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Dipolar induced magnetic anisotropy and magnetic topological defects in ultrathin films
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A Taylor expansion of the spin field enables us to obtain a local representation of dipole-dipole interactions
in the plane. The magnetic anisotropy induced by the lattice symmetry by means of the dipolar interaction is
analyzed for a hexagonal lattice. The reduction of the divergence of higher terms of the dipolar Hamiltonian
leads to a set of nonlinear equations on the partial derivatives of the spin field. Topological defects are shown
to be approximate solutions of these equations and are classified according to their validity and occurrence
frequency. Because of dipolar interactions, this result is shown to be general for two-dimensional lattices
observed on a large scale.
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[. INTRODUCTION ment for a local interaction. So the reduction of dipolar in-
teractions to a local interaction is the goal of the present
In recent years, the numerous improvements of surfacpaper. And one of the consequences of this analysis is a
technology enabled several groups to obtain high qualitgirect treatment of the magnetic symmetry induced by dipo-
continuous magnetic ultrathin films with controlled thicknesslar interactions. A simultaneous result is the deduction of
and structuré:® These ultrathin films observed by magneto- Nonlinear equations satisfied by the ground-state magnetiza-
optical, magnetoelectronic, or magnetoelastic means exhibfton field.
magnetic patterns with different symmetries as a function of The starting point of the present work is to translate 2D
temperature and lattice structdré. The magnetization dis- Nnonlocal dipolar interactions, i.e., interactions between dif-
tribution within such patterns gives evidence for topologicalferent sites lying in the same unique infinite layer, into
defects such as vortices, domains, and waftsOf course,  Strictly local interactions by means of a Taylor's series ex-
because of the theoretically known two-dimensic@) in-  Pansion of the spin field?® This expansion provides a
stability in the presence of only short-range interactihs, Landau-like Hamiltonian working on the spin field and its
these experimental results have encouraged several analyti@grivatives taken at the same site. Each term of the so-
studies of long-range dipole-dipole interactions in order todeduced site HamiltoniarH; contains spin field terms
demonstrate their stabilizing propertieS.These experimen- Weighted by two-dimensional lattice surk(s, with
tal results as well as parallel progress in numerical computa-

tion have also stimulated several numerical simulations of H=> H;,
magnetic patterns observed in these structures. i
Simple Hamiltonians with local anisotropy, short-range (1)
exchange, and dipole-dipole interactions were considered in -
numerical simulation§~*%in order to understand the way of Hi:go Fi.nKn,

producing such patterns. Among the main results of both the
experimental and theoretical approaches, the existence of itvhereF; , is a function of the spin field and of its-order
termediate states of definite symmetry at high temperature iferivatives as it will be shown. Because of the long-ranged
ultrathin samplebis now clear. It generalizes the previous character of dipolar interactions, the lattice sukg are
observations of numerous magnetic phase changes with terdemonstrated to increase with the sizef the sample when
perature and external field in thicker samples, i.e., thimis larger than 1. And because of inversion symmetry only
films,'* and looks very attractive. The numerical evidence foreven values oh lead to non-null lattice sums. Thus for a
magnetic vortices in ultrathin films obtained by different finite lattice the existence of a magnetic ground state implies
groups?*3reactivates the interest for magnetism in 2D withthe set of inequalities; ,,<O at all orders larger than 1.
Kosterlitz-Thouless singulariti€s. Such magnetic vortices This defines a set of high-order derivative inequalities, all of
were already observed in thicker sampi&s® The present them homogeneous in the derivative order. For an infinite
nonobservation of specific vortices in ultrathin films seemdattice, the magnetic ground state is expected to have a finite
linked with the difficulty of observation of in-plane magne- energy and thus just equalities occHy:,,=0. However, all
tization at an atomic level, while progress in such an experithese equalities or inequalities do not share the same level of
mental mean is expected to be obtained in the near fdturevalidity since the spin field on a lattice is by nature discrete,
Thus the question arises of local magnetic symmetry in ulthus high-order derivatives of the spin field are expected to
trathin films as well as the need for a simple theoretical verbe null except if there is a strong singularity in the magnetic
sion of the competition between exchange, anisotropy, angdattern. These equalities are naturally classed according to
specially dipolar interactions arise. the derivation order. Thus this remark justifies us to focus
However, because of their long-range character, dipolaour attention on the first nontrivial equality or inequality, i.e.,
interactions cannot be directly introduced in a Landau treaten n=2.
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The effect of optimizing the contribution of the first , Xipjyﬂ
=0 terms which involve only the spin components is to fa- lp,q=2 2232
vor some magnetization directions. The corresponding lattice O vij)
sums forn=0 are calculated or estimated for a simple 0o (4)
square lattice and a triangular lattice. This calculation en- L ERNY (rip) a(rij) pXij Vij
ables us to derive the dipolar induced magnetic anisotropy P'qv“'ﬁ_Z (Xi2j+yi2j)5/2 :

