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Random-bond Ising model in two dimensions: The Nishimori line and supersymmetry
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We consider a classical random-bond Ising model~RBIM! with binary distribution of6K bonds on the
square lattice at finite temperature. In the phase diagram of this model there is the so-called Nishimori line
which intersects the phase boundary at a multicritical point. It is known that the correlation functions obey
many exact identities on this line. We use a supersymmetry method to treat the disorder. In this approach the
transfer matrices of the model on the Nishimori line have an enhanced supersymmetry osp(2n11u2n), in
contrast to the rest of the phase diagram, where the symmetry is osp(2nu2n) ~wheren is an arbitrary positive
integer!. An anisotropic limit of the model leads to a one-dimensional quantum Hamiltonian describing a chain
of interacting superspins, which are irreducible representations of the osp(2n11u2n) superalgebra. By gen-
eralizing this superspin chain, we embed it into a wider class of models. These include other models that have
been studied previously in one and two dimensions. We suggest that the multicritical behavior in two dimen-
sions of a class of these generalized models~possibly not including the multicritical point in the RBIM itself!
may be governed by a single fixed point, at which the supersymmetry is enhanced still further to osp(2n
12u2n). This suggestion is supported by a calculation of the renormalization-group flows for the correspond-
ing nonlinear sigma models at weak coupling.

DOI: 10.1103/PhysRevB.63.104422 PACS number~s!: 75.10.Nr, 72.15.Rn, 73.43.2f
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I. INTRODUCTION

For many decades Ising models served as the simp
nontrivial models for the description of magnetically order
phases and phase transitions between them. This is true
for pure models and for Ising models with randomness.
particular, in the context of the spin-glass problem1 the rel-
evant Ising models have random bonds of both signs~ferro-
magnetic and antiferromagnetic!. This leads to frustration
and the possibility of spin glass order.

In this paper we consider a classical random-bond Is
model ~RBIM! of Ising spins Si561 on the two-
dimensional~2D! square lattice with the Hamiltonian (b
51/T is the inverse temperature!

bH52(̂
ij &

K ijSiSj , ~1.1!

where the bold indicesi5( i x ,i y) and j5( j x , j y) denote 2D
vectors of integer coordinates of the sites of the lattice,
summation is over distinct nearest-neighbor bonds~i.e.,
pairs!, and the coupling constantsK ij are independent ran
dom variables drawn from the distribution

P@K ij#5~12p!d~K ij2K !1pd~K ij1K !. ~1.2!

That is, the couplingsK ij are ferromagnetic (K.0) with
probability 12p and antiferromagnetic with probabilityp.
Notice thatK varies inversely withT. In what follows we
will occasionally also consider Ising models with other d
tributions of the bond strengths. For simplicity, in mo
cases, where it cannot lead to confusion, we will simply c
the model with the binary distribution~1.2! ‘‘the RBIM.’’
0163-1829/2001/63~10!/104422~27!/$15.00 63 1044
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Later, we will also consider the anisotropic generalization
the model, in whichK takes different values on bonds in th
x andy directions.

Let us summarize some of what is known about t
model. The phase diagram of this model is still somew
controversial, but is widely believed to be as in Fig. 1.2–8

First we note that forp51, we have a pure antiferromag
netic Ising model, which can be mapped onto the ferrom
netic case by sendingSi→2Si for i on one sublattice. More
generally, this transformation is equivalent to sendingp
→12p. Hence we need show only the region 0<p<1/2.
The solid line is a phase boundary which separates the

FIG. 1. Phase diagram of the random-bond Ising model of
~1.1!, in terms ofT}1/K andp.
©2001 The American Physical Society22-1
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romagnetically ordered from the paramagnetic phase. Fig
1 can also be viewed as a schematic renormalization gr
~RG! flow diagram, in which the intersection points label
Tc ~corresponding toKc50.44 . . . , thepure Ising transi-
tion!, pc.0.12~theT50 transition!, and another pointN are
viewed as RG fixed points that govern the critical behav
for the portions of the phase boundary shown as flowing i
these points (N is an unstable, hence multicritical, point!. In
2D, it is generally believed that no spin-glass phase exist
finite temperature. At zero temperature, long-range sp
glass ~Edwards–Anderson! order exists trivially when the
distribution of bonds is continuous, since in a finite syst
there is, with probability one, a unique ground state, up t
reversal of all the spins.~Taking the thermodynamic limit in
a fixed sample is a very subtle problem; for a very rec
discussion, see Ref. 9 and references therein.! However, for
the discrete distribution with bonds taking valuesK, 2K,
assumed here, the existence of such order in the regiop
.pc is not clear because there will be many degene
ground states. There is evidence for power-law spin-g
correlations atT50 in this region.10,11 In three or more di-
mensions, there is a spin-glass ordered phase at tempera
below some temperatureTSG(p), and which extends up to
p51/2. The three phase boundaries meet in a multicrit
point at someT,Tc , p,1/2. The pointN in 2D is in some
sense a remnant of this multicriticality in higher dimensio

An interesting feature of this phase diagram is the
called Nishimori line~NL!, shown dashed. Such a line ca
be defined for a broad class of distributionsP@K ij#, and in
our special case~1.2! is given by the condition

122p5tanhK. ~1.3!

Nishimori4 found that the model on the NL has a loc
~‘‘gauge’’! Z2 symmetry. Using the symmetry he showe
that the internal energy of the RBIM is analytic along t
NL, and also established a special case of the following id
tities for correlation functions~proven generally in Ref. 7!
which hold on the NL

@^Si1
•••Sik

&2q21#5@^Si1
•••Sik

&2q#. ~1.4!

Here $Si1
, . . . ,Sik

% is any set of the Ising spins, the angul
brackets denote the thermal average, and the square bra
the average over the distribution of bondsP@K#. Georges
et al.6 showed that Nishimori’s result concerning the intern
energy may be rederived using a supersymmetric form
tion. Nishimori later argued, and Kitatani showed,5 that the
ferro-para phase boundary is vertical below the NL. This
supported by the later numerical works among Refs. 2 an

Le Doussal, Georges, and Harris7 established that in any
dimension the NL goes through the multicritical pointN on
the ferro-para phase boundary and is one of the exact
trajectories near this point, the other trajectory being the v
tical tangent to the phase boundary atN. The RG eigenvalues
along these trajectories and the corresponding critical ex
nents were estimated by Singh and Adler12 from high-
temperature expansions of high order. Two of their ex
nents in 2D are very close to those of classical
percolation, as are the results in Ref. 8. We emphasize
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while Nishimori’s results do not apply to every possible d
tribution of disorder in the RBIM, the implications for uni
versal critical properties must hold throughout a universa
class, and it is believed that this class includes the gen
RBIM multicritical point.7

More recently, Cho and Fisher13 proposed a network
model similar to the Chalker–Coddington model used to
scribe transitions between integer quantum Hall plateau14

The Cho–Fisher model was supposed to be in the same
versality class as the 2D RBIM. They simulated their n
work numerically and found a phase diagram with a mu
critical point, with numerical critical exponents close to th
ones found by Singh and Adler.12 In her thesis,15 Cho also
simulated another network model which is precisely equi
lent to the RBIM, and again found exponents close to so
of those in Ref. 12.

Here we will briefly sketch a version of the argument
Ref. 7, since it provided motivation for our work. Let u
consider the random-bond Ising model with Gaussian dis
der,

P@K ij#5
1

A2pD
exp@2~K ij2K0!2/~2D2!#, ~1.5!

so the mean ofK ij is K0, and the standard deviation isD.
Taking the partition function

Z5(
$Si

a%

exp(̂
ij &

K ijSiSj , ~1.6!

we replicate and average to obtain

@Zn#5(
$Sa%

expFK0 (
^ ij &,a

Si
aSj

a1
1

2
D2 (

^ ij &,ab
Si

aSj
aSi

bSj
bG ,

~1.7!

wherea, b51, . . . ,n. For finite n this has the form of the
Ashkin–Teller model, consisting ofn coupled Ising models.
Now compare this with the replicated spin-glass mod
which is obtained by settingK050:

@Zm#5(
$Sa%

expF1

2
D2 (

^ ij &,ab
Si

aSj
aSi

bSj
bG , ~1.8!

with a, b50, . . . ,m21. This model has a gauge symmetr
it is invariant under site-dependent transformationsSi

a→
2Si

a for all a and any set ofi’s. This localZ2 gauge sym-
metry can be fixed by setting allSi

a51 for all i, for one value
of a, say a50. Then if m5n11, we obtain the random
bond partition function withK05D2, up to constants. On
this line, which is the NL for the Gaussian case, there are
consequences of the underlying gauge symmetry. Them
5n11 replicas are still on an equal footing, and this leads
the identities~1.4! on the NL, as follows. In the gauge
unfixed model, only correlation functions containing an ev
number of Si

a’s at each site are nonzero. The correlati
functions are invariant under permutations of the replic
and so independent of whether or nota50 is among the
components. Since different replica components repre
2-2
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distinct thermal averages in then→0 limit, we obtain the
identities ~1.4!, and others, on gauge fixing. TheZ2 local
gauge symmetry in the replica formalism should not be c
fused with that of Nishimori, who did not use replicas; it
the enlarged permutational symmetry of the replicas that
responds to Nishimori’s arguments. Off the NL, the iden
ties are lost, but the model can still be written as a gau
fixed version of a system withn11 replicas and a localZ2
gauge symmetry.

The preceding argument shows that, in the replica form
ism, the NL is special because it possesses a larger pe
tation symmetrySn11 in place of the usualSn . As we saw,
even off the NL, an additional ‘‘zeroth’’ replica spin can b
introduced into the model, along with a gauge symmetry t
can be used to remove the unwanted degrees of freedom
further on the NL line the zeroth spin is symmetric with t
others. Now from work extending back to Onsager, the
Ising model can be written in terms of free fermions, whi
become Majorana~real Dirac! fermions in the continuum
limit, and furthermore Ashkin-Teller models can be rep
sented by interacting Majorana fermions, with O(n)
symmetry.16 Hence we are led to conjecture that, in the re
licated fermion representation, it is possible to introduce
additional ‘‘zeroth’’ fermion, together with a localZ2 gauge
symmetry to remove the unwanted degrees of freedom,
that on the NL, we should find a larger O(n11) symmetry.
In this paper we demonstrate that this indeed occurs, tho
we take a different route to do so. We consider the bin
distribution above, and we use supersymmetry rather t
replicas, so no limitn→0 need be taken. However, the co
responding result for replicas is contained in our results. T
network models such as the Cho–Fisher model also dep
on the fermion representation of the Ising model, and so
can also consider these models in our framework. We
that the models can be viewed as supersymmetric ve
models, or by using the anisotropic limit as Hamiltoni
chains, which act in irreducible representations of the
evant symmetry~super-!group ~which is enlarged on the
NL!, and thus are quantum spin chains, and possibly can
be viewed as the strong-coupling region of a nonlinear sig
model. This greatly enhances the similarity of the problem
the integer quantum Hall effect transition, and to other r
dom fermion problems. However, we find that the NL do
not fall into a recent list of nonlinear sigma models th
correspond to random matrix ensembles in such problem17

Our results also apply to certain one-dimensional ferm
problems.

In random fermion problems, including those arising
disordered superconductors, it is usual to attempt classi
tions, based on symmetries, for generic probability distri
tions, as in Ref. 17 for random matrices. The ensemb
found in Ref. 17 for disordered superconductors differ fro
the standard ensembles because of the lack of a conse
particle number, and because zero energy is a special po
the spectrum. The second-quantized noninteracting quas
ticle description can in each case be replaced by a ‘‘fi
quantized’’ formalism involving a single matrix, which mu
satisfy certain discrete symmetry and symmetry-like con
tions, which distinguish the ensembles. One such cl
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termed class D in Ref. 17, is for problems with broken tim
reversal and no spin-rotation symmetry. This correspond
the symmetries of the fermion representation of the RBI
In this class, a nonlinear sigma model analysis in two dim
sions indicates that there is a metallic phase in which
fermion eigenstates are extended.18–21 Senthil and Fisher19

discussed a scenario in which such a phase occurs in
RBIM, as an intermediate phase between the paramagn
and ferromagnetic phases, at lowT in the region labeled
‘‘Para’’ in Fig. 1, and with its bordering phase boundari
~one of which is the lowT phase boundary shown! meeting
at the multicritical pointN on the NL. ~This is the region
sometimes claimed to be some kind of spin-glass–like ph
in the RBIM literature.! They suggested that the phase wou
be characterized by the absence of long-range order in
mean of either the ferromagnetic Ising or the dual disor
variable correlations.19 Presumably such decay would als
hold for the mean square~spin-glass! correlations. It is not
clear if this is consistent with theT→0 analysis of Ref. 11.
An alternative scenario is that a finer analysis of proble
with broken time-reversal symmetry is needed, and that
nonlinear sigma model appropriate for class D does not
ply to the RBIM. Indeed, a recent paper21 emphasizes tha
the target manifold of the class D model is not connect
and that consequently there can be domains of the two c
ponents or ‘‘phases.’’ It follows that additional paramete
are required in order to fully parametrize the systems, in
pendent of those familiar for sigma models with connec
targets. This allows for a much richer phase diagram a
transitions in this symmetry class. We show in this paper t
this is connected with the structure we uncover in t
random-bond Ising and network models. In another pape22

it is argued that the metallic phase cannot occur in a RB
with real Ising couplings.

Problems of random noninteracting fermions are amo
the better understood of disordered systems, and while m
results are numerical, in some cases there are even e
results for critical properties in 2D. By making contact b
tween the RBIM and other random fermion problems, a
casting them in a common language, we hope to gain un
standing of this disordered classical spin problem. At
same time, the RBIM provides an example that may sh
light on previously unknown classes or ensembles of rand
fermions. The analysis presented in this paper does no
solve all aspects of the broken-time-reversal symmetry cl
but it does show that the NL is a special subclass.

We now give an outline of the paper. Sections II, III, IV
and VI contain the main technical work. They show how
fermion representation23 can be used for the RBIM, and how
bosons are also introduced to cancel the inverse parti
functions, via supersymmetry~SUSY!.24–31 The bosons live
in a space with an indefinite metric, a common feature
SUSY methods~see Refs. 26, 31, and compare Refs. 28–3!.
On the NL, a larger SUSY algebra is found. As an applic
tion of this enhanced SUSY, we use it in Appendix A
rederive the equalities~1.4!. An anisotropic limit of the
model relates it to a Hamiltonian for ‘‘superspins’’ o
‘‘split’’ sites, two for each original site. The Hamiltonian o
the NL can be generalized in a natural way, and we introd
2-3
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a phase diagram for the generalized models; on one lin
this diagram the Hamiltonian possesses a still larger SU
Section V discusses a 1D model,28,32–35 and shows that it
possesses a single ‘‘Nishimori’’ point of higher SUSY.
Sec. VII we consider the model of Cho and Fisher13 and
show that it does not correspond precisely to the RBIM,
does it have the larger SUSY of the NL. In Sec. VIII w
argue that much, or possibly all, of the critical surface in
phase diagram in the higher SUSY generalized models i
the universality class of the point with even higher SUS
mentioned above. This is supported by consideration of n
linear sigma models that correspond to the spin chains, a
weak-coupling calculation for these shows
renormalization-group flow towards the higher SUSY theo
We comment on general network models and nonlin
sigma models with the symmetries of class D. Appendix
gives details of a representation of SUSY that we use.
pendix C contains the details of the calculation of the b
functions at weak coupling in the nonlinear sigma model

II. TRANSFER MATRICES AND SUPERSYMMETRY

In this section we will express the Ising model trans
matrices in terms of fermionic replicas, and then introdu
bosons to make the system supersymmetric. This allow
to consider~in Sec. III! averages over quenched disord
without taking the replican→0 limit.

