackets denote the thermal average, and the square brackets [z ga;} 2 <i§3b S{"‘S{i& 3 19
the average over the distribution of bonB§K]. Georges with a, b=0, . .. m—1. This model has a gauge symmetry:

et al® showed that Nishimori’s result concerning the internal’

energy may be rederived using a supersymmetric formulalt is invariant under site-dependent transformaticsis—

tion. Nishimori later argued, and Kitatani showethat the —Sf for all a and any set of's. This localZ, gauge sym-
ferro-para phase boundary is vertical below the NL. This igmetry can be fixed by setting &f'=1 for alli, for one value
supported by the later numerical works among Refs. 2 and ®f &, saya=0. Then if m=n+1, we obtain the random-
Le Doussal, Georges, and Hafrisstablished that in any bond partition function withk,=A?, up to constants. On
dimension the NL goes through the multicritical podton  this line, which is the NL for the Gaussian case, there are still
the ferro-para phase boundary and is one of the exact Reonsequences of the underlying gauge symmetry. ithe
trajectories near this point, the other trajectory being the ver=n+1 replicas are still on an equal footing, and this leads to
tical tangent to the phase boundanNafThe RG eigenvalues the identities(1.4) on the NL, as follows. In the gauge-
along these trajectories and the corresponding critical expa:nfixed model, only correlation functions containing an even
nents were estimated by Singh and Adfefrom high- number of S*s at each site are nonzero. The correlation
temperature expansions of high order. Two of their expofunctions are invariant under permutations of the replicas,
nents in 2D are very close to those of classical 2Dand so independent of whether or reot0 is among the
percolation, as are the results in Ref. 8. We emphasize thatomponents. Since different replica components represent
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distinct thermal averages in the—0 limit, we obtain the termed class D in Ref. 17, is for problems with broken time
identities (1.4), and others, on gauge fixing. TH& local  reversal and no spin-rotation symmetry. This corresponds to
gauge symmetry in the replica formalism should not be conthe symmetries of the fermion representation of the RBIM.
fused with that of Nishimori, who did not use replicas; it is In this class, a nonlinear sigma model analysis in two dimen-
the enlarged permutational symmetry of the replicas that corsions indicates that there is a metallic phase in which the
responds to Nishimori’s arguments. Off the NL, the identi-fermion eigenstates are extend&d?! Senthil and Fishé?

ties are lost, but the model can still be written as a gaugediscussed a scenario in which such a phase occurs in the
fixed version of a system with+1 replicas and a local, = RBIM, as an intermediate phase between the paramagnetic
gauge symmetry. and ferromagnetic phases, at Iolvin the region labeled

The preceding argument shows that, in the replica formal“Para” in Fig. 1, and with its bordering phase boundaries
ism, the NL is special because it possesses a larger perm(ne of which is the lowTl phase boundary showmeeting
tation symmetryS,, ; in place of the usuab,. As we saw, at the multicritical pointN on the NL.(This is the region
even off the NL, an additional “zeroth” replica spin can be sometimes claimed to be some kind of spin-glass—like phase
introduced into the model, along with a gauge symmetry thain the RBIM literature). They suggested that the phase would
can be used to remove the unwanted degrees of freedom, abd characterized by the absence of long-range order in the
further on the NL line the zeroth spin is symmetric with the mean of either the ferromagnetic Ising or the dual disorder
others. Now from work extending back to Onsager, the 2Dvariable correlations® Presumably such decay would also
Ising model can be written in terms of free fermions, whichhold for the mean squargspin-glass correlations. It is not
become Majorandreal Dirag fermions in the continuum clear if this is consistent with th& —0 analysis of Ref. 11.
limit, and furthermore Ashkin-Teller models can be repre-An alternative scenario is that a finer analysis of problems
sented by interacting Majorana fermions, with np(  with broken time-reversal symmetry is needed, and that the
symmetry® Hence we are led to conjecture that, in the rep-nonlinear sigma model appropriate for class D does not ap-
licated fermion representation, it is possible to introduce arply to the RBIM. Indeed, a recent papeemphasizes that
additional “zeroth” fermion, together with a locdl, gauge the target manifold of the class D model is not connected,
symmetry to remove the unwanted degrees of freedom, anand that consequently there can be domains of the two com-
that on the NL, we should find a larger ©¢ 1) symmetry. ponents or “phases.” It follows that additional parameters
In this paper we demonstrate that this indeed occurs, thoughre required in order to fully parametrize the systems, inde-
we take a different route to do so. We consider the binarypendent of those familiar for sigma models with connected
distribution above, and we use supersymmetry rather thatargets. This allows for a much richer phase diagram and
replicas, so no limin—0 need be taken. However, the cor- transitions in this symmetry class. We show in this paper that
responding result for replicas is contained in our results. Thé¢his is connected with the structure we uncover in the
network models such as the Cho—Fisher model also depemdndom-bond Ising and network models. In another p&per,
on the fermion representation of the Ising model, and so wé is argued that the metallic phase cannot occur in a RBIM
can also consider these models in our framework. We findvith real I1sing couplings.
that the models can be viewed as supersymmetric vertex Problems of random noninteracting fermions are among
models, or by using the anisotropic limit as Hamiltonianthe better understood of disordered systems, and while many
chains, which act in irreducible representations of the reltesults are numerical, in some cases there are even exact
evant symmetry(superigroup (which is enlarged on the results for critical properties in 2D. By making contact be-
NL), and thus are quantum spin chains, and possibly can aldaeen the RBIM and other random fermion problems, and
be viewed as the strong-coupling region of a nonlinear sigmaasting them in a common language, we hope to gain under-
model. This greatly enhances the similarity of the problem tostanding of this disordered classical spin problem. At the
the integer quantum Hall effect transition, and to other ransame time, the RBIM provides an example that may shed
dom fermion problems. However, we find that the NL doeslight on previously unknown classes or ensembles of random
not fall into a recent list of nonlinear sigma models thatfermions. The analysis presented in this paper does not re-
correspond to random matrix ensembles in such probtéms.solve all aspects of the broken-time-reversal symmetry class,
Our results also apply to certain one-dimensional fermiorbut it does show that the NL is a special subclass.
problems. We now give an outline of the paper. Sections II, I, 1V,

In random fermion problems, including those arising inand VI contain the main technical work. They show how a
disordered superconductors, it is usual to attempt classificdermion representatiéican be used for the RBIM, and how
tions, based on symmetries, for generic probability distribubosons are also introduced to cancel the inverse partition
tions, as in Ref. 17 for random matrices. The ensemblefunctions, via supersymmet8USY).2*~3! The bosons live
found in Ref. 17 for disordered superconductors differ fromin a space with an indefinite metric, a common feature of
the standard ensembles because of the lack of a conserv&/SY methodgsee Refs. 26, 31, and compare Refs. 28-30
particle number, and because zero energy is a special point {dn the NL, a larger SUSY algebra is found. As an applica-
the spectrum. The second-quantized noninteracting quasipdien of this enhanced SUSY, we use it in Appendix A to
ticle description can in each case be replaced by a “firstrederive the equalitieg1.4). An anisotropic limit of the
guantized” formalism involving a single matrix, which must model relates it to a Hamiltonian for “superspins” on
satisfy certain discrete symmetry and symmetry-like condi-‘split” sites, two for each original site. The Hamiltonian on
tions, which distinguish the ensembles. One such classhe NL can be generalized in a natural way, and we introduce
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a phase diagram for the generalized models; on one line in Following Ref. 23 we write the vertical transfer matrix for
this diagram the Hamiltonian possesses a still larger SUSYa single vertical bond between the Ising spins at pdiltisd
Section V discusses a 1D mod&f*"**and shows that it iy as

possesses a single “Nishimori” point of higher SUSY. In

Sec. VII we consider the model of Cho and Fisfieand eKii+y ~
show that it does not correspond precisely to the RBIM, nor T,i= ———exp(Ki ;07), (2.9
does it have the larger SUSY of the NL. In Sec. VIII we coshK;i+j

argue that much, or possibly all, of the critical surface in thewhere the “light” index i denotes a site on the 1D lattice
phase diagram in the higher SUSY generalized models is igorresponding to the vertical row containing the original site
the universality class of the point with even higher SUSYi ando*, ¢¥, ando? are Pauli matrices. Similarly, the hori-
mentioned above. This is supported by consideration of nonzontal transfer matrix for a single horizontal bond between
linear sigma models that qorrespond to the spin chains, and;g, Ising spins at poinﬁsandi+§< is

weak-coupling  calculation for these shows a

renormalization-group flow towards the higher SUSY theory. Thi=exp(Ki i x0for, 1) (2.5

We comment on general network models and nonlinear ;

sigma models with the symmetries of class D. Appendix BNote that before the averaging over the randomness the
gives details of a representation of SUSY that we use. Apiransfer matrices explicitly depend on the corresponding
pendix C contains the details of the calculation of the betd0nd. and therefore are labeled by the bold 2D indices.

functions at weak coupling in the nonlinear sigma model. ~_ The transfer matrices act in tensor products of two-
dimensional spaces at each horizontal coordingteThese

2D spaces may be realized as Fock spaces of fermions on a
IIl. TRANSFER MATRICES AND SUPERSYMMETRY 1D chain of sites. This fermionization is implemented by the
In this section we will express the Ising model transferJordan—Wigner transformation relating Pauli matrices to fer-

matrices in terms of fermionic replicas, and then introducgMionic operators. To use this transformation we first make a
bosons to make the system supersymmetric. This allows (@nonical transformation
to consider(in Sec. Il) averages over quenched disorder
without taking the replicaa—0 limit.

First, we set up some notation. We define the dual couThe Jordan—Wigner transformation reads

pling K by

t, of—ol. (2.6

X
gi——0j,

o?=2clc—1, (2.7

— 2K — )
e Th=tanhk, @3 ol a=(cl—c) (el t i), 28
for any sign ofK;. For positiveK;=K>0 we denotel~<ij wherecfr andc; are canonical creation and annihilation fer-
=K*, and for negative(ijz—K<0,Rij=K*+i77/2. We as- Mmionic operators. In terms of these operators the transfer
sume free(not periodi¢ boundary conditions on the Ising matrices for individual bonds become
spins in the horizontalx) direction, and periodic in the ver-

K.. -
tical (y) direction. As is well-knowr(see, for example, Ref. e o feta
36), the partition function of the nearest-neighbor Ising Toi coshRm;,eXp( 2Kijsgteici=12), - (2.9
model may be written as the trace of a product of row trans- ’
fer matrices: Thi=expKi.x(cl—c) (el +¢h1). (210

i ) Next we replicate the fermions. The number of replicas
Z=Tr 1._[ To(iy)Thiy). (22 has to be even, because of the symmetry of the bosons to be
Y introduced below, so we denote it as.2Ne label the rep-
Herei, is an integer coordinate of a row of sites. The rowlicas by Greek letters. The replicated transfer matrices be-
transfer matricesT (i) for vertical, andTy(iy) for horizon- ~ cOme
tal bonds, do not commute with each other, so the product in

Eq. (2.2 must be ordered such that the row coordingte T,i= (2 coshK) 2" exp( — 2K; i ;Ngi), (2.1
increases from right to left. The row transfer matrices may in ~

turn be written as products of the transfer matrices for single Thi=exp2K; i+3XFi), (2.12
bonds:

where we defined

al

. 1_[ . 1_[ 2n
Tully)= i Toir Tully)= i Thi- @3 NFi:aZl Nai+  Nai=CliCai, (2.13
The T,;'s for differenti, and the same, commute, and 2n
similarly for the T,;'s. The trace represents the periodic g(Fi: 2 Xai (2.14
a=1

boundary condition in thg direction.
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requirement makes this choice essentially unique, and the
Xaizi(cli—cai)(cl,uﬁ Cayi+1)- (219  resulting space of states has indefinite metsome states
have negative squared nonms
The quadratic form#&\; and Xg; are invariant under the ~ The bosonic counterparts of the forfls; andX; are the
orthogonal transformations mixing the fermions, which be-symplectic forms
comes especially transparent if we introduce two setsrof 2 - I
real fermions per site as Ngi=15,iJapSsi s (2.2))

t t
Cai ~ Cai _CaiTCai

Nai = \/§| ' gai - \/E

These fermions satisfy

{Mai ,ﬂﬁj}:{fai agﬁj}: 5ij 5043, 1 74i ,513]}:0-

- i
(2.16 Xgi=5 (S0~ Sai) Jap(Shi+1+Sgi1).  (2.22

To parallel the fermionic case we also introduce two sets of
2n real bosons per site as

t t
(217) qQui= Sal : S ’ M= Sm .Sm . (223
Terminologically, we note here that any set of self-adjoint V2 V2i
operators, says,, a=1, ... M, for someM, with anticom-  These bosons satisfy
mutation relationg ¢, , ¥} = 84, constitutes a Clifford al-
gebra. For us, the set gfs, either for one or for many sites, [Qai A1 =[Vai Mg 1=16jJap,  [dai .l p]1=0.
or similarly of »’s, or a combination of these, are all Clifford (2.29

algebras. A little of the general theor_y of these _algebras Wi”(These have the form of the commutation relations for ca-
be used later. In terms of these fermions, or Clifford algebra}10nical| conjugate coordinates and momenta. terms of
generators, the quadratic forms become y 1ug '

the real bosons the form&.22 are
NEi =740t N, Xei=in4iaive (2.18 NBi:_raiJaﬁ%i_na S(Bi:_rai‘]aﬁqﬁ,iJrl-
where from now on we assume that repeated indices from the 2.295
beginning of the Greek alphabet( B, etc) are summed
from 1 to 2n, unless stated otherwise.

The generators of the global symmetry algebra sd(
this notation, arei(7,i 74+ £.iégi), for pairse, 8, and be-
cause of the anticommutation relations we may take anly
<, corresponding to the antisymmetrie® 2n matrices.

