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Quantum phase transitions in the two-dimensionall;-J, model
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We analyze the phase diagram of the frustrated Heisenberg antiferromagndt-Jdhemodel, in two
dimensions. Two quantum phase transitions in the model are already known: the second-order transition from
the Neel state to the spin liquid state at,(/J;).,~0.38, and the first-order transition from the spin liquid state
to the collinear state atlg/J,).4~0.60. We have found evidence for two second-order phase transitions: the
transition from the spin columnar dimerized state to the state with plaquette-type modulatidyV &) {5
=0.50+0.02, and the transition from the simple dletate to the Nal state with spin columnar dimerization
at (J,/J;).1=0.34+0.04. We also present an independent calculationJefJ;).,~0.38 using another ap-
proach.
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The nature of the quantum disordered phases of lowalong the columns. An additional very interesting
dimensional quantum antiferromagnets is a topic of fundaobservatiot’ is that the columnar spin dimerization pen-
mental importance for the physics of quantum magnetism.etrates into the N& phase ta~0.3. To conclude the list of
Such phases can result from mobile holes in an antiferromagpbservations which do not agree with a simple spin liquid
netic background as in theJ or Hubbard model at finite with columnar dimerization we mention the divergence in
doping. Alternatively, competition of purely magnetic inter- the plaquette susceptibility found in Ref. 7@t 0.5.
actions can also lead to destruction of long-range order. A In the present paper we elucidate all the above questions
typical example of the second kind is the-J, model which ~ and come to the conclusion that two additional quantum
exhibits a quantum disordere@pin-liquid phase due to critical points exist in the phase diagram of the system.
second-neighbor frustrating interactions. Even though it haghese critical points correspond to a generic type of second-
been intensively studied during the last ten years, Jjad,  order quantum phase transition considered in Ref. 11. At
model apparently still holds many secrets. This model is als@ach of the critical points there is condensation of some sin-
an ideal testing ground for the theory of quantum phase trarglet excitation and the critical dynamics is described by the
sitions because it has very complex dynamics and containsronlinear @1) field theory.

variety of transitions. Exact diagonalization studidmve The Hamiltonian of thel;—J, model reads:

shown that the excitation spectrum of the model is quite

complex and that finite-size effects are lafg8pin-wave- H=J E S-S+J 2 S-S (1)
like expansions around the simple élestate(which occurs T T '

for small frustration naturally cannot give any information
about the ground state at stronger frustration, and cons
qguently nonperturbative methods are needed to analyze t
latter regime.

An important insight into the disordered regime was
achieved by field-theory methdtfsand dimer series expan-
sions.®>" The above works have established the range of th
disordered regime, 0.383<0.60 (g=J,/J4), and have also

é(\_/here.]l is the nearest-neighbor, arlg is the frustrating
xt-nearest-neighbor Heisenberg exchange on a square lat-
Ice (see Fig. 1 Both couplings are antiferromagnetic, i.e.,
J1,>0 and the spinsS=1/2. We also use the notatian
=J,/J4. The spin columnar dimerization gt>g., is well
gstablishe‘(‘f "and therefore we start our consideration from

shown that the ground state in this regime is dominated by o P J1 m
short-range singlefdimer) formation in a given patterfsee S N s S
Fig. 1). The stability of such a configuration implies that the o N o
lattice symmetry is spontaneously broken and the ground \J\2
state is fourfold degenerate. This picture is somewhat similar @/’\‘} @q
to the one dimensional situation, where the Lieb-Schultz- S T
Mattis theorem guarantees that a gapped phase always breaks N o
the translational symmetry and is doubly degenerate,
whereas gapless excitations correspond to a unique ground % M
state® TS
Two very recent calculatiois® performed by Green w Y Y
function Monte Carlo methods have raised questions on the m /__\\
structure of the intermediate phase. The authors of Ref. 9 (3 $ <3 >

claim stability of the “plaquette RVB” state aj~0.5. Ref-
erence 10 comes to a different conclusion: there is a colum- FIG. 1. Schematic picture of the simple columnar dimerized
nar spin dimerized state with plaquette-type modulatiorstate. The ovals represent two spins coupled into a singlet.
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FIG. 2. The plot of 1¥p, whereyp is the plaquette susceptibil- €
ity calculated in the simple columnar dimerized state using dimer FIG. 3. The plot of 1§y, whereyp is the dimer susceptibility
series expansion. The value ofy}/ vanishes ag.;=0.50+0.02  calculated in the simple N state using Ising series expansion. The
indicating a transition to the columnar dimerized state withvalue of 1kp vanishes ag.;=0.34+0.04 indicating transition to
plaquette-type modulation. the Neel state with spontaneous spin columnar dimerization.