First, we set up some notation. We define the dual c
pling K̃ by

e22K̃ ij5tanhK ij ~2.1!

for any sign ofK ij . For positiveK ij5K.0 we denoteK̃ ij

5K* , and for negativeK ij52K,0,K̃ ij5K* 1 ip/2. We as-
sume free~not periodic! boundary conditions on the Isin
spins in the horizontal~x! direction, and periodic in the ver
tical ~y! direction. As is well-known~see, for example, Ref
36!, the partition function of the nearest-neighbor Isi
model may be written as the trace of a product of row tra
fer matrices:

Z5Tr )
i y

Tv~ i y!Th~ i y!. ~2.2!

Here i y is an integer coordinate of a row of sites. The ro
transfer matrices,Tv( i y) for vertical, andTh( i y) for horizon-
tal bonds, do not commute with each other, so the produc
Eq. ~2.2! must be ordered such that the row coordinatei y
increases from right to left. The row transfer matrices may
turn be written as products of the transfer matrices for sin
bonds:

Tv~ i y!5)
i x

Tv i , Th~ i y!5)
i x

Thi . ~2.3!

The Tv i’s for different i x and the samei y commute, and
similarly for the Thi’s. The trace represents the period
boundary condition in they direction.
10442
in
Y.

r

e
in

n-
a

.
r

-
a

r
e
us
r

-

-

in

n
le

Following Ref. 23 we write the vertical transfer matrix fo
a single vertical bond between the Ising spins at pointsi and
i1 ŷ as

Tv i5
eK i,i1 ŷ

coshK̃ i,i1 ŷ

exp~K̃ i,i1 ŷs i
x!, ~2.4!

where the ‘‘light’’ index i denotes a site on the 1D lattic
corresponding to the vertical row containing the original s
i, andsx, sy, andsz are Pauli matrices. Similarly, the hor
zontal transfer matrix for a single horizontal bond betwe
the Ising spins at pointsi and i1 x̂ is

Thi5exp~K i,i1 x̂s i
zs i 11

z !. ~2.5!

Note that before the averaging over the randomness
transfer matrices explicitly depend on the correspond
bond, and therefore are labeled by the bold 2D indices.

The transfer matrices act in tensor products of tw
dimensional spaces at each horizontal coordinatei x . These
2D spaces may be realized as Fock spaces of fermions
1D chain of sites. This fermionization is implemented by t
Jordan–Wigner transformation relating Pauli matrices to f
mionic operators. To use this transformation we first mak
canonical transformation

s i
x→2s i

z , s i
z→s i

x . ~2.6!

The Jordan–Wigner transformation reads

s i
z52ci

†ci21, ~2.7!

s i
xs i 11

x 5~ci
†2ci !~ci 11

† 1ci 11!, ~2.8!

whereci
† andci are canonical creation and annihilation fe

mionic operators. In terms of these operators the tran
matrices for individual bonds become

Tv i5
eK i,i1 ŷ

coshK̃ i,i1 ŷ

exp~22K̃ i,i1 ŷ~ci
†ci21/2!!, ~2.9!

Thi5exp~K i,i1 x̂~ci
†2ci !~ci 11

† 1ci 11!!. ~2.10!

Next we replicate the fermions. The number of replic
has to be even, because of the symmetry of the bosons t
introduced below, so we denote it as 2n. We label the rep-
licas by Greek letters. The replicated transfer matrices
come

Tv i5~2 coshK !2n exp~22K̃ i,i1 ŷN̂Fi !, ~2.11!

Thi5exp~2K i,i1 x̂X̂Fi !, ~2.12!

where we defined

N̂Fi5 (
a51

2n

na i , na i5ca i
† ca i , ~2.13!

X̂Fi5 (
a51

2n

xa i , ~2.14!
2-4
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xa i5
1

2
~ca i

† 2ca i !~ca,i 11
† 1ca,i 11!. ~2.15!

The quadratic formsN̂Fi and X̂Fi are invariant under the
orthogonal transformations mixing the fermions, which b
comes especially transparent if we introduce two sets ofn
real fermions per site as

ha i5
ca i

† 2ca i

A2i
, ja i5

ca i
† 1ca i

A2
. ~2.16!

These fermions satisfy

$ha i ,hb j%5$ja i ,jb j%5d i j dab , $ha i ,jb j%50.
~2.17!

Terminologically, we note here that any set of self-adjo
operators, sayca , a51, . . . ,M , for someM, with anticom-
mutation relations$ca ,cb%5dab , constitutes a Clifford al-
gebra. For us, the set ofj ’s, either for one or for many sites
or similarly of h ’s, or a combination of these, are all Cliffor
algebras. A little of the general theory of these algebras
be used later. In terms of these fermions, or Clifford alge
generators, the quadratic forms become

N̂Fi5 iha ija i1n, X̂Fi5 iha ija,i 11 , ~2.18!

where from now on we assume that repeated indices from
beginning of the Greek alphabet (a, b, etc.! are summed
from 1 to 2n, unless stated otherwise.

The generators of the global symmetry algebra so(2n), in
this notation, are( i(ha ihb i1ja ijb i), for pairsa,b, and be-
cause of the anticommutation relations we may take onla
,b, corresponding to the antisymmetric 2n32n matrices.
These generators commute withN̂Fi and X̂Fi , proving that
the transfer matrices are invariant under so(2n). The repli-
cated partition functionZ2n, which is now given by a trace in
the 2n-component fermion Fock space, is invariant und
so(2n). Note that we capitalize the name of the group
supergroup, such as SO(2n), but not the name of the corre
sponding Lie~super-!algebra, such as so(2n).

The supersymmetric counterpart of the fermionic alge
so(2n) is the symplectic algebra sp(2n). This motivates the
introduction of bosons with this symplectic symmetry as f
lows. We start with 2n complex ‘‘symplectic’’ bosonic op-
eratorssa i ~and their adjointssa i

† ), satisfying

@sa i ,sb j
† #5 id i j Jab , ~2.19!

whereJab is a nonsingular real antisymmetric 2n32n ma-
trix. ~It is because the number of bosons must be even
the number of fermions must be also.! Without loss of gen-
erality ~by appropriate change of basis! this matrix may be
taken to be~in block form!

J5S 0 1n

21n 0 D , ~2.20!

where1n is then3n identity matrix. We also need to defin
the vacuum state for our bosons. We will see that the SU
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requirement makes this choice essentially unique, and
resulting space of states has indefinite metric~some states
have negative squared norms!.

The bosonic counterparts of the formsN̂Fi andX̂Fi are the
symplectic forms

N̂Bi5 i sa i
† Jabsb i , ~2.21!

X̂Bi5
i

2
~sa i

† 2sa i !Jab~sb,i 11
† 1sb,i 11!. ~2.22!

To parallel the fermionic case we also introduce two sets
2n real bosons per site as

qa i5
sa i

† 1sa i

A2
, r a i5

sa i
† 2sa i

A2i
. ~2.23!

These bosons satisfy

@qa i ,qb j #5@r a i ,r b j #5 id i j Jab , @qa i ,r b j #50.
~2.24!

~These have the form of the commutation relations for
nonically conjugate coordinates and momenta.! In terms of
the real bosons the forms~2.22! are

N̂Bi52r a iJabqb i2n, X̂Bi52r a iJabqb,i 11 .
~2.25!

The generators of the global symplectic symmetry alge
sp(2n) are ( i(qa iqb i1r a i r b i), where because of the com
mutation relations we may use onlya<b, corresponding to
symmetric matrices. These operators are the generator
global linear canonical transformations on theq’s and r ’s.
The formsN̂Bi andX̂Bi , and hence the transfer matrices, a
invariant under this algebra.

We now address the question of the bosonic vacuum.
will find it using the requirement that the spectrum of t
bosonic formN̂Bi is the SUSY counterpart of the intege
spectrum of the fermionic formN̂Fi . In this case we will
have

STr exp„2const~N̂Fi1N̂Bi!…51. ~2.26!

This condition is essential in the SUSY approach to ens
that the partition function of the RBIM is unity for any rea
ization of the disorder. Here we used the notation STr for
supertrace in the space of states of our problem. We will n
discuss how this supertrace is defined.

In general, the supertrace in a supervector space mus
defined using the notion of a grading for the states~or vec-
tors!. This can be done by choosing a basis and then defin
one subset of basis vectors as ‘‘even,’’ and the remainde
‘‘odd,’’ vectors. The vector space then contains two comp
mentary subspaces of even and odd vectors, respectively
zero vector, and linear combinations of vectors from bo
subspaces, are viewed as having no definite grading.
vectors are then said to beZ2-graded. Operators on the vecto
space can likewise be classified as even or odd, accordin
whether they preserve or reverse the grading of basis vec
2-5
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on which they act; usually, only operators for which this ru
gives a consistent answer~those with well-defined grading!
are of interest. Thus the grading is usually treated as a
perselection rule. The supertrace STrY of an even operatorY
is then defined, like an ordinary trace, as the sum of
diagonal matrix elements ofY in a basis of even and od
vectors, except that for the supertrace, the diagonal elem
in the odd basis vectors are weighted by a minus sign.~Note
that the matrix elementsYIJ of an operatorY are obtained as
the coefficients in the system of equationsYuJ&5( IYIJuI &,
where uI &, I 51,2, . . . , are thebasis vectors, without using
an inner product on the vector space.! The supertrace has
number of nice properties, like the ordinary trace in an or
nary vector space; in particular a form of the cyclic prope
still holds, STrAB56STrBA, with a plus if bothA andB
are even, and a minus if both are odd operators. The gra
and the supertrace are needed in connection with super
metry algebras, but otherwise do not necessarily have to
considered. We also note here that it is possible to form
graded tensor product of graded vector spaces, in a way
preserves the grading.

In this paper most of our constructions use a Fock spa
In a Fock space generated by boson and fermion opera
acting on a vacuum, there is a natural grading, defined u
an occupation number basis, in which states are even or
as the total number of fermions~of all types! is even or odd.
However, we will not use such a grading to define the sup
trace above. The reason is that we have already introdu
the ordinary trace in writing the partition function for ferm
onic replicas; in this trace, all diagonal matrix elements
taken with weight11, including those in states with an od
number of fermions. It is of course quite standard to use
ordinary trace even when dealing with fermions, which ha
a natural grading. The natural grading is used in definin
tensor product, such that fermion operators on different s
~i.e., in different factors in the tensor product! anticommute.
These are the tensor products usually used by physicist
second quantized fermion problems. Each time we writ
tensor product of spaces, it will be the graded tensor prod
using the natural grading that we mean. There is noth
wrong with the use of the trace, unless we are concer
about SUSY. The grading that we use in introducing SU
into our representation is defined by specifying that sta
with an even~odd! number of bosons are even~odd!, and so

STr•••5Tr~21!S i N̂Bi
•••. ~2.27!

For states with no bosons, this reduces to the usual trac
Now that we have defined the supertrace, we must arra

to satisfy the condition~2.26!. The formN̂Bi may be diago-
nalized with the transformation to two other sets ofn com-
plex bosons. Namely, we define

am i5
sm i1 ism1n,i

A2
, ām i5

sm i2 ism1n,i

A2
, ~2.28!

and the adjoint operators, where the indexm ~and other in-
dices from the middle of the Greek alphabet, liken, etc.!
runs from 1 ton. These bosons satisfy
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@am i ,an j
† #5d i j dmn , @ ām i ,ān j

† #52d i j dmn , ~2.29!

and the rest of the commutators vanish. In terms of th
bosons we have

N̂Bi5am i
† am i2ām i

† ām i . ~2.30!

If we introduce the vacuum fora and ā bosons in the usua
manner

am i u0&5ām i u0&50, ~2.31!

then the spectrum ofN̂Bi is the set of non-negative integer
which is the SUSY counterpart of the spectrum ofN̂Fi . This
ensures that Eq.~2.26! holds. But the price to pay is that th
states with an odd number ofā bosons have negative norm
By another choice of the vacuum we could avoid negat
norms, but then we would not have the supersymmetry. W
these definitions, we have now defined a Fock spaceF,
which is a tensor product of Fock spaces at each siteF
5 ^ iFi in an obvious notation. The tensor product of Fo
spaces is defined using the natural grading, however,
choice of grading also behaves well in the product; the gr
ing of states is determined by the product of the ‘‘degree
(561 for even, odd, respectively! of the states on the sites
because boson numbers add. Note that fermion operator
viewed as even in our grading.

The transfer matrices including fermions and bosons
persymmetrically are now

Tv i5exp~22K̃ i,i1 ŷN̂Si!,

Thi5exp~2K i,i1 x̂X̂Si!, ~2.32!

where the subscriptS stands for ‘‘supersymmetric,’’

N̂Si5N̂Fi1N̂Bi , X̂Si5X̂Fi1X̂Bi . ~2.33!

The SUSY transfer matrices are invariant under the ort
symplectic superalgebra osp(2nu2n), since the formsN̂Si

and X̂Si commute with the generators( i(ja ijb i1ha ihb i),
( i(qa iqb i1r a i r b i), and( i(ja iqb i1ha i r b i) of osp(2nu2n).
The last set of generators are the ‘‘odd’’~with respect to
either grading!, fermionic, or supergenerators of the super
gebra, anda andb can take arbitrary values there. Note th
in a superalgebra, two even operators obey commutation
lations, two odd operators anticommutation relations, and
even with an odd generator obeys a commutation relat
Thus the definition of the superalgebra structure again
volves the grading. The definition of the supertrace also
spects supersymmetry.

The condition ~2.26! applies when only vertical-bond
transfer matrices are present. To prove the supersymmet
the full problem, namely, that the supersymmetrized partit
function ZSUSY ~the supertrace of the product of supersy
metrized transfer matrices! is unity for any realization of the
disorder, we use a graphical representation ofZ. Imagine a
high-temperature expansion of the horizontal transfer ma
Thi , where we expand it in powers ofK i,i1 x̂ . At each hori-
zontal row the operator
2-6
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2X̂Si5~ca i
† 2ca i !~ca,i 11

† 1ca,i 11!

1 i ~sa i
† 2sa i !Jab~sb,i 11

† 1sb,i 11! ~2.34!

may create or destroy two particles at neighboring sites, o
may transfer one particle between neighboring sites. The
tical transfer matrices are diagonal, so they only propag
particles in the vertical direction.

We can represent these processes graphically by l
starting and ending at lattice sites~creation and annihilation!,
joining the horizontal pairs of sites~hopping!, and joining
vertical pairs of sites~propagation due toTv!. When two
such lines start at a pair of neighboring sites on a row
end at another pair of neighboring sites on a row, we call
a closed loop~similar to closed loops in high temperatu
expansion of the pure Ising model!. Then the supersymme
trized partition function is equal to 1 plus the sum of cont
butions of all closed loops. Then we have to prove that fo
closed loop the contributions of fermions and bosons can
each other.

Let us take the smallest possible loop, where two partic
are created and destroyed on two adjacent rows. This is
resented by two short vertical lines between two neighbor
pairs of lattice sites. For a given fermionic replica, say 1, t
loop contributes the following term:

2^0uc1ic1,i 11e22K̃ i,i1 ŷN̂Fie22K̃ i1 x̂,i1 x̂1 ŷN̂F,i 11c1i
† c1,i 11

† u0&

5e22(K̃ i,i1 ŷ1K̃ i1 x̂,i1 x̂1 ŷ). ~2.35!

The corresponding bosonic contribution is

^0u isn11,is1,i 11e22K̃ i,i1 ŷN̂Bi

3e22K̃ i1 x̂,i1 x̂1 ŷN̂B,i 11is1i
† sn11,i 11

† u0&. ~2.36!

To evaluate this expression we note the following. From
definition of the symplectic bosons it follows that

@sa j ,N̂Bi#5d i j sa j , @sa j
† ,N̂Bi#52d i j sa j

† . ~2.37!