These generators commute witly; and Xg;, proving that

the ”a”Sf‘?F matrlce's agf mvanant under Sy(2The repll—. We now address the question of the bosonic vacuum. We
cated partition functioZ<", which is now given by a tracein . .- " :
will find it using the requirement that the spectrum of the

the 2n-component fermion Fock space, is invariant under ) 2 )
so(2n). Note that we capitalize the name of the group orbosonic formNg; is the SUSY counterpart of the integer

supergroup, such as SQ(R but not the name of the corre- spectrum of the fermionic fOI’ﬂﬁxl,:i . In this case we will

The generators of the global symplectic symmetry algebra
sp(2n) are 2i(q,idgi+ il gi), Where because of the com-
mutation relations we may use ondy< 8, corresponding to
symmetric matrices. These operators are the generators of
global linear canonical transformations on tys andr’s.

The formsNg; andXg;, and hence the transfer matrices, are
invariant under this algebra.

sponding Lie(superjalgebra, such as sof2. have
The supersymmetric counterpart of the fermionic algebra . .
so(2n) is the symplectic algebra sp®. This motivates the STrexgd—constNg;+Ng;j))=1. (2.26

introduction of bosons with this symplectic symmetry as fol-
lows. We start with & complex “symplectic” bosonic op-
eratorss,; (and their adjoints,,), satisfying

This condition is essential in the SUSY approach to ensure

that the partition function of the RBIM is unity for any real-

ization of the disorder. Here we used the notation STr for the

[s...s)1=i8:J (2.19 supertrace in th_e space of states of our problem. We will now
al=B) ¥ap: ' discuss how this supertrace is defined.

whereJ,,; is a nonsingular real antisymmetrimX 2n ma- In general, the supertrace in a supervector space must be

trix. (It is because the number of bosons must be even thatefined using the notion of a grading for the stai@svec-

the number of fermions must be als®Vithout loss of gen- tors). This can be done by Choosing a basis and then defining

erality (by appropriate change of basitis matrix may be one subset of basis vectors as “even,” and the remainder as

taken to be(in block form) “odd,” vectors. The vector space then contains two comple-
mentary subspaces of even and odd vectors, respectively; the

0o I, zero vector, and linear combinations of vectors from both
J= 1, 0)! (220 subspaces, are viewed as having no definite grading. The

vectors are then said to g-graded. Operators on the vector
wherel,, is thenXxn identity matrix. We also need to define space can likewise be classified as even or odd, according to
the vacuum state for our bosons. We will see that the SUSYvhether they preserve or reverse the grading of basis vectors
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on which they act; usually, only operators for.wh|ch th|§ rule [a, 1an]:5ij5,uvv [a ’aj]: ~88,,, (2.29
gives a consistent answéhose with well-defined grading

are of interest. Thus the grading is usually treated as a s@nd the rest of the commutators vanish. In terms of these
perselection rule. The supertrace YTof an even operatof ~ bosons we have

is then defined, like an ordinary trace, as the sum of the . _

diagonal matrix elements of in a basis of even and odd NBi:aLiaMi_ELi i - (2.30
vectors, except that for the supertrace, the diagonal elemen
in the odd basis vectors are weighted by a minus diyote
that the matrix elementsg,; of an operatolY are obtained as
the coefficients in the system of equatiorigl)==,Y;|1), T
wherell), 1=1,2,..., are thépasis vectors, without using 2,i0)=2,i|0)=0, (2.3
an inner product on the vector spacéhe supertrace has a then the spectrum dfig; is the set of non-negative integers,

number of nice properties, like the ordinary trace in an ordi-Which is the SUSY counterpart of the spectrunif . This
nary vector space; in particular a form of the cyclic property, < res that Eq2.26 holds. But the price to pay ils that the

still holds, STIrAB= = STrBA, with a plus if bothA andB ith dd ber afb h .
are even, and a minus if both are odd operators. The gradi ates with an odd number afbosons have negative norms.
y another choice of the vacuum we could avoid negative

and the supertrace are needed in connection with supersy but th Id not h h v With
metry algebras, but otherwise do not necessarily have to orms, out then we would not have the supersymmetry. Vv
these definitions, we have now defined a Fock space

considered. We also note here that it is possible to form o
graded tensor product of graded vector spaces, in a way th4ich i & tensor product of Fock spaces at each site,
preserves the grading. =®,F in an qbwous 'notatlon. The tensor'product of Fock
In this paper most of our constructions use a Fock spacéPaces is defined using the natural grading, however, our
In a Fock space generated by boson and fermion operatofs'©'°® of gra(_jmg also _behaves well in the produca; the graq'-
acting on a vacuum, there is a natural grading, defined usintj9 Of states is determined by the product of the “degrees

an occupation number basis, in which states are even or odd™ = 1 for even, odd, respectivelpf the states on the sites,
as the total number of fermiorisf all types is even or odd. because boson numbers add. Note that fermion operators are

However, we will not use such a grading to define the superYi€Wed as even in our grading.

trace above. The reason is that we have already introduced 'N€ transfer matrices including fermions and bosons su-
the ordinary trace in writing the partition function for fermi- Persymmetrically are now
onic replicas; in this trace, all diagonal matrix elements are
taken with weight+ 1, including those in states with an odd
number of fermions. It is of course quite standard to use an -
ordinary trace even when dealing with fermions, which have Thi=exp(2K; i xXsi), (2.32
a natural grading. The natural grading is used in defining gvhere the subscrigh stands for “supersymmetric,”
tensor product, such that fermion operators on different sites
(i.e., in different factors in the tensor produenticommute. Nsi=Ngi+Ngi, Xsi=Xgi+Xgi. (2.33
These are the tensor products usually used by physicists for ) . .
second quantized fermion problems. Each time we write ghe SUSY transfer matrices are invariant under theA ortho-
tensor product of spaces, it will be the graded tensor productymplectic superalgebra osp(2n), since the formsNg;
using the natural grading that we mean. There is nothingind Xs; commute with the generatois;(£,i&gi+ 7ai 1),
wrong with the use of the trace, unless we are concernegi(qaiqﬁi+rairﬁi), andX;(£,i0pi+ 7.l gi) Of osp(2n|2n).
about SUSY. The grading that we use in introducing SUSYThe last set of generators are the “oddiith respect to
into our representation is defined by specifying that stategither grading fermionic, or supergenerators of the superal-
with an even(odd) number of bosons are evéodd), and so  gebra, andr and3 can take arbitrary values there. Note that,
. in a superalgebra, two even operators obey commutation re-

STr-- - =Tr(—1)%Nsi... (2.27)  lations, two odd operators anticommutation relations, and an

even with an odd generator obeys a commutation relation.

For states with no bosons, this reduces to the usual trace. Thus the definition of the superalgebra structure again in-

NOW that we ha\(g defined the superErace, we mugt arangfives the grading. The definition of the supertrace also re-
to satisfy the conditiorf2.26. The formNg; may be diago-  gpects supersymmetry.

nalized with the transformation to two other setsnofom- The condition (2.26) applies when only vertical-bond

plex bosons. Namely, we define transfer matrices are present. To prove the supersymmetry of
_ _ the full problem, namely, that the supersymmetrized partition
CSuitISuini —  SuiTISuin (2.28 function Zgysy (the supertrace of the product of supersym-
e 2 v AT 2 ' ' metrized transfer matricgss unity for any realization of the
disorder, we use a graphical representatiorz.ofmagine a
and the adjoint operators, where the ingexand other in-  high-temperature expansion of the horizontal transfer matrix
dices from the middle of the Greek alphabet, like etc) Thi,» where we expand it in powers &F; ;. ;. At each hori-
runs from 1 ton. These bosons satisfy zontal row the operator

Itfswe introduce the vacuum faa anda bosons in the usual
manner

Tyi=exp— 2Ri,i+§/NSi),

a
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TABLE I. Correspondence between states in the spa¢esd

2Xsi=(chi—ca)(ch i1+ Caiv) e
.

al

(Sl = Sai)Jap(Shii1tSpir1) (234

F bt
may create or destroy two particles at neighboring sites, or it : :
may transfer one particle between neighboring sites. The ver-  [0) |0)
tical transfer matrices are diagonal, so they only propagate c1i/0) ciclil0)
particles in the vertical direction. c3;/0) cgichl0)
We can represent these processes graphically by lines  clich|0) cl.ch|o)
starting and ending at lattice sitégeation and annihilation al|0) chiali|0)
joining the horizontal pairs of siteghopping, and joining clal|o) cl.al|o)
vertical pairs of sitegpropagation due td,). When two chal|0) chal|0)
such lines start at a pair of neighboring sites on a row and clchallo) cl.cliclalilo)

end at another pair of neighboring sites on a row, we call this
a closed loop(similar to closed loops in high temperature
expansion of the pure Ising mogleThen the supersymme-

trized partition function is equal to 1 plus the sum of contri-fer matrices have enhanced supersymmetry asp(2
butions of all closed loops. Then we have to prove that for ai- 1 | 2n). In Appendix A we use this enhanced SUSY to
closed loop the contributions of fermions and bosons cancgkderive the equality1.4) for the Ising correlators.

each other. Here we need some more notation. We introduce a param-

Let us take the smallest possible loop, where two particlegter of the form of the Ising couplind,, and its dualL*,
are created and destroyed on two adjacent rows. This is repe|ated to the probability:

resented by two short vertical lines between two neighboring
pairs of lattice sites. For a given fermionic replica, say 1, this 1-2p=tanhL=e 2", (3.2
loop contributes the following term:

In terms ofL the equation1.3) of the NL isL=K. Below

_<0|Cliclyi+le*ZRi,H;/NFie*zRi+>A(,i+>n<+;/'§‘F,i+1cLC;[’i+1|0> the NLL<K, and above the NIL>K.
~ _ Since the coupling&; are independent, we can average
— e 2K iyt Kitgivx+y) (2.35 transfer matrices for different bonds separately. For a vertical
. _ o transfer matrix this givegrecall that the disorder averages
The corresponding bosonic contribution is are denoted by square brackets
(Olisn 171+ 1€ 2iirNei Ty=[T,]=exp — 2K*Ng)(1—p-+p(—1)Nsi).

(3.2

Note that after the averaging the translational invariance is

To evaluate this expression we note the following. From theestored, and this allows us to label the average transfer ma-
definition of the symplectic bosons it follows that trices by 1D(“light” ) indices.

The value of the last factor in Eq43.2) depends on the
value ofNg; in the state, on whicfi;; acts. For an eveNyg;
We use these relations to pull the exponentials through to thi¢ equals 1, for an oddg; it gives 1—2p:e’2L*. Then we

X e*2Ki+>A<,i+>‘<+§/'\‘B,i+1isle+l’i +1/0). (2.36

[Sej Ngil=8ijSaj, [sh; Ngil=—8sl;. (2.3

aj

vacuum on the right in Eq2.36), which then becomes can rewrite the operato3.2) in a slightly different form.
- Namely, we introduce an additionéeroth fermionic state
_<O|Sn+1,iSl,i+1SIiS;+l,i+1|O>e_2(Kivi+y+Ki+x,i+x+y)_ and operators]; , c,; and consider the subspaé&g given by

(2.389  the following constraint:

Next we notice that, as a consequence of 28 and the N
definition (2.31), the vacuum statf) is annihilated bys,; . Ns;=Nsi+noi=even, 3.3
Then we commute the operators in the first factor in the lasfyheren,, is defined in analogy wittm,; :

expression, after which it becomes exactly opposite to the

fermionic contribution(2.35. This argument is easily gener- nOizcgiCOi . (3.9
alized to arbitrary loopgincluding those that wrap around ) ) )
the system, thanks to the definition of the supertraaad That is, the number of fermions plus bosons on each site

proves that the supersymmetrized partition function is indeefUSt P& even. There is a one-to-one correspondence between
equal to one, for any realization of the disorder. the states in this subspace and the original Fock sgface
This correspondence is illustrated for the casel in Table

I. The grading in the spacg’ = ®;F; is taken to be the same
as that inF, which was not the natural grading. However, we
see that in a Fock space with a constraint of the form of Eq.
In this section we perform the average with respect to thé€3.3), the number of bosons is odd if and only if the number
distributionP[ K] and find that on the NL the averaged trans-of fermions is oddthis is true for each site and also for the

IIl. AVERAGING AND ENHANCED SUPERSYMMETRY
ON THE NISHIMORI LINE
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tensor produgt Hence our grading off’ is the same as the 2%, =(cl —c (el . 1+ Cai+1)
one obtained from the natural grading on the larger Fock . T' ‘ ‘
space with 2+1 fermion species, when restricted to the —(Cgi ~Coi) (Cgi = Cai) (— 1)Mi+1(Ch; 4 1= Coj+1)
subspace. Now we can repla€g by the operator t
><(Coz,i+l~|—ca,i+1)

Ty =exp(—2K*Ng;—2L* ng;), (3.5) = Axgi X,y (3.10

which has the same matrix elements in the constrained sulivherex; is defined similarly to Eq(2.15:
space; asTy; had in the original spacé; (between the
corresponding statgsFrom now on in this section we will
denote transfer operators acting in the constrained spéces

by a prime. For a horizontal transfer matrix the averagin%, _— . .
gives ith these substitution rules established, we can see that in

the spaceF’ the operator corresponding 1g; is given by

1 .
XOi:E(Cgi_COi)(Cg,i+l+CO,i+1):| noiéoj+1- (3.10)

cosh2K X+ L)

Toi=[Thil= coshL

(3.6 . cosh2KXg;+2LXo;)
Ty= )
coshL

(3.12

To find the corresponding operator Jf# we need to estab- ) ) _
lish some substitution rules for basic operators. which easily follows from the substitution ru(8.10 and the

2 _y2 _

Single creation and annihilation operators I, which ~ fact thatxg;=xg=1/4. From Eqs(3.5 and (3.12 we see

are quite legitimate in the spacg, do not act within’ that the transfer matrices commute with the constraint, Eq.
, - .

