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Dipolar induced magnetic anisotropy and magnetic topological defects in ultrathin films

J.-C. S. Le´vy
Laboratoire de Physique The´orique de la Matie`re Condense´e, Case 7020, Universite´ Paris 7, 75251 Paris Cedex 05, France

~Received 5 April 2000; published 14 February 2001!

A Taylor expansion of the spin field enables us to obtain a local representation of dipole-dipole interactions
in the plane. The magnetic anisotropy induced by the lattice symmetry by means of the dipolar interaction is
analyzed for a hexagonal lattice. The reduction of the divergence of higher terms of the dipolar Hamiltonian
leads to a set of nonlinear equations on the partial derivatives of the spin field. Topological defects are shown
to be approximate solutions of these equations and are classified according to their validity and occurrence
frequency. Because of dipolar interactions, this result is shown to be general for two-dimensional lattices
observed on a large scale.
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I. INTRODUCTION

In recent years, the numerous improvements of surf
technology enabled several groups to obtain high qua
continuous magnetic ultrathin films with controlled thickne
and structure.1–3 These ultrathin films observed by magnet
optical, magnetoelectronic, or magnetoelastic means ex
magnetic patterns with different symmetries as a function
temperature and lattice structure.1–4 The magnetization dis
tribution within such patterns gives evidence for topologi
defects such as vortices, domains, and walls.1–4 Of course,
because of the theoretically known two-dimensional~2D! in-
stability in the presence of only short-range interactions5,6

these experimental results have encouraged several anal
studies of long-range dipole-dipole interactions in order
demonstrate their stabilizing properties.7–9 These experimen
tal results as well as parallel progress in numerical comp
tion have also stimulated several numerical simulations
magnetic patterns observed in these structures.

Simple Hamiltonians with local anisotropy, short-ran
exchange, and dipole-dipole interactions were considere
numerical simulations10–13 in order to understand the way o
producing such patterns. Among the main results of both
experimental and theoretical approaches, the existence o
termediate states of definite symmetry at high temperatur
ultrathin samples4 is now clear. It generalizes the previou
observations of numerous magnetic phase changes with
perature and external field in thicker samples, i.e., t
films,14 and looks very attractive. The numerical evidence
magnetic vortices in ultrathin films obtained by differe
groups12,13 reactivates the interest for magnetism in 2D w
Kosterlitz-Thouless singularities.15 Such magnetic vortices
were already observed in thicker samples.16–18 The present
nonobservation of specific vortices in ultrathin films see
linked with the difficulty of observation of in-plane magn
tization at an atomic level, while progress in such an exp
mental mean is expected to be obtained in the near futu3

Thus the question arises of local magnetic symmetry in
trathin films as well as the need for a simple theoretical v
sion of the competition between exchange, anisotropy,
specially dipolar interactions arise.

However, because of their long-range character, dip
interactions cannot be directly introduced in a Landau tre
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ment for a local interaction. So the reduction of dipolar i
teractions to a local interaction is the goal of the pres
paper. And one of the consequences of this analysis
direct treatment of the magnetic symmetry induced by di
lar interactions. A simultaneous result is the deduction
nonlinear equations satisfied by the ground-state magne
tion field.

The starting point of the present work is to translate
nonlocal dipolar interactions, i.e., interactions between d
ferent sites lying in the same unique infinite layer, in
strictly local interactions by means of a Taylor’s series e
pansion of the spin field.19,20 This expansion provides a
Landau-like Hamiltonian working on the spin field and i
derivatives taken at the same site. Each term of the
deduced site HamiltonianHi contains spin field terms
weighted by two-dimensional lattice sumsKn with

H5(
i

Hi ,

~1!