for these lattice symmetries. Of course this induced anisot-

ropy must be compared to other sources of anisotropy whewhere the sité is an arbitrary 2D lattice site while sifauns
finally deducing the magnetization direction. The derivationover all the other lattice sites. These origin independent sums
of the inequality corresponding to the case 4 is then con- depend on the lattice symmetry. With the so-defined lattice
sidered as an introduction to the general case with arbitrargums, the local dipolar Hamiltonian reads

values ofn.

In Sec. Il the general framework of a Taylor expansion of H= E | S 9PTIg
the spin field applied to the dipolar Hamiltonian is given, S P9pigl axPyd
then lattice sums are calculated for different lattices in Sec.
Ill. Section IV is devoted to determine the ground state and (S)a ap*q(S)B
to the analysis of different possible solutions for the ground _3i 0 8 Lp,q,a,ﬁw W- ®)
state or weakly excited states such as topological defects. T
Finally, concluding comparisons with experimental and nu-
merical results are reported in Sec. V. Ill. LATTICE SUMS AND DIPOLAR HAMILTONIAN FOR

2D LATTICES
II. TAYLOR EXPANSION OF THE SPIN FIELD In this paper lowest-order sums are calculated for a
FOR THE DIPOLAR HAMILTONIAN simple square lattice of lattice parameseand for an hex-

) ) ] o agonal lattice of a different lattice parametgr in order to

When introducing the partial derivatives at all orders of compare their values for lattices with the same site density

the spin field at site, the spin at sit¢ reads as a function of g gifferent symmetries and finally to analyze the lattice

the local spin field at siteby means of a Taylor expansioh:  jnquced anisotropy originated by dipolar interactions. As-
suming the same atomic density in both lattices leads to a
xPyd | gPrag lattice parameten’:a’ =2Y23"¥3=1.073. On the other

S— i Yij )
l p,g=0 p!q! i’

PV (20 hand, a general isotropic treatment of the simple square lat-
y tice within a continuous approximation is given for all lattice

sums.
where the vector;; of coordinates X;; ,yi;) joins the lattice

sitesi andj in the plane layerz=0. The usual nonlocal

. . . . . A. Simple square lattice
version of the dipolar Hamiltonian between spins reads ple =4

For this lattice of parameterand square axesandy, the
nonzero isotropic sunlg, , have even values for both indices

H= > S '331 -3> Sr,J—SSJr” (3)  pandg. And among thesé,, »,, the term of lowest order is
NE R A W = o l 00 With
With the Taylor expansion of the spin field given in Eg) 4 1 * 1
the dipolar Hamiltonian reads as a function of the spin field lss00==3|{(3)+ 533 +2 E ——
o a 2 m=2 (M“+1)
operators at the same site:
+ g ! (6)
H=H; m=2,n=2(mz""—nz)gl2 ,
S. Pras xPyd where {(n) is the Riemann zeta functidh=2* An approxi-
H,= > U mate treatment ofss, o Was given some years ago by Yafet

b v 2 T2 g2 30 . :
pa P!a! axP+ayt T (X +yi)) and Gyorgy? The nonzero values of the anisotropic sums

L p.q:,« @re obtained for even values of bagifandg, and the
lowest-order term ot 5 5. 4 1S Lo,0:0,0» With

(S)e PTUS) g (Tipalrip) pxfiyi
_3p,q%,ﬁ plgl  axPayd 2 (x5+y5)™?