Using the correspondence between the states, given in Tapfa-3- In the full space of states that includes states OT odd, as
I, it is easy to establish that iff! the operat0|c{- must be well as even, fermion plus boson number at each site, there
’ i i . . N ..
replaced by the operatoc& _ COi)CL . However, this opera- are localZ, operations given by« 1)Nsi. This is therefore a
tor is bosonic(i.e., even with respect to the natural grading 92uge symmetry under which the allowed states and transfer
on F'), so in the tensor product’ = ®; ! it will not have operatorgand also physical observablesust be invariant.

the anticommutation properties that had in . To make it diszﬂgs{g;moi(ﬁig) sar:grr(\?étlrz) ar:)e ;’ﬁigs‘:&ngﬁr';rg dz)lrot;]ethe
fermionic in the total space” we need to attach to it a y y prop

NL. Indeed, we see that on the NL, whefe=L, the opera-

string:
"9 tors T become
T t T
C1i—(Coi—Coi)C1i20i (3.7 .
1i Oi 0i/~1i<0i TiiZEXQ—ZK*N’Si), (313
20i=il;[i (—1)"i, (3.9 | cost2KKY)
. . _ 27 coshK (314
Repeating this argument for other operators, we obtain the
following rules of substitution: where
chi—(ch—colchiZor, X&i=Xsi+ X0 =1 Naiéais1— T aidaglpi+1, (3.19

and the Latin subscripts from the beginning of the alphabet
denote the fermionic indices running form 0 ta.2

On the NL, the expression8.13 and (3.14) have en-
hanced supersymmetry: they are now invariant under an
osp(2h+1|2n) algebra. The generators of this algebra have
a similar form as before, but involve then2 1 fermion

operators: 2i(&aiépit 7ai i), Zi(Uailpitrail gi), and

+
Cai— (Coi— Coi)CaiZoi »
t t T

a,i—(Coi+Co)a,iZoi,

N
a,i—(Coi T Coi)auioi

iiﬂ(cgﬁfcoﬂgjﬂzon 2i(&ai0pi+ maif gi)- The last set of generators are the odd
- - ones, with respect to our grading, or to the natural one on the
a#ﬁ(05i+Coa)auiEoi- (3.9 Fock space of whicl#" is a subspace; we have seen these

are equivalent in the constrained subspace.
As an alternative to looking at all the states, the correspon- As anticipated in the Introduction, this enhanced continu-
dence can be established by verifying that the right-hanéus SUSY replaces the gauge symmetry of Nishimori, and
sides of these expressions have the s@mé-)commutators the enhanced permutational symmetry of the replica ap-
as the left-hand sides. It follows from these rules that anyroach, previously known to exist in Ising spin language on
product of an even number of creation and/or annihilationthe NL*’ The symmetry has many consequences, such as

operators inF; remains the same when going 13 . the equalitieg1.4) among different correlation functions on
Now note what happens with,; [see Eq.(2.15] upon  the NL. In Appendix A we briefly show how these equalities
transition fromF=®;F; to F': may be obtained from the enhanced SUSY exhibited in this
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section. We have also obtained the loéglgauge symmetry properties satisfied by the matrices of osp¢2l|2n) in the

anticipated in the Introduction. defining representation. Namely, the generators of asp(2
+1/2n) acting in the representatidRare combined into the
IV. STRUCTURE OF THE SPACE OF STATES superspin
AND THE HAMILTONIAN LIMIT .
o _ | ( Eabp— 5 Pan €405 )
In this section we first analyzén Sec. IV A) the structure =l _ , (4.2
of the space of states of our quantum problem and then take 1yl yéb I‘]ayquﬁ_%gaﬁ

the time continuum limit of our transfer matrices and obtaingp, .1 here in block(2n+1)+2n]X[(2n+ 1)+ 2n] form

a quantum Hamiltonian describing our system. This has th?and a similar matrix obtained from the generatoré of
form of a spin chain with irreducible representations of the - e

symmetry algebra osp(2+-1|2n) at each site. Then in Sec. osp(21+1/2n) acting in the representaticR:

IV B we consider a more explicit construction of these irre- (

: ; Nanb— 20, 7al
ducible representations. a”b™ 2 %ab al g

] _ . ) . 4.3

oy Mo 1dayl JFg—28,p

A. S in chai d Hamiltonian limit .
Hperspin chain and Hamitonian fime The generators of the global SUSY of the system are now, in

Let us consider the structure of the constrained spgce matrix form,S,(G;+G;).
[Eq. (3.3)], with its _natural grading, unde_r transformatipns of  Next we take a time-continuufidamiltonian limit of the
osp(r+1]2n). It is easy to see thaf; is not irreducible  transfer matrices. To do that we actually have to start with an
under this algebra. Rather, it has the structure of the tens@fnisotropic RBIM, where the vertical and horizontal cou-
product of two irreducible spinors of osp§2 1|2n).. plings take different values d€. In that case we can arrange

Indeed, let us consider first the fermionic replicas only.for the situation when in the vertical matri* ,L* <1, and
i.e., the replica approach where-0 in the end. Then we in the horizontal onk,L<1 (we continue to use these no-
have the modified transfer matrices which are invariant UndefationS, (o) thaK*, L* are no |Onger related e, L by the

the orthogonal algebra so2-1), and the subspace they act duality relation. Then we can expand the horizontal transfer

on is given at each site by the constraint matrix (3.12 as
NEi=Ngi +ngi=even. (4.1 Thi=1+2K?XE+ 4KL X5 %o,
This space has dimensior®2 and, under so(@+1), it =exp(2K?XE,+ 4K L XgXo;).- (4.9

transforms as the tensor product of two spinors of s0(2
+1), each of dimension"2 These two spinors can be iden-
tified as the spaces on which the two paitsyi, 7ai7pi Of
the generator§,;&,i+ 7.i 7 act. The tensor product decom- R R R
poses into irreducible representations of so{2l) corre- Hszz (h(NSi+)\*nOi)—k(X§i+ 2\ XgiXgi)), (4.5
sponding to each even value B, in the range 0—8 al- '

lowed by the constraini4.1). Similarly, the orthogonal where we introduced

subspaceN{;=odd is also a tensor product of spinors and .
has a similar decomposition. h=2K* k=2K2 \* :L_ A :EI (4.6)
When the bosons are included as in the SUSY approach, ' ' K*' K

the two partsy,idzi , I il si Of the sp(2) generators at a site . . .
PaMSaidsi, Tail gi P() g The parametera and\* introduce anisotropy in the cou-

i generate infinite-dimensional spinor representations o i h i The Hamiltoni b
sp(2n) (sometimes known as metaplectic representalionsp'ng.S among the replicas. 1he am|_on|(14h.5) may be
fewritten in a very suggestive form using the supersj@ns

When the fermions and bosons are combined together wit
the constraint thaiilg;i be even, the resulting space is a tensorandG'

product of irreducible spinors of ospi2-1|2n). The fact R o

that a single such tensor product is involved is the nontrivial HszE (h(Ngi+A*ng) +kstrAG,AG; ), (4.7
part of this statement, and is addressed further in Sec. IV B. :

These spinors comprise one lowest-weight representation @fhere

osp(2n+1|2n), which we denote byR, and one highest-

weight representation of osp2 1/2n), which we denote A=diag\,l4p) (4.9

by R. Thus we may writeF; =R ®R; . is a diagonal matrix representing the anisotropy in the super-
This organization of states suggests a picture of our modepin space. The supertrace here, denoted str, is overrthe 4
as a system of “superspins['spinorsR and R of osp(2h +1-dimensional space as above, with a plus for diagonal
+1|2n)] sitting in pairs on the sites of the 1D lattice. It is matrix elements in the r2+ 1-dimensional block, and a mi-
convenient to combine the corresponding generators afius for those in the remainingn2dimensional block. With
osp(n+1|2n) into square matrices consistent with reality this definition, the expressions reduce to the ordinary trace

Then we can combine all;; and T5; into a single “evolu-
tion” operator in imaginary time with the Hamiltonian
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h k h k h Sec. VI we will extend this approach further, introducing a
*---< o — — — € o ---© fSuprIti?(:?terepresentatmn which involves a constraint on each
G, G, G, G, G, G, The representation® and R can be constructed using

complex fermionic and bosonic operators without con-
straints, that is essentially ii; . For the simplest case of the
osp(32) algebra this is done in Appendix B. Here we note
that the complex fermions and bosons used in the construc-
tion are related to the real onéapart from the zeroth fer-

mion) on the split sites introduced so far in the following
for the replica formalism where only thées and »’s are kept  manner:

(and thenn—0), without an overall change in sign.
Now we should notice that in the anisotropic version of :§m+i§,ﬁn,i _ :i Nui T Nyn

FIG. 2. The graphical representation of the Hamiltor{é) on
the split sites. Superspins in the representatResdR are shown
as filled and empty circles. The two types of couplih@andk, are
indicated.

the RBIM, there are in general two couplinds, K, and f L T2 f L — 5 (4.10
two parameters for the probabilitiels, L, . The Nishimori

condition becomes two equationk, =L, ,K,=L,. Thus . ,

the NL is replaced by a two-dimensional surfager p oAt Gueni e M F Fens (4.0
2-surface in the four-dimensional space, and so does not s J2 oM J2 ' ’

divide the phase diagram into two pieces. We will continue _
to refer to this as the NL. There is presumably a line on thisAll of these operators are canonical, except forhgosons,
surface at which a transition occurs. The complete phasehich are “negative norm:”
boundary is three-dimensional, and the multicritical behavior _
is found on a 2-surface on this 3-surface. The muilticritical [bi ,Ej]= = 6ij Oy - (4.12
line on the NL presumably lies in the multicritical 2-surface . .
: n terms of these complex bosons and fermions the quadratic
on the phase boundary. Even though the transfer matrices 48rms appearing in the transfer matricés32 look espe-
not have the larger SUSY everywhere on that 2-surface, ngally uniform:
presume by universality that the higher SUSY fixed point '
theory, to which the multicritical point on the NL flows,
controls the entire multicritical 2-surface because anisotropy
such as we have introduced usually does not affect the uni- . == T~
versality class. Ngi=fuifuitfufuitbybi+bub,i. (413
In any case, on the NDh=\*=1, and we obtain an
osp(2h+ 1|2n)-invariant(or isotropig Hamiltonian

Xsi= f;,i+1ﬁu +f—mfﬂ,i+1+ b;,i +1H,Tu +H,U.iby,,i +1

In this form the subalgebra ospgf2n) on a split site is
generated by bilinears as before, now of the fdfm(f1)?,
f1f, b2, ..., f'b, ..., forR We saw earlier that the expres-

. _ sions forXs; and Ng; are invariant under this osp(#2n)
HSZZ (hNg;+kstrGG;,4). (4.9 algebra. However, the extension to osp@21|2n) is modi-
fied since we do not use the zeroth fermianinstead, the
additional generators include string operators such as
Equation (4.9 has the form of a superspin chain with the (—1)" see Appendix B, where expressions for the genera-
alternating lowest- and highest-weight representat®asid  tors of osp(2+1|2n) in the casen=1 are given. It is then
R, and corresponding superspin operai@randG. We can clear that the states on the unsplit sites decompose into a

better represent this by splitting the original sites into pairssingle tensor product of irreducibl&andR as claimed. The
of split sites. This is shown in Fig. 2. The Hamiltoni&h9  string operators again correspond to the difference in grading
has two types of couplings on the alternating bonds. Botthetween that natural ifF and our choice, which agrees with
these couplings are antiferromagnetic in nature. This meange natural one inZ. With our choice, the (anti-
that the lowest energy state for a given bond is the singlet ofcommutation relations obeyed by the generators of the
osp(2n+1|2n) contained in the decomposition of the tensor|arger osp(2+1|2n) SUSY are consistent with the stated
product of the representatiofsand R. grading, as discussed in more detail in Appendix B.
An advantage of the unconstrained representation of the
) _ _ states on the split sites is that it makes the pure |lpsitO
B. Unconstrained representation of superspins transparent. The pure Ising problem in the anisotropic time-
The picture of the split sites carrying irreducible represencontinuum limit in this representation gives a nearest-
tations is very attractive, but does suffer from one difficulty neighbor “hopping”-type Hamiltonian for fermions and
at present. This is that we obtained the representations kyosons, which is a sum ovénf Ng; and Xs;, with coeffi-
introducing an additional zeroth fermiogy, ,cgi, together cients. This is a lattice version of the Dirac fermion and its
with a constraint which refers to both the split sites thatSUSY partner, the so-called-y system of bosonic ghosts.
comprise the original site. Here and in Appendix B we showHowever, in the general disordered case, there are additional
how to avoid this by the use of a different construction. Interms which we expressed previously using the zeroth fer-
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mion. In Appendix B we show how thgigi terms in the Where the fermionic number operators are defined in a natu-
Hamiltonian can be expressed in the present language. THal way:

other term, which becomeN§; on the NL, is much more N =
difficult to express in this language, and we return to this ni=fufu, ma=f . (4.21

problem in Sec. VI. The term first-order inv breaks the SUSY down to gi(n),

A shg_ht Subtlety |_nvolved in the definition .Of the complex which is still enough SUSY to ensure cancellation of fermi-
bosons is the following. If we express them in terms ofdhe ons and bosons

bosons, which diagonalize the forly;, Eq.(2.30, we ob- We can make this term appear more natural by the fol-
tain a singular Bogoliubov rotation: lowing considerations. It is a regularizer which suppresses
contributions to the partition function from high fermion and
b s ui especially boson numbers on any site. We can introduce it in
mi 2 mi 2 @419 3 more symmetric way by inserting eXgpw(ng+ng+ny;
+ny) between all thel;;’'s and T,;’s in the partition func-
The singularity of this transformation is seen in the fact thattion; to first order inw, the effect is the same. Such an
the formal expression for thi, b vacuum(on a single un-  insertion is a precaution similar to that often used in network
split sitei), defined by0|5>=b|6>=0, is models and nonlinear sigma m(_)dels of localization. The _
term represents a nonzero imaginary part of the frequency in
_ those problems, and as in the present case breaks the sym-
|0>ocexp( - aLiELi)|O), (4.19  metry to a subgroup. In the superspin chain language, the
m operator whichw multiplies is one component of the stag-

where|0) is thea 2 vacuum defined in Eq2.3D and leads gered magnetization, the order parameter for the chain. The
' : term, with w—0, is used just in case this develops a spon-

to a series for the squared no@|0) which is not conver-  ahe0us expectation value, since it picks a direction for the
gent. A way out of this problem is to regularize the Bogo- grdering in superspin space and cuts off infrared diver-
liubov rotation(4.14 as follows: gences. Note that the state with each site in the vacuum state
_ =3 for the f's, f’s, b’s, andb’s is the Nel state corresponding
bui=cospa,itsinga,, to such order, and is invariant under the subalgebnalg)(

The symmetry-breaking term will be important in Sec. V.