Hi5 (
n50

`

Fi ,nKn ,

whereFi ,n is a function of the spin field and of itsn-order
derivatives as it will be shown. Because of the long-rang
character of dipolar interactions, the lattice sumsKn are
demonstrated to increase with the sizeL of the sample when
n is larger than 1. And because of inversion symmetry o
even values ofn lead to non-null lattice sums. Thus for
finite lattice the existence of a magnetic ground state imp
the set of inequalitiesFi ,2p<0 at all orders larger than 1
This defines a set of high-order derivative inequalities, all
them homogeneous in the derivative order. For an infin
lattice, the magnetic ground state is expected to have a fi
energy and thus just equalities occur:Fi ,2p50. However, all
these equalities or inequalities do not share the same lev
validity since the spin field on a lattice is by nature discre
thus high-order derivatives of the spin field are expected
be null except if there is a strong singularity in the magne
pattern. These equalities are naturally classed accordin
the derivation order. Thus this remark justifies us to foc
our attention on the first nontrivial equality or inequality, i.e
on n52.
©2001 The American Physical Society09-1
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J.-C. S. LÉVY PHYSICAL REVIEW B 63 104409
The effect of optimizing the contribution of the firstn
50 terms which involve only the spin components is to
vor some magnetization directions. The corresponding lat
sums for n50 are calculated or estimated for a simp
square lattice and a triangular lattice. This calculation
ables us to derive the dipolar induced magnetic anisotr
for these lattice symmetries. Of course this induced ani
ropy must be compared to other sources of anisotropy w
finally deducing the magnetization direction. The derivati
of the inequality corresponding to the casen54 is then con-
sidered as an introduction to the general case with arbit
values ofn.

In Sec. II the general framework of a Taylor expansion
the spin field applied to the dipolar Hamiltonian is give
then lattice sums are calculated for different lattices in S
III. Section IV is devoted to determine the ground state a
to the analysis of different possible solutions for the grou
state or weakly excited states such as topological defe
Finally, concluding comparisons with experimental and n
merical results are reported in Sec. V.

II. TAYLOR EXPANSION OF THE SPIN FIELD
FOR THE DIPOLAR HAMILTONIAN

When introducing the partial derivatives at all orders
the spin field at sitei, the spin at sitej reads as a function o
the local spin field at sitei by means of a Taylor expansion:19

Sj5 (
p,q50

` xi j
p yi j

q

p!q! S ]p1qS

]xp]yqD
i

, ~2!

where the vectorr i j of coordinates (xi j ,yi j ) joins the lattice
sites i and j in the plane layerz50. The usual nonloca
version of the dipolar Hamiltonian between spins reads

H5 (
i , j Þ i

Si•Sj

r i j
3 23 (

i , j Þ i

Si•r i j Sj•r i j

r i j
5 . ~3!

With the Taylor expansion of the spin field given in Eq.~2!
the dipolar Hamiltonian reads as a function of the spin fi
operators at the same site:

H5Hi

Hi5(
p,q

Si•

p!q!

]p1qSi

]xp1]yq (
j

xi j
p yi j

q

~xi j
2 1yi j

2 !3/2

23 (
p,q,a,b

~Si !a

p!q!

]p1q~Si !b

]xp]yq (
j

~r i j !a~r i j !bxi j
p yi j

q

~xi j
2 1yi j

2 !5/2 .

~3a!

This expression is deduced for an infinite lattice with tra
lational invariance. Two kinds of lattice sums appear
such an infinite lattice, namely the isotropic sumI p,q and the
anisotropic sumLp,q,a,b with
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I p.q5( 8
j

xi j
p yi j

q

~xi j
2 1yi j

2 !3/2,

~4!

Lp,q,a,b5( 8
j

~r i j !a~r i j !bxi j
p yi j

q

~xi j
2 1yi j

2 !5/2 ,

where the sitei is an arbitrary 2D lattice site while sitej runs
over all the other lattice sites. These origin independent su
depend on the lattice symmetry. With the so-defined latt
sums, the local dipolar Hamiltonian reads

H5 (
i ,p,q

I p,q

Si•

p!q!

]p1qSi

]xpyq

23 (
i ,p,q,a,b

Lp,q,a,b

~Si !a

p!q!

]p1q~Si !b

]xp]yq . ~5!

