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Quantum phase transitions in the two-dimensionalJ1-J2 model
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~Received 3 November 2000; published 20 February 2001!

We analyze the phase diagram of the frustrated Heisenberg antiferromagnet, theJ1-J2 model, in two
dimensions. Two quantum phase transitions in the model are already known: the second-order transition from
the Néel state to the spin liquid state at (J2 /J1)c2'0.38, and the first-order transition from the spin liquid state
to the collinear state at (J2 /J1)c4'0.60. We have found evidence for two second-order phase transitions: the
transition from the spin columnar dimerized state to the state with plaquette-type modulation at (J2 /J1)c3

50.5060.02, and the transition from the simple Ne´el state to the Ne´el state with spin columnar dimerization
at (J2 /J1)c150.3460.04. We also present an independent calculation of (J2 /J1)c2'0.38 using another ap-
proach.
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The nature of the quantum disordered phases of l
dimensional quantum antiferromagnets is a topic of fun
mental importance for the physics of quantum magnetis1

Such phases can result from mobile holes in an antiferrom
netic background as in thet-J or Hubbard model at finite
doping. Alternatively, competition of purely magnetic inte
actions can also lead to destruction of long-range order
typical example of the second kind is theJ1-J2 model which
exhibits a quantum disordered~spin-liquid! phase due to
second-neighbor frustrating interactions. Even though it
been intensively studied during the last ten years, theJ1-J2
model apparently still holds many secrets. This model is a
an ideal testing ground for the theory of quantum phase t
sitions because it has very complex dynamics and contai
variety of transitions. Exact diagonalization studies2 have
shown that the excitation spectrum of the model is qu
complex and that finite-size effects are large.3 Spin-wave-
like expansions around the simple Ne´el state~which occurs
for small frustration! naturally cannot give any informatio
about the ground state at stronger frustration, and co
quently nonperturbative methods are needed to analyze
latter regime.

An important insight into the disordered regime w
achieved by field-theory methods4,5 and dimer series expan
sions.6,5,7The above works have established the range of
disordered regime, 0.38,g,0.60 (g5J2 /J1), and have also
shown that the ground state in this regime is dominated
short-range singlet~dimer! formation in a given pattern~see
Fig. 1!. The stability of such a configuration implies that th
lattice symmetry is spontaneously broken and the gro
state is fourfold degenerate. This picture is somewhat sim
to the one dimensional situation, where the Lieb-Schu
Mattis theorem guarantees that a gapped phase always b
the translational symmetry and is doubly degenera
whereas gapless excitations correspond to a unique gro
state.8

Two very recent calculations9,10 performed by Green
function Monte Carlo methods have raised questions on
structure of the intermediate phase. The authors of Re
claim stability of the ‘‘plaquette RVB’’ state atg'0.5. Ref-
erence 10 comes to a different conclusion: there is a col
nar spin dimerized state with plaquette-type modulat
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along the columns. An additional very interestin
observation10 is that the columnar spin dimerization pe
etrates into the Ne´el phase tog'0.3. To conclude the list of
observations which do not agree with a simple spin liqu
with columnar dimerization we mention the divergence
the plaquette susceptibility found in Ref. 7 atg;0.5.

In the present paper we elucidate all the above quest
and come to the conclusion that two additional quant
critical points exist in the phase diagram of the syste
These critical points correspond to a generic type of seco
order quantum phase transition considered in Ref. 11.
each of the critical points there is condensation of some
glet excitation and the critical dynamics is described by
nonlinear O~1! field theory.

The Hamiltonian of theJ12J2 model reads:

H5J1 (
nn

Si•Sj1J2(
nnn

Si•Sj , ~1!

where J1 is the nearest-neighbor, andJ2 is the frustrating
next-nearest-neighbor Heisenberg exchange on a squar
tice ~see Fig. 1!. Both couplings are antiferromagnetic, i.e
J1,2.0 and the spinsSi51/2. We also use the notationg
5J2 /J1. The spin columnar dimerization atg.gc2 is well
established4–7 and therefore we start our consideration fro

FIG. 1. Schematic picture of the simple columnar dimeriz
state. The ovals represent two spins coupled into a singlet.
©2001 The American Physical Society20-1
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this state shown schematically in Fig. 1. If there is an ins
bility with respect to some kind of additional ordering the
the gap in the spectrum of some singlet excitation must v
ish at the corresponding critical point.11 We do not have a
reliable technique for direct calculation of the singlet ga
but we do have a well developed series expansion techn
for calculation of static susceptibilities. A static susceptib
ity is proportional to the corresponding Green’s function
zero frequency

xq}Gq~v50!;Zq /vq
2 , ~2!