—
o Cagtay  —  ay

i (4.19

where ¢ = 7/4— wl/2 with 0<w<1. With such regularized
transformation, thé, b vacuum

b.i=singal, —cose
V. DIMERIZED LIMIT AND THE ONE-DIMENSIONAL
CASE

This section lies somewhat outside of the main line of our
1 = dgvelopment; thg latter c_o_nt.inues in Sec. VI. H'ere we con-
CO§¢9XP( —tanqS% a,ia,|10) (41D sider our model in the vicinity of the NL deep in the low-
temperature phase. In terms of the superspin chain with the
is well-defined and normalized to 1. Hamiltonian(4.7), in this phase we havie<k. Then in the
If we now use the regularized relatiofs 16, the expres- ~ Zeroth approximation we may neglect theouplings com-
sion for N, become(to first order inw) plgtely. Then th_e chairi4.7) is brc_)ken into dlsconnepted
pairs of superspins. The Hamiltonian for one such pair is

[0)=

Ngi=b% bl +b b, i+ w(ny+ny)—n, (4.1 — —
8i= DDy Db+ (Mot i) =, (4.18 H =4 StAGAG=4 StrAGAG, (5.1)

with bosonic number operators defined as .
where the coupling constarikt (overall energy scajewas

taken to be equal to 4 for later convenience, and we used the
cyclic property of the supertrace. We can try to solve this
The fermionic sector in our formulation is finite dimensional, Hamiltonian and hope to infer some information about the
and there are no similar problems with the fermions. How-ow temperature phase of our original model. However, we
ever, to maintain the exact cancellations between fermion¥ish to sound a note of caution: we are considering a certain

and bosons, we will modify the definition bbndf_similarly fjouble_linjit .Of the original Iattice_ I§ing model,_first the an-
to that for the bosons. One effect of this is that the superltq‘OtrOpIC limit, the'n the “lowT" limit, h<k. It. IS not en-
symmetric analog of Eq(4.17) lacks the factor 1/cdg tirely clear that this really represents the Iawimit of the

F : L nearly isotropic Ising model, where we pass to [bwlose to
Then the osp(&|2n)-invariant combinatior{4.13 takes the the NL, and perhaps then go to the anisotropic limit

nbi:bzibm , Npi= _ELiH/’«i . (419

form . L .
We will make use of the realization of the representations
NSi:fLifLi+fuifui+bL'Ei+buibui R and R in Fqck spaces of.unconstramed fermlo.ns and
bosons. For simplicity we will work out the details for
+ w(Ng;+ N5+ Npi+ i), (4.20 osp(32) only. In this case the necessary constructiorRof
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and R and the invariant products of superspins is given instates for this problem was found far=0 in 1953 by

Appendix B. From it we obtain Dyson® and for arbitraryh by many authors? The math-
ematically equivalent problem of diffusion in a 1D random
He=\J—J?, (5.2  medium was studied by Bouchauwed al>® The density of
with statesp(e€) behaves at small energies as
I=fTT+Ff+b'b +Db, (53 p(O%——— \=o, (5.10
€|In®e|

We anticipate that the eigenstates of the Hamiltorkign
may have arbitrarily large bosonic occupation numbers, and p(e)xer™t,  \>0. (5.11
we may encounter convergence problems typical in such
cases. These are avoided, however, if we remembemwthe  In the superspin language the density of stgi¢s) is
term, discussed in Sec. IV B. As explained there, it plays theelated to the expectation value of some operator in the
role of a symmetry-breaking regulator that picks a directionground state of the Hamiltonig5.5).2¢ Namely, it is propor-
for ordering, similar toS;—S; for the problem of two anti-  tional to the staggered componemi—h, of the superspin
ferromagnetically coupled $2) spins. Thus we add to our (see Appendix B
Hamiltonian the term
o N o mh—1
H,= o(ni+ny+ni+ng). (5.4 pl@)oc(1=ni=ng)era™ . (.12
This quantity measures the amount of the symmetry breaking
The resulting Hamiltonian in the ground state of two superspins. From the last equation
it follows that the symmetry is spontaneously broken on the
H=H+H, (5.9 NL (which is a point in the 1D modghnd below it. More-
is identical to the one studied by Balents and Fisher in &@ver, below the NL, whera <1, the density of stateghe
one-dimensional localization problefmee Eq(3.31) in Ref. ~ order parameter of the spin chadiverges asv—0. On the
28]. This is the problem of spinless fermions on a 1D latticeNL it is constant, and above the NL it vanishes as a power of
with random hopping amplitudes described by the Hamil-w.
tonian Because the SUSY representations are the same, we have
in fact shown that in the 1D off-diagonal disorder problem,
there is a larger SUSYsp(2n+1|2n) at the pointA=1.
This has not been noticed previously to our knowledge. This
. o , . ) suggests that such Nishimori points, lines, etc., may be com-
The continuum limit of this model gives left and right mov- 51'in some classes of random fermion problems. We also
ing spinless Dirac fermions with random mixing betweengte here that in the 1D classical RBIM, which of course has
them: no finite T phase transition, there is a Nishimori point at
which the correlation identities Eggl.4) hold. That problem
Hc:j dx¥ T (—io?a,+V(x) oY)V, (5.7  can be represented using fermions on one unsplit site with
the T4; transfer matrices only, which are of tiecoupling
where ¥ (x) is a two-component spinor fieldy' are Pauli  type, in contrast to the model considered here, and is easily
matrices, and the random potential is Gaussian with nonzergolved in this language.
mean and variance:

H= —2 ta(Chcni1+Ch, 1Cn). (5.6

VI. FINAL REPRESENTATION AND THE GENERALIZED
[V(X)]:VOy MODEL

[(V(X)=Vo)(V(X")=Vg)]=2D (x—x"). (5.8 In this section we continue the general consideration of
. . . ~ the RBIM problem. Here we focus our attention on the NL,
The generating functional for the Green’s functions of thisthat is, we consider the osp( 1|2n)-invariant Hamil-
Hamiltonian at a given energy+i» may be supersymme- tonian(4.9). First we analyze and solve the problem of find-
trized in the standard way. After disorder averaging Xhe . 5 \ay to describe the terfite; in the space® R on the
coordinate may be mterp_reted as imaginary time, and_the tWgplit sites. The problem is solved by using another represen-
components of the fermion can be viewed as labeling WQation in a spaceF”, and the spaces can be viewed as repre-
sites, which correspond to our split sites. This leads to allantations of a Iaréer SUSY algebra, ospf22|2n). Using
effective quantum Hamiltonian, which is exactly given by only terms of the form of the two couplings we have already

Eq. (5.5) with seen, we then introduce a more general nearest-neighbor su-
AN=Vo/D, w=7y—ie. (5.9 perspin chain, and discuss its phase diagram for reference in
the following sections.
The 1D model with the Hamiltoniai5.7), and related First let us note that Ed4.9) is somewhat schematic. Let

models, have a long history, and most of the relevant work i4!S again consider the fermionic replica formalism with
concisely summarized in Ref. 32. In particular, the density of—~0 instead of SUSY. The termlg;’ is then replaced by
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Ng;’. According to our general discussion of how to mapOnsé,. These are the generators of a Clifford algebra with
operators inF into F' (see Sec. I, an odd number 2+ 1 of generators, which has an irreduc-

ible representation of dimensior 2the familiar 2<2 Pauli
. 1 matrices are the case=1). The commutatorg/2[ &, ,&,] of
NE =i7m,iéaitn+ > (6.1) these operators are the generators of s&{2), as we have
already seen. The operatofg transform as a vector of
, ) . - so(2n+1). If we now consider these saf2 1) generators
Is correct as it stands i#". Even though the operatdle;" IS  yoyether with theg, (divided by y2), then we may use the
perfectly legitimate, it does not admit any simple expression ot that thecommutatorsof these operatorgor matrices
in terms of the so(2+ 1) generators3; andG;. We would  together obey the relations of the generators of Be(2),
like to write it as a sum of products of operators in the spinorand the spinoR can be identified with one of the two dis-
representation®, R on the split sites. Of course, individual tinct irreducible spinor representations of dimensidro2so
fermion operatorst,;, 7, do not commute with the con- (2n+2). This construction can also be applied to the repre-
straint, and cannot be used. Instead they must be replaced B¥ntationsR [which for so(h+ 1), though not for osp(2
ZLp-invariant operators. As explained in Sec. Ill, we can find + 1|2n), is isomorphic toR]. This construction also extends
operators inF’ with the anticommutation properties of the easily to the many-site problery taking the operators now
fermions in F for the ComponentS)ther than the zeroth rep|acing§a to commute on different sited/e may therefore

These are fermion bilinears times a string; see Bd). A \yite down our tern.; as a sum of products of bilinears of

ggneral propf that it is. imposs_ible to find a set of Operatorgy ase operators, and this can also be extended to the SUSY
with the anticommutation relations of tliell set of real fer- construction, using operators with the relationsjof r,, on

mion operatorsy,, anq £ai In the spage?-" is to notice that each site, but which anticommute on different sites.
they should form a Clifford algebra withN(2n+ 1) genera- Thus we have learned that our spaces of StReR at

tors, whereN is the number of unsplit sites in the chain. This - X . . .
alternate sites can be viewed as irreducible spinor represen-

Clifford algebra has a single non-trivial representation of di-" ) .
mension 2(2"*1)_ This space is the same as an uncon-tations of osp(2+2|2n) (but note that this algebra is not a

strained Fock space fom2-1 complex fermion operators at symmetry of our Ha_miltonian or trangfer mf':ltrices so).far
each unsplit site, i.eF but without the constraints. The There are two inequivalent lowest-weight spinor representa-

total number of states itF’ is only 22N" because of thé\ t'%r.lshReilR‘E (tfor “eveE” and .“Od%”) of.?sp(m+2|2n), in W
constraints. So the operators we require cannot have the afhich all states can be assigned positive norm-squares. Wwe

ticommutation relations of free fermions for all the sites.can identifyR with, say,R.. Similarly, R can be identified
Indeed, in our grading oiF, single fermion operators are with a highest-weight spindR., which is dual toR., and in
even, and so would be expected to obey commutation relawvhich the inner product is indefinite, since as we have seen
tions from a SUSY point of view. InF" there are corre-  states with an odd number bfbosons have negative squared
sponding fermion bilinears, like E¢3.9) but without strings, norms.
and th_ese do commute on different sites mentioned al- Viewing the spaces of states in this way, we can give yet
ready in Sec. IIJ. . _ another explicit construction, with which we can finally write

We can also try the unccr)lnsftrﬁ:led Irfepre.sentatlon.dThe{he operatorﬂSJ’Fi andN’Si in a simple way. It is convenient to
again, we can re_pre.sent each o ther2al fermionsy,; an keep much of the notation the same as before. We introduce
&, on each split site using Eq$4.10, and the resulting . . —

additional complex fermionsy;, fo; to the setf,; of Eq.

Clifford algebra for N split sites yields the correct number ) o ¢ o
of states. This description carries over easily to the SUSY(4'1®' and _def_me a ;pac@ =®; 7] consisting of th(_a states
pn the split sites with an even number of fermions plus

version. But the above proof shows that no matter whal
strings or other factors we introduce into a construction of?0SONS:

operators, we cannot produce the anticommutation relations "

for 2n+1 real fermions at each split site, and we are no Npi+ N+ foifoi =even, (6.2)

nearer WritingN’Si as a product of simple expressionRrand
R. What we would have to do is map the problematic part

gfria(i)r:ttimetr?g?(r)?:r?;rbsggcfem[c?\:e :gsﬁ I ti?wgc(?;:r?zégl:ﬂt?: tﬁgn' It is clear that such states are in one-one correspondence with
o ) o o those in the unconstrained representation. The construction

fermionic replica formalismmust equal 1 whelg; is 0dd,  of the correspondence is similar to that for the states in the

0 whenNg; is even, or similarly forNg; in the SUSY for-  spacesF and 7' in Sec. lll. All the states can be obtained

malism. It is not clear how we would write this as a coupling from the vacuum, which is the loweghighest) weight state

of the two split sites at. in Re (Re), by the action of the bilinears in the creation

There is nonetheless a way out of this problem, motivategyperators. Then in addition to E¢t.10 we also define
by the following observation. If we consider a single spinor

representatioiR of so(2n+ 1) (thus in the fermionic replica Eoitit! it
formalism once morg then it is in fact possible to find op- 0= o i _Oi: 70i T 7o
erators with the anticommutation relations of the real fermi- \/E \/E

Ni + N7 + 4 foi=even. (6.3

(6.9
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Now the so(2+2) generators on a single site are replacedvhere we have introduced an4 2-dimensional diagonal
by matrices of coupling constants

Cc=C(h,k)=diaghk ¥2k¥2,..,),  (6.1D

i [
E[gai &bl E[%i y&ail, (6.9 o . o
and the supertrace str in this space is defined in the same way
where the first set, again, spans the subalgebramnso(, &S the previous str. These two terms represent two different
and the second set transforms as a vector under this subalg@SP(21+1|2n)-invariant products of two subsets of the

bra. There are similar expressions Ry. We emphasize that 0sp(2n+2|2njgenerators. It should be clear that the repre-

the operators.;, £, , 7., 75 obey canonical anticommu- sentation inF” can also be used off the NL, by giving certain
. —Saiy 5010 Yaiy Yo . . terms different coefficients.

tation relations, whiley,; , 1 obey canonical commutation It is now natural to consider a generalized Hamiltonian

relations, of the same form as in Eq2.17) and(2.24) [with

negative norm states appearing in connection withrtlse _

see Egs.(4.11) and following]. Our choice of grading is H=Z (strC(hp,ka)G{C(ha,ka) G/

again equivalent in the constrained subspagésto their '

natural grading as subspaces of Fock spaces. Finally, in the — ha+hg
representation itF”, the operatoNg; undergoes the replace- +strC(hg ks)G{ C(Ng . ke) G/ 1)+ 2 N,
ment