III. LATTICE SUMS AND DIPOLAR HAMILTONIAN FOR
2D LATTICES

In this paper lowest-order sums are calculated for
simple square lattice of lattice parametera and for an hex-
agonal lattice of a different lattice parametera8 in order to
compare their values for lattices with the same site den
and different symmetries and finally to analyze the latt
induced anisotropy originated by dipolar interactions. A
suming the same atomic density in both lattices leads t
lattice parametera8:a8521/2321/4a>1.075a. On the other
hand, a general isotropic treatment of the simple square
tice within a continuous approximation is given for all lattic
sums.

A. Simple square lattice

For this lattice of parametera and square axesx andy, the
nonzero isotropic sumsI p,q have even values for both indice
p andq. And among theseI 2p,2q , the term of lowest order is
I 0,0 with

I ss 0,05
4

a3 F z~3!1
1

23/212 (
m52

`
1

~m211!3/2

1 (
m52,n52

`,`
1

~m21n2!3/2G , ~6!

wherez(n) is the Riemann zeta function.21–23 An approxi-
mate treatment ofI ss0,0 was given some years ago by Yaf
and Gyorgy.8 The nonzero values of the anisotropic sum
Lp,q;a,a are obtained for even values of bothp andq, and the
lowest-order term ofL2p,2q;a,a is L0,0;a,a , with

Lss 0,0;a,a5
4

a3 F z~3!1 (
m51,n51

`,`
m2

~m21n2!5/2G ~7!

while the nonzero values of the anisotropic sumsLp,q;a,bÞa
are obtained for odd values of bothp andq, and the lowest-
order term isL1,1;2,15L1,1;1,2, with
9-2
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L1,1;1,25
4

a F (
m51,n51

``
m2n2

~m21n2!5/2G
5

4

a F225/2z~3!12 (
m52,n51

n,m

`,`
m2n2

~m21n2!5/2G . ~8!

However, this lattice sum of order 2, as it will be show
later, does not converge for large values ofm andn, as ex-
pected for a sum of order 2. Finally, the zero order part of
local dipolar Hamiltonian for the simple square lattice rea
with an obvious fourfold symmetry,

Hi5I ss0,0Si
223Lss0,0,1,1~Si ,x

2 1Si ,y
2 ! . ~9!

Such a fourfold symmetry in the magnetic domain p
terns is generally observed for films with a fcc~100! or a bcc
~100! surface,24 or for ultrathin films with a simple squar
symmetry, experimentally,4 in analytical calculations,9 or in
numerical simulations10 in presence of a strong enoug
uniaxial magnetic anisotropy which enables one to avoid
in-plane magnetization of a pure dipolar film. In such a ca
lattice axesx andy are directions of easy magnetization,
observed.

B. Hexagonal lattice

The running point coordinates of the hexagonal latt
being considered are ((ma8/2),(na8)/2),0) where the inte-
gersm and n share the same parity. The nonzero values
the isotropic sumsI p,q are obtained for even values of bothp
and q, and the lowest-order term of the formI 2p,2q is I 0,0.
Taking advantage of symmetry, it reads

I h 0,05
6

a83 F z~3!18 (
m51,n51
m1n even

n,m

`
1

~m213n2!3/2G
5

221/237/4

a3 F z~3!18 (
m51,n51
m1n even

n,m

`
1

~m213n2!3/2G .

~10!

The nonzero values of anisotropicLhp,q;a,a are obtained
for even values of bothp andq, and the lowest-order term o
the formLh2p,2q;a,a areLh0,0;a,a , with

Lh 0,0,1,15
2

a83 F z~3!116 (
m51,n51
n1m even

`,`
m2

~m213n2!5/2G
5

221/233/4

a3 F z~3!116 (
m51,n51
n1m even

`,`
m2

~m213n2!5/2G
~11a!

and
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Lh 0,0,2,25
2

a83 F z~3!

3
148 (

m51,n51
n1m even

`,`
n2

~m213n2!5/2G
5

221/233/4

a3 F z~3!