wherevq is the quasiparticle energy, andZq is the quasipar-
ticle residue. So at the critical point 1/x must vanish approxi-
mately as (g2gc)

g, with g5n(22h), wheren is the criti-
cal index for the spectral gap,D}(g2gc)

n, and nh is the
critical index for the quasiparticle residue,Z}(g2gc)

nh.
To analyze possible plaquette type modulation we ca

late the susceptibility of the spin columnar dimerized st
with respect to the field7

FP5(
i , j

~21! jSi , j•Si , j 11 , ~3!

which breaks the translational symmetry in the direction p
pendicular to the dimers. The series has been computed
the seventh order in the dimerization parameter, and th
series are extrapolated by using the standard Pade´ approxi-
mant and the integrated differential approximants.12 Results
for 1/xP are shown in Fig. 2, where the errorbar reflect t
spread in the Pade´ approximants. The value of 1/xP vanishes
at gc350.5060.02 and this is the critical point for th
second-order quantum phase transition from a simple col
nar dimerized state to the eightfold degenerate colum
dimerized state with plaquette-type bond modulation in
direction perpendicular to the dimers suggested in Ref.

FIG. 2. The plot of 1/xP , wherexP is the plaquette susceptibil
ity calculated in the simple columnar dimerized state using dim
series expansion. The value of 1/xP vanishes atgc350.5060.02
indicating a transition to the columnar dimerized state w
plaquette-type modulation.
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This phase transition is of the generic type considered in R
11 and therefore it is described by 2D nonlinear O~1! field
theory.13 The critical indexes for this model are:14 n
'0.630, h'0.034. Therefore one shall expectg5n(2
2h)'1.2. On the other hand the Dlog Pade´ approximants to
the seriesxP give g50.960.1. This is fair agreement, an
we offer an explanation for the small discrepancy. The ph
transition is related to the condensation of some singlet
citation which can be considered as a bound state of tri
excitations.

us&5a2utt&1a3uttt&1a4utttt&1 . . . . ~4!

We would like to stress that there is very strong mixi
between two-triplet and multitriplet bound states. This m
ing was the reason why vanishing of the singlet gap ag
5gc3 was missed in Ref. 5. In Ref. 5 analysis of the sing
excitation was based on a two-particle Bethe-Salpeter eq
tion with further account of multiparticle contributions as
small perturbation. This assumption was wrong because
the strong mixing. So atg5gc3 we have condensation o
effectively a multiparticle bound state with relatively sma
two particle component. The mixing between two-partic
and multiparticle components of the singlet excitation var
with g and this effect cannot be taken into account in t
nonlinear O~1! field theory which assumes condensation
an ‘‘elementary’’ ~5structureless! field. Ultimately very
close to the critical point the variation of the mixing can
neglected and one shall expect restoration of the pure O~1!
field theory behavior. However, it happens in so narrow
cinity of the critical point that the present numerical da
cannot assess it.

Let us consider now the appearance of spin dimer orde
g5gc1 as g is increased from small values. A scenario p
forward some time ago4 and based on the analysis of th
Sp(N), N→` field theory suggests that the dimer order a

FIG. 3. The plot of 1/xD , wherexD is the dimer susceptibility
calculated in the simple Ne´el state using Ising series expansion. T
value of 1/xD vanishes atgc150.3460.04 indicating transition to
the Néel state with spontaneous spin columnar dimerization.
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pears simultaneously with disappearance of the Ne´el order,
gc15gc2. The dynamics in the vicinity of the critical point i
described by the nonlinear O~3! field theory in spite of an
additional dimer order parameter. The additional gapless
citation is irrelevant to the critical dynamics because t
excitation is of extremely large size:4 r;(g2gc)

2M, M
@1. Another possibility is thatgc1,gc2 and hence there ar
two separated quantum phase transitions.15 The transition at
gc250.38 is still described by the nonlinear O~3! s model,
while the transition atgc1 is of the O~1!3O~1! type.11 A
recent work based on the Green function Monte Ca
method10 gives a hint in favor of this picture.