(6.12

parametrized by four coupling constants. In such a Hamil-
tonian both types of osp{®+ 1|2n)-invariant couplings ap-
pear on every bond between the split sites. In addition, they
, , ., , 1 are staggered between the two sublattices of béndad B
2701 Taifaifoi T 21 7oil aidaplpifoi T 5 6.8 of our chain. Our NL Hamiltoniar(4.9) is a particular ex-
treme limit, where on alternate bonds one or the other cou-

These results may also be _established by passing di_rect ing is zero. It is obtained from Ed6.12 for the special
from the (averageglunconstrained representation to the final\,5,es of the parameters

representation by using a substitution similar to 839 but
applied here to the split sites. ha=h, ka=0, hg=0, kg=k. (6.13
We can now organize the generators of osp{2|2n) in , , ,
superspins, similar to Eq&4.2) and(4.3), and including the We believe it may be helpful to consider these more general

o 1
Nsi=17ai¢ai ~ 1 aidaplsi T 5

additional odd generators: models, since they are so closely related to that for the
RBIM, and use only couplings that appear anyway in the
0 &b &0 RBIM case; however, we emphasize that it may not be pos-
) sible to obtain these models as anisotropic limits of random
G'= £afo €abb—30ap €alp , fermion or network models. When
1Jay8y80  1Jaylyén  1d4y0,05~ 3 0ap . ha=ka, hg=Kg, (6.14
the model is invariant under the whole of osp(22|2n).
0 767 nof g We should note that in principle we can also consider this
_ , 1 generalization in the discrete imaginary time model, and also
G'=| 7aM  7Maf~2%b al : off the NL, where, however, the breaking of the symmetries

would lead to twice as many parameters. The additional pa-
(6.9 rameters would generalize, A\* in Sec. IV A, and there

would be one for each df,, kg, hs, hg, a total of eight
Note that these osp(2+2|2n) superspins contain the origi- parameters in the Hamiltonian. In particular, another model
nal osp(2+ 1|2n) superspinss andG as submatrices. The due to Cho and FishEtfits into this general description, as
odd generators are those containing an odd number of fewe will see in Sec. VII.
mion operator factors, or equivalently an odd number of bo- The Hamiltonian(6.12 contains four parameters, but
son operator factors. With the help of the osp¢22|2n)  since the overall energy scale is unimportant, the phase dia-
superspins, both terms in the Hamiltoni@n9 may be writ- gram can be plotted in terms of the three independent ratios
ten in a unified way: of parameters. We will consider only positive values of all
couplings, though negative values may also give well-
defined models. The phase diagram can then be drawn in a
symmetrical manner in a three-dimensional tetrahedron, as a
portion of projective spacésee Fig. 3. Each face of the
tetrahedron is defined by the vanishing of one of the four
. (6.10 parameters. The opposite vertex is where that parameter goes
to infinity, or equivalently the other three all go to zero.

3oyl 10 1dayl 470 iJayryrB—%éaB

N — h
hil = Iim(strCGi’CGi’ +—) , 6.9
k—0 2

— — h
kstrG;G;,,=Ilim ( strCG/CG/, ,+ >
h—0
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only the k’'s are nonzero, or only thé’s, and we denote
these models K-only” and “h-only.” They intersect the
phase boundaryif there is a unique transition on these
edges at points labeledK and H in Fig. 3 (no confusion
should result from this notationin these models, the reflec-
tion symmetry and the assumption of a single transition im-
plies thatK is ka=kg, andH is ha=hg (and other param-
eters are zeno

The tetrahedral phase diagram also contains the line given
by Eqg. (6.14 where the generalized Hamiltoni#6.12 has
the osp(d+2|2n) symmetry. This line, shown dotted in
Fig. 3, intersects the critical surface at a critical poit
(black doj, where all four couplings are equal. Again, this
point is unique if we assume there is a single transition on
th|S “ne; |t iS kA:kB:hA:hB .

. . . . VII. CHO —FISHER, k-ONLY, AND h-ONLY MODELS
FIG. 3. A possible phase diagram of the generalized Hamil-

tonian (6.12), discussed in detail in the text. In this section we consider a model studied numerically
by Cho and Fisher in Ref. 13. This is a network model,
The edges of the tetrahedron correspond to models witkimilar to the Chalker—Coddington netwdtidescribing the
two vanishing couplings. For example, the vertical edge coninteger quantum Hall transition, but with only real matrices,
necting the verticeh =~ andkg=« represents the Hamil- and was intended to represent the RBIM problem. We show
tonian (4.9 for the RBIM on the NL[to avoid confusion, that the Ising model can be represented exactly as a network
recall that the whole discussion is a generalization of the NLmodel, and that the Cho—Fisher model does not represent the
since all the models have the larger osp¢21|2n) SUSY]. RBIM. Instead, it can be mapped to some of the generalized
There is another such line represented by the horizontal eddgdéamiltonians without enhanced SUSY, introduced in Sec.
connecting the verticdsg = andk,=«. These two Hamil-  VI.
tonians are related by a reflection through a lattice site. Such The Cho—Fisher model is a network model, intended to
an operation is thus a symmetry of the whole diagram, whictcapture the universal aspects of the pdihin the RBIM,
interchange#\ with B. The lineky,=kg, hay=hg is invariant ~ which can be viewed as a generalization of the 1D model
under this operation, and the operation acts as a 180° rotaliscussed in Sec. V. It was constructed as a generalization of
tion about this line. On each NL, there is a multicritical point the model whose action is given in E(.7), in which the
N and its imageN’. two components of the fermion are replaced by any number
The edges where both nonzero couplings are on the san® sites in a 1D chain, with random nearest-neighbor hopping
sublattice of bondse.g.,A) represent the two extreme casesthat generalizes theY term in Eq.(5.7), and, in general,
of fully dimerized chains, which have a gap in their energydifferent parameter valudg, andD on alternate bonds in the
spectrum. By analogy with other antiferromagneitper- chain. Then use of replicas or SUSY to perform the disorder
)spin chain models, we expect that the regions adjacent taverage leads to a generalization of the quan(superyspin
these lines are also gapped phases. There must be at least df@miltonianH,+H ,, Eqg.(5.2) in Sec. V(we will disregard
phase transition between these two extremes. One way to skere the regularizing terrdl ), in which the same form of
this is to consider a chain with open ends, and an even nungoupling appears for each pair of nearest neighbors, but with
ber of split sites. In one phase the dimers extend all the wathe coefficient ofH, taking two valuesk, k' on alternate
to the ends of the chain, in the other a single superspin is leftonds, and similarly foi, A'. We emphasize that at this
unbonded with a neighbor at each end. This corresponds tostage we are using the unconstrained representation of the
chiral edge degree of freedom in the 2D lattice model. Aspace of states of the chain. Cho and Fisher specialized to the
phase transition must occur to change the number of suatasek=k’ (i.e., node independent disorder strengtand
boundary spins or edge channels, assuming these survive affent back from their time-continuum model to a discrete-
the edges of the tetrahedron. We will assume that, as exime (network model, similar to that in Ref. 14, in order to
pected on the NL in the RBIM, there is a single transitionperform numerical calculations. They claimed that their net-
between the two phases. Then there must be a phaserork model has a multicritical point in its phase diagram
boundary surface between those two edges, indicated scheith critical properties remarkably similar to those of the
matically (since its exact position is unknoywhy the shaded multicritical point on the NL. In particular, the critical expo-
surface in Fig. 3. The pointsl and N’ are two vertices of nents along the two scaling axes near the multicritical point
this rhomboidal surface, which also contains the line of reawere found to be fairly close numerically to the ones known
flection symmetry. However, we note that an intermediatefor the pointN in the RBIM from the high-temperature ex-
phase, in place of some portion of the critical surface, is alspansion of Singh and Adléf. Also, simulation in Cho’s
possible, though this is not expected on the NL in the RBIM.thesig® of a network model that corresponds precisely to the
The two other edges of the tetrahedron are where eitheRBIM (as we will explain gave similar values. Now we
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a B
- »

Thus in our casew= 6=coshd and B=y=sinh6. Using
only one species of fermions, and dropping the bosons in Eq.
(2) of Ref. 37 since we will not be averaging here, we re-
place f1 in Ref. 37 byf, f, by f’ (wheref and f’ obey
canonical anticommutation relationand obtain

V=exqtanho(f'f'+f 1f)]:(coshe)™*"". (7.3

Here the colons-:- -: indicate normal ordering with destruc-
tion operators to the right. Then, after making the particle—

 hole transformatiorf'=1', we can prove the identity

FIG. 4. Relation of the Ising model and the network mode
Ising spins are located at the open circles, and bonds are shown T
dotted. Solid lines with arrows form the “medial graph,” on which V=e (7.4
the network model is defined. Examples of nodes on each of thBy verifying that all matrix elements of the two expressions

two sublattices, correspc_)ndlng to tr_]e horizontal and \_/ertlcal t_)on_dsare equal. But this now has the form of the fermionic repre-
are labeledA, B, respectively. In this paper, we consider periodic

boundary conditions in the vertical direction, and free in the hori-ngatlon of the squareq Ising modge., .n_l)’ as in Egs.
zontal, as shown here. (2.32 and (4.13 .(dropplng'the bosons in the latieup to _
constant factors in the vertical case. This means that the split
sites on a single row correspond to one row of links of the
wish to point out that it is possible to relate network modelspetwork. The relation of the original Ising lattice and the
more directly to the transfer-matrix formulation for fermions, network model is as shown in Fig. 4; in particular, the two
as in the Ising model. First we describe the network modelsgypattices of noded and B correspond to horizontal and
A portion of the network is shown in Fig. 4, where the solid yertical bonds, respectively. The relationship of second-
lines with arrows are where the particles propagate. The paguantized transfer matrices holds true for arbitrary values of
ticles propagate in discrete time, at each time step moving t9 at each node, and also remains true when bosonic partners
the next link in the “forward” direction shown by the ar- zre introduced in preparation for averaging.
rows, and therefore turning either left or right at each time.  The important corollary to this is that for the transfer ma-
The evolution is described by a unitary S-matrix which givestrices of the sort appropriate for the horizontal botldbeled
the amplitudes for turning either right or left at each ndtle. A in Fig. 4, we havé® 2K= 0. The Cho—Fisher network
This can be replaced by a one-particle transfer_matrix, whichnodel takes the parametérat the nodes to have indepen-
adds one row of nodes to the system, evolving the wavgient random signs. Hence it is precisely equivalent to the use
function of the particle upwards in the figure. In the Cho—f transfer matrice$2.9) and (2.10, with the binary distri-
Fisher model, the one-particle transfer matrix for one nodegytion of the type(1.2) for both the horizontal couplings

has the form Kii+x and the duaRi,iﬂ‘, to the vertical couplings. Note that
the Cho—Fisher model is not in fact isotropic, even when the
coshd sinhé (magnitudes of the real parts of thH€’s and the probabilities
:( ) (7.1)  pon the horizontal and vertical links are the same, which is
what we termed isotropic above; this is because of the way
the random signs are introduced. Another popular parametri-
The parameter for each node is random, taking values zation for the network models uses the S-matrix at each
+|¢| with probabilities £ p, p, independently. Also, the node’* where the S-matrix is a real orthogonal matrix in the
magnitudes of¢ can be staggered, taking different valuesPresent case, with one of its off-diagonal matrix elements
|6, | 65| on the two sublattices of nodes labelsdB in Fig.  (Say, the amplitude for turning righdenotedt=sin¢. In
4. The so-called isotropic case is where &#iafsint6g|=1. this case_the equwalen_ce to the Ising model squared is
This leaves a one-parameter family of models; in the originaf@nh Z=sin¢ for the horizontal SOUP“”QS-
network modet* a transition occurred whef9,|=|6g|, the Since negative dual coupling$ correspond to complex
“self-dual” point. Ising couplingsK, the Cho—Fisher model does not faithfully
To exhibit a relation with the Ising model transfer matri- reproduce the RBIM with+K couplings. Instead, in repli-
ces we use a second-quantized formulation of the network agated fermion language, both types of bond are represented
a noninteracting fermion field theory. The evolution in the after averaging by transfer matrices of the horizontal type.
imaginary-time(vertical) direction is described by a transfer One might imagine that this is theonly model, with param-
matrix constructed from the one-particle one. We can writeetersh 5, Ag included, so that the osp2-1|2n) SUSY is
this by drawing on earlier work’ Though the latter was on a present whem=\'=1. But in fact, carefully following our
different model, the basic E@2) in that work is applicable mapping leads to different forms for the two bondsB. It
for any transfer matrix, with matrix elements is necessary once again to use the fin&l)(representation,

sinh® cosheo
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N Under the RG, the osp(®+ 2|2n)-invariant model must
flow to a critical quantum field theorgpresumably, a con-
formal field theory which also has the larger SUSY. Other
models, represented by other points in Fig. 5, sudd,a§ H
may flow to some other fixed point theories of lower
) [osp(2h+1|2n)] SUSY, and it is of course the fate Mfthat
concerns us in the RBIM model problem. If we must make a
guess as to the structure of the flows and fixed points, the
simplest guess is the one that involves the fewest fixed
points. Since there must be a fixed point theory with
K 0 H osp(2h+2|2n) SUSY, the simplest guess is then that the
FIG. 5. The critical surface of the generalized Hamiltonian afterWho.le Crm.cal surfacg ﬂO\.NS to this fixed point. Thls IS Sche_
reduction using symmetry. The arrows indicate our suggested Rénat'ca”y '”,USt_rated in Fig. 5 by the arrows, Wh'(,:h are 'r"
flows to a fixed-point theory with the same larger SUSY as thetended to |_nd|cate that all models flow to the fixed point
corresponding t® (note that the models &, K, H, andO
are not themselves fixed points of the RE correct, this

and to pass to it directly from the unconstrained representavould imply that the critical exponents are the same at all

tion. We find that, while the bonds corresponding to the hori0ints in the critical surface shown in Figs. 3 or 5. In par-
zontal bonds in the Ising model involve the real fermionsticular,N, K, andH would have the same exponents. We can

§Oi s 70i » in the k.Coup”ng terms as in Equq’ for the also imagine other scenarios in Wh|bh K, andH flow to a

vertical bonds those fermion operators are replacedgpy common fixed point, or to different ones, that do not have
7). For A or \'=1, these terms are invariant under anosp(m+2|2n) .SUSY. It is certainly possible thgbne or
osp(+1]2n) SUSY, but these are distinct osp(2 both) perturbations away_frorﬁ) on the surface ;hown are
+1/2n) sub-superalgebras of osp(22|2n) in the two relevant; we are suggesting that they are both irrelevant. In

cases, and so the Hamiltonian does not possess a glot}ﬁ absence of any understanding of the conformal field
i t

osp(2h+1|2n) SUSY [though there is of course still eory of the osp(@+2|2n) or other fixed points _in this
osp(2n|2n)]. These models therefore lie elsewhere in ourSyStem, we cannot prove or disprove our suggestion. There

space of fully generalized Hamiltonians witin general are, however, Oftlrl]%r. systergsl in which an analogous effect
only osp([2n) SUSY. occurs, as we will discuss below.