We use these relations to pull the exponentials through to
vacuum on the right in Eq.~2.36!, which then becomes

2^0usn11,is1,i 11s1i
† sn11,i 11

† u0&e22(K̃ i,i1 ŷ1K̃ i1 x̂,i1 x̂1 ŷ).
~2.38!

Next we notice that, as a consequence of Eq.~2.28! and the
definition ~2.31!, the vacuum stateu0& is annihilated bysa i .
Then we commute the operators in the first factor in the
expression, after which it becomes exactly opposite to
fermionic contribution~2.35!. This argument is easily gene
alized to arbitrary loops~including those that wrap aroun
the system, thanks to the definition of the supertrace!, and
proves that the supersymmetrized partition function is ind
equal to one, for any realization of the disorder.

III. AVERAGING AND ENHANCED SUPERSYMMETRY
ON THE NISHIMORI LINE

In this section we perform the average with respect to
distributionP@K# and find that on the NL the averaged tran
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11 u 2n). In Appendix A we use this enhanced SUSY
rederive the equality~1.4! for the Ising correlators.

Here we need some more notation. We introduce a par
eter of the form of the Ising coupling,L, and its dualL* ,
related to the probabilityp:

122p5tanhL5e22L* . ~3.1!

In terms ofL the equation~1.3! of the NL is L5K. Below
the NL L,K, and above the NLL.K.

Since the couplingsK ij are independent, we can avera
transfer matrices for different bonds separately. For a vert
transfer matrix this gives~recall that the disorder average
are denoted by square brackets!

T1i5@Tv i#5exp~22K* N̂Si!~12p1p~21!N̂Si!.
~3.2!

Note that after the averaging the translational invariance
restored, and this allows us to label the average transfer
trices by 1D~‘‘light’’ ! indices.

The value of the last factor in Eq.~3.2! depends on the
value ofN̂Si in the state, on whichT1i acts. For an evenN̂Si

it equals 1, for an oddN̂Si it gives 122p5e22L* . Then we
can rewrite the operator~3.2! in a slightly different form.
Namely, we introduce an additional~zeroth! fermionic state
and operatorsc0i

† , c0i and consider the subspaceFi8 given by
the following constraint:

N̂Si8 5N̂Si1n0i5even, ~3.3!

wheren0i is defined in analogy withna i :

n0i5c0i
† c0i . ~3.4!

That is, the number of fermions plus bosons on each
must be even. There is a one-to-one correspondence bet
the states in this subspace and the original Fock spaceFi .
This correspondence is illustrated for the casen51 in Table
I. The grading in the spaceF85 ^ iFi8 is taken to be the sam
as that inF, which was not the natural grading. However, w
see that in a Fock space with a constraint of the form of
~3.3!, the number of bosons is odd if and only if the numb
of fermions is odd~this is true for each site and also for th

TABLE I. Correspondence between states in the spacesFi and
Fi8 .

Fi Fi8

u0& u0&
c1i

† u0& c0i
† c1i

† u0&
c2i

† u0& c0i
† c2i

† u0&
c1i

† c2i
† u0& c1i

† c2i
† u0&

a1i
† u0& c0i

† a1i
† u0&

c1i
† a1i

† u0& c1i
† a1i

† u0&
c2i

† a1i
† u0& c2i

† a1i
† u0&

c1i
† c2i

† a1i
† u0& c0i

† c1i
† c2i

† a1i
† u0&

A A
2-7
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tensor product!. Hence our grading onF8 is the same as the
one obtained from the natural grading on the larger F
space with 2n11 fermion species, when restricted to th
subspace. Now we can replaceT1i by the operator

T1i8 5exp~22K* N̂Si22L* n0i !, ~3.5!

which has the same matrix elements in the constrained
spaceFi8 as T1i had in the original spaceFi ~between the
corresponding states!. From now on in this section we wil
denote transfer operators acting in the constrained spaceF8
by a prime. For a horizontal transfer matrix the averag
gives

T2i5@Thi#5
cosh~2KX̂Si1L !

coshL
. ~3.6!

To find the corresponding operator inF8 we need to estab
lish some substitution rules for basic operators.

Single creation and annihilation operators likec1i
† , which

are quite legitimate in the spaceFi , do not act withinFi8 .
Using the correspondence between the states, given in T
I, it is easy to establish that inFi8 the operatorc1i

† must be
replaced by the operator (c0i

† 2c0i)c1i
† . However, this opera-

tor is bosonic~i.e., even with respect to the natural gradi
on F8), so in the tensor productF85 ^ iFi8 it will not have
the anticommutation properties thatc1i

† had inF. To make it
fermionic in the total spaceF8 we need to attach to it a
string:

c1i
† →~c0i

† 2c0i !c1i
† S0i , ~3.7!

S0i5)
j . i

~21!n0 j . ~3.8!

Repeating this argument for other operators, we obtain
following rules of substitution:

ca i
† →~c0i

† 2c0i !ca i
† S0i ,

ca i→~c0i
† 2c0i !ca iS0i ,

am i
† →~c0i

† 1c0i !am i
† S0i ,

am i→~c0i
† 1c0i !am iS0i ,

ām i
† →~c0i

† 1c0i !ām i
† S0i ,

ām i→~c0i
† 1c0i !ām iS0i . ~3.9!

As an alternative to looking at all the states, the corresp
dence can be established by verifying that the right-h
sides of these expressions have the same~anti-!commutators
as the left-hand sides. It follows from these rules that a
product of an even number of creation and/or annihilat
operators inFi remains the same when going toFi8 .

Now note what happens withxa i @see Eq.~2.15!# upon
transition fromF5 ^ iFi to F8:
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2xa i5~ca i
† 2ca i !~ca,i 11

† 1ca,i 11!

→~c0i
† 2c0i !~ca i

† 2ca i !~21!n0,i 11~c0,i 11
† 2c0,i 11!

3~ca,i 11
† 1ca,i 11!

54x0ixa i , ~3.10!

wherex0i is defined similarly to Eq.~2.15!:

x0i5
1

2
~c0i

† 2c0i !~c0,i 11
† 1c0,i 11!5 ih0ij0,i 11 . ~3.11!

With these substitution rules established, we can see tha
the spaceF8 the operator corresponding toT2i is given by

T2i8 5
cosh~2KX̂Si12Lx0i !

coshL
, ~3.12!

which easily follows from the substitution rule~3.10! and the
fact thatxa i

2 5x0i
2 51/4. From Eqs.~3.5! and ~3.12! we see

that the transfer matrices commute with the constraint,
~3.3!. In the full space of states that includes states of odd
well as even, fermion plus boson number at each site, th

are localZ2 operations given by (21)N̂Si8 . This is therefore a
gauge symmetry under which the allowed states and tran
operators~and also physical observables! must be invariant.

The forms ~3.5! and ~3.12! are very convenient for the
discussion of the symmetry properties of our model on
NL. Indeed, we see that on the NL, whereK5L, the opera-
tors Ti8 become

T1i8 5exp~22K* N̂Si8 !, ~3.13!

T2i8 5
cosh~2KX̂Si8 !

coshK
, ~3.14!

where

X̂Si8 5X̂Si1x0i5 ihaija,i 112r a iJabqb,i 11 , ~3.15!

and the Latin subscripts from the beginning of the alpha
denote the fermionic indices running form 0 to 2n.

On the NL, the expressions~3.13! and ~3.14! have en-
hanced supersymmetry: they are now invariant under
osp(2n11u2n) algebra. The generators of this algebra ha
a similar form as before, but involve the 2n11 fermion
operators: ( i(jaijbi1haihbi), ( i(qa iqb i1r a i r b i), and
( i(jaiqb i1hair b i). The last set of generators are the o
ones, with respect to our grading, or to the natural one on
Fock space of whichF8 is a subspace; we have seen the
are equivalent in the constrained subspace.

As anticipated in the Introduction, this enhanced contin
ous SUSY replaces the gauge symmetry of Nishimori, a
the enhanced permutational symmetry of the replica
proach, previously known to exist in Ising spin language
the NL.4,7 The symmetry has many consequences, such
the equalities~1.4! among different correlation functions o
the NL. In Appendix A we briefly show how these equalitie
may be obtained from the enhanced SUSY exhibited in
2-8
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section. We have also obtained the localZ2 gauge symmetry
anticipated in the Introduction.

IV. STRUCTURE OF THE SPACE OF STATES
AND THE HAMILTONIAN LIMIT

In this section we first analyze~in Sec. IV A! the structure
of the space of states of our quantum problem and then
the time continuum limit of our transfer matrices and obta
a quantum Hamiltonian describing our system. This has
form of a spin chain with irreducible representations of t
symmetry algebra osp(2n11u2n) at each site. Then in Sec
IV B we consider a more explicit construction of these irr
ducible representations.

A. Superspin chain and Hamiltonian limit

Let us consider the structure of the constrained spaceFi8
@Eq. ~3.3!#, with its natural grading, under transformations
osp(2n11u2n). It is easy to see thatFi8 is not irreducible
under this algebra. Rather, it has the structure of the te
product of two irreducible spinors of osp(2n11u2n).

Indeed, let us consider first the fermionic replicas on
i.e., the replica approach wheren→0 in the end. Then we
have the modified transfer matrices which are invariant un
the orthogonal algebra so(2n11), and the subspace they a
on is given at each site by the constraint

N̂Fi8 5N̂Fi1n0i5even. ~4.1!

This space has dimension 22n, and, under so(2n11), it
transforms as the tensor product of two spinors of so(n
11), each of dimension 2n. These two spinors can be iden
tified as the spaces on which the two partsjaijbi , haihbi of
the generatorsjaijbi1haihbi act. The tensor product decom
poses into irreducible representations of so(2n11) corre-
sponding to each even value ofN̂Fi8 in the range 0 –2n al-
lowed by the constraint~4.1!. Similarly, the orthogonal
subspaceN̂Fi8 5odd is also a tensor product of spinors a
has a similar decomposition.

When the bosons are included as in the SUSY appro
the two partsqa iqb i , r a i r b i of the sp(2n) generators at a site
i generate infinite-dimensional spinor representations
sp(2n) ~sometimes known as metaplectic representatio!.
When the fermions and bosons are combined together
the constraint thatN̂Si8 be even, the resulting space is a tens
product of irreducible spinors of osp(2n11u2n). The fact
that a single such tensor product is involved is the nontriv
part of this statement, and is addressed further in Sec. IV
These spinors comprise one lowest-weight representatio
osp(2n11u2n), which we denote byR, and one highest-
weight representation of osp(2n11u2n), which we denote
by R̄. Thus we may writeFi85Ri ^ R̄i .

This organization of states suggests a picture of our mo
as a system of ‘‘superspins’’@spinorsR and R̄ of osp(2n
11u2n)# sitting in pairs on the sites of the 1D lattice. It
convenient to combine the corresponding generators
osp(2n11u2n) into square matrices consistent with real
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properties satisfied by the matrices of osp(2n11u2n) in the
defining representation. Namely, the generators of ospn
11u2n) acting in the representationR are combined into the
superspin

G5S jajb2 1
2 dab jaqb

iJagqgjb iJagqgqb2 1
2 dab

D , ~4.2!

shown here in block@(2n11)12n#3@(2n11)12n# form,
and a similar matrix obtained from the generators
osp(2n11u2n) acting in the representationR̄:

Ḡ5S hahb2 1
2 dab har b

iJagr ghb iJagr gr b2 1
2 dab

D . ~4.3!

The generators of the global SUSY of the system are now
matrix form, ( i(Gi1Ḡi).

Next we take a time-continuum~Hamiltonian! limit of the
transfer matrices. To do that we actually have to start with
anisotropic RBIM, where the vertical and horizontal co
plings take different values ofK. In that case we can arrang
for the situation when in the vertical matrixK* ,L* !1, and
in the horizontal oneK,L!1 ~we continue to use these no
tations, so thatK* , L* are no longer related toK, L by the
duality relation!. Then we can expand the horizontal trans
matrix ~3.12! as

T2i8 .112K2X̂Si
2 14KLX̂Six0i

.exp~2K2X̂Si
2 14KLX̂Six0i !. ~4.4!

Then we can combine allT1i8 andT2i8 into a single ‘‘evolu-
tion’’ operator in imaginary time with the Hamiltonian

HS5(
i

~h~N̂Si1l* n0i !2k~X̂Si
2 12lX̂Six0i !!, ~4.5!

where we introduced

h52K* , k52K2, l* 5
L*

K*
, l5

L

K
. ~4.6!

The parametersl and l* introduce anisotropy in the cou
plings among the replicas. The Hamiltonian~4.5! may be
rewritten in a very suggestive form using the superspinsG

andḠ:

HS5(
i

~h~N̂Si1l* n0i !1k strLḠiLGi 11!, ~4.7!

where

L5diag~l,14n! ~4.8!

is a diagonal matrix representing the anisotropy in the sup
spin space. The supertrace here, denoted str, is over thn
11-dimensional space as above, with a plus for diago
matrix elements in the 2n11-dimensional block, and a mi
nus for those in the remaining 2n-dimensional block. With
this definition, the expressions reduce to the ordinary tr
2-9
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for the replica formalism where only thej ’s andh ’s are kept
~and thenn→0), without an overall change in sign.

Now we should notice that in the anisotropic version
the RBIM, there are in general two couplings,Kx ,Ky , and
two parameters for the probabilities,Lx ,Ly . The Nishimori
condition becomes two equations,Kx5Lx ,Ky5Ly . Thus
the NL is replaced by a two-dimensional surface~or
2-surface! in the four-dimensional space, and so does
divide the phase diagram into two pieces. We will contin
to refer to this as the NL. There is presumably a line on t
surface at which a transition occurs. The complete ph
boundary is three-dimensional, and the multicritical behav
is found on a 2-surface on this 3-surface. The multicriti
line on the NL presumably lies in the multicritical 2-surfa
on the phase boundary. Even though the transfer matrice
not have the larger SUSY everywhere on that 2-surface,
presume by universality that the higher SUSY fixed po
theory, to which the multicritical point on the NL flows
controls the entire multicritical 2-surface because anisotr
such as we have introduced usually does not affect the
versality class.

In any case, on the NLl5l* 51, and we obtain an
osp(2n11u2n)-invariant ~or isotropic! Hamiltonian

HS5(
i

~hN̂Si8 1k strḠiGi 11!. ~4.9!

Equation~4.9! has the form of a superspin chain with th
alternating lowest- and highest-weight representationsR and
R̄, and corresponding superspin operatorsG andḠ. We can
better represent this by splitting the original sites into pa
of split sites. This is shown in Fig. 2. The Hamiltonian~4.9!
has two types of couplings on the alternating bonds. B
these couplings are antiferromagnetic in nature. This me
that the lowest energy state for a given bond is the single
osp(2n11u2n) contained in the decomposition of the tens
product of the representationsR and R̄.

B. Unconstrained representation of superspins

The picture of the split sites carrying irreducible repres
tations is very attractive, but does suffer from one difficu
at present. This is that we obtained the representation
introducing an additional zeroth fermionc0i ,c0i

† , together
with a constraint which refers to both the split sites th
comprise the original site. Here and in Appendix B we sh
how to avoid this by the use of a different construction.

FIG. 2. The graphical representation of the Hamiltonian~4.7! on

the split sites. Superspins in the representationsR andR̄ are shown
as filled and empty circles. The two types of coupling,h andk, are
indicated.
10442
f

t
e
s
se
r
l

do
e
t

y
i-

s

h
ns
of
r

-

by

t

Sec. VI we will extend this approach further, introducing
further representation which involves a constraint on e
split site.