3
148 (

m51,n51
n1m even

`,`
n2

~m213n2!5/2G ,

~11b!

the asymmetry between these sums indicates the isot
breakdown due to the lattice symmetry. Next the nonz
values of the anisotropicLhp,q;a,bÞa are obtained for odd
values of bothp andq, and the lowest nonzero order term
Lh;1,1;2,15Lh;1,1;1,2 with

Lh;1,1;1,25
24

a8 F (
m51,n51
n1m even

`,`
m2n2

~m213n2!5/2G
5

25/235/4

a F (
m51,n51
n1m even

`,`
m2n2

~m213n2!5/2G , ~12!

but this sum, of order 2, does not converge for large val
of m andn for an infinite lattice as expected for this orde
Finally the zero order part of the local dipolar Hamiltonia
for the hexagonal lattice reads

Hi5I h 0,0Si
223~Lh 0,0,1,1Si ,x

2 1Lh 0,0,2,2Si ,y
2 ! ~13!

or in a more symmetric way,

Hi5I h 0,0Si ,z
2 1F I h 0,02

3

2
~Lh 0,0,1,11Lh 0,0,2,2!G~Si ,x

2 1Si ,y
2 !

2
3

2
~Lh 0,0,1,12Lh 0,0,2,2!~Si ,x

2 2Si ,y
2 !.

In the last expression the planar symmetry is obviou
not fourfold but sixfold. Such a symmetry is induced by t
hexagonal lattice symmetry. Such an induced symmetry
pears both in experimental observations on fcc~111! surfaces
of thin films1,6 and in numerical simulations on triangula
lattices.13 Because of the rapid convergence of these lat
sums which was already noticed by Yafet and Gyorgy,8 the
last term which splits the fourfold symmetry of Eq.~13! is
easily computed:

Hid,Þ452
3

2
~Lh 0,0,1,12Lh 0,0,2,2!~Si ,x

2 2Si ,y
2 !

5
1.723

a3 ~Si ,x
2 2Si ,y

2 !. ~13a!

Thus the lattice induced anisotropy has directions of e
magnetization in the lattice plane and these directions
normal to the six dense directions of the hexagonal lattice
observed in simulations.13 In samples where a superimpose
uniaxial anisotropy normal to the plane is strong enough
obtain a quasi-Ising spin arrangement, these relative e
orientations drive the domain-wall direction.1,14
9-3
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C. Continuous treatment

All these isotropic and anisotropic lattice sums can
calculated approximately as integrals over large and fi
ringlike domains situated between two circles centered at
origin with respective radiia andL. With such a treatment, a
perfect rotational invariance of the layer of lattice parame
a is assumed. Thus the lattice induced anisotropy which
considered just before, is completely neglected in this p
For the sake of simplicity, a square lattice is consider
Then the first isotropic sumsI p,q read

I p,q5(
j

xi j
p yi j

q

~xi j
2 1yi j

2 !3/25E
a

L

r p1q22drE
0

2p

cosp u sinq udu

5Kp,qNp,q , ~14!

where the radial integralsKp,q5Kp1q are defined by

Kp,q5E
a

L r p1q22

a2 dr5
Lp1q212ap1q21

a2~p1q21!
5Kp1q

~14a!

of which the dimensional analysis is easily derived:p1q
5n. It agrees with the previous comments on the diverge
of the radial sumsKn for n.1 when the sample become
large. More precisely the isotropic integralsI p,q with non-
null p and q values are dominated by long-range contrib
tions which increase with increasing values ofp andq, and
only the integralI 0,0 is dominated by short-range contribu
tions with a resulting 1/a contribution, i.e., a short-rang
divergence term which, however, remains finite for a discr
lattice as considered here.

The angular integralsNp,q are

Np,q5E
0

2p

cosp u sinq udu. ~14b!

After angular integration the only nonzero factorsNp,q
are obtained for even values ofp andq with

if p<q Np,q5
p

i q2p1q21 ~21!~p1q!/2(
k50

p

~21!kS p
k D

3S q
p1q

2
2kD ,

~15!

if p.q Np,q5
p

i q2p1q21 ~21!~p1q!/2 (
k5~p2q!/2

~p1q!/2

~21!kS p
k D

3S q
p1q

2
2kD .

The non-null values of these angular integrals are for
lowest-order terms:
10440
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N0,052p,

N2,05N0,25p,

N2,25p/4; N4,05N0,453p/4, ~16!