We note here that by rotating the Cho—Fisher network bycorl;lgsw (‘)":%'Tg?ﬁgc: th;gqgl'gﬁ:rnz'g;nn% rzﬁgellz tﬁ:tesr;?;rlg._
90° we obtain after averagingising the" representation tions ir? the same unK/eraFI)iIt clasls o'r classes uFirst v\v/e utilizeI
a model which resembles theonly model, but again has Y '

different osp(21+1/2n) SUSYs for the two types of bond a standard relation between antiferromagnetic spin chains

Because taking the anisotropic limit usually does not aﬁecf’md nonlinear sigma modefsee Ref. 38 for a fairly general

the universality class of the critical phenomena, the resultin§scuss"o')1 We define an antiferromagnetisupen)spin
a

spin chain model should have the same critical phenomen hain as hgvmg an wredumt:le represgn;anon at each site,
as the one described above for the Cho—Fisher model. ternating between sonieay lowest-weight representation
R and its dual, sayr. The Hamiltonian should be something
close to the Heisenberg form which is the invariant bilinear
form in the generators of the symmetry algebra, with the
In this section we first speculate that a single fixed pointantiferromagnetic coupling that for a single pair of spins
or universality class controls much of the phase boundary iteads to the singlet ground stajgossible because we chose
the tetrahedral phase diagram. Then we discuss the nonlinetne dual representationg’hen the correspondence states that
sigma models that are related to our spin chains, and calcthere is a nonlinear sigma model with a certain tatgaper-
late, at weak coupling, the RG beta functions for the cou-manifold, which can be obtained from the representai®on
pling constants. The results support the hypothesis of a flowhe manifold is the same coset space that appears as the
towards the higher SUSY as at po@dtin the phase diagram. coadjoint orbit ofR, or in coherent-state path integral con-
Finally, we discuss the nonlinear sigrtend relatedmodels  structions ofR. Put simply, this is the manifold swept out by
for the more general, lower SUYsp(n|2n)], or class D, acting on either a lowest- or highest-weight Rfwith all
random fermion problems. possible(superjgroup elements. The long-wavelength action
For the generalized Hamiltonian with osmp(2 1|2n) of the nonlinear sigma model in#11 dimensions contains
SUSY we arguedon the assumption that there is a single only terms allowed by symmetry with two derivatives. These
transition surfacethat the phase boundary is a rhombus, andcomprise the usual “kinetic” type terms, and also possible “
further there is a reflection symmetry in the superspin chaing-terms” (this is not the same parametémwe used in Sec.
which, on this surface, acts as a reflection. Then the phaséll). The derivation is controlled by considering a sequence
boundary is a triangle, with points, N, H at the vertices, as of representationR with the lowest weight going to infinity
shown in Fig. 5. The poin©O, at which the model has the in the weight space, like the size of the spin in(8)JUgoing
larger SUSY algebra osp(2+2|2n), is now at the middle of to infinity. Then the reciprocals of the kinetic couplings have
one side of the triangle. magnitudes proportional to the lowest weight, so the non-

model atO.

VIIl. FIXED POINTS AND NONLINEAR SIGMA MODELS
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linear sigma model is weakly coupled and meaningful in theneed not hold. In fact, in the sigma model, the same symme-
semiclassical limit. Also, in the absence of staggering of thdry considerations imply that each of the two pieces of the
couplings in the spin chaim is proportional to the lowest kinetic term can be further divided into two terms, which are
weight with a coefficientw in a suitable normalization the second derivatives in the two orthogonal directions in the
(which is such that the bulk physics is periodic when ¢ 2D space, and if Lorentz invariance is not required, all the
+2m). A 6 term exists and is nontrivial whenever the sec-terms can have different coefficients. That is, a different ve-
ond homotopy groupr, of the target manifold is nontrivial. locity can apply to the two kinds of spin waves in the spin
More generally, ad-term involves a two-form on the target chaini the two kinds of spin waves correspond to the de-
manifold (i.e., a magnetic field for a charged particle moving composition of the small fluctuations around the perturbative
on the manifold that is invariant under the symmetry, and vacuum into two irreducible representations of the symmetry
this always exists in this construction because it is part of th@roup U{) [or U(n|n)] (see Appendix € Since the overall
coherent-state construction of the representa®aiso. Non-  energy scale, or one velocity, is a redundant parameter, this
compact factors in the manifold are topologically trivial, but leaves one additional parameter, the ratio of velocities, as
the term described always produces boundary effects relategquired. Note, however, that if we instead consider the con-
to a boundary spin or edge staf@sThe nonlinear sigma tinuum limit of an isotropic network model, such as the
model that results from this correspondence in many casd3BIM, only one velocity can occur. Therefore we would
has a phase transition ét 7, when the target manifold has €expect that the universality classes of the transitions would
nontrivial . be isotropic and have a unique velocity.

In our case, the target manifold for our general models on Next, it is natural to raise the question of the RG flow of
the NL would be, for fermionic replicas, SO 1)/U(n),  the two couplings in the osp(2-1|2n)-invariant nonlinear
or in the SUSY formalism, OSp¢2+1|2n)/U(n|n). The  sigma models. At least in perturbation theory the correspond-
precise meanings of these coset spaces should be definedia@ beta functions that describe such a flow are the same as
the orbits of our spinor®k. The group in the denominator those for the models with ordinary target manifolds SO(2
arises in each case as the invariance group of the lowest1)/U(n), with n—0. In Appendix C we have computed
weight state. In the SUSY case, hJ() corresponds to the the beta functions to one-loop order, neglecting the possibil-
superalgebra gi(n) which leaves the vacuum at each split ity of more than one velocityin some analogous situations,
site invariant, and the notation indicates that the ordinarjhe ratio of velocities has been shown to renormalize to
group it contains is the compact form, m)(xU(n). The  OnNe, 42 and we expect the same to occur here, as also argued
manifold underlying the supermanifold is thus S@(2 in the last paragraphThe metric on the target manifold is
+1)/U(n) X Sp(2n,R)/U(n), where the latter factor is non- Parametrized by two parameters, sgy and »,, which ap-
compact. Thesésuper) spaces are homogeneous spaces, buear linearly in the metric, and the inverses of these param-
not symmetri(superjspaces. This implies that, in a general eters are the couplings which are small at weak coupling,
nonlinear sigma model for these target manifolds, there igvhere perturbation theory is valid. The perturbation expan-
more than one coupling in the kinetic terfifsn fact, there  sion has 1#;, 1/5, for each propagatory; or 7, for each
are two (see Appendix € The kinetic term is constructed interaction vertex, so naively one ends up with a perturbation
from the metric on the target manifold, and this metric is notexpansion in, say, %, with each term containing powers,
unique, up to a constant factor, unless the manifold is a symPositive or negative, of the ratio af, to 7,. In fact, only
metric space. Otherwise it is a sum of two or more pieceshon-negative powers of this ratio appear in the beta func-
However, as manifold$without a choice of metri; these tions; see Appendix C. The net pow@ounted with signs
spaces are the same as S®¢2)/U(n+1) [respectively of 77 V’s and 7, s corresponds to the number of loops in
OSp(n+2|2n)/U(n+1|n)] (for the former, this is dis- the Feynman diagrams, as usual. For convenience we will
cussed in Ref. 41 This is connected with the fact that, as use the parameters
graded vector spaceR,is the same as the representatiyn
The latter manifolds are symmetrisuperjspaces, and there 1 1
is a unigue kinetic coupling. The two couplings in the former M=y Mg
point of view are related to theandh terms. Wherk andh 9 9
on each nearest-neighbor bond are equal, the higher symme

try implies that the two coupling constants in the kinetic
terms are such that the osp(2 2|2n) invariant kinetic term +2|2n) SUSY.[or so(+2) in the repllqa versiop Be-
cause of the higher symmetry at1, that line should flow

is obtained. At the same timé@,can be varied by staggering ;
the couplings. Counting parameters, there are four in the spi nto |Fself .under RG..Then our one-loop result for the RG
ows is (I is the logarithm of the length scale, as ugual

chain as we have seen, one of which is the overall energ
scale which can be ignored, and also the magnitude of the

lowest weight. The latter controls the magnitude of the ki- 9 55 3

netic coupling constant. Ignoring that, the nonlinear sigma a—Zg (x*=1)+0(g°), 8.2
model has in general one ratio of kinetic couplings, @hd

one parameter less than in the spin chain. However, so far in

the nonlinear sigma model we have assumed Lorentz invari- _ . 2

ance, whereas in the continuum limit of the spin chain this dl 2gx(x=1)+0(g%). 83

(8.1

In this parametrizationx=1 is the point with osp(@
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g“ and atd= 7 (mod 27r). Hence we expect that the spin chain
at point O has the same critical theory as the osp(2
+2|2n)-invariant sigma model. It is also quite plausible,
based on the behavior of the flows, that at least models that
map onto the nonlinear sigma models with ospg2L|2n)
SUSY also flow to the same critical theory, whes 7w (mod
2qr). It is still possible that in our generalized spin chains,
points other thai® do not flow to the osp(2+ 2|2n) critical
theory, but it is plausible that there is a nontrivial neighbor-
hood of O on the critical surface that does. This possibility
may seem more plausible if we point out that in some other

- caseqwithout SUSY), a similar phenomenon is believed to

0 1 X occur®? It is of course less clear that distant points suchias
K, andH flow to the same theory. Since the spin chain mod-
FIG. 6. Sketch of perturbative renormalization group flows for els typically start at bare couplings of order 1, we can almost
the couplingsg, x, including two-loop effects, for the nonlinear rule out any flow to the weak-coupling regime of the
sigma model with target space OSp(21|2n)/U(n|n), including  osp(2h+ 1|2n) or osp(+ 2|2n)-invariant nonlinear sigma

a typical flow line forg#0, x#0, 1. models (analogous to that in the lower-SUSY osp(2n)

nonlinear sigma mod¥-2} because that regime is not stable

At x=1, the one-loop result is zero, so this line is a line ofunder the RG. A flow to weak coupling is only possible by

fixed points, to this order. This agrees with the 0ne-|00ptuning a parameter, corresponding to puttk¥g0 org=0 in

result for the osp(@+ 2|2n)-invariant model; the beta func- the weak-coupling analysis. A natural guess is that the
tion to two-loop order, obtained as the- 1 limit of that for  h-only models might satisfy one of these conditions. This
the SO(21)/U(n) model[see Eq(C10)], is might even occur for a range of values of the staggering,
corresponding to changing away from# (mod 27) in the
nonlinear sigma model, since the valuetis irrelevant(or
formally, exactly marginalat weak coupling. We have been

unable to see why any of these models should satisfy such a

Thus it vanishes to one-loop order, but not to two-loop ordercondition exactly. However, it may be that one of them lies

At two-loop order,g flows towards strong couplingee Fig.  close tox=0. In that case, the RG flows take them close to

6). The one-loop flows fok# 1 takex closer to 1, andex-  g=0, and since the flows to strong coupling pass near

cept forx=0) the flows starting ag#0 never reacly=0. =1, g=0, where the first nonzero term is at two loops, the

Instead they flow to the regior=1 where the one-loop crossover length could be very large. That is, very large sys-

terms vanish, and the two-loop term cannot be neglectedems would be needed to see the true asymptotic critical

Since the two-loop term imlg/dl at x=1 is positive, all  behavior. Another possibility is that these models lie at bare

flows from weak coupling eventually go towards large  valuesx>1, g very small, which again yields a large cross-

with x approaching 1, except wher=0. On the latter liney  over length. Since we have a two-parameter space of critical
flows towards weak coupling. As discussed in Appendix Cmodels, we may expect to be able to tuper x small some-

(but here in SUSY languageon this line the larger SUSY where in this space. However, arguments presented

has spontaneously broken, and the system is described by tegewher# show that the RBIM, and hence the poiNt

OSp(2n|2n)/U(n|n) nonlinear sigma modégthere is an ad-  cannot flow to the weak coupling region.

ditional global degree of freedom, described by a point on  The leading alternative scenario seems to be that

OSp(n+1|2n)/OSp(|2n), a “supersphere,” on which although most points in the phase diagram flow to the

the larger SUSY algebra agtsFlows that begin at small, osp(2n+2|2n)-invariant fixed point, the multicritical point

nonzerox eventually go to strong coupling. This generatesN on the true NL may be a distinct universality class,
very large crossover lengths, due to the very slow flows neagnd the perturbation off this point in the phase diagram
x=1, g=0, where the first nonzero term is at two-loop or- may be a relevant one that causes a flow to the asp(2
der; the length scale at whighbecomes of order one is of -+ 2|2n)-invariant fixed point. Clearly, we cannot answer
order expl/(2goXo)+ 1/(8g5x3)], in units of a short dis- here the question of which of these scenarios is correct. But
tance cutoff, whergy andx, are the bare values ofandx,  the self-duality apparent in the osp(2 2|2n)-invariant

and it was assumed thap and gox, are both smal(see  model at its critical point, as manifested by the reflection

Appendix Q. symmetry about a split site in the chain, and the significant

As usual, the perturbative results do not dependobut  lack of it in the RBIM, which instead has the special “sym-
such dependence can be expected nonperturbatively. For theetry” property that the Ising couplings are all réalsug-
sigma model with osp(i2+2|2n) SUSY, and forx#0, the  gests that this alternative scenario may be correct.