The representationsR and R̄ can be constructed usin
complex fermionic and bosonic operators without co
straints, that is essentially inFi . For the simplest case of th
osp(3u2) algebra this is done in Appendix B. Here we no
that the complex fermions and bosons used in the const
tion are related to the real ones~apart from the zeroth fer-
mion! on the split sites introduced so far in the followin
manner:

f m i5
jm i1 i jm1n,i

A2
, f̄ m i5

ihm i1hm1n,i

A2
, ~4.10!

bm i5
qm i1 iqm1n,i

A2
, b̄m i5

ir m i1r m1n,i

A2
. ~4.11!

All of these operators are canonical, except for theb̄ bosons,
which are ‘‘negative norm:’’

@ b̄m i ,b̄n j
† #52d i j dmn . ~4.12!

In terms of these complex bosons and fermions the quad
forms appearing in the transfer matrices~2.32! look espe-
cially uniform:

X̂Si5 f m,i 11
† f̄ m i

† 1 f̄ m i f m,i 111bm,i 11
† b̄m i

† 1b̄m ibm,i 11 ,

N̂Si5 f m i
† f̄ m i

† 1 f̄ m i f m i1bm i
† b̄m i

† 1b̄m ibm i . ~4.13!

In this form the subalgebra osp(2nu2n) on a split site is
generated by bilinears as before, now of the formf 2, ( f †)2,
f †f , b2, . . . , f †b, . . . , forR. We saw earlier that the expres
sions for X̂Si and N̂Si are invariant under this osp(2nu2n)
algebra. However, the extension to osp(2n11u2n) is modi-
fied since we do not use the zeroth fermionc. Instead, the
additional generators include string operators such a
(21)nf , see Appendix B, where expressions for the gene
tors of osp(2n11u2n) in the casen51 are given. It is then
clear that the states on the unsplit sites decompose in
single tensor product of irreduciblesR andR̄ as claimed. The
string operators again correspond to the difference in grad
between that natural inF and our choice, which agrees wit
the natural one inF8. With our choice, the ~anti-
!commutation relations obeyed by the generators of
larger osp(2n11u2n) SUSY are consistent with the state
grading, as discussed in more detail in Appendix B.

An advantage of the unconstrained representation of
states on the split sites is that it makes the pure limitp50
transparent. The pure Ising problem in the anisotropic tim
continuum limit in this representation gives a neare
neighbor ‘‘hopping’’-type Hamiltonian for fermions an
bosons, which is a sum overi of N̂Si and X̂Si , with coeffi-
cients. This is a lattice version of the Dirac fermion and
SUSY partner, the so-calledb-g system of bosonic ghosts
However, in the general disordered case, there are additi
terms which we expressed previously using the zeroth
2-10
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mion. In Appendix B we show how theGiḠi terms in the
Hamiltonian can be expressed in the present language.
other term, which becomesN̂Si8 on the NL, is much more
difficult to express in this language, and we return to t
problem in Sec. VI.

A slight subtlety involved in the definition of the comple
bosons is the following. If we express them in terms of tha

bosons, which diagonalize the formN̂Bi , Eq. ~2.30!, we ob-
tain a singular Bogoliubov rotation:

bm i5
am i1ām i

†

A2
, b̄m i5

am i
† 2ām i

A2
. ~4.14!

The singularity of this transformation is seen in the fact t
the formal expression for theb, b̄ vacuum~on a single un-
split site i ), defined bybu0̃&5b̄u0̃&50, is

u0̃&}expS 2(
m

am i
† ām i

† D u0&, ~4.15!

whereu0& is thea, ā vacuum defined in Eq.~2.31! and leads
to a series for the squared norm^0̃u0̃& which is not conver-
gent. A way out of this problem is to regularize the Bog
liubov rotation~4.14! as follows:

bm i5cosf am i1sinf ām i
† ,

b̄m i5sinf am i
† 2cosf ām i , ~4.16!

wheref5p/42v/2 with 0,v!1. With such regularized
transformation, theb, b̄ vacuum

u0̃&5
1

cosnf
expS 2tanf(

m
am i

† ām i
† D u0& ~4.17!

is well-defined and normalized to 1.
If we now use the regularized relations~4.16!, the expres-

sion for N̂Bi becomes~to first order inv)

N̂Bi5bm i
† b̄m i

† 1b̄m ibm i1v~nbi1nb̄i !2n, ~4.18!

with bosonic number operators defined as

nbi5bm i
† bm i , nb̄i52b̄m i

† b̄m i . ~4.19!

The fermionic sector in our formulation is finite dimension
and there are no similar problems with the fermions. Ho
ever, to maintain the exact cancellations between fermi
and bosons, we will modify the definition off and f̄ similarly
to that for the bosons. One effect of this is that the sup
symmetric analog of Eq.~4.17! lacks the factor 1/cosnf.
Then the osp(2nu2n)-invariant combination~4.13! takes the
form

N̂Si5 f m i
† f̄ m i

† 1 f̄ m i f m i1bm i
† b̄m i

† 1b̄m ibm i

1v~nf i1nf̄ i1nbi1nb̄i !, ~4.20!
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where the fermionic number operators are defined in a n
ral way:

nf i5 f m i
† f m i , nf̄ i5 f̄ m i

† f̄ m i . ~4.21!

The term first-order inv breaks the SUSY down to gl(nun),
which is still enough SUSY to ensure cancellation of ferm
ons and bosons.

We can make this term appear more natural by the
lowing considerations. It is a regularizer which suppres
contributions to the partition function from high fermion an
especially boson numbers on any site. We can introduce
a more symmetric way by inserting exp(iv(nfi1nf̄i1nbi
1nb̄i) between all theT1i ’s and T2i ’s in the partition func-
tion; to first order inv, the effect is the same. Such a
insertion is a precaution similar to that often used in netw
models and nonlinear sigma models of localization. Thev
term represents a nonzero imaginary part of the frequenc
those problems, and as in the present case breaks the
metry to a subgroup. In the superspin chain language,
operator whichv multiplies is one component of the stag
gered magnetization, the order parameter for the chain.
term, with v→0, is used just in case this develops a spo
taneous expectation value, since it picks a direction for
ordering in superspin space and cuts off infrared div
gences. Note that the state with each site in the vacuum s
for the f ’s, f̄ ’s, b’s, andb̄’s is the Néel state corresponding
to such order, and is invariant under the subalgebra gl(nun).
The symmetry-breaking term will be important in Sec. V.

V. DIMERIZED LIMIT AND THE ONE-DIMENSIONAL
CASE

This section lies somewhat outside of the main line of o
development; the latter continues in Sec. VI. Here we c
sider our model in the vicinity of the NL deep in the low
temperature phase. In terms of the superspin chain with
Hamiltonian~4.7!, in this phase we haveh!k. Then in the
zeroth approximation we may neglect theh couplings com-
pletely. Then the chain~4.7! is broken into disconnected
pairs of superspins. The Hamiltonian for one such pair is

Hk54 strLḠLG54 strLGLḠ, ~5.1!

where the coupling constantk ~overall energy scale! was
taken to be equal to 4 for later convenience, and we used
cyclic property of the supertrace. We can try to solve t
Hamiltonian and hope to infer some information about t
low temperature phase of our original model. However,
wish to sound a note of caution: we are considering a cer
double limit of the original lattice Ising model, first the an
isotropic limit, then the ‘‘lowT’’ limit, h!k. It is not en-
tirely clear that this really represents the lowT limit of the
nearly isotropic Ising model, where we pass to lowT close to
the NL, and perhaps then go to the anisotropic limit.

We will make use of the realization of the representatio
R and R̄ in Fock spaces of unconstrained fermions a
bosons. For simplicity we will work out the details fo
osp(3u2) only. In this case the necessary construction oR
2-11
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and R̄ and the invariant products of superspins is given
Appendix B. From it we obtain

Hk5lJ2J2, ~5.2!

with

J5 f † f̄ †1 f̄ f 1b†b̄†1b̄b. ~5.3!

We anticipate that the eigenstates of the HamiltonianHk
may have arbitrarily large bosonic occupation numbers,
we may encounter convergence problems typical in s
cases. These are avoided, however, if we remember thv
term, discussed in Sec. IV B. As explained there, it plays
role of a symmetry-breaking regulator that picks a direct
for ordering, similar toS1

z2S2
z for the problem of two anti-

ferromagnetically coupled su~2! spins. Thus we add to ou
Hamiltonian the term

Hv5v~nf1nb1nf̄1nb̄!. ~5.4!

The resulting Hamiltonian

H5Hk1Hv ~5.5!

is identical to the one studied by Balents and Fisher i
one-dimensional localization problem@see Eq.~3.31! in Ref.
28#. This is the problem of spinless fermions on a 1D latt
with random hopping amplitudes described by the Ham
tonian

H52(
n

tn~cn
†cn111cn11

† cn!. ~5.6!

The continuum limit of this model gives left and right mo
ing spinless Dirac fermions with random mixing betwe
them:

Hc5E dxC†
„2 isz]x1V~x!sy

…C, ~5.7!

whereC(x) is a two-component spinor field,s i are Pauli
matrices, and the random potential is Gaussian with nonz
mean and variance:

@V~x!#5V0 ,

@„V~x!2V0…„V~x8!2V0…#52Dd~x2x8!. ~5.8!

The generating functional for the Green’s functions of t
Hamiltonian at a given energye1 ih may be supersymme
trized in the standard way. After disorder averaging thex
coordinate may be interpreted as imaginary time, and the
components of the fermion can be viewed as labeling
sites, which correspond to our split sites. This leads to
effective quantum Hamiltonian, which is exactly given b
Eq. ~5.5! with

l5V0 /D, v5h2 i e. ~5.9!

The 1D model with the Hamiltonian~5.7!, and related
models, have a long history, and most of the relevant wor
concisely summarized in Ref. 32. In particular, the density
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states for this problem was found forl50 in 1953 by
Dyson,33 and for arbitraryl by many authors.34 The math-
ematically equivalent problem of diffusion in a 1D rando
medium was studied by Bouchaudet al.35 The density of
statesr(e) behaves at small energies as

r~e!}
1

eu ln3eu
, l50, ~5.10!

r~e!}el21, l.0. ~5.11!

In the superspin language the density of statesr(e) is
related to the expectation value of some operator in
ground state of the Hamiltonian~5.5!.28 Namely, it is propor-
tional to the staggered componenth22h̄2 of the superspin
~see Appendix B!

r~v!}^12nf2nf̄&}vl21. ~5.12!

This quantity measures the amount of the symmetry break
in the ground state of two superspins. From the last equa
it follows that the symmetry is spontaneously broken on
NL ~which is a point in the 1D model! and below it. More-
over, below the NL, wherel,1, the density of states~the
order parameter of the spin chain! diverges asv→0. On the
NL it is constant, and above the NL it vanishes as a powe
v.

Because the SUSY representations are the same, we
in fact shown that in the 1D off-diagonal disorder proble
there is a larger SUSYosp(2n11u2n) at the pointl51.
This has not been noticed previously to our knowledge. T
suggests that such Nishimori points, lines, etc., may be c
mon in some classes of random fermion problems. We a
note here that in the 1D classical RBIM, which of course h
no finite T phase transition, there is a Nishimori point
which the correlation identities Eqs.~1.4! hold. That problem
can be represented using fermions on one unsplit site w
the T1i transfer matrices only, which are of theh-coupling
type, in contrast to the model considered here, and is ea
solved in this language.

VI. FINAL REPRESENTATION AND THE GENERALIZED
MODEL

In this section we continue the general consideration
the RBIM problem. Here we focus our attention on the N
that is, we consider the osp(2n11u2n)-invariant Hamil-
tonian~4.9!. First we analyze and solve the problem of fin
ing a way to describe the termN̂Fi in the spacesR, R̄ on the
split sites. The problem is solved by using another repres
tation in a spaceF9, and the spaces can be viewed as rep
sentations of a larger SUSY algebra, osp(2n12u2n). Using
only terms of the form of the two couplings we have alrea
seen, we then introduce a more general nearest-neighbo
perspin chain, and discuss its phase diagram for referenc
the following sections.

First let us note that Eq.~4.9! is somewhat schematic. Le
us again consider the fermionic replica formalism withn

→0 instead of SUSY. The termN̂Si8 is then replaced by
2-12
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N̂Fi8. According to our general discussion of how to m
operators inF into F8 ~see Sec. III!,

N̂Fi8 5 ihaijai1n1
1

2
~6.1!

is correct as it stands inF8. Even though the operatorN̂Fi8 is
perfectly legitimate, it does not admit any simple express
in terms of the so(2n11) generatorsGi andḠi . We would
like to write it as a sum of products of operators in the spin
representationsR, R̄ on the split sites. Of course, individua
fermion operatorsjai , hai do not commute with the con
straint, and cannot be used. Instead they must be replace
Z2-invariant operators. As explained in Sec. III, we can fi
operators inF8 with the anticommutation properties of th
fermions in F for the componentsother than the zeroth.
These are fermion bilinears times a string; see Eq.~3.9!. A
general proof that it is impossible to find a set of operat
with the anticommutation relations of thefull set of real fer-
mion operatorshai andjai in the spaceF8 is to notice that
they should form a Clifford algebra with 2N(2n11) genera-
tors, whereN is the number of unsplit sites in the chain. Th
Clifford algebra has a single non-trivial representation of
mension 2N(2n11). This space is the same as an unco
strained Fock space for 2n11 complex fermion operators a
each unsplit site, i.e.,F8 but without the constraints. Th
total number of states inF8 is only 22Nn because of theN
constraints. So the operators we require cannot have the
ticommutation relations of free fermions for all the site
Indeed, in our grading onF, single fermion operators ar
even, and so would be expected to obey commutation r
tions from a SUSY point of view. InF8 there are corre-
sponding fermion bilinears, like Eq.~3.9! but without strings,
and these do commute on different sites~as mentioned al-
ready in Sec. III!.

We can also try the unconstrained representation. T
again, we can represent each of the 2n real fermionsha i and
ja i on each split site using Eqs.~4.10!, and the resulting
Clifford algebra for 2N split sites yields the correct numbe
of states. This description carries over easily to the SU
version. But the above proof shows that no matter w
strings or other factors we introduce into a construction
operators, we cannot produce the anticommutation relat
for 2n11 real fermions at each split site, and we are
nearer writingN̂Si8 as a product of simple expression inR and

R̄. What we would have to do is map the problematic p
n0i of the operator back fromF8 to F. Because of the con
straint in the former space, the resulting operator~still in the
fermionic replica formalism! must equal 1 whenN̂Fi is odd,
0 whenN̂Fi is even, or similarly forN̂Si in the SUSY for-
malism. It is not clear how we would write this as a coupli
of the two split sites ati.

There is nonetheless a way out of this problem, motiva
by the following observation. If we consider a single spin
representationR of so(2n11) ~thus in the fermionic replica
formalism once more!, then it is in fact possible to find op
erators with the anticommutation relations of the real ferm
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ons ja . These are the generators of a Clifford algebra w
an odd number 2n11 of generators, which has an irredu
ible representation of dimension 2n ~the familiar 232 Pauli
matrices are the casen51). The commutatorsi /2@ja ,jb# of
these operators are the generators of so(2n11), as we have
already seen. The operatorsja transform as a vector o
so(2n11). If we now consider these so(2n11) generators
together with theja ~divided byA2), then we may use the
fact that thecommutatorsof these operators~or matrices!
together obey the relations of the generators of so(2n12),
and the spinorR can be identified with one of the two dis
tinct irreducible spinor representations of dimension 2n of so
(2n12). This construction can also be applied to the rep
sentationsR̄ @which for so(2n11), though not for osp(2n
11u2n), is isomorphic toR#. This construction also extend
easily to the many-site problem,by taking the operators now
replacingja to commute on different sites. We may therefore
write down our termN̂Fi8 as a sum of products of bilinears o
these operators, and this can also be extended to the S
construction, using operators with the relations ofqa , r a , on
each site, but which anticommute on different sites.