this state shown schematically in Fig. 1. If there is an insta-This phase transition is of the generic type considered in Ref.
bility with respect to some kind of additional ordering then 11 and therefore it is described by 2D nonlineadCfield
the gap in the spectrum of some singlet excitation must vantheory™® The critical indexes for this model até: v
ish at the corresponding critical poititWe do not have a ~0.630, »~0.034. Therefore one shall expegt=v(2
reliable technique for direct calculation of the singlet gap,— 7)~1.2. On the other hand the Dlog Paafgproximants to
but we do have a well developed series expansion techniqube seriesyp give y=0.9=0.1. This is fair agreement, and
for calculation of static susceptibilities. A static susceptibil-we offer an explanation for the small discrepancy. The phase
ity is proportional to the corresponding Green’s function attransition is related to the condensation of some singlet ex-
zero frequency citation which can be considered as a bound state of triplet
excitations.

X*Gg(@=0)~Z4/w], ()

_ . . _ |s)=a,|tt)+as|ttt) +a,ltttt)+ ... . (4)
wherewg is the quasiparticle energy, adg is the quasipar- ] ) o
ticle residue. So at the critical pointyLmust vanish approxi- We would like to stress that there is very strong mixing
mately as §—g.)?, with y=1(2— 7), wherew is the criti-  Petween two-triplet and multitriplet bound states. This mix-
cal index for the spectral gapy(g—g.)”, and vy is the  INg was the.reaso.n why vanishing of the ;mglet 92y at
critical index for the quasipartide residuz,x(g_gc) vy, :ggg WaS missed in Ref. 5. In Ref. 5 analySlS of the Slnglet

To analyze possible plaquette type modulation we calcuéXcitation was based on a two-particle Bethe-Salpeter equa-

late the susceptibility of the spin columnar dimerized statdion with further account of multiparticle contributions as a
with respect to the fiefd small perturbation. This assumption was wrong because of

the strong mixing. So atj=g.3 we have condensation of
. effectively a multiparticle bound state with relatively small
FP:Z (—1'S-S 41, @ two particle component. The mixing between two-particle
! and multiparticle components of the singlet excitation varies
which breaks the translational symmetry in the direction perwith g and this effect cannot be taken into account in the
pendicular to the dimers. The series has been computed up twnlinear @1) field theory which assumes condensation of
the seventh order in the dimerization parameter, and thesen “elementary” (=structureless field. Ultimately very
series are extrapolated by using the standard Rageoxi- close to the critical point the variation of the mixing can be
mant and the integrated differential approximait®esults neglected and one shall expect restoration of the pufie O
for 1/yp are shown in Fig. 2, where the errorbar reflect thefield theory behavior. However, it happens in so narrow vi-
spread in the Padapproximants. The value of ¢4 vanishes  cinity of the critical point that the present numerical data
at g.3=0.50+0.02 and this is the critical point for the cannot assess it.
second-order quantum phase transition from a simple colum- Let us consider now the appearance of spin dimer order at
nar dimerized state to the eightfold degenerate columnag=g.; asg is increased from small values. A scenario put
dimerized state with plaquette-type bond modulation in theforward some time adoand based on the analysis of the
direction perpendicular to the dimers suggested in Ref. 10Sp(N), N—oe field theory suggests that the dimer order ap-
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FIG. 4. Plot of the differenca C=2[(S- §;) - 3(SS])| for 1st
neighbors(full line), 2nd neighborgshort dashed line and 3rd
neighbors(long-dashed ling versusg=J,/J;. The full rotation
symmetry of the ground state is restored whsB=0.

pears simultaneously with disappearance of thelNeder,
Oc1=0c2- The dynamics in the vicinity of the critical point is
described by the nonlinear(® field theory in spite of an
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which is coupled to the singlet excitatiofis|F|0)#0, is
applied to the system. If the corresponding susceptibility
given by Eq.(2) is diverging at the critical point we call this
singlet excitation “relevant.” If the susceptibility is not di-
verging we call the singlet excitation “irrelevant.” It is clear
that for an irrelevant excitation the quasiparticle residue
vanishes faster than?.

To analyze the problem of spin dimer order we calculate
the susceptibility of the Nad state with respect to the exter-
nal field which probes spin columnar dimerization.