N6,05N0,655p/8; N4,25N2,45p/8,

N8,05N0,8535p/4; N6,25N2,655p/64; N4,453p/64.

Using the gamma function,23 asymptotic formulas for the
non-null values of theNp,q’s are easily derived with the ba
sic result:

Np,q'2S 2

pD ~q11!/2

G@~q11!/2#,

~16a!

Np,0'2A2p

p
.

The anisotropic lattice integralsLp,q,a,b are also deduced
from the radial and angular integrals, with

Lp,q,a,b5Kp1qNp8,q8 , ~17!

where the indicesa and b are both lower than three fo
non-null values of these integrals since all spins belong
the same layerz50. The explicit link between the aniso
tropic Lp,q,a,b and the radialKp1q and angularNp,q integrals
is given by the following rules for definingp8 andq8 from p
andq:

a51, b51 leads to p85p12, q85q,

a51, b52 leads to p85p11, q85q11,

a52, b51 leads to p85p11, q85q11,

a52, b52 leads to p85p, q85q12.

Because of these symmetry rules, all the Hamilton
terms which can be nonzero are factors ofK2n with nPN as
already introduced in Eq.~1!. Thus an obvious classificatio
of the Hamiltonian terms according to the indexn occurs
since the strength of the divergence ofK2n increases with the
value ofn as seen in Eq.~14a!.

Direct calculations in the continuous approximation le
us to write the first termH0,0 of the local dipolar Hamil-
tonian:

H0,05pK0~2Si ,x
2 2Si ,y

2 12Si ,z
2 !. ~18!

In agreement with our previous calculations on square
hexagonal lattices in Eqs.~9! and ~13!, H0,0 is finite. Since
the value ofK0 is positive, Eq.~18! just shows that the
anisotropy induced by dipolar interaction favors an in-pla
magnetization in this 2D-rotationally invariant lattice. Such
situation is also expected to occur from classical magne
static arguments.1
9-4
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The next termH2 of the expansion of the site dipola
HamiltonianHi containsK2 as a factor. Using Eqs.~4!, ~5!,
~14!, ~16!, and~17!, this term reads

H25
p

8
K2F 4S•S ]2S

]x2 1
]2S

]y2D26Sx

]2Sy

]x]y
26Sy

]2Sx

]x]y

29Sx

]2Sx

]x2 23Sx

]2Sx

]y2 23Sy

]2Sy

]x2 29Sy

]2Sy

]x2

G .

~19!

Since the factorK2 would be infinite for an infinite sample
the ground-state solution must satisfy the nonlinear equa
in partial derivatives of the spin field in order to yield a fini
site energy:

4S•S ]2S

]x2 1
]2S

]y2D26Sx

]2Sy

]x]y
26Sy

]2Sx

]x]y
29Sx

]2Sx

]x2

23Sx

]2Sx

]y2 23Sy

]2Sy

]x2 29Sy

]2Sy

]x2 50. ~20!

Of course for a finite sample, Eq.~20! becomes the inequal
ity for a metastable state:

4S•S ]2S

]x2 1
]2S

]y2D26Sx

]2Sy

]x]y
26Sy

]2Sx

]x]y
29Sx

]2Sx

]x2

23Sx

]2Sx

]y2 23Sy

]2Sy

]x2 29Sy

]2Sy

]x2 <0. ~20a!

The next termH4 of the expansion of the site dipola
Hamiltonian containsK4 as a factor. Using Eqs.~4!, ~5!,
~14!, ~16!, and~17!, this term enables us to write

64H4

pK4
52Sz

]4Sz

]x4 23Sx

]4Sx

]x4 1Sy

]4Sy

]x4 12Sz

]4Sz

]y4 1Sx

]4Sx

]y4

23Sy

]4Sy

]y4 14Sz

]4Sz

]x2]y222Sx

]4Sx

]x2]y222Sy

]4Sy

]x2]y2

24Sx

]4Sy

]x]y324Sx

]4Sy

]x3]y
24Sy

]4Sx

]x]y324Sy

]4Sx

]x3]y
.

~21!