Thus we have learned that our spaces of statesR, R̄ at
alternate sites can be viewed as irreducible spinor repre
tations of osp(2n12u2n) ~but note that this algebra is not
symmetry of our Hamiltonian or transfer matrices so fa!.
There are two inequivalent lowest-weight spinor represen
tionsRe , Ro ~for ‘‘even’’ and ‘‘odd’’ ! of osp(2n12u2n), in
which all states can be assigned positive norm-squares.
can identifyR with, say,Re . Similarly, R̄ can be identified
with a highest-weight spinorR̄e , which is dual toRe , and in
which the inner product is indefinite, since as we have s
states with an odd number ofb̄ bosons have negative square
norms.

Viewing the spaces of states in this way, we can give
another explicit construction, with which we can finally wri
the operatorsN̂Fi8 andN̂Si8 in a simple way. It is convenient to
keep much of the notation the same as before. We introd
additional complex fermionsf 0i , f̄ 0i to the setf m i of Eq.
~4.10!, and define a spaceF95 ^ iFi9 consisting of the states
on the split sites with an even number of fermions p
bosons:

nbi1nf i1 f 0i
† f 0i5even, ~6.2!

nb̄i1nf̄ i1 f̄ 0i
† f̄ 0i5even. ~6.3!

It is clear that such states are in one-one correspondence
those in the unconstrained representation. The construc
of the correspondence is similar to that for the states in
spacesF andF8 in Sec. III. All the states can be obtaine
from the vacuum, which is the lowest-~highest-! weight state
in Re (R̄e), by the action of the bilinears in the creatio
operators. Then in addition to Eq.~4.10! we also define

f 0i5
j0i1 i j0i8

A2
, f̄ 0i5

ih0i1h0i8

A2
. ~6.4!
2-13
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Now the so(2n12) generators on a single site are replac
by

i

2
@jai ,jbi#,

i

2
@j0i8 ,jai#, ~6.5!

where the first set, again, spans the subalgebra so(2n11),
and the second set transforms as a vector under this sub
bra. There are similar expressions forR̄e . We emphasize tha
the operatorsjai , j0i8 , hai , h0i8 obey canonical anticommu
tation relations, whileqa i , r a i obey canonical commutatio
relations, of the same form as in Eqs.~2.17! and~2.24! @with
negative norm states appearing in connection with ther ’s,
see Eqs.~4.11! and following#. Our choice of grading is
again equivalent in the constrained subspacesFi9 to their
natural grading as subspaces of Fock spaces. Finally, in
representation inF9, the operatorN̂Si8 undergoes the replace
ment

N̂Si8 5 ihaijai2r a iJabqb i1
1

2

°2h0i8 haijaij0i8 12ih0i8 r a iJabqb ij0i8 1
1

2
. ~6.6!

These results may also be established by passing dire
from the~averaged! unconstrained representation to the fin
representation by using a substitution similar to Eq.~3.9! but
applied here to the split sites.

We can now organize the generators of osp(2n12u2n) in
superspins, similar to Eqs.~4.2! and~4.3!, and including the
additional odd generators:

G85S 0 j08jb j08qb

jaj08 jajb2 1
2 dab jaqb

iJagqgj08 iJagqgjb iJagqgqb2 1
2 dab

D ,

~6.7!

Ḡ85S 0 h08hb h08r b

hah08 hahb2 1
2 dab har b

iJagr gh08 iJagr ghb iJagr gr b2 1
2 dab

D .

~6.8!

Note that these osp(2n12u2n) superspins contain the orig
nal osp(2n11u2n) superspinsG andḠ as submatrices. The
odd generators are those containing an odd number of
mion operator factors, or equivalently an odd number of
son operator factors. With the help of the osp(2n12u2n)
superspins, both terms in the Hamiltonian~4.9! may be writ-
ten in a unified way:

hN̂Si8 5 lim
k→0

S strCGi8CḠi81
h

2D , ~6.9!

k strḠiGi 115 lim
h→0

S strCḠi8CGi 118 1
h

2D , ~6.10!
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where we have introduced a 4n12-dimensional diagona
matrices of coupling constants

C[C~h,k!5diag~hk21/2,k1/214n11!, ~6.11!

and the supertrace str in this space is defined in the same
as the previous str. These two terms represent two diffe
osp(2n11u2n)-invariant products of two subsets of th
osp(2n12u2n)generators. It should be clear that the rep
sentation inF9 can also be used off the NL, by giving certa
terms different coefficients.

It is now natural to consider a generalized Hamiltonian

H5(
i

„strC~hA ,kA!Gi8C~hA ,kA!Ḡi8

1strC~hB ,kB!Ḡi8C~hB ,kB!Gi 118 …1
hA1hB

2
N,

~6.12!

parametrized by four coupling constants. In such a Ham
tonian both types of osp(2n11u2n)-invariant couplings ap-
pear on every bond between the split sites. In addition, t
are staggered between the two sublattices of bondsA andB
of our chain. Our NL Hamiltonian~4.9! is a particular ex-
treme limit, where on alternate bonds one or the other c
pling is zero. It is obtained from Eq.~6.12! for the special
values of the parameters

hA5h, kA50, hB50, kB5k. ~6.13!

We believe it may be helpful to consider these more gen
models, since they are so closely related to that for
RBIM, and use only couplings that appear anyway in t
RBIM case; however, we emphasize that it may not be p
sible to obtain these models as anisotropic limits of rand
fermion or network models. When

hA5kA , hB5kB , ~6.14!

the model is invariant under the whole of osp(2n12u2n).
We should note that in principle we can also consider t
generalization in the discrete imaginary time model, and a
off the NL, where, however, the breaking of the symmetr
would lead to twice as many parameters. The additional
rameters would generalizel, l* in Sec. IV A, and there
would be one for each ofkA , kB , hA , hB , a total of eight
parameters in the Hamiltonian. In particular, another mo
due to Cho and Fisher13 fits into this general description, a
we will see in Sec. VII.

The Hamiltonian ~6.12! contains four parameters, bu
since the overall energy scale is unimportant, the phase
gram can be plotted in terms of the three independent ra
of parameters. We will consider only positive values of
couplings, though negative values may also give we
defined models. The phase diagram can then be drawn
symmetrical manner in a three-dimensional tetrahedron,
portion of projective space~see Fig. 3!. Each face of the
tetrahedron is defined by the vanishing of one of the fo
parameters. The opposite vertex is where that parameter
to infinity, or equivalently the other three all go to zero.
2-14
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The edges of the tetrahedron correspond to models
two vanishing couplings. For example, the vertical edge c
necting the verticeshA5` andkB5` represents the Hamil
tonian ~4.9! for the RBIM on the NL@to avoid confusion,
recall that the whole discussion is a generalization of the N
since all the models have the larger osp(2n11u2n) SUSY#.
There is another such line represented by the horizontal e
connecting the verticeshB5` andkA5`. These two Hamil-
tonians are related by a reflection through a lattice site. S
an operation is thus a symmetry of the whole diagram, wh
interchangesA with B. The linekA5kB , hA5hB is invariant
under this operation, and the operation acts as a 180° r
tion about this line. On each NL, there is a multicritical po
N and its imageN8.

The edges where both nonzero couplings are on the s
sublattice of bonds~e.g.,A) represent the two extreme cas
of fully dimerized chains, which have a gap in their ener
spectrum. By analogy with other antiferromagnetic~super-
!spin chain models, we expect that the regions adjacen
these lines are also gapped phases. There must be at lea
phase transition between these two extremes. One way to
this is to consider a chain with open ends, and an even n
ber of split sites. In one phase the dimers extend all the w
to the ends of the chain, in the other a single superspin is
unbonded with a neighbor at each end. This corresponds
chiral edge degree of freedom in the 2D lattice model.
phase transition must occur to change the number of s
boundary spins or edge channels, assuming these surviv
the edges of the tetrahedron. We will assume that, as
pected on the NL in the RBIM, there is a single transiti
between the two phases. Then there must be a ph
boundary surface between those two edges, indicated s
matically ~since its exact position is unknown! by the shaded
surface in Fig. 3. The pointsN and N8 are two vertices of
this rhomboidal surface, which also contains the line of
flection symmetry. However, we note that an intermedi
phase, in place of some portion of the critical surface, is a
possible, though this is not expected on the NL in the RBI

The two other edges of the tetrahedron are where ei

FIG. 3. A possible phase diagram of the generalized Ham
tonian ~6.12!, discussed in detail in the text.
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only the k’s are nonzero, or only theh’s, and we denote
these models ‘‘k-only’’ and ‘‘ h-only.’’ They intersect the
phase boundary~if there is a unique transition on thes
edges! at points labeledK and H in Fig. 3 ~no confusion
should result from this notation!. In these models, the reflec
tion symmetry and the assumption of a single transition
plies thatK is kA5kB , andH is hA5hB ~and other param-
eters are zero!.

The tetrahedral phase diagram also contains the line g
by Eq. ~6.14! where the generalized Hamiltonian~6.12! has
the osp(2n12u2n) symmetry. This line, shown dotted i
Fig. 3, intersects the critical surface at a critical pointO
~black dot!, where all four couplings are equal. Again, th
point is unique if we assume there is a single transition
this line; it is kA5kB5hA5hB .

VII. CHO –FISHER, k-ONLY, AND h-ONLY MODELS

In this section we consider a model studied numerica
by Cho and Fisher in Ref. 13. This is a network mod
similar to the Chalker–Coddington network14 describing the
integer quantum Hall transition, but with only real matrice
and was intended to represent the RBIM problem. We sh
that the Ising model can be represented exactly as a netw
model, and that the Cho–Fisher model does not represen
RBIM. Instead, it can be mapped to some of the generali
Hamiltonians without enhanced SUSY, introduced in S
VI.

The Cho–Fisher model is a network model, intended
capture the universal aspects of the pointN in the RBIM,
which can be viewed as a generalization of the 1D mo
discussed in Sec. V. It was constructed as a generalizatio
the model whose action is given in Eq.~5.7!, in which the
two components of the fermion are replaced by any num
of sites in a 1D chain, with random nearest-neighbor hopp
that generalizes thesy term in Eq. ~5.7!, and, in general,
different parameter valuesV0 andD on alternate bonds in the
chain. Then use of replicas or SUSY to perform the disor
average leads to a generalization of the quantum~super-!spin
HamiltonianHk1Hv , Eq. ~5.2! in Sec. V~we will disregard
here the regularizing termHv!, in which the same form of
coupling appears for each pair of nearest neighbors, but w
the coefficient ofHk taking two valuesk, k8 on alternate
bonds, and similarly forl, l8. We emphasize that at thi
stage we are using the unconstrained representation o
space of states of the chain. Cho and Fisher specialized to
casek5k8 ~i.e., node independent disorder strength!, and
went back from their time-continuum model to a discre
time ~network! model, similar to that in Ref. 14, in order t
perform numerical calculations. They claimed that their n
work model has a multicritical point in its phase diagra
with critical properties remarkably similar to those of th
multicritical point on the NL. In particular, the critical expo
nents along the two scaling axes near the multicritical po
were found to be fairly close numerically to the ones kno
for the pointN in the RBIM from the high-temperature ex
pansion of Singh and Adler.12 Also, simulation in Cho’s
thesis13 of a network model that corresponds precisely to
RBIM ~as we will explain! gave similar values. Now we

l-
2-15
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wish to point out that it is possible to relate network mod
more directly to the transfer-matrix formulation for fermion
as in the Ising model. First we describe the network mod
A portion of the network is shown in Fig. 4, where the so
lines with arrows are where the particles propagate. The
ticles propagate in discrete time, at each time step movin
the next link in the ‘‘forward’’ direction shown by the ar
rows, and therefore turning either left or right at each tim
The evolution is described by a unitary S-matrix which giv
the amplitudes for turning either right or left at each node14

This can be replaced by a one-particle transfer matrix, wh
adds one row of nodes to the system, evolving the w
function of the particle upwards in the figure. In the Cho
Fisher model, the one-particle transfer matrix for one no
has the form

M5S coshu sinhu

sinhu coshu D . ~7.1!

The parameteru for each node is random, taking value
6uuu with probabilities 12p, p, independently. Also, the
magnitudes ofu can be staggered, taking different valu
uuAu, uuBu on the two sublattices of nodes labeledA, B in Fig.
4. The so-called isotropic case is where sinhuuAu sinhuuBu51.
This leaves a one-parameter family of models; in the origi
network model14 a transition occurred whenuuAu5uuBu, the
‘‘self-dual’’ point.

To exhibit a relation with the Ising model transfer mat
ces we use a second-quantized formulation of the networ
a noninteracting fermion field theory. The evolution in t
imaginary-time~vertical! direction is described by a transfe
matrix constructed from the one-particle one. We can w
this by drawing on earlier work.37 Though the latter was on
different model, the basic Eq.~2! in that work is applicable
for any transfer matrix, with matrix elements

FIG. 4. Relation of the Ising model and the network mod
Ising spins are located at the open circles, and bonds are sh
dotted. Solid lines with arrows form the ‘‘medial graph,’’ on whic
the network model is defined. Examples of nodes on each of
two sublattices, corresponding to the horizontal and vertical bo
are labeledA, B, respectively. In this paper, we consider period
boundary conditions in the vertical direction, and free in the ho
zontal, as shown here.
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Thus in our casea5d5coshu and b5g5sinhu. Using
only one species of fermions, and dropping the bosons in
~2! of Ref. 37 since we will not be averaging here, we r
place f 1 in Ref. 37 by f, f 2 by f̄ 8 ~where f and f̄ 8 obey
canonical anticommutation relations! and obtain

V5:exp@ tanhu~ f † f̄ 81 f̄ 8†f !#:~coshu!nf1nf̄ 8. ~7.3!

Here the colons :•••: indicate normal ordering with destruc
tion operators to the right. Then, after making the particl
hole transformationf̄ †5 f̄ 8, we can prove the identity

V5eu( f † f̄ †1 f̄ f ) ~7.4!

by verifying that all matrix elements of the two expressio
are equal. But this now has the form of the fermionic rep
sentation of the squared Ising model~i.e., n51), as in Eqs.
~2.32! and ~4.13! ~dropping the bosons in the latter!, up to
constant factors in the vertical case. This means that the
sites on a single row correspond to one row of links of t
network. The relation of the original Ising lattice and th
network model is as shown in Fig. 4; in particular, the tw
sublattices of nodesA and B correspond to horizontal an
vertical bonds, respectively. The relationship of seco
quantized transfer matrices holds true for arbitrary values
u at each node, and also remains true when bosonic part
are introduced in preparation for averaging.

The important corollary to this is that for the transfer m
trices of the sort appropriate for the horizontal bonds~labeled
A in Fig. 4!, we have15 2K5u. The Cho–Fisher network
model takes the parameteru at the nodes to have indepen
dent random signs. Hence it is precisely equivalent to the
of transfer matrices~2.9! and ~2.10!, with the binary distri-
bution of the type~1.2! for both the horizontal couplings
K i,i1 x̂ and the dualK̃ i,i1 ŷ to the vertical couplings. Note tha
the Cho–Fisher model is not in fact isotropic, even when
~magnitudes of the real parts of the! K ’s and the probabilities
p on the horizontal and vertical links are the same, which
what we termed isotropic above; this is because of the w
the random signs are introduced. Another popular param
zation for the network models uses the S-matrix at e
node,14 where the S-matrix is a real orthogonal matrix in t
present case, with one of its off-diagonal matrix eleme
~say, the amplitude for turning right! denotedt5sinf. In
this case the equivalence to the Ising model squared
tanh 2K5sinf for the horizontal couplings.