Fo=2 (—1)'S;-Sy1;- (5)

1)

In this calculation we use the usual Ising series expansion up
to seventh order, the Ising expansion for this model has been
discussed in Ref. 16, and will not be repeated here. Note that
in spite of the similarity between Eq&3) and (5) these are
two quite different situations. The fiel@) assumes that the
dimers aligned along thé direction already exist and it
probes a possible modulation in thdirection. The field5)

is applied to the Nel state and therefore it does not assume
any dimer order. The series has been extrapolated in the
same way as that for {4, and the values of ¥p versusg

are plotted in Fig. 3. It is clear that)l4 vanishes somewhere

in the intervalge[0.3,0.4, but the data is not precise
enough to distinguisly.; from g.,. To distinguish between
the two scenarios discussed above we have to realize that

additional dimer order parameter. The additional gapless exFig. 3 clearly indicates theelevantsinglet excitation. In a
citation is irrelevant to the critical dynamics because thispicture with anirrelevantsinglef the quasiparticle residue is

excitation is of extremely large siZer~(g—g.) ™, M
>1. Another possibility is thag.;<g., and hence there are
two separated quantum phase transitibtishe transition at
0.2=0.38 is still described by the nonlinear& ¢ model,
while the transition ag.; is of the Q1)x0O(1) typel’ A

extremely small,Z=(g—g.)™, M>1, and hence the sus-
ceptibility has no divergence at the critical point. Thus we
conclude from Fig. 3 thayg,;=0.34+0.04, and thatg.,
<2, SO there is a regiog.;<g<d.,, Where the spin co-
lumnar dimer order and the Weorder coexist. The critical

recent work based on the Green function Monte Carlodynamics ag; is described by theelevantgapless singlet

method® gives a hint in favor of this picture.

excitation!! There is no doubt that thirelevant gapless

Let us give the precise meaning to the terms relevant andinglet excitation ag~g,, also exists, but it has an expo-
irrelevant singlet excitation. We consider a quantum criticalnentially small residu€ and hence its contribution to the
point at which the singlet gajyg vanishes. An external field susceptibility is negligible.

FIG. 5. Schematic phase diagram and the ex-
citation spectra of thel;-J, model. Solid lines
V1 show the triplet gap, dashed lines show the gaps
Pt of the relevantsinglets, the dotted line shows the
V1 gap of theirrelevant singlet.
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The final result we report here is another way of estimatare: g<g.;—the simple Nel state,g.;<g<g.,—the co-
ing g¢,=0.38. The previous best calculatfowas based on lumnar dimerized Nel state,g.,<g<g.s—the simple co-
vanishing of the triplet gap in the spin liquid phase. A pre-lumnar dimerized spin liquidg.;<g<g.,—the columnar
vious attempf® to estimateg,, by Ising expansions for the dimerized spin liquid with plaquette type modulation, and
staggered magnetization in the &lphase showed the mag- g~ g ,—the collinear state. The transitions g¢; and g.;
ngtizatiqn vanishing aroqn_d 0.4, but the series were erratic igye second-order phase transitions of the)@O(1) and
this region and the precision low. The estimate is based oy 1) symmetry classes correspondingly. Energies of the cor-
Ising expansiori in the Neel phase for the 1st, 2nd, and 3rd egpondingrelevantsinglet excitations vanish at the critical
neighbor correlator¢S'Sy) and(S'S]), wherezis the direc-  oins. The transition ag., is a second-order phase transi-
tion of staggered magnetization. The series has been COMYon described by the nonlinear(® field theory. The energy
puted up to order 9 for 1st and 2nd neighbor correlators and 1 triplet excitation vanishes at<g.,; at the critical

ffng{ dzeé d7 gorfsr?n n?ﬁgb;;ﬁgggaéor' A?g)'(?ngg?ﬁeaﬁznfhsear%oint there is also a singlet excitation with zero gap, but this
analy y 9 . aAfep singlet isirrelevant The transition agy¢4 is probably of first
integrated differential approximantéand the results for the rder. but is very cl i nd order

grder, but is very close to second order.

differences of these correlators are shown in Fig. 4, wher
the errorbar reflect the spread in the different order of ap- Thjs work forms part of a research project supported by a
?;oggnj?t&ss %hecté?rr;sslgg: (;)izg]ttlj Irtlirt\gget:ﬂogy ;?es ;i‘?]n?gg?grant from the Australian Research Council. We thank V.N.
S i/ . - Kotov and J.M.J. van Leeuwen for very important stimulat-
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