Obviously the right-hand term of Eq.~21!, Fi ,4 in the nota-
tion of Eq. ~1! must also be set equal to zero in order
obtain a finite dipolar energy per site. This leads to a n
nonlinear partial derivative equation similar to Eq.~20!,
Fi ,450. This new equation cannot simply be deduced fr
Eq. ~20!. This generic process of equating to zero the resp
tive factors of the divergent integralsK2n with n.0 gener-
ates a full set of nonlinear partial derivative equations at
even order in the case of a long-range interaction such as
dipolar one. Quite obviously equations of order 2n involve
only derivatives of order 2n. Taking advantage of the dis
crete character of the lattice shows that high-order der
tives must be nearly equal to zero in order to avoid the c
of functions varying significantly over unoccupied spac
Thus Eq.~21! and the following onesFi ,2p50 must just be
10440
n

w
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understood as corrective terms to the ground-state dete
nation. which can be neglected in a first approach.

IV. MAGNETIZATION EQUATION OF THE GROUND
STATE

The total energy as well as the site energy is minimum
the magnetic ground state. It means that the factor ofK2 in
Eq. ~19! is negative or zero. Thus the left term of Eq.~20!
must be negative or zero as reported in inequality~20a!. This
inequality leads us to consider the limiting solution of E
~20! as the effective condition on the ground-state magn
zation of an infinite sample. Such a solution also ensures
finite character of magnetic energy. From the results of
tended Monte Carlo simulations with a slow cooling proce
achieved over finite samples with sizes up to 50 000 spin13

there is no divergence of site energy and the site ene
distribution is rather peaked. This gives a strong evidence
the validity of Eq.~20! in the general case. Then the result
minimization of finite terms as expressed in Eq.~18! for the
induced anisotropy is an in-plane magnetization. Witho
any other source of anisotropy, or if this other anisotropy
small enough, an in-plane magnetization still occurs. Suc
planar magnetization is easily described by a polar angu
with Sx5cosu, Sy5sinu, Sz50. Taking this into account
Eq. ~20! can be read as a nonlinear partial derivative eq
tion on the polar angleu as a function of the lattice coordi
nates:

3 sin2uS ]2u

]x22
]2u

]y2D26 cos 2u
]2u

]x]y
16 sin 2u

]u

]x

]u

]y

1~213 cos 2u!S ]u

]xD 2

1~223 cos 2u!S ]u

]yD 2

50.

~22!

The symmetric behavior of this equation leads us to int
duce polar coordinates for the lattice (x5r cosw, y
5r sinw). Then Eq.~22! reads with usual notations for pa
tial derivatives

u r 2 sin@2~u2w!#22
u rw

r
cos@2~u2w!#2

uw2

r 2 sin@2~u2w!#

12
uw

r 2 cos@2~u2w!#2
u r

r
sin@2~u2w!#

1u r
2S 2

3
1cos@2~u2w!# D12

u ruw

r
sin@2~u2w!#

1
uw

2

r 2 S 2

3
2cos@2~u2w!# D50. ~23!

Of course this equation admits constant values ofu for solu-
tions, i.e., uniform magnetic domains. Such solutions are
served experimentally and numerically in domains betwe
walls or in presence of an external driving field which sa
rates the sample.1,13 Moreover, these solutions also satis
the full set of partial derivative equationsFi ,2p50 which
generalize Eq.~20! at all order since for that solution eac
spin derivative is equal to zero.
9-5
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The presence of the argument 2(u2w) everywhere in Eq.
~23! leads us to consider as other test functions simple fie
which correspond to topological defects with constant val
of u2w. Among these functions are the vortex models w
two chiralities:u5w1«(p/2) either with anticlockwise vor-
tex for «51 or with clockwise vortex for«521. The value
of the left-hand term of Eq.~23! for such functions is
2321r 22. Thus these vortices are approximate solutions
the magnetization equation when looking far from the orig
Note that this left-hand term of Eq.~23! is negative and of
order L22, thus it leads to an extra energy'L22K2'L21