3 4 iy m?
e Les o,o;a,a=gg{§<3>+m12“ W} ™

This expression is deduced for an infinite lattice with trans-

lational invariance. Two kinds of lattice sums appear forwhile the nonzero values of the anisotropic sUms,., s+«
such an infinite lattice, namely the isotropic slgy, and the  are obtained for odd values of bagphandq, and the lowest-
anisotropic suni., o . s With order term isL; 1., =L 1.1 5, With
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. 4 m2n?
1,1;1,2_5 m=im=1 (m2+n2)572
4 = m?n?
— —5/2
=— + :
a2 T2 2 o +n)5] t)
n<m

However, this lattice sum of order 2, as it will be shown

later, does not converge for large valuesnofindn, as ex-
pected for a sum of order 2. Finally, the zero order part of th

with an obvious fourfold symmetry,

Hi=|ss),032—3Lsso,o,1,1( S|Z,x+S|2,y)' ©

Such a fourfold symmetry in the magnetic domain pat-

terns is generally observed for films with a fd®©0) or a bcc
(100 surface?® or for ultrathin films with a simple square
symmetry, experimentall{/in analytical calculation$,or in
numerical simulationd in presence of a strong enough

uniaxial magnetic anisotropy which enables one to avoid the
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the asymmetry between these sums indicates the isotropy

local dipolar Hamiltonian for the simple square lattice readsebreakdown due to the lattice symmetry. Next the nonzero

values of the anisotropit q.4,5+, are obtained for odd
values of bottp andq, and the lowest nonzero order term is

Lh;l,l;2,1: Lh;1y1;1Y2With

. 24 g m?2n2
h,1,1,1,2_a/ m=5n-1 m2+3n2)52
n+m even
25/235/4 %, m2n2
= , 12
a ey (M2t 3?2 (12
n+m even

in-plane magnetization of a pure dipolar film. In such a casebut this sum, of order 2, does not converge for large values
lattice axesx andy are directions of easy magnetization, asof m andn for an infinite lattice as expected for this order.

observed.

B. Hexagonal lattice

Finally the zero order part of the local dipolar Hamiltonian
for the hexagonal lattice reads

Hi=lh 0085 —3(Lh 0015 x+Lh 00257y) (13

The running point coordinates of the hexagonal lattice

being considered areif(a’/2),(na’v3/2),0) where the inte-

or in a more symmetric way,

gersm andn share the same parity. The nonzero values of

the isotropic sums;, ; are obtained for even values of bath
andg, and the lowest-order term of the formy 5, is ¢ .
Taking advantage of symmetry, it reads

e ¢(3)+8 i !
h 0,0~ 773 £(3) w1 (24 3n2)
m-+n even

n<m

1

2~ 1/237/4

)

{(3)+8
m=1n=1

m+n even
n<m

a_3

(10

The nonzero values of anisotrofig,, ... are obtained
for even values of botp andq, and the lowest-order term of
the formLyzp 20,0 A€Lpo0:a,e» With

L = 2 3)+16 g — mz? 2
h 00115 773 | £(3) 5ot (M?+3n2)°
n+m even

2—1/233/4 %, m?2
T {5(3)+16m_12,n_1 m2+ 3n2)532]
n+m even

(11a

and

3
Hi=1p 0,032,24‘ Ih 00— E(Lh 001,17 Lh 00,22 (Sz,x“LSZ,y)

5(Lh 00117 Lh 0022(Sx— ).

In the last expression the planar symmetry is obviously
not fourfold but sixfold. Such a symmetry is induced by the
hexagonal lattice symmetry. Such an induced symmetry ap-
pears both in experimental observations on(fictl) surfaces
of thin films*® and in numerical simulations on triangular
lattices'® Because of the rapid convergence of these lattice
sums which was already noticed by Yafet and Gydtdjye
last term which splits the fourfold symmetry of EQ.3) is
easily computed:

Higoa=— (L —Lh 0022(S—S)
id,#4 2 h 0,0,1,1 h 0,0,2, &,x (8%

1.723 , )
=3 (S Sy (13a
Thus the lattice induced anisotropy has directions of easy
magnetization in the lattice plane and these directions are
normal to the six dense directions of the hexagonal lattice as
observed in simulations’ In samples where a superimposed
uniaxial anisotropy normal to the plane is strong enough to
obtain a quasi-Ising spin arrangement, these relative easy
orientations drive the domain-wall directidn?
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C. Continuous treatment Ngo=2,

All these isotropic and anisotropic lattice sums can be
calculated approximately as integrals over large and finite
ringlike domains situated between two circles centered at the
origin with respective radia andL. With such a treatment, a
perfect rotational invariance of the layer of lattice parameter
ais assumed. Thus the lattice induced anisotropy which was
considered just before, is completely neglected in this part.