Let us give the precise meaning to the terms relevant
irrelevant singlet excitation. We consider a quantum criti
point at which the singlet gapDs vanishes. An external field

FIG. 4. Plot of the differenceDC52u^Si•Sj&23^Si
zSj

z&u for 1st
neighbors~full line!, 2nd neighbors~short dashed line!, and 3rd
neighbors~long-dashed line! versusg5J2 /J1. The full rotation
symmetry of the ground state is restored whenDC50.
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x-
s

o

d
l

which is coupled to the singlet excitation,^suFu0&Þ0, is
applied to the system. If the corresponding susceptibi
given by Eq.~2! is diverging at the critical point we call this
singlet excitation ‘‘relevant.’’ If the susceptibility is not di
verging we call the singlet excitation ‘‘irrelevant.’’ It is clea
that for an irrelevant excitation the quasiparticle residueZ
vanishes faster thanDs

2 .
To analyze the problem of spin dimer order we calcul

the susceptibility of the Ne´el state with respect to the exte
nal field which probes spin columnar dimerization.

FD5(
i , j

~21! iSi , j•Si 11,j . ~5!

In this calculation we use the usual Ising series expansion
to seventh order, the Ising expansion for this model has b
discussed in Ref. 16, and will not be repeated here. Note
in spite of the similarity between Eqs.~3! and ~5! these are
two quite different situations. The field~3! assumes that the
dimers aligned along thei direction already exist and i
probes a possible modulation in thej direction. The field~5!
is applied to the Ne´el state and therefore it does not assu
any dimer order. The series has been extrapolated in
same way as that for 1/xP , and the values of 1/xD versusg
are plotted in Fig. 3. It is clear that 1/xD vanishes somewher
in the interval gP@0.3,0.4#, but the data is not precis
enough to distinguishgc1 from gc2. To distinguish between
the two scenarios discussed above we have to realize
Fig. 3 clearly indicates therelevantsinglet excitation. In a
picture with anirrelevantsinglet4 the quasiparticle residue i
extremely small,Z}(g2gc)

M, M@1, and hence the sus
ceptibility has no divergence at the critical point. Thus w
conclude from Fig. 3 thatgc150.3460.04, and thatgc1
,gc2, so there is a regiongc1,g,gc2, where the spin co-
lumnar dimer order and the Ne´el order coexist. The critica
dynamics atgc1 is described by therelevantgapless singlet
excitation.11 There is no doubt that theirrelevant gapless
singlet excitation atg'gc2 also exists, but it has an expo
nentially small residue17 and hence its contribution to th
susceptibility is negligible.
x-

ps
e

FIG. 5. Schematic phase diagram and the e
citation spectra of theJ1-J2 model. Solid lines
show the triplet gap, dashed lines show the ga
of the relevantsinglets, the dotted line shows th
gap of theirrelevant singlet.
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The final result we report here is another way of estim
ing gc2.0.38. The previous best calculation5 was based on
vanishing of the triplet gap in the spin liquid phase. A pr
vious attempt16 to estimategc2 by Ising expansions for the
staggered magnetization in the Ne´el phase showed the mag
netization vanishing around 0.4, but the series were errat
this region and the precision low. The estimate is based
Ising expansions16 in the Néel phase for the 1st, 2nd, and 3
neighbor correlatorŝSi

xSj
x& and^Si

zSj
z&, wherez is the direc-

tion of staggered magnetization. The series has been c
puted up to order 9 for 1st and 2nd neighbor correlators
to order 7 for 3rd neighbor correlator. Again these series
analyzed by using the standard Pade´ approximant and the
integrated differential approximants,12 and the results for the
differences of these correlators are shown in Fig. 4, wh
the errorbar reflect the spread in the different order of
proximants. The transition point is identified by the conditi
^Si

xSj
x&5^Si

zSj
z&, corresponding to restoration of spin rot

tional symmetry to the ground state. This givesgc2
.0.38(3), in excellent agreement with previous results.

In conclusion, the zero-temperature phase diagram
the excitation spectra of theJ1-J2 model are shown sche
matically in Fig. 5. There are four critical points:gc150.34
60.04, gc2'0.38, gc350.560.02, gc4'0.60. The states
r

y

hy
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are: g,gc1—the simple Ne´el state,gc1,g,gc2—the co-
lumnar dimerized Ne´el state,gc2,g,gc3—the simple co-
lumnar dimerized spin liquid,gc3,g,gc4—the columnar
dimerized spin liquid with plaquette type modulation, a
g.gc4—the collinear state. The transitions atgc1 and gc3

are second-order phase transitions of the O~1!3O~1! and
O~1! symmetry classes correspondingly. Energies of the c
respondingrelevantsinglet excitations vanish at the critica
points. The transition atgc2 is a second-order phase trans
tion described by the nonlinear O~3! field theory. The energy
of the triplet excitation vanishes atg<gc2; at the critical
point there is also a singlet excitation with zero gap, but t
singlet isirrelevant. The transition atgc4 is probably of first
order, but is very close to second order.
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