per site which tends towards zero in the case of a la
sample. On the other hand the local divergence at the or
which appears in this term is obviously avoided in the c
of a lattice of finite parameter as it is. Moreover, the s
energy of such test functions could be lowered by the in
duction of an effective vortex made of several adjacent
mains each one with uniform values ofu. And such spin
arrangements appears in numerical simulations.12,13 The ori-
gin of the 2D space defines the vortex core. Since it is a
trary the presence of vortices of any chirality and of coup
vortices is expected to occur in the whole sample, as
served at least in numerical simulations for an effective la
sample.13 Finally, the weak extra energy which is due to su
optimized topological defects makes them weakly exci
states. Because of the effective boundary conditions in a
space such excited states can be stabilized and they ar
served both numerically and experimentally.

The other pair of topological defects to be considered h
as a test function for magnetization in Eq.~23! is a source
(u5w) or an antisource (u5w1p) since they both give
simple values to the argument 2(u2w). Sources and anti
sources are observed experimentally for rather th
samples24 but numerically such defects are observed just
tween adjacent vortices of opposite chiralities.13 And these
sources and antisources do not even appear in their full
tension. As a matter of fact, these magnetic sources lead
value of the left term of Eq.~23! equal to 53321r 22. This
positive extra energy similar to the result calculated for v
tices and quite larger than it ensures these sources t
higher excited states. That extra energy explains the in
quent observation by means of numerical simulation of t
defect, while its experimental observation in thick samp
could be due to the simultaneous presence of a perpendi
component of the magnetization. The fact that common
pological defects such as vortices and sources both give
to a positive extra energy defines them as excited st
which can be stabilized in real samples by the result of b
the boundary conditions and the slowness of a collec
motion.

When the sample is submitted to a strong uniaxial anis
ropy which stabilizes a magnetization direction perpendi
10440
s
s

f
.

e
in
e

-
-

i-
d
b-
e

d
al
ob-

re

k
-

x-
a

-
be
e-
s
s
lar
-
se
es
h
e

t-
-

lar to the film, in the walls between adjacent domains w
up and down magnetization, in-plane components of the s
field must be accounted for. The previous result on the
proximate solutions of Eqs.~20!–~23! are still valid for these
in-plane components over limited parts. Such an argum
explains the strong topological similarity between the ma
netic patterns observed in magnetic films with stro
uniaxial anisotropy and the magnetic patterns observed
magnetic films with weak uniaxial anisotropy. In the fir
case, parallel stripes, chevry domains, and whirled laby
thine domains occur while in the second case, uniform
mains, successive 60° walls and vortices occur with a co
plete similarity. Locally, the longest side of the Ising doma
defines the spin direction of the correspondingXY model in
accordance with basic magnetostatic considerations of
parallelism between magnetization orientation and bor
line.25 This duality is effective because the striped nature
Ising domains ensures the nondegeneracy of the choice o
longest side.

V. CONCLUDING REMARKS

The magnetic anisotropy induced by the lattice symme
reflected in the dipolar interaction is found for a 2D latti
from a Taylor expansion of the spin field. Moreover, th
method enabled us to derive the set of nonlinear equation
spin field derivatives which are satisfied by the ground-st
magnetization. These equations are only due to the lo
range interaction, here the dipole-dipole interaction, so t
are also valid whatever the short-range exchange may b
typical feature of these nonlinear equations is the absenc
any specific distance. This property explains the scale inv
ance often noticed in 2D observations. Of course, this g
eral property occurs at distances large enough so that
local symmetry can be forgotten, i.e., such as the dipole fi
due to such a large area can balance exchange and aniso
fields which are practically local.

Finally, the resulting magnetic structure for a 2D samp
is shown to be rather complex because of the possible oc
rence of numerous metastable topological defects with v
weak extra energy. The overall level of complexity of the
stable or metastable states is large since topological de
such as vortices and sources are extended and can ove
This has been already observed numerically on the opti
states for samples of 40 000 spins13 and the expected resu
for the stable or metastable states of a very large samp
thus a mixing of topological defects which satisfies the m
netostatic boundary conditions. The interference betw
these numerous entangled topological defects gives for
stable or metastable magnetic states a glassy structur
which the evolution is necessarily very slow.
.
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