N2,0=No =,
N2’2: 77/4, N4’0: N0’4: 377/4, (16)

Ng,o=Nge=57/8; Nyo=Ny = 7/8,

For the sake of simplicity, a square lattice is considered. Ng g=Ng g=357/4;

Then the first isotropic sumis, , read

Pyd
Lo XiiYij
PO~ &

L 2
i (x--+y__)3/2:Jafp+q_2erO cod ¢sinfl gd g
ij ij

=KpqNp,g> (14

where the radial integrals, =K, 4 are defined by
LyPTa—2
Kp’q: J’a a2 dI‘:

of which the dimensional analysis is easily derivedtq

LPta—1_gp+a-1

apta-1) e
(149

=n. It agrees with the previous comments on the divergence
of the radial sumg,, for n>1 when the sample becomes
large. More precisely the isotropic integrdlg, with non-
null p and q values are dominated by long-range contribu-
tions which increase with increasing valuespodnd g, and
only the integrall g is dominated by short-range contribu-
tions with a resulting ® contribution, i.e., a short-range
divergence term which, however, remains finite for a discret

lattice as considered here.
The angular integraldl, , are

2w
Np,qzj' cod gsinf gd 6. (14b

0

After angular integration the only nonzero factd¥s
are obtained for even values pfandq with

p
. m p
920 Ny (-1 73, (-2}

q
x| P*q :
2 K
(15
- (p+a)/2 P
[ - (—1)(Pra)2 _ 1)k
if pP>q Npgq iq2p+qfl( 1) k=(p§;q),2( l)<k)
q
x| Ptq

T_k

Ne =Ny g=5m/64; Ny ,4=37/64.
Using the gamma functioff, asymptotic formulas for the

non-null values of theN,, ,'s are easily derived with the ba-
sic result:

(q+1)/2
Np,qw2<5> T[(q+1)/2],

2
ND,O%Z F

The anisotropic lattice integrals, 4 .,z are also deduced
from the radial and angular integrals, with

(163

Lp.g,a.6=Kp+gNpr g (17)

where the indicesx and B8 are both lower than three for
non-null values of these integrals since all spins belong to
the same layez=0. The explicit link between the aniso-
tropicLp 4 4,5 @and the radiaK , , ; and angulaN,, , integrals

is given by the following rules for defining’ andqg’ from p

éind g

a=1, =1 leads to p’=p+2, q'=q,
a=1, B=2 leads to p'=p+1, q'=q+1,
a=2, B=1 leads to p'=p+1, q'=q+1,

a=2, =2 leads to p'=p, q'=q+2.

Because of these symmetry rules, all the Hamiltonian
terms which can be nonzero are factord<gf, with ne N as
already introduced in Eq1). Thus an obvious classification
of the Hamiltonian terms according to the indexoccurs
since the strength of the divergencekof, increases with the
value ofn as seen in Eq(149.

Direct calculations in the continuous approximation lead
us to write the first ternHy o of the local dipolar Hamil-
tonian:

Hoo= mKo( = S — Sy +257,). (18)

In agreement with our previous calculations on square and
hexagonal lattices in Eq$9) and (13), Hg is finite. Since
the value ofK, is positive, Eq.(18) just shows that the
anisotropy induced by dipolar interaction favors an in-plane
magnetization in this 2D-rotationally invariant lattice. Such a

The non-null values of these angular integrals are for thesituation is also expected to occur from classical magneto-

lowest-order terms:

static arguments.
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The next termH, of the expansion of the site dipolar understood as corrective terms to the ground-state determi-
HamiltonianH; containsk, as a factor. Using Eq¢4), (5),  nation. which can be neglected in a first approach.

(14), (16), and(17), this term reads
IV. MAGNETIZATION EQUATION OF THE GROUND

((928+ (928 GSX (92sy 5 &ZSX STATE
H.=Tk ax* " gy* Ixady SY&X&Y The total energy as well as the site energy is minimum in
27g 2 9%S, 9%S, VASY S, | the magnetic ground state. It means that the factdf pfn
— 95 EN 35 ay? 35 EN —95 Ix2 Eq. (19 is negative or zero. Thus the left term of HGO)