Since negative dual couplingsK̃ correspond to complex
Ising couplingsK, the Cho–Fisher model does not faithful
reproduce the RBIM with6K couplings. Instead, in repli-
cated fermion language, both types of bond are represe
after averaging by transfer matrices of the horizontal ty
One might imagine that this is thek-only model, with param-
eterslA , lB included, so that the osp(2n11u2n) SUSY is
present whenl5l851. But in fact, carefully following our
mapping leads to different forms for the two bonds,A, B. It
is necessary once again to use the final (F9) representation,
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RANDOM-BOND ISING MODEL IN TWO DIMENSIONS: . . . PHYSICAL REVIEW B63 104422
and to pass to it directly from the unconstrained represe
tion. We find that, while the bonds corresponding to the ho
zontal bonds in the Ising model involve the real fermio
j0i , h0i , in the k-coupling terms as in Eq.~6.10!, for the
vertical bonds those fermion operators are replaced byj0i8 ,
h0i8 . For l or l851, these terms are invariant under
osp(2n11u2n) SUSY, but these are distinct osp(2n
11u2n) sub-superalgebras of osp(2n12u2n) in the two
cases, and so the Hamiltonian does not possess a g
osp(2n11u2n) SUSY @though there is of course sti
osp(2nu2n)#. These models therefore lie elsewhere in o
space of fully generalized Hamiltonians with~in general!
only osp(2nu2n) SUSY.

We note here that by rotating the Cho–Fisher network
90° we obtain after averaging~using theF 9 representation!
a model which resembles theh-only model, but again has
different osp(2n11u2n) SUSYs for the two types of bond
Because taking the anisotropic limit usually does not aff
the universality class of the critical phenomena, the resul
spin chain model should have the same critical phenom
as the one described above for the Cho–Fisher model.

VIII. FIXED POINTS AND NONLINEAR SIGMA MODELS

In this section we first speculate that a single fixed po
or universality class controls much of the phase boundar
the tetrahedral phase diagram. Then we discuss the nonl
sigma models that are related to our spin chains, and ca
late, at weak coupling, the RG beta functions for the c
pling constants. The results support the hypothesis of a fl
towards the higher SUSY as at pointO in the phase diagram
Finally, we discuss the nonlinear sigma~and related! models
for the more general, lower SUSY@osp(2nu2n)#, or class D,
random fermion problems.

For the generalized Hamiltonian with osp(2n11u2n)
SUSY we argued~on the assumption that there is a sing
transition surface! that the phase boundary is a rhombus, a
further there is a reflection symmetry in the superspin ch
which, on this surface, acts as a reflection. Then the ph
boundary is a triangle, with pointsK, N, H at the vertices, as
shown in Fig. 5. The pointO, at which the model has th
larger SUSY algebra osp(2n12u2n), is now at the middle of
one side of the triangle.

FIG. 5. The critical surface of the generalized Hamiltonian af
reduction using symmetry. The arrows indicate our suggested
flows to a fixed-point theory with the same larger SUSY as
model atO.
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Under the RG, the osp(2n12u2n)-invariant model must
flow to a critical quantum field theory~presumably, a con-
formal field theory! which also has the larger SUSY. Othe
models, represented by other points in Fig. 5, such asN, K, H
may flow to some other fixed point theories of low
@osp(2n11u2n)# SUSY, and it is of course the fate ofN that
concerns us in the RBIM model problem. If we must make
guess as to the structure of the flows and fixed points,
simplest guess is the one that involves the fewest fi
points. Since there must be a fixed point theory w
osp(2n12u2n) SUSY, the simplest guess is then that t
whole critical surface flows to this fixed point. This is sch
matically illustrated in Fig. 5 by the arrows, which are i
tended to indicate that all models flow to the fixed po
corresponding toO ~note that the models atN, K, H, andO
are not themselves fixed points of the RG!. If correct, this
would imply that the critical exponents are the same at
points in the critical surface shown in Figs. 3 or 5. In pa
ticular,N, K, andH would have the same exponents. We c
also imagine other scenarios in whichN, K, andH flow to a
common fixed point, or to different ones, that do not ha
osp(2n12u2n) SUSY. It is certainly possible that~one or
both! perturbations away fromO on the surface shown ar
relevant; we are suggesting that they are both irrelevant
the absence of any understanding of the conformal fi
theory of the osp(2n12u2n) or other fixed points in this
system, we cannot prove or disprove our suggestion. Th
are, however, other systems in which an analogous ef
occurs, as we will discuss below.

Now we introduce the nonlinear sigma models that sho
correspond to the superspin chains, and should have tra
tions in the same universality class or classes. First we uti
a standard relation between antiferromagnetic spin ch
and nonlinear sigma models~see Ref. 38 for a fairly genera
discussion!. We define an antiferromagnetic~super-!spin
chain as having an irreducible representation at each
alternating between some~say! lowest-weight representatio
R and its dual, sayR̄. The Hamiltonian should be somethin
close to the Heisenberg form which is the invariant biline
form in the generators of the symmetry algebra, with t
antiferromagnetic coupling that for a single pair of spi
leads to the singlet ground state~possible because we chos
the dual representations!. Then the correspondence states th
there is a nonlinear sigma model with a certain target~super-
!manifold, which can be obtained from the representationR.
The manifold is the same coset space that appears as
coadjoint orbit ofR, or in coherent-state path integral co
structions ofR. Put simply, this is the manifold swept out b
acting on either a lowest- or highest-weight ofR with all
possible~super-!group elements. The long-wavelength acti
of the nonlinear sigma model in 111 dimensions contains
only terms allowed by symmetry with two derivatives. The
comprise the usual ‘‘kinetic’’ type terms, and also possible
u-terms’’ ~this is not the same parameteru we used in Sec.
VII !. The derivation is controlled by considering a sequen
of representationsR with the lowest weight going to infinity
in the weight space, like the size of the spin in SU~2! going
to infinity. Then the reciprocals of the kinetic couplings ha
magnitudes proportional to the lowest weight, so the n
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linear sigma model is weakly coupled and meaningful in
semiclassical limit. Also, in the absence of staggering of
couplings in the spin chain,u is proportional to the lowes
weight with a coefficientp in a suitable normalization
~which is such that the bulk physics is periodic whenu→u
12p). A u term exists and is nontrivial whenever the se
ond homotopy groupp2 of the target manifold is nontrivial
More generally, au-term involves a two-form on the targe
manifold ~i.e., a magnetic field for a charged particle movi
on the manifold! that is invariant under the symmetry, an
this always exists in this construction because it is part of
coherent-state construction of the representationR also. Non-
compact factors in the manifold are topologically trivial, b
the term described always produces boundary effects rel
to a boundary spin or edge states.39 The nonlinear sigma
model that results from this correspondence in many ca
has a phase transition atu5p, when the target manifold ha
nontrivial p2.

In our case, the target manifold for our general models
the NL would be, for fermionic replicas, SO(2n11)/U(n),
or in the SUSY formalism, OSp(2n11u2n)/U(nun). The
precise meanings of these coset spaces should be defin
the orbits of our spinorsR. The group in the denominato
arises in each case as the invariance group of the low
weight state. In the SUSY case, U(nun) corresponds to the
superalgebra gl(nun) which leaves the vacuum at each sp
site invariant, and the notation indicates that the ordin
group it contains is the compact form, U(n)3U(n). The
manifold underlying the supermanifold is thus SO(2n
11)/U(n)3Sp(2n,R)/U(n), where the latter factor is non
compact. These~super-! spaces are homogeneous spaces,
not symmetric~super-!spaces. This implies that, in a gener
nonlinear sigma model for these target manifolds, there
more than one coupling in the kinetic terms,40 in fact, there
are two ~see Appendix C!. The kinetic term is constructe
from the metric on the target manifold, and this metric is n
unique, up to a constant factor, unless the manifold is a s
metric space. Otherwise it is a sum of two or more piec
However, as manifolds~without a choice of metric!, these
spaces are the same as SO(2n12)/U(n11) @respectively
OSp(2n12u2n)/U(n11un)# ~for the former, this is dis-
cussed in Ref. 41!. This is connected with the fact that, a
graded vector spaces,R is the same as the representationRe .
The latter manifolds are symmetric~super-!spaces, and ther
is a unique kinetic coupling. The two couplings in the form
point of view are related to thek andh terms. Whenk andh
on each nearest-neighbor bond are equal, the higher sym
try implies that the two coupling constants in the kine
terms are such that the osp(2n12u2n) invariant kinetic term
is obtained. At the same time,u can be varied by staggerin
the couplings. Counting parameters, there are four in the
chain as we have seen, one of which is the overall ene
scale which can be ignored, and also the magnitude of
lowest weight. The latter controls the magnitude of the
netic coupling constant. Ignoring that, the nonlinear sig
model has in general one ratio of kinetic couplings, andu,
one parameter less than in the spin chain. However, so fa
the nonlinear sigma model we have assumed Lorentz inv
ance, whereas in the continuum limit of the spin chain t
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need not hold. In fact, in the sigma model, the same sym
try considerations imply that each of the two pieces of
kinetic term can be further divided into two terms, which a
the second derivatives in the two orthogonal directions in
2D space, and if Lorentz invariance is not required, all
terms can have different coefficients. That is, a different
locity can apply to the two kinds of spin waves in the sp
chain;42 the two kinds of spin waves correspond to the d
composition of the small fluctuations around the perturbat
vacuum into two irreducible representations of the symme
group U(n) @or U(nun)# ~see Appendix C!. Since the overall
energy scale, or one velocity, is a redundant parameter,
leaves one additional parameter, the ratio of velocities,
required. Note, however, that if we instead consider the c
tinuum limit of an isotropic network model, such as th
RBIM, only one velocity can occur. Therefore we wou
expect that the universality classes of the transitions wo
be isotropic and have a unique velocity.

Next, it is natural to raise the question of the RG flow
the two couplings in the osp(2n11u2n)-invariant nonlinear
sigma models. At least in perturbation theory the correspo
ing beta functions that describe such a flow are the sam
those for the models with ordinary target manifolds SO(n
11)/U(n), with n→0. In Appendix C we have compute
the beta functions to one-loop order, neglecting the poss
ity of more than one velocity~in some analogous situations
the ratio of velocities has been shown to renormalize
one,42 and we expect the same to occur here, as also arg
in the last paragraph!. The metric on the target manifold i
parametrized by two parameters, sayh1 and h2, which ap-
pear linearly in the metric, and the inverses of these par
eters are the couplings which are small at weak coupli
where perturbation theory is valid. The perturbation exp
sion has 1/h1 , 1/h2 for each propagator,h1 or h2 for each
interaction vertex, so naively one ends up with a perturbat
expansion in, say, 1/h1, with each term containing powers
positive or negative, of the ratio ofh1 to h2. In fact, only
non-negative powers of this ratio appear in the beta fu
tions; see Appendix C. The net power~counted with signs!
of h1

21’s and h2
21’s corresponds to the number of loops

the Feynman diagrams, as usual. For convenience we
use the parameters

h15
1

g
, h25

1

2xg
. ~8.1!

In this parametrization,x51 is the point with osp(2n
12u2n) SUSY @or so(2n12) in the replica version#. Be-
cause of the higher symmetry atx51, that line should flow
onto itself under RG. Then our one-loop result for the R
flows is (l is the logarithm of the length scale, as usual!

dg

dl
52g2~x221!1O~g3!, ~8.2!

dx

dl
522gx~x21!1O~g2!. ~8.3!
2-18
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RANDOM-BOND ISING MODEL IN TWO DIMENSIONS: . . . PHYSICAL REVIEW B63 104422
At x51, the one-loop result is zero, so this line is a line
fixed points, to this order. This agrees with the one-lo
result for the osp(2n12u2n)-invariant model; the beta func
tion to two-loop order, obtained as then→1 limit of that for
the SO(2n)/U(n) model @see Eq.~C10!#, is

dg

dl
54g31O~g4!. ~8.4!

Thus it vanishes to one-loop order, but not to two-loop ord
At two-loop order,g flows towards strong coupling~see Fig.
6!. The one-loop flows forxÞ1 takex closer to 1, and~ex-
cept forx50) the flows starting atgÞ0 never reachg50.
Instead they flow to the regionx.1 where the one-loop
terms vanish, and the two-loop term cannot be neglec
Since the two-loop term indg/dl at x51 is positive, all
flows from weak coupling eventually go towards largeg,
with x approaching 1, except whenx50. On the latter line,g
flows towards weak coupling. As discussed in Appendix
~but here in SUSY language!, on this line the larger SUSY
has spontaneously broken, and the system is described b
OSp(2nu2n)/U(nun) nonlinear sigma model@there is an ad-
ditional global degree of freedom, described by a point
OSp(2n11u2n)/OSp(2nu2n), a ‘‘supersphere,’’ on which
the larger SUSY algebra acts#. Flows that begin at small
nonzerox eventually go to strong coupling. This generat
very large crossover lengths, due to the very slow flows n
x51, g50, where the first nonzero term is at two-loop o
der; the length scale at whichg becomes of order one is o
order exp@1/(2g0x0)11/(8g0

2x0
2)#, in units of a short dis-

tance cutoff, whereg0 andx0 are the bare values ofg andx,
and it was assumed thatx0 and g0x0 are both small~see
Appendix C!.

As usual, the perturbative results do not depend onu, but
such dependence can be expected nonperturbatively. Fo
sigma model with osp(2n12u2n) SUSY, and forxÞ0, the
flows go towards strong coupling, and it is highly plausib
based on our experience with transitions~such as the intege
quantum Hall transition! with such behavior of the cou
plings, that there is a unique fixed point at strong coupling

FIG. 6. Sketch of perturbative renormalization group flows
the couplingsg, x, including two-loop effects, for the nonlinea
sigma model with target space OSp(2n11u2n)/U(nun), including
a typical flow line forgÞ0, xÞ0, 1.
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and atu5p ~mod 2p). Hence we expect that the spin cha
at point O has the same critical theory as the osp(n
12u2n)-invariant sigma model. It is also quite plausibl
based on the behavior of the flows, that at least models
map onto the nonlinear sigma models with osp(2n11u2n)
SUSY also flow to the same critical theory, whenu5p ~mod
2p). It is still possible that in our generalized spin chain
points other thanO do not flow to the osp(2n12u2n) critical
theory, but it is plausible that there is a nontrivial neighbo
hood ofO on the critical surface that does. This possibili
may seem more plausible if we point out that in some ot
cases~without SUSY!, a similar phenomenon is believed t
occur.42 It is of course less clear that distant points such asN,
K, andH flow to the same theory. Since the spin chain mo
els typically start at bare couplings of order 1, we can alm
rule out any flow to the weak-coupling regime of th
osp(2n11u2n) or osp(2n12u2n)-invariant nonlinear sigma
models ~analogous to that in the lower-SUSY osp(2nu2n)
nonlinear sigma model18–21! because that regime is not stab
under the RG. A flow to weak coupling is only possible b
tuning a parameter, corresponding to puttingx50 or g50 in
the weak-coupling analysis. A natural guess is that
h-only models might satisfy one of these conditions. Th
might even occur for a range of values of the staggeri
corresponding to changingu away fromp ~mod 2p) in the
nonlinear sigma model, since the value ofu is irrelevant~or
formally, exactly marginal! at weak coupling. We have bee
unable to see why any of these models should satisfy su
condition exactly. However, it may be that one of them li
close tox50. In that case, the RG flows take them close
g50, and since the flows to strong coupling pass neax
51, g50, where the first nonzero term is at two loops, t
crossover length could be very large. That is, very large s
tems would be needed to see the true asymptotic crit
behavior. Another possibility is that these models lie at b
valuesx.1, g very small, which again yields a large cros
over length. Since we have a two-parameter space of crit
models, we may expect to be able to tuneg or x small some-
where in this space. However, arguments presen
elsewhere22 show that the RBIM, and hence the pointN,
cannot flow to the weak coupling region.