flows go towards strong coupling, and it is highly plausible, There is one further point to make about the spin chains

based on our experience with transitidssch as the integer and nonlinear sigma models that applies off the NL. In that

quantum Hall transition with such behavior of the cou- case the SUSY is broken to osp(2n). It will be conve-
plings, that there is a unique fixed point at strong coupting nient here to make use of the replica formalism, in which the

dg
rTi 4g°+0O(g%). (8.9
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language and notation are simpler and standard, but the idedghases,” but that the discretdsing-like) degree of free-
extend also to the supergroups, since the additional bosomm®m, which labels which phaseomponent of the target
and Sp(a,R) symmetry, and the odd generators, do notmanifold, or irreducible spinor of SO(J] a point in 2D
change the form of the argument. In the higher SUSY Hamilspace is in, can be replaced by additional continuous vari-
tonians, including that for the NL, the global symmetry ables. These continuous degrees of freedom turn the model
group can be seen to be S@(21), and making any of the into a nonlinear sigma model with symmetry S@(21) [or

\ parameters 1 reduces the symmetry group to @()2not ~ SUSY osp(21+1|2n)] broken by certain terms in the ac-
just SO(2) [there seems to be no accepted notation in thdion, or els_e a strong-coupling version of th|f5, at least near
supergroup case for the distinction analogous to that betwedfl€ NL- This may be of future use in uncovering the physics
O(N) and SON), nor for that between S@) and its cov- of these general class D problems, not only the RBIM. The

. : . : replicated spin chains for O(@ at nonzera have not been
ering group Spinkl), which we ignore here Furthermore, considered previouslyexcept for then=1 case, the usual

the representation®, R are reducible under SO(J; they  xxz model), and are also of interest in their own right. Note
split into two nonisomorphic irreducible spinors, each of di-fina”y that in our earlier discussion of SOf2 1)- and
mension 2”*. These two spinors correspond to even andso(2n+ 2)-invariant models, the representations of the
odd numbers of fermions in the unconstrain_ed representatiogtated groups were irreducible, the corresponding target
(see Appendix B However, under O(8), R, R do not split;  manifolds were connected, and no analogous domain walls
O(2n) has irreducible representations of dimensidnthis  were possible.
is related to the fact that O is not a direct product of
SO(2n) with Z,, unlike the case of O(2+1)]. Thus we
will still call the models spin chains, since they involve irre-
ducible representations of their symmetry group, (2 In this paper we applied the supersymmeti§USY)
When we consider the corresponding nonlinear sigmanethod to analyze an Ising model with a binary distribution
models, via the usual correspondence, we naturally considesf random bondgRBIM). The Nishimori line(NL) on the
the orbit of the lowest weight iR under O(2). Due to the  phase diagram of the model is a line with the enhanced
disconnected nature of O(2, as opposed to SO, this  SUSY osp(2+1|2n). On the rest of the phase diagram the
orbit O(2n)/U(n) falls into two disconnected pieces, which model has only osp(#2n) SUSY. The enhanced SUSY on
are both of the form SO({®/U(n) as manifolds. Similar the Nishimori line allows us to rederive the identitigis4)
statements hold for the supermanifolds in the SUSY formalamong various correlation functions. More generally, we
ism. have shown that the transition on the NL has very strong
In a recent papét on the class D of random matrix prob- analogies with the integer quantum Hall effect transition, and
lems, which is the same symmetry class as the RBIM ferother random fermion problems in 2D, such as the spin quan-
mion problem we are considering, it was emphasized that theum Hall transition, which can also be modeled (syper-
target manifold of the nonlinear sigma model that describegspin chains with alternating dual irreducible representations
it is O(2n)/U(n) in the replica formalism, which has two at the sites, and staggered couplings. The conformal field
connected components, corresponding to those of the groupeories of the critical points are mostly unknown at present.
O(2n) [or the corresponding supergroup OSp(2n)]. This ~ We emphasize that, in view of our results and those of Ref.
opens a possibility not usually considered for nonlinear7, the fixed-point conformal field theory of the multicritical
sigma models, that the configurations include fluctuationgoint in the RBIM with a generic distribution for the bonds
(i.e., domaing where the sigma model field is on different (not only those satisfying the Nishimori conditiomust
components of the target manifold. This implies that addi-have at least osp(® 1|2n) SUSY, and this is a require-
tional parameters, beyond the usual couplings @ke& for  ment for any future proposal for a conformal field theory of
continuous deformations of the field, must appear in thahe multicritical point within the SUSY formulation. We
model to describe the domain walls; for example, a fugacityhave also demonstrated that such higher SUSY points occur
per unit length of domain wall. When the fugacity is small, in other problems, such as a 1D model, and probably else-
there are essentially no domain walls, and the model wouldvhere. After analyzing the phase diagram of generalized
reduce to that with target space S@j2U(n). Hamiltonians with the same enhanced SUSY as the NL, we
In our approach, we have arrived at spaces of states thguggested that the transitions in many or all of these more
correspond to both parts of the target manifold, and furthegeneral 2D models are in a universality class with a still
the spin chain Hamiltonians contain in general eight paramtarger SUSY, osp(2+ 2|2n). This hypothesis is supported
eters. Therefore our spin chain models describe a stronge some extent by the weak-coupling RG analysis of the
coupling version of the physics of the nonlinear sigma modehonlinear sigma models that correspond to the spin chains.
with domain walls included. These models include the pure Fitting our results into the framework of random matrix
Ising model, and weak-disorder, limits. Note that the latterensembles for such problems is an outstanding challenge. It
are not accessible simply as the strong couplinig,ee, limit is interesting that the nonlinear-sigma—model target mani-
of the SO(D)/U(n) nonlinear sigma moddlcompare Ref.  fold we obtain on the NL igexcept forx=0) not in the list
19). of those known to correspond to random matrix ensembles in
What we have found in this paper is that the states in th&ef. 17. Possibly there is another random matrix theory with
SUSY description can be viewed not only as domains of twaspecial symmetries as on the NL.

IX. CONCLUSION
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There are of course a number of other outstanding prob- Let us see how the transfer matrices are modified when
lems, even for the RBIM. We have hardly touched the regiorwe shift the couplings byiw/2. Start with the horizontal
below the NL, which remains mysterious. The fixed point attransfer matrix assuming that the couplings are modified for
K=o (zero temperatujeand p=p. is of particular interest. 2m-—1 fermionic replicas:

In this region the system can be viewed as a superspin chain,

since it is a chain of irreducible representations of its super- ~ T ant
i TMed=exp 2K, i i Xsitis > 2%y,
group, OSp(2|2n), to which the larger SUSY, OSp(2 i € LixsiTl o 2y SXai
+1|2n), is broken by superspin anisotropy terms, similar to
the XXZ model. 2m-1
Note addedAnother numerical work on the muilticritical =iz i1 I (2% (A4)

point of the= K RBIM has appeared very recenfly. et

Upon averaging over the randomness this becomes
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[(sS:m?H=sTrTv I I1 (2%, (46
APPENDIX A: EQUALITIES FOR CORRELATORS L
i _ _ ) whereV=[U].

We will show in this appendix that the enhanced Super-  ag pefore for single transfer matrices we can rewrite the

symmetry present on the Nishimori line in our formulation oq¢ expression in terms of operators, acting in the spéce

allows us to reproduce the results of the type of 8B04). ~;5ing the substitution rules obtained above in Sec. IIi:
We use the formulation of the correlators in the Ising

model in terms of paths and modified partition functi6h&> i+r-1 2m-1

Namely, for a correlator of two spirtS‘,l andSi2 we join the [(SSi; 2™ H=STrT.V' H (2XoK) H (2X o) -

pointsi, andi, by an(arbitrary path on the lattice, shift all K= ot

the coupling constants by i 77/2 along the path, and calcu- (A7)
late the modified partition functiod™? for the system with Now comes the crucial point. On the Nishimori line the ze-

the modified couplings. Then the correlator is roth fermion is supersymmetric with the rest of the replicas,
so we can replace akg, in the last expression by, say,
A Xom,k
; =(—I , Al ’
<Sl$2> ( ) z ( ) i+r—1 2m
A\2m—17_ ’
wherel is the length of the path. [(S§Si+r)™™ 1=STrT.v g Hl (2Xa)- (AB)

In the quantum formalism the vertical coordinate on the

original square lattice plays the role of imaginary timeand ~ Then we can safely go back to the original sp#¢én which

the partition function is given by the supertrace of an imagi-the last expression is easily identified as

nary time ordered evolution operattl, composed of the om

transfer matriced,; and T,; for all the bonds in the model. [(SSi+0™], (A9)

Because of the supersymmetry the partition function equals J hich proves the relatiofiL.4) for this particular case.

by constructiorsee Eq/(2.26 and following for any real- Now see how vertical transfer matrices are modified.

ization of the random couplings: When we modify the coupling for the fermionic replica 1 on
a vertical bond, the vertical transfer matrix for this replica is

Zsusy=STrT.U=1. (A2) " modified from
When calculating the correlatgAl) we have to modify the Ko R
) 3 . eii+tye™iity -
couplings in the transfer matrices along the path only for one exp(— 2K, . ony) (A10)
particular replica, say, the first fermionic one. Then the cor- coshK ;. ; Wiy
relator will be
to
(S,S,)=(—i)'STrT,um, (A3) e
e i,itya™ MMty 2R )
L . _ . | ———=—eX iy

Similarly, when calculatingS; S;))*™~*, we have to modify coshi, ;5 A2Ki i3
the couplings for tn— 1 different replicas, in which case we o ~
must have a>2m—1. =2i sinhK; i, ;exp(2K ;1 yn;) (A11)
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(since whenK is shifted byi/2, the dual couplingk jtr-1 2m-1

changes sign Adding the rest of fermionic and bosonic rep-  [(SS+r)*™ 1]=STrT,V’ H Yoi(7) Hl Yai(7).
licas, we obtain ! “ (A21)

T{MOD=j (tanhK; ;.5)Nsim 21, (A12)  On the Nishimori line due to the enhanced supersymmetry
(and the fact that * = K*) the factory, may be replaced by
Yomi and we again get the equality of the type of Ef4).
The structure appearing in the formulation above for the
K correlators is multiplicative in the bonds which are modified
mod)__ -k RN~ 2n, -1 along a path connecting the spins. Then it is straightforward
Tl(’i =i (tanhK; 45" ;1( . (AL3) to generalize the arguments of this appendix to the case of

. . L arbitrary spin correlators.
To average this expression, we have to distinguish the ysp

cases of odd and evda For an everk=2m we get

If we modify the coupling for replicas 1 through we get
similarly

APPENDIX B: REPRESENTATIONS R AND R

2m

- - In this appendix we review the construction of the repre-
T{ro9=2m(tanhK) s~ 2, @11 p+ p(—1)Ns) > i

sentationsk and R of osp(32) in terms of unconstrained

om fermions and bosonor details see Ref. 235We also dis-
=j2mT, H Vi (A14) cuss how to form a graded tensor product of such represen-
a1 T tations and obtain the invariant product of the supers@ns
where we introduced andG. _
To construct the representati®we need only one com-
Vo= @2K* (2n4i—1) (A15) plex bosorb and one complex fermiohand their conjugates
oo o b', fT, with usual commutation relations. In terms of these
The corresponding operator i’ is the generators of osp[3) are constructed as follows. For an
om orthonormal basis of the Cartan subalgebra we use
’ d)__; ’
T )_'zmTl‘gl Yai- (A1 him b+ 1], hym | 1 B1
. . 1 \E 21/ 2 \/E 2 ( )
Then for the correlator of two spins in the same column we
get In the distinguished system of simple roots of og@(3one
j+r-1 2m root 4 is odd (“fermionic” ), and one roota, iS even

(“bosonic”). The generators corresponding to these roots
(and their negativesare

[(SSi+5)?™M=STrT,V HJ a[ll Yai(7)

jrr-1 2m e, =b'f, e_,=f'b,

=sTrT,v' [T II yu(n. (A17) ! !
=] a=1

: e, =(—1)MT, e, =f(-1)" (B2)

For odd numbek=2m—1 we obtain instead upon aver-

aging The other roots arers= a1+ @,, ay4=a;+2a, (both odd,

as=2a,+2a, (even, and their negatives. The correspond-
2m-1 ing generators are

(mod)_:2m—1 Ngi— z (2ngi—1)
Ti i (tanhK) ~ easz(_l)nbe’ e_aszb(—l)ﬂf,

_ _ 1 \Ngi+1
X(1=p+p(—Nsith), (A18) e.,=b'f", e, =fb,

The last factor here is different from the similar factor in !
T,;. Now it gives 1 whenNg; is odd, and +2p=e 2" e, =(b"? e, =b% (B3)
when NSi is even. In the spacg; this factor may be written

ase?™* (-1 and Eq.(A18) is replaced by Note that the generators corresponding to the ragtand

a5 contain expression< 1)". This is a “twist” operator for

2m-1 the fermion, which means that it anticommutes witndf .
Tymod=jzm=11r v T1 vy, (A19) ltis necessary to ensure that these generators obeirtie
a=1 )commutation relations. In other words, these choices reflect

the grading appropriate for osg@, instead of that which is

where
natural in the present Fock space. The vacuum for bosons
yoi= e (2noi~1), (A20)  and fermiong0), defined in the usual manner
For the vertical correlator we obtain now b|0)=f|0)=0, (B4)
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&~ BT, &, ——7D

ga :_bzv Efasz _(F")Z (B7)

Here the number db bosons is defined as

FIG. 7. The weights of states iR. The action of the positive o
root generators is shown by arrows. The states are grouped in pairs Np=— b'b. (B8)
which are the doublets under g|() (see text for details

The minus sign in this expression implies thmgtis a non-
is the lowest weight state of the representation. The re- negative integer with eigenstats;)=(ny!) ~3(b")"|0).
maining states are obtained by the action of the raising gerNote that now thex, and @3 generators contain a twist op-
erators, and it is easy to see that they span the whole Foddator for the bosolb, which also ensures the prop@nti-
space ob andf. The weights of the states Rin terms ofny  \commutators.
andny are shown in Fig. 7. We also show in this figure the
organization of the states in doublets under the [dl}isub-
algebra generated by