(19 must be negative or zero as reported in inequ&lifa. This
) o o inequality leads us to consider the limiting solution of Eq.
Since the faCtOKz would be infinite for an infinite Sample, (20) as the effective condition on the ground_state magneti_
the ground-state solution must satisfy the nonlinear equatiobation of an infinite sample. Such a solution also ensures the
in partial derivatives of the spin field in order to yield a finite finjte character of magnetic energy. From the results of ex-

site energy: tended Monte Carlo simulations with a slow cooling process
) X ) ) ) achieved over finite samples with sizes up to 50 000 $pins

4S.<’9_S+‘9_S _63)(‘9 Sy 6Sy{9 SX—9SX(9 S« there is no divergence of site energy and the site energy

x> ay? XAy XAy ax? distribution is rather peaked. This gives a strong evidence of

5, 52 2 the validity of Eq.(20) in the general case. Then the result of
~-3S——>-3S, Szy_gsy SZY —0. (20) minimization of finite terms as expressed in E§8) for the

ady X (28 induced anisotropy is an in-plane magnetization. Without
any other source of anisotropy, or if this other anisotropy is
small enough, an in-plane magnetization still occurs. Such a
planar magnetization is easily described by a polar adgle

Of course for a finite sample, ER0) becomes the inequal-
ity for a metastable state:

2 2 2 2 2 with S,=cos6, Sy=sin#, S,=0. Taking this into account
4S. (‘9_§+ a_f) —6S, ISy 6S, J Sx_gsxa % Eq. (20) can be read as a nonlinear partial derivative equa-
axe dy 2 20 X tion on the polar anglé as a function of the lattice coordi-
(928)( aZsy &ZSy nates:
"3z T3S T 955 =0 (203 29 52 70 96 96

3 smza(ﬁ?— EE) L) cosmﬁx(?y +6sin20 — —

The next termH, of the expansion of the site dipolar
Hamiltonian containK, as a factor. Using Eqd94), (5),
(14), (16), and(17), this term enables us to write

+(2+3 2 (90)2+ 2-3 2 70 2—
( cos )ax ( cos )p?y =0.

64H, __ o', ’s. s, *s, 'S, (22)

Ky =25 x4 35 x4 +Sy x4 +25, ay* +5 ay* The symmetric behavior of this equation leads us to intro-
. . . . duce polar coordinates for the latticex=r cose, vy
Y 9", 9"S, J"Sy =r sing). Then Eq.(22) reads with usual notations for par-

—3% PV 4SZax2(9y2_ 28"(9x2(9y2 2Syaxzay2 tial derivatives
J*s, ASY 9*S, *S, . O 02
A4Sy A5G0y M axay Saxtay 0r2siN2(6—¢)]=2-~co42(6—¢)]~ ~ 7 siN2(6—¢)]

(21)

Obviously the right-hand term of Eq21), F; 4 in the nota-
tion of Eq. (1) must also be set equal to zero in order to

0, 0,
+2r_2005{2(9_ e)]- Tsm[2(6—<p)]

obtain a finite dipolar energy per site. This leads to a new  + ¢? EJrcos{2(¢9— 0)]]+2 e sin2(0—¢)]
nonlinear partial derivative equation similar to E®0), 3 r

F; 4=0. This new equation cannot simply be deduced from 62 (2

Eq. (20). This generic process of equating to zero the respec-  + 7; 3" cog2(0— (p)]) =0. (23

tive factors of the divergent integrals,,, with n>0 gener-
ates a full set of nonlinear partial derivative equations at allOf course this equation admits constant value$ fir solu-
even order in the case of a long-range interaction such as thins, i.e., uniform magnetic domains. Such solutions are ob-
dipolar one. Quite obviously equations of order Rwolve  served experimentally and numerically in domains between
only derivatives of order 2. Taking advantage of the dis- walls or in presence of an external driving field which satu-
crete character of the lattice shows that high-order derivarates the sample!® Moreover, these solutions also satisfy
tives must be nearly equal to zero in order to avoid the casthe full set of partial derivative equatiors; ,,=0 which