The leading alternative scenario seems to be t
although most points in the phase diagram flow to
osp(2n12u2n)-invariant fixed point, the multicritical point
N on the true NL may be a distinct universality clas
and the perturbation off this point in the phase diagr
may be a relevant one that causes a flow to the ospn
12u2n)-invariant fixed point. Clearly, we cannot answ
here the question of which of these scenarios is correct.
the self-duality apparent in the osp(2n12u2n)-invariant
model at its critical point, as manifested by the reflecti
symmetry about a split site in the chain, and the signific
lack of it in the RBIM, which instead has the special ‘‘sym
metry’’ property that the Ising couplings are all real,22 sug-
gests that this alternative scenario may be correct.

There is one further point to make about the spin cha
and nonlinear sigma models that applies off the NL. In th
case the SUSY is broken to osp(2nu2n). It will be conve-
nient here to make use of the replica formalism, in which

r

2-19
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language and notation are simpler and standard, but the i
extend also to the supergroups, since the additional bo
and Sp(2n,R) symmetry, and the odd generators, do n
change the form of the argument. In the higher SUSY Ham
tonians, including that for the NL, the global symmet
group can be seen to be SO(2n11), and making any of the
l parametersÞ1 reduces the symmetry group to O(2n), not
just SO(2n) @there seems to be no accepted notation in
supergroup case for the distinction analogous to that betw
O(N) and SO(N), nor for that between SO(N) and its cov-
ering group Spin(N), which we ignore here#. Furthermore,

the representationsR, R̄ are reducible under SO(2n); they
split into two nonisomorphic irreducible spinors, each of
mension 2n21. These two spinors correspond to even a
odd numbers of fermions in the unconstrained representa
~see Appendix B!. However, under O(2n), R, R̄ do not split;
O(2n) has irreducible representations of dimension 2n @this
is related to the fact that O(2n) is not a direct product of
SO(2n) with Z2, unlike the case of O(2n11)#. Thus we
will still call the models spin chains, since they involve irr
ducible representations of their symmetry group, O(2n).

When we consider the corresponding nonlinear sig
models, via the usual correspondence, we naturally cons
the orbit of the lowest weight inR under O(2n). Due to the
disconnected nature of O(2n), as opposed to SO(2n), this
orbit O(2n)/U(n) falls into two disconnected pieces, whic
are both of the form SO(2n)/U(n) as manifolds. Similar
statements hold for the supermanifolds in the SUSY form
ism.

In a recent paper21 on the class D of random matrix prob
lems, which is the same symmetry class as the RBIM
mion problem we are considering, it was emphasized that
target manifold of the nonlinear sigma model that descri
it is O(2n)/U(n) in the replica formalism, which has tw
connected components, corresponding to those of the g
O(2n) @or the corresponding supergroup OSp(2nu2n)#. This
opens a possibility not usually considered for nonline
sigma models, that the configurations include fluctuatio
~i.e., domains! where the sigma model field is on differe
components of the target manifold. This implies that ad
tional parameters, beyond the usual couplings likeg, u for
continuous deformations of the field, must appear in
model to describe the domain walls; for example, a fugac
per unit length of domain wall. When the fugacity is sma
there are essentially no domain walls, and the model wo
reduce to that with target space SO(2n)/U(n).

In our approach, we have arrived at spaces of states
correspond to both parts of the target manifold, and furt
the spin chain Hamiltonians contain in general eight para
eters. Therefore our spin chain models describe a stro
coupling version of the physics of the nonlinear sigma mo
with domain walls included. These models include the p
Ising model, and weak-disorder, limits. Note that the lat
are not accessible simply as the strong coupling,g→`, limit
of the SO(2n)/U(n) nonlinear sigma model~compare Ref.
19!.

What we have found in this paper is that the states in
SUSY description can be viewed not only as domains of t
10442
as
ns
t
l-

e
en

-
d
on

a
er

l-

r-
e
s

up

r
s

i-

e
y

ld

at
r
-
g-
l

e
r

e
o

‘‘phases,’’ but that the discrete~Ising-like! degree of free-
dom, which labels which phase@component of the targe
manifold, or irreducible spinor of SO(2n)# a point in 2D
space is in, can be replaced by additional continuous v
ables. These continuous degrees of freedom turn the m
into a nonlinear sigma model with symmetry SO(2n11) @or
SUSY osp(2n11u2n)# broken by certain terms in the ac
tion, or else a strong-coupling version of this, at least n
the NL. This may be of future use in uncovering the phys
of these general class D problems, not only the RBIM. T
replicated spin chains for O(2n) at nonzeron have not been
considered previously~except for then51 case, the usua
XXZ model!, and are also of interest in their own right. No
finally that in our earlier discussion of SO(2n11)- and
SO(2n12)-invariant models, the representations of t
stated groups were irreducible, the corresponding ta
manifolds were connected, and no analogous domain w
were possible.

IX. CONCLUSION

In this paper we applied the supersymmetry~SUSY!
method to analyze an Ising model with a binary distributi
of random bonds~RBIM!. The Nishimori line~NL! on the
phase diagram of the model is a line with the enhan
SUSY osp(2n11u2n). On the rest of the phase diagram th
model has only osp(2nu2n) SUSY. The enhanced SUSY o
the Nishimori line allows us to rederive the identities~1.4!
among various correlation functions. More generally,
have shown that the transition on the NL has very stro
analogies with the integer quantum Hall effect transition, a
other random fermion problems in 2D, such as the spin qu
tum Hall transition, which can also be modeled by~super-
!spin chains with alternating dual irreducible representati
at the sites, and staggered couplings. The conformal fi
theories of the critical points are mostly unknown at prese
We emphasize that, in view of our results and those of R
7, the fixed-point conformal field theory of the multicritica
point in the RBIM with a generic distribution for the bond
~not only those satisfying the Nishimori condition! must
have at least osp(2n11u2n) SUSY, and this is a require
ment for any future proposal for a conformal field theory
the multicritical point within the SUSY formulation. We
have also demonstrated that such higher SUSY points o
in other problems, such as a 1D model, and probably e
where. After analyzing the phase diagram of generaliz
Hamiltonians with the same enhanced SUSY as the NL,
suggested that the transitions in many or all of these m
general 2D models are in a universality class with a s
larger SUSY, osp(2n12u2n). This hypothesis is supporte
to some extent by the weak-coupling RG analysis of
nonlinear sigma models that correspond to the spin chai

Fitting our results into the framework of random matr
ensembles for such problems is an outstanding challeng
is interesting that the nonlinear-sigma–model target ma
fold we obtain on the NL is~except forx50) not in the list
of those known to correspond to random matrix ensemble
Ref. 17. Possibly there is another random matrix theory w
special symmetries as on the NL.
2-20
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RANDOM-BOND ISING MODEL IN TWO DIMENSIONS: . . . PHYSICAL REVIEW B63 104422
There are of course a number of other outstanding pr
lems, even for the RBIM. We have hardly touched the reg
below the NL, which remains mysterious. The fixed point
K5` ~zero temperature! andp5pc is of particular interest.
In this region the system can be viewed as a superspin ch
since it is a chain of irreducible representations of its sup
group, OSp(2nu2n), to which the larger SUSY, OSp(2n
11u2n), is broken by superspin anisotropy terms, similar
the XXZ model.

Note added:Another numerical work on the multicritica
point of the6K RBIM has appeared very recently.43
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APPENDIX A: EQUALITIES FOR CORRELATORS

We will show in this appendix that the enhanced sup
symmetry present on the Nishimori line in our formulatio
allows us to reproduce the results of the type of Eq.~1.4!.

We use the formulation of the correlators in the Isi
model in terms of paths and modified partition functions.44,45

Namely, for a correlator of two spinsSi1
andSi2

we join the

points i1 and i2 by an~arbitrary! path on the lattice, shift al
the coupling constantsK by ip/2 along the path, and calcu
late the modified partition functionZ~mod! for the system with
the modified couplings. Then the correlator is

^Si1
Si2

&5~2 i ! l
Z(mod)

Z
, ~A1!

wherel is the length of the path.
In the quantum formalism the vertical coordinate on t

original square lattice plays the role of imaginary timet, and
the partition function is given by the supertrace of an ima
nary time ordered evolution operatorU, composed of the
transfer matricesThi andTv i for all the bonds in the model
Because of the supersymmetry the partition function equa
by construction@see Eq.~2.26! and following# for any real-
ization of the random couplings:

ZSUSY5STr TtU51. ~A2!

When calculating the correlator~A1! we have to modify the
couplings in the transfer matrices along the path only for o
particular replica, say, the first fermionic one. Then the c
relator will be

^Si1
Si2

&5~2 i ! lSTr TtU
(mod). ~A3!

Similarly, when calculatinĝSi1
Si2

&2m21, we have to modify

the couplings for 2m21 different replicas, in which case w
must have 2n.2m21.
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Let us see how the transfer matrices are modified w
we shift the couplings byip/2. Start with the horizontal
transfer matrix assuming that the couplings are modified
2m21 fermionic replicas:

Thi
(mod)5expS 2K i,i1 x̂X̂Si1 i

p

2 (
a51

2m21

2xa i D
5 i 2m21 Thi )

a51

2m21

~2xa i !. ~A4!

Upon averaging over the randomness this becomes

T2i
(mod)5 i 2m21 T2i )

a51

2m21

~2xa i !. ~A5!

Then for the correlator of two spins in the same horizon
row we have

@^SiSi1r x̂&
2m21#5STr TtV )

k5 i

i 1r 21

)
a51

2m21

~2xak!, ~A6!

whereV5@U#.
As before for single transfer matrices we can rewrite

last expression in terms of operators, acting in the spaceF8,
using the substitution rules obtained above in Sec. III:

@^SiSi1r x̂&
2m21#5STr TtV8 )

k5 i

i 1r 21

~2x0k! )
a51

2m21

~2xak!.

~A7!

Now comes the crucial point. On the Nishimori line the z
roth fermion is supersymmetric with the rest of the replic
so we can replace allx0k in the last expression by, say
x2m,k :

@^SiSi1r x̂&
2m21#5STr TtV8 )

k5 i

i 1r 21

)
a51

2m

~2xak!. ~A8!

Then we can safely go back to the original spaceF, in which
the last expression is easily identified as

@^SiSi1r x̂&
2m#, ~A9!

which proves the relation~1.4! for this particular case.
Now see how vertical transfer matrices are modifie

When we modify the coupling for the fermionic replica 1 o
a vertical bond, the vertical transfer matrix for this replica
modified from

eK i,i1 ŷeK̃ i,i1 ŷ

coshK̃ i,i1 ŷ

exp~22K̃ i,i1 ŷn1i ! ~A10!

to

i
eK i,i1 ŷe2K̃ i,i1 ŷ

coshK̃ i,i1 ŷ

exp~2K̃ i,i1 ŷn1i !

52i sinhK i,i1 ŷexp~2K̃ i,i1 ŷn1i ! ~A11!
2-21
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~since whenK is shifted by ip/2, the dual couplingK̃
changes sign!. Adding the rest of fermionic and bosonic re
licas, we obtain

Tv i
(mod)5 i ~ tanhK i,i1 ŷ!

N̂Si22n1i11. ~A12!

If we modify the coupling for replicas 1 throughk, we get
similarly

Tv i
(mod)5 i k~ tanhK i,i1 ŷ!

N̂Si2(
a51

k

(2na i21). ~A13!

To average this expression, we have to distinguish
cases of odd and evenk. For an evenk52m we get

T1i
(mod)5 i 2m~ tanhK !N̂Si2(

a51

2m

(2na i21)~12p1p~21!N̂Si!

5 i 2mT1i )
a51

2m

ya i , ~A14!

where we introduced

ya i5e2K* (2na i21). ~A15!

The corresponding operator inF8 is

T1i8
(mod)5 i 2mT1i8 )

a51

2m

ya i . ~A16!

Then for the correlator of two spins in the same column
get

@^SiSi1r ŷ&
2m#5STr TtV )

t5 j

j 1r 21

)
a51

2m

ya i~t!

5STr TtV8 )
t5 j

j 1r 21

)
a51

2m

ya i~t!. ~A17!

For odd numberk52m21 we obtain instead upon ave
aging

T1i
(mod)5 i 2m21~ tanhK !N̂Si2 (

a51

2m21

(2na i21)

3~12p1p~21!N̂Si11!. ~A18!

The last factor here is different from the similar factor
T1i . Now it gives 1 whenN̂Si is odd, and 122p5e22L*

whenN̂Si is even. In the spaceFi8 this factor may be written

ase2L* (n0i21), and Eq.~A18! is replaced by

T1i8
(mod)5 i 2m21T1i8 y0i )

a51

2m21

ya i , ~A19!

where

y0i5e2L* (2n0i21). ~A20!

For the vertical correlator we obtain now
10442
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@^SiSi1r ŷ&
2m21#5STr TtV8 )

t5 j

j 1r 21

y0i~t! )
a51

2m21

ya i~t!.

~A21!

On the Nishimori line due to the enhanced supersymme
~and the fact thatL* 5K* ) the factory0i may be replaced by
y2m,i and we again get the equality of the type of Eq.~1.4!.

The structure appearing in the formulation above for
correlators is multiplicative in the bonds which are modifi
along a path connecting the spins. Then it is straightforw
to generalize the arguments of this appendix to the cas
arbitrary spin correlators.

APPENDIX B: REPRESENTATIONS R AND R̄

In this appendix we review the construction of the rep
sentationsR and R̄ of osp(3u2) in terms of unconstrained
fermions and bosons~for details see Ref. 25!. We also dis-
cuss how to form a graded tensor product of such repre
tations and obtain the invariant product of the superspinG

andḠ.
To construct the representationR we need only one com

plex bosonb and one complex fermionf and their conjugates
b†, f †, with usual commutation relations. In terms of the
the generators of osp(3u2) are constructed as follows. For a
orthonormal basis of the Cartan subalgebra we use

h15
1

A2
S b†b1

1

2D , h25
i

A2
S f †f 2

1

2D . ~B1!

In the distinguished system of simple roots of osp(3u2) one
root a1 is odd ~‘‘fermionic’’ !, and one roota2 is even
~‘‘bosonic’’ !. The generators corresponding to these ro
~and their negatives! are

ea1
5b†f , e2a1

5 f †b,

ea2
5~21!nf f †, e2a2

5 f ~21!nf . ~B2!

The other roots area35a11a2 , a45a112a2 ~both odd!,
a552a112a2 ~even!, and their negatives. The correspon
ing generators are

ea3
5~21!nfb†, e2a3

5b~21!nf ,

ea4
5b†f †, e2a4

5 f b,

ea5
5~b†!2, e2a5

5b2. ~B3!

Note that the generators corresponding to the rootsa2 and
a3 contain expression (21)nf . This is a ‘‘twist’’ operator for
the fermion, which means that it anticommutes withf and f †.
It is necessary to ensure that these generators obey the~anti-
!commutation relations. In other words, these choices refl
the grading appropriate for osp(3u2), instead of that which is
natural in the present Fock space. The vacuum for bos
and fermionsu0&, defined in the usual manner

bu0&5 f u0&50, ~B4!
2-22
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is the lowest weight state of theR representation. The re
maining states are obtained by the action of the raising g
erators, and it is easy to see that they span the whole F
space ofb andf. The weights of the states inR in terms ofnf
andnb are shown in Fig. 7. We also show in this figure t
organization of the states in doublets under the gl(1u1) sub-
algebra generated by

E[nb1nf , N[
1

2
~nb2nf !,

F†[ea1
5b†f , F[e2a1

5 f †b, ~B5!

@see Ref. 46, which contains a detailed discussion of
irreducible representations of gl(1u1).# The doublet of states
with E5m is denoted byDm .