Now the vacuum0) for f andb defined as

f|0)=b|0)=0 (B9)
E=np+n;, N= %(nb—nf), is the highest weight state of tHe representation, and the
remaining states span the whole Fock spacé afdb. The
F'=e, =b'f, F=e_, =f"b, (B5)  states oRR are now organized in doubleB, of the gl(1j1)
! ! generated by
[see Ref. 46, which contains a detailed discussion of the
irreducible representations of gl(1l).] The doublet of states — e
with E=m is denoted byD,,. E=-m—nr, N=5(nr—np),
From Fig. 7 we can see that the grading of states, consis-
tent with that of the SUSY generators, and such that the e —
vacuum(lowest weight staljeisgeven, is that states are even FTEe%: i, F=e al:f b, (B10)

or odd accordingly as the number of bosons is even or odd. o
This agrees with the choice we made in Sec. Il for other Next we have to combine the representatiBhandR in
reasons. We may also note that the generators withouhe alternating fashion, as in Fig. 2. When we try to do that
strings, which are bilinears in the bosons and fermions, genve immediately realize that the twist operators of individual
erate the osp(i2) subalgebra. The latter algebra is consis-g angR representations are not adequate for their job in the
tent with the natural grading on the Fock space. This is not iRensor product. They should be replaced by “strings,” simi-
contradiction to the above construction because the Focfg, to the ones used in the Jordan—Wigner transformation.
space decomposes into two irreducible “spinor” representapne possible convenient choice of these strings is the follow-
tions of osp(22), which are connected to each other only bYing. For the representatioR, (numbering as in Fig. 2the
the shortest roots..,, e. 3 that are not present in osp@.  tyist operator (1)"i is replaced by

The construction oR is similar. The difference is that we

start with negative norm bosotsandb’ satisfying _ _
So= — 1)tk Nk — 1)"bkT bk B11l
=11 v 11 (-1 (B11)

[b,bT]=-1, (B6)

and another pair of the usual fermionic operatbrand f' Similarly, for R; the operator ¢ 1)" should be replaced by

One possible choice of the generators of 0$pj3n theR

representation is §|=I!_[ (—1)Mw N kH (—1)MoKk* Mok, (B12
<i =1
— 1 — 1 — i — 1 . =
hj=——(bbT+=|, hy=—0|ffl—=], Note that in fac; =3, ;.
V2 2 V2 2 For the purposes of Sec. V we need to consider only one

pair of the antiferromagnetically coupled superspins. In this
e = fT, e_, =f T case theX operator common for both representationsiis
! =(—1)""", First we consider the fully osp(3) invariant
product appearing iH, on the NL. In terms of the root
generators this product is given by
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strGG= —h;h;—hyh,— >, K i(e,e_,+e.e_,),
a>0
(B13)

whereK_ ,=K(e_,,e,) are the values of the Killing form
on the pairse_,,e,. For osp(32) they are

K_oo=-2 K_,=-4, K_,=-4,
1 2 3

K ,=—2, K_,=-—4. (B14)
4 5

With the mentioned expression far this gives
—4strGG=(b")%(b")?+ b2+ 2(b"bT+bb) (717 + 1)
— 2NNy = Np— Np+ 2NgN— Ny =Ny
—(f'fT+ff+b'b'+bb)
=3-J, (B15)

where
J=tTfT+ff+b'b"+bb. (B16)

Note that the termd in Eq. (B15) comes from the roots

+ a, and = a3, andJ? comes from all the remaining roots.

These remaining roots are exactly the roots of ofp)2
Therefore the)? term is the osp([2) invariant product. That

PHYSICAL REVIEW B63 104422

coset space can be reached from the origin by left multipli-
cation, and every element of the tangent space aan be
similarly obtained from the tangent spa@&+ at the origin.
Therefore the metric at any poift is uniquely determined
by that at the originO, where it represents a symmetric bi-
linear form on the vector spa¢gH. In order for this bilinear
form to represent a metric at the origin it must be invariant
under the subgroud (which acts by conjugationTherefore
the metrics on the homogeneous space are in 1-to-1 corre-
spondence withH-invariant symmetric bilinear forms on
GI'H.

For sigma models on general manifol@®t necessarily
homogeneous spadebe two-loop beta function 1§

d7;;(X)
dl

where X' is any system of local coordinates, aRt)m(X)
andR;;(X) are the Riemann and Ricci tensors, respectively,
at the point of the manifold with coordinates

For a homogeneous spaG¥H it is enough to compute
the beta function for the metric at the origih=eH (since
all other points can be reached by left multiplication with
elements ofG acting as isometrigswhere it reads

1
=R;j(X)+ 5 RiamXR(M(X) + -+, (C2)

dny 1
o _Ruts

dl IQlKLMFz.I;LM—’—.."

(C3)

observation allows us to write the general anisotropic prodThis form of the beta function is convenient since it does not

uct as

4 strAGAG=\J—J2 (B17)

APPENDIX C: PERTURBATIVE BETA FUNCTION
FOR SO(2N+1)/U(N)

In this appendix we derive the perturbative beta function
of the weakly coupled nonlinear sigma model on S@(2
+1)/U(n) target space to one-loop order. The underlying

require reference to any parametrization of the coset space.
Rather, the Riemann tensor of the homogenous spa€e,
viewed as a Riemannian space, has a simple expression in
terms of the structure constarfi§, % of the Lie algebrag,

and the metric:

1 ,
Riuig=— Z(fIML_fMLI+fLIM)77MM

X (fakmr = Fmrat fumrak)

ideas for a general sigma model have been discussed exten-

sively by Friedarf/ and we can be brigiimilar calculations

can be found in Ref. 42We then discuss the resulting flows

atn=0.
Consider a general homogeneous space, whereH is

a subgroup of the grou. The neighborhood of points

gHe G/H of the “origin” O=eH (g is an arbitrary ele-

ment, ande is the identity, inG) may be parametrized in

terms of dinG—dimH coordinates X' by writing g
=exp{X'T|} (repeated indices summedHere T, denotes a
basis of the vector spac¥’H spanned by the generators®f
which are not generators dfi (G and H denote the Lie
algebrag The sigma model o65/H is then defined by the
action

s—lde X X'(r)g#x? C1
=5 | A7 ma{X(r)}a, X (r)##X(r), (Cy

+ Z(fJML_fMLJ+fLJM)77MM,
X (fikmr = fumn +fmnk)

+ EfM(fMKL_fKLM+fLMK)+f|anaKL. (CH
where indicesK,L,M, and M’ denote generators ig/'H,
which are lowered and raised by means of the mejricand
its inversen". Indicesa denote generators iK. The Ricci
tensor is obtained, as usual, by contraction,
Ris=7""ReLis - (CH

We now discuss the space of all possib-iavariany
metrics on the homogeneous space, that isHalhvariant
symmetric bilinear forms on the vector spagé. Since the

where r is the coordinate of two-dimensional space. Thelatter transforms in dreal) representation oH (under con-

metric 7,;{X} on the target spac&/H of the sigma model
serves as the coupling consta@nt Every pointP=gH in the

jugation, the bilinear formz,;= »(T,,T;) must, by Schur’s
lemma, be a multiple of the unit matrix on each irreducible
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componen{assuming, for simplicity, that each such compo-andx=1, which we now discuss in turn. Consider the chain
nent occurs only ongeConsider, for example, the homoge- of vector spacesLie algebras u(n) Cso(2n)Cso(2n+1).
neous spaces SQJ/SON-1), the familiar ON) vector As x—0, one sees from E(C7) that the stiffness of the
models. Hergj/H=so(N)/so(N— 1) transforms in théirre-  fluctuations of the sigma mod€lC1) associated with the
ducible vector representation of S®(1) and therefore metric componenty,, that is of those in the space so(2
there is only a one-parameter family of metrics. This is the+1)/so(2n), becomes infinite. Ak=0 these fluctuations in
case for all symmetric spac&Swhose sigma models have the gradientgwith respect ta) of the sigma model field are
therefore only a single coupling constaftite scale of the forbidden, and the only remaining fluctuations are those as-
metric). sociated with the metric componen, that is of those in
The case of interest in this paper B8/H=SO(2n  so(2n)/u(n), together with a degree of freedom on S@(2
+1)/U(n), which is not a symmetric space. It hasveo- +1)/SO() (a sphereS?") which is independent af and
parameter family of metrics, and the corresponding sigmas therefore global. This is related to the structure of
model has therefore two coupling constants. To see this on80(2n+ 1)/U(n), which[because of the chain of subgroups
notes that the vector space sa(21)/u(n) decomposes U(n)CSO(n)CSO(2n+1)] can be viewed as a fiber
(over the real numbersinder the adjoint action of W into  bundle with base space SQ(2 1)/SO(2h)=S", and fiber
two irreducible representations. One of them is of dimensiorsO(2n)/U(n). Thus for each point on the sphe®&", there
n(n—1); the corresponding generators will be denofed is a copy of the space SO U(n) in which the field can
The other is of dimensionr? and the corresponding genera- fluctuate locally. Because of the global degree of freedom on
tors will be denoted’, . These vector spaces may be identi- S, there is still a global SO(®2+1) symmetry. In simple

fied with the cosets of Lie algebras sm(2u(n) and so(z  (€rms, the symmetry is spontaneously broken to )2

+1)/so(2n), respectively. This decomposition correspondsthis does not violate the Hohenberg—Mermin—Wagner theo-

to the chain of subalgebras,n)(Cso(2n)Cso(n+1). The €M which applies for integem>1, because the coupling

two metric components can be specified as follows. Consideq'/_”Z:O' Neglecting the global degree of freedom, the line
first the (“standard”) Cartan—Killing metrick on the entire *=0 now corresponds to the SQ{U(n) sigma model.

Lie algebrag=so(n+1). We choose the basis of genera- (These remarks explain why only non-negative powers of

tors T; such that(T;,T;)= ; (the structure constants with 2PP€ar in the perturbative beta functignghis line is an
indices lowered by this metric are then totally antisymmet-nvariant of the RG flow, and the beta functi@8) reduces

fic). By restriction this is amH-invariant bilinear form on the (0 that of the SO(8)/U(n) sigma model, which to three-

O .
subspace/H, on which it is block-diagonal on the two ir- °0P ordef” is
reducible representation spacesbfThe scales of the metric

on the two blocks represent the two parameters of the metric, % =2(n— 1)92+ 2(n2— 3n+4)g3
say 7,=0 and7,=0, and we can write explicitly dl
3 2 4 5
77|'J: 7]16|’|15‘]‘J1K(T|1,TJ1)+ 7]25|’|25J’J2K(T|2,TJ2). +(3n —14n +35‘]_28)g +O(g ) (Clo)

(C6) Forn>1, g flows to large values.

Note that one may relate the structure constdpys of Eq. At x=1, on the other hand, one can check by direct cal-
(C4), with indices lowered with the metrig,; , to those with ~ culation that the metric in Eq.C6) reduces to that of the
indices lowered with the Killing metri&(T,,T;), which are ~ Symmetric space SO(2+-2)/U(n+1) of higher symmetry.
totally antisymmetric. Therefore the linek=1 must also be an invariant of the RG
The computation of the Ric¢and Riemanntensor of the ~ flow. On this line, the one-loop beta function in EE8)
homogeneous space so(21)/u(n) is tedious but straight- reduces to that of the symmetric space S®¢2)/U(n
forward, using Eqs(C4), (C5), and (C6). In terms of the *1), Eq.(C10 with n—>n+1, as expected. One sees from

f0||owing parametrization of the metric, Eqg. (Cg) that forn>1 both linesx=0 andx=1 are attrac-
tive at weak coupling. The line=(n—1)/n is the separatrix
1 1 between these two regimes.
77125’ 7]2:79, (C7 There is also a limit,;=0, in which fluctuations in
SO(2n)/U(n) are “soft” and can be gauged away; compare
one obtains from Eq(C3) the one-loop beta functions: the discussion in Ref. 42. In this case the model reduces to

the nonlinear sigma model with target space S©(2
+1)/SO()=S?" mentioned earlier. However, this strong-
coupling limit cannot be accessed perturbatively imq1/
1/772
In the replica limitn—0, of interest in this paper, we
+0(g%). (C9  obtain Eq.(8.3. Note that now, in contrast to the case
>1, x=0 is repulsive, and that on the line=0, g flows

‘;_Ig:zgz[x2+<n—1>]+0<g3>, (c8)

dl n—-1

dx { n
T =2(Nn—1)gX(X—1)|1———=X

These equations are valid in the lingit-0 with x fixed. towards weak coupling. Near=0, the one-loop flow lines
The parametex=0 measures the relative strength of theare hyperbolasxg= constant. In the vicinity of the line
two metric components. There are two special cased) =1 the one-loop flow lines are exponentiaty‘g* =exp
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{—2(x—1)}. The one-loop flows are qualitatively different =1/(2gyxo), at whichg is of orderggyxy. Then we use the
depending on the sign oi{-1). Whenx<1 the coupling  two-loop flows atx=1, which should be sufficiently accu-
constaniy decreases upon RG flow until it approaches someate, starting from these values. Integrating 834) we find
asymptoteg=g* atx=1, while forx>1, on the other hand, finally for the crossover that passes close to the two fixed
g increases towardg* andx decreases towards 1, bs:.  points atx=0 andx=1 thatg becomes of order one when
To two-loop order, as discussed in Sec. VIII, the regionthe length scale' is
aroundx=1 flows towards strong coupling. We now con- 5
sider the behavior of the flows, in particular those which start exl 1/(2goxo) + 1A(895xp) 1, (C1y)
with bare values neax=0. Use of the one-loop equations in units of the short distance cuto#° (the numerical factors
(8.3) nearx=0, with bare valuex and gy, with xo and in the exponent should not be taken too literallyhe two-
doXp assumed small, shows that a valuexobf order 1 is loop corrections neax=0 will generate only a factor of a
reached wheh—1, (I, is the logarithm of the short distance power ofg in this length scale. Flows that start>at-1 and
cutoff, the scale at whichxy, gy are defined is |—1, gsmwgweaﬂmMrww&eﬂﬂK%@}
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