of functions varying significantly over unoccupied space.generalize Eq(20) at all order since for that solution each
Thus Eq.(21) and the following one$; ,,=0 must just be spin derivative is equal to zero.
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The presence of the argument2{ ¢) everywhere in Eq. lar to the film, in the walls between adjacent domains with
(23) leads us to consider as other test functions simple fieldap and down magnetization, in-plane components of the spin
which correspond to topological defects with constant valuesield must be accounted for. The previous result on the ap-
of 6—¢. Among these functions are the vortex models withproximate solutions of Eq$20)—(23) are still valid for these
two chiralities: 9= ¢+ £(7/2) either with anticlockwise vor-  in-plane components over limited parts. Such an argument
tex fore =1 or with clockwise vortex foe=—1. The value  explains the strong topological similarity between the mag-
of the left-hand term of Eq(23) for such functions is netic patterns observed in magnetic films with strong
—37'r~2 Thus these vortices are approximate solutions of njaxial anisotropy and the magnetic patterns observed in
the magnetization equation when looking far from the origin.magnetic films with weak uniaxial anisotropy. In the first
Note that this left-hand term of Eq23) is negative and of case, parallel stripes, chevry domains, and whirled labyrin-
orderL~?, thus it leads to an extra energyL "°K,~L™*  thine domains occur while in the second case, uniform do-
per site which tends towards zero in the case of a larggnains, successive 60° walls and vortices occur with a com-
sample. On the other hand the local divergence at the origigjete similarity. Locally, the longest side of the Ising domain
which appears in this term is obviously avoided in the casgjefines the spin direction of the correspondkig model in
of a lattice of finite parameter as it is. Moreover, the siteaccordance with basic magnetostatic considerations of the
energy of such test functions could be lowered by the introparallelism between magnetization orientation and border
duction of an effective vortex made of several adjacent dotine 2> This duality is effective because the striped nature of

mains each one with uniform values éf And such spin  |sing domains ensures the nondegeneracy of the choice of its
arrangements appears in numerical simulatiéi$The ori-  |ongest side.

gin of the 2D space defines the vortex core. Since it is arbi-
trary the presence of vortices of any chirality and of coupled
vortices is expected to occur in the whole sample, as ob-
served at least in numerical simulations for an effective large
sample'® Finally, the weak extra energy which is due to such  The magnetic anisotropy induced by the lattice symmetry
optimized topological defects makes them weakly excitedeflected in the dipolar interaction is found for a 2D lattice
states. Because of the effective boundary conditions in a reflom a Taylor expansion of the spin field. Moreover, this
space such excited states can be stabilized and they are abethod enabled us to derive the set of nonlinear equations on
served both numerically and experimentally. spin field derivatives which are satisfied by the ground-state
The other pair of topological defects to be considered herenagnetization. These equations are only due to the long-
as a test function for magnetization in E&3) is a source range interaction, here the dipole-dipole interaction, so they
(#=¢) or an antisource {= ¢+ 7) since they both give are also valid whatever the short-range exchange may be. A
simple values to the argument @€ ¢). Sources and anti- typical feature of these nonlinear equations is the absence of
sources are observed experimentally for rather thickany specific distance. This property explains the scale invari-
sample&’ but numerically such defects are observed just beance often noticed in 2D observations. Of course, this gen-
tween adjacent vortices of opposite chiralittésAnd these eral property occurs at distances large enough so that the
sources and antisources do not even appear in their full execal symmetry can be forgotten, i.e., such as the dipole field
tension. As a matter of fact, these magnetic sources lead todue to such a large area can balance exchange and anisotropy
value of the left term of Eq(23) equal to 5<3~1r 2. This fields which are practically local.
positive extra energy similar to the result calculated for vor-  Finally, the resulting magnetic structure for a 2D sample
tices and quite larger than it ensures these sources to ligshown to be rather complex because of the possible occur-
higher excited states. That extra energy explains the infrerence of numerous metastable topological defects with very
guent observation by means of numerical simulation of thisveak extra energy. The overall level of complexity of these
defect, while its experimental observation in thick samplesstable or metastable states is large since topological defects
could be due to the simultaneous presence of a perpendiculauch as vortices and sources are extended and can overlap.
component of the magnetization. The fact that common toThis has been already observed numerically on the optimal
pological defects such as vortices and sources both give rissiates for samples of 40 000 spifiand the expected result
to a positive extra energy defines them as excited statefer the stable or metastable states of a very large sample is
which can be stabilized in real samples by the result of botlthus a mixing of topological defects which satisfies the mag-
the boundary conditions and the slowness of a collectivanetostatic boundary conditions. The interference between
motion. these numerous entangled topological defects gives for the
When the sample is submitted to a strong uniaxial anisotstable or metastable magnetic states a glassy structure of
ropy which stabilizes a magnetization direction perpendicuwhich the evolution is necessarily very slow.

V. CONCLUDING REMARKS
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