From Fig. 7 we can see that the grading of states, con
tent with that of the SUSY generators, and such that
vacuum~lowest weight state! is even, is that states are eve
or odd accordingly as the number of bosons is even or o
This agrees with the choice we made in Sec. II for oth
reasons. We may also note that the generators with
strings, which are bilinears in the bosons and fermions, g
erate the osp(2u2) subalgebra. The latter algebra is cons
tent with the natural grading on the Fock space. This is no
contradiction to the above construction because the F
space decomposes into two irreducible ‘‘spinor’’ represen
tions of osp(2u2), which are connected to each other only
the shortest rootse62 , e63 that are not present in osp(2u2).

The construction ofR̄ is similar. The difference is that we
start with negative norm bosonsb̄ and b̄† satisfying

@ b̄,b̄†#521, ~B6!

and another pair of the usual fermionic operatorsf̄ and f̄ †.
One possible choice of the generators of osp(3u2) in the R̄
representation is

h̄15
1

A2
S b̄b̄†1

1

2D , h̄25
i

A2
S f̄ f̄ †2

1

2D ,

ēa1
5b̄ f̄ †, ē2a1

5 f̄ b̄†,

ēa2
52~21!nb̄ f̄ , ē2a2

52 f̄ †~21!nb̄,

FIG. 7. The weights of states inR. The action of the positive
root generators is shown by arrows. The states are grouped in
which are the doublets under gl(1u1) ~see text for details!.
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ēa3
5b̄~21!nb̄, ē2a3

5~21!nb̄b̄†,

ēa4
52b̄ f̄ , ē2a4

52 f̄ †b̄†,

ēa5
52b̄2, ē2a5

52~ b̄†!2 ~B7!

Here the number ofb̄ bosons is defined as

nb̄52b̄†b̄. ~B8!

The minus sign in this expression implies thatnb̄ is a non-
negative integer with eigenstatesunb̄&5(nb̄!) 21/2(b̄†)nb̄u0̄&.
Note that now thea2 anda3 generators contain a twist op
erator for the bosonb̄, which also ensures the proper~anti-
!commutators.

Now the vacuumu0̄& for f̄ and b̄ defined as

f̄ u0̄&5b̄u0̄&50 ~B9!

is the highest weight state of theR̄ representation, and th
remaining states span the whole Fock space off̄ and b̄. The
states ofR̄ are now organized in doubletsD̄m̄ of the gl(1u1)
generated by

Ē[2nb̄2nf̄ , N̄[
1

2
~nf̄2nb̄!,

F̄†[ēa1
5b̄ f̄ †, F̄[ē2a1

5 f̄ b̄†. ~B10!

Next we have to combine the representationsR and R̄ in
the alternating fashion, as in Fig. 2. When we try to do th
we immediately realize that the twist operators of individu
R andR̄ representations are not adequate for their job in
tensor product. They should be replaced by ‘‘strings,’’ sim
lar to the ones used in the Jordan–Wigner transformat
One possible convenient choice of these strings is the foll
ing. For the representationRi ~numbering as in Fig. 2! the
twist operator (21)nf i is replaced by

S i5)
k< i

~21!nf k1nf̄ k )
k. i

~21!nbk1nb̄k. ~B11!

Similarly, for R̄i the operator (21)nb̄i should be replaced by

S̄ i5)
k, i

~21!nf k1nf̄ k )
k> i

~21!nbk1nb̄k. ~B12!

Note that in factS i5S̄ i 11.
For the purposes of Sec. V we need to consider only

pair of the antiferromagnetically coupled superspins. In t
case theS operator common for both representations isS
5(21)nf1nb̄. First we consider the fully osp(3u2) invariant
product appearing inHk on the NL. In terms of the root
generators this product is given by

irs
2-23
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strGḠ5 2h1h̄12h2h̄22 (
a.0

K2a
21~eaē2a1ēae2a!,

~B13!

whereK2a5K(e2a ,ea) are the values of the Killing form
on the pairse2a ,ea . For osp(3u2) they are

K2a1
522, K2a2

524, K2a3
524,

K2a4
522, K2a5

524. ~B14!

With the mentioned expression forS this gives

24 strGḠ5~b†!2~ b̄†!21b̄2b212~b†b̄†1b̄b!~ f † f̄ †1 f̄ f !

22nbnb̄2nb2nb̄12nfnf̄2nf2nf̄

2~ f † f̄ †1 f̄ f 1b†b̄†1b̄b!

5J22J, ~B15!

where

J5 f † f̄ †1 f̄ f 1b†b̄†1b̄b. ~B16!

Note that the termJ in Eq. ~B15! comes from the roots
6a2 and6a3, andJ2 comes from all the remaining roots
These remaining roots are exactly the roots of osp(2u2).
Therefore theJ2 term is the osp(2u2) invariant product. That
observation allows us to write the general anisotropic pr
uct as

4 strLGLḠ5lJ2J2. ~B17!

APPENDIX C: PERTURBATIVE BETA FUNCTION
FOR SO„2N¿1…ÕU„N…

In this appendix we derive the perturbative beta funct
of the weakly coupled nonlinear sigma model on SO(n
11)/U(n) target space to one-loop order. The underlyi
ideas for a general sigma model have been discussed e
sively by Friedan,47 and we can be brief~similar calculations
can be found in Ref. 42!. We then discuss the resulting flow
at n50.

Consider a general homogeneous spaceG/H, whereH is
a subgroup of the groupG. The neighborhood of points
gHPG/H of the ‘‘origin’’ O[eH (g is an arbitrary ele-
ment, ande is the identity, inG) may be parametrized in
terms of dimG2dimH coordinates XI by writing g
5exp$XITI% ~repeated indices summed!. Here TI denotes a
basis of the vector spaceG/H spanned by the generators ofG
which are not generators ofH (G and H denote the Lie
algebras!. The sigma model onG/H is then defined by the
action

S5
1

2E d2r h IJ$X~r !%]mXI~r !]mXJ~r !, ~C1!

where r is the coordinate of two-dimensional space. T
metric h IJ$X% on the target spaceG/H of the sigma model
serves as the coupling constant~s!. Every pointP5gH in the
10442
-

n

en-

coset space can be reached from the origin by left multi
cation, and every element of the tangent space atP can be
similarly obtained from the tangent spaceG/H at the origin.
Therefore the metric at any pointP is uniquely determined
by that at the originO, where it represents a symmetric b
linear form on the vector spaceG/H. In order for this bilinear
form to represent a metric at the origin it must be invaria
under the subgroupH ~which acts by conjugation!. Therefore
the metrics on the homogeneous space are in 1-to-1 co
spondence withH-invariant symmetric bilinear forms on
G/H.

For sigma models on general manifolds~not necessarily
homogeneous spaces! the two-loop beta function is47

dh i j ~X!

dl
5Ri j ~X!1

1

2
Riklm~X!Rj

klm~X!1•••, ~C2!

whereXi is any system of local coordinates, andRi
klm(X)

andRi j (X) are the Riemann and Ricci tensors, respective
at the point of the manifold with coordinatesX.

For a homogeneous spaceG/H it is enough to compute
the beta function for the metric at the originO5eH ~since
all other points can be reached by left multiplication wi
elements ofG acting as isometries!, where it reads

dh IJ

dl
5RIJ1

1

2
RIKLM RJ

KLM1•••. ~C3!

This form of the beta function is convenient since it does
require reference to any parametrization of the coset sp
Rather, the Riemann tensor of the homogenous space47,48

viewed as a Riemannian space, has a simple expressio
terms of the structure constantsf IJ

K , f IJ
a of the Lie algebraG,

and the metric:

RKLIJ52
1

4
~ f IML2 f MLI1 f LIM !hMM8

3~ f JKM82 f KM8J1 f M8JK!

1
1

4
~ f JML2 f MLJ1 f LJM!hMM8

3~ f IKM 82 f KM8I1 f M8IK !

1
1

2
f IJ

M~ f MKL2 f KLM1 f LMK!1 f IJ
a f aKL , ~C4!

where indicesK,L,M , and M 8 denote generators inG/H,
which are lowered and raised by means of the metrich IJ and
its inverseh IJ. Indicesa denote generators inH. The Ricci
tensor is obtained, as usual, by contraction,

RLJ5hKIRKLIJ . ~C5!

We now discuss the space of all possible (G-invariant!
metrics on the homogeneous space, that is allH-invariant
symmetric bilinear forms on the vector spaceG/H. Since the
latter transforms in a~real! representation ofH ~under con-
jugation!, the bilinear formh IJ5h(TI ,TJ) must, by Schur’s
lemma, be a multiple of the unit matrix on each irreducib
2-24
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component~assuming, for simplicity, that each such comp
nent occurs only once!. Consider, for example, the homog
neous spaces SO(N)/SO(N21), the familiar O(N) vector
models. HereG/H5so(N)/so(N21) transforms in the~irre-
ducible! vector representation of SO(N21) and therefore
there is only a one-parameter family of metrics. This is
case for all symmetric spaces,49 whose sigma models hav
therefore only a single coupling constant~the scale of the
metric!.

The case of interest in this paper isG/H5SO(2n
11)/U(n), which is not a symmetric space. It has atwo-
parameter family of metrics, and the corresponding sig
model has therefore two coupling constants. To see this
notes that the vector space so(2n11)/u(n) decomposes
~over the real numbers! under the adjoint action of U(n) into
two irreducible representations. One of them is of dimens
n(n21); the corresponding generators will be denotedTI 1

.

The other is of dimension 2n, and the corresponding gener
tors will be denotedTI 2

. These vector spaces may be iden

fied with the cosets of Lie algebras so(2n)/u(n) and so(2n
11)/so(2n), respectively. This decomposition correspon
to the chain of subalgebras, u(n),so(2n),so(2n11). The
two metric components can be specified as follows. Cons
first the ~‘‘standard’’! Cartan–Killing metricK on the entire
Lie algebraG5so(2n11). We choose the basis of gener
tors Ti such thatK(Ti ,Tj )}d i j ~the structure constants wit
indices lowered by this metric are then totally antisymm
ric!. By restriction this is anH-invariant bilinear form on the
subspaceG/H, on which it is block-diagonal on the two ir
reducible representation spaces ofH. The scales of the metric
on the two blocks represent the two parameters of the me
sayh1>0 andh2>0, and we can write explicitly

h I ,J5h1d I ,I 1
dJ,J1

K~TI 1
,TJ1

!1h2d I ,I 2
dJ,J2

K~TI 2
,TJ2

!.
~C6!

Note that one may relate the structure constantsf IJK of Eq.
~C4!, with indices lowered with the metrich IJ , to those with
indices lowered with the Killing metricK(TI ,TJ), which are
totally antisymmetric.

The computation of the Ricci~and Riemann! tensor of the
homogeneous space so(2n11)/u(n) is tedious but straight-
forward, using Eqs.~C4!, ~C5!, and ~C6!. In terms of the
following parametrization of the metric,

h15
1

g
, h25

1

2xg
, ~C7!

one obtains from Eq.~C3! the one-loop beta functions:

dg

dl
52g2@x21~n21!#1O~g3!, ~C8!

dx

dl
52~n21!gx~x21!F12

n

n21
xG1O~g2!. ~C9!

These equations are valid in the limitg→0 with x fixed.
The parameterx>0 measures the relative strength of t

two metric components. There are two special cases,x50
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andx51, which we now discuss in turn. Consider the cha
of vector spaces~Lie algebras! u(n),so(2n),so(2n11).
As x→0, one sees from Eq.~C7! that the stiffness of the
fluctuations of the sigma model~C1! associated with the
metric componenth2, that is of those in the space so(2n
11)/so(2n), becomes infinite. Atx50 these fluctuations in
the gradients~with respect tor ) of the sigma model field are
forbidden, and the only remaining fluctuations are those
sociated with the metric componenth1, that is of those in
so(2n)/u(n), together with a degree of freedom on SO(2n
11)/SO(2n) ~a sphere,S2n) which is independent ofr and
is therefore global. This is related to the structure
SO(2n11)/U(n), which @because of the chain of subgroup
U(n),SO(2n),SO(2n11)# can be viewed as a fibe
bundle with base space SO(2n11)/SO(2n)>S2n, and fiber
SO(2n)/U(n). Thus for each point on the sphereS2n, there
is a copy of the space SO(2n)/U(n) in which the field can
fluctuate locally. Because of the global degree of freedom
S2n, there is still a global SO(2n11) symmetry. In simple
terms, the symmetry is spontaneously broken to SO(2n);
this does not violate the Hohenberg–Mermin–Wagner th
rem, which applies for integern.1, because the coupling
1/h250. Neglecting the global degree of freedom, the li
x50 now corresponds to the SO(2n)/U(n) sigma model.
~These remarks explain why only non-negative powers ox
appear in the perturbative beta functions.! This line is an
invariant of the RG flow, and the beta function~C8! reduces
to that of the SO(2n)/U(n) sigma model, which to three
loop order50 is

dg

dl
52~n21!g212~n223n14!g3

1~3n3214n2135n228!g41O~g5!. ~C10!

For n.1, g flows to large values.
At x51, on the other hand, one can check by direct c

culation that the metric in Eq.~C6! reduces to that of the
symmetric space SO(2n12)/U(n11) of higher symmetry.
Therefore the linex51 must also be an invariant of the R
flow. On this line, the one-loop beta function in Eq.~C8!
reduces to that of the symmetric space SO(2n12)/U(n
11), Eq. ~C10! with n°n11, as expected. One sees fro
Eq. ~C9! that for n.1 both linesx50 andx51 are attrac-
tive at weak coupling. The linex5(n21)/n is the separatrix
between these two regimes.

There is also a limit,h150, in which fluctuations in
SO(2n)/U(n) are ‘‘soft’’ and can be gauged away; compa
the discussion in Ref. 42. In this case the model reduce
the nonlinear sigma model with target space SO(n
11)/SO(2n)>S2n mentioned earlier. However, this strong
coupling limit cannot be accessed perturbatively in 1/h1 ,
1/h2.

In the replica limit n→0, of interest in this paper, we
obtain Eq.~8.3!. Note that now, in contrast to the casen
.1, x50 is repulsive, and that on the linex50, g flows
towards weak coupling. Nearx50, the one-loop flow lines
are hyperbolas,xg5 constant. In the vicinity of the linex
51 the one-loop flow lines are exponentials:g/g* 5exp
2-25
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$22(x21)%. The one-loop flows are qualitatively differen
depending on the sign of (x21). Whenx,1 the coupling
constantg decreases upon RG flow until it approaches so
asymptoteg5g* at x51, while forx.1, on the other hand
g increases towardsg* andx decreases towards 1, asl→`.

To two-loop order, as discussed in Sec. VIII, the regi
aroundx51 flows towards strong coupling. We now co
sider the behavior of the flows, in particular those which s
with bare values nearx50. Use of the one-loop equation
~8.3! near x50, with bare valuesx0 and g0, with x0 and
g0x0 assumed small, shows that a value ofx of order 1 is
reached whenl 2 l 0 ( l 0 is the logarithm of the short distanc
cutoff, the scale at whichx0 , g0 are defined! is l 2 l 0
12

.

88
tt.

os

o
.
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.1/(2g0x0), at whichg is of orderg0x0. Then we use the
two-loop flows atx51, which should be sufficiently accu
rate, starting from these values. Integrating Eq.~8.4! we find
finally for the crossover that passes close to the two fix
points atx50 andx51 thatg becomes of order one whe
the length scaleel is

exp@1/~2g0x0!11/~8g0
2x0

2!#, ~C11!

in units of the short distance cutoff,el 0 ~the numerical factors
in the exponent should not be taken too literally!. The two-
loop corrections nearx50 will generate only a factor of a
power ofg in this length scale. Flows that start atx.1 and
g small give a similar scale,;exp@1/(8g0

2)#.
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