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Frequency-dependent specific heat of viscous silica
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We apply the Mori-Zwanzig projection operator formalism to obtain an expression for the frequency de-
pendent specific heat(z) of a liquid. By using an exact transformation formula due to Lebowital, we
derive a relation betweeo(z) andK(t), the autocorrelation function of temperature fluctuations in the mi-
crocanonical ensemble. This connection thus allows to deterafir)efrom computer simulations in equilib-
rium, i.e., without an external perturbation. By considering the generalizatikiftdfto finite wavevectors, we
derive an expression to determine the thermal conductivityom such simulations. We present the results of
extensive computer simulations in which we use the derived relations to deter(anever eight decades in
frequency, as well as. The system investigated is a simple but realistic model for amorphous silica. We find
that at high frequencies the real partafz) has the value of an ideal gas.(w) increases quickly at those
frequencies which correspond to the vibrational excitations of the system. At low temperdiuwgshows a
second step. The frequency at which this step is observed is comparable to the one at whichléxation
peak is observed in the intermediate scattering function. Also the temperature dependence of the location of
this second step is the same as the one ofdhpeak, thus showing that these quantities are intimately
connected to each other. Frah(w) we estimate the temperature dependence of the vibrational and configu-
rational part of the specific heat. We find that the static valug(af as well as\ are in good agreement with
experimental data.
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[. INTRODUCTION significant shift inTy, which is experimentally rather diffi-
cult. An alternative way to probe the dynamics of the struc-
If a glass-forming liquid is cooled, dynamic observables,tural degrees of freedom by means of the specific heat is to
such as the viscosity, the diffusion constant, or the intermemeasurec(z), the (complex frequency dependence of the
diate scattering function, show a dramatic slowing ddwn. specific heat of the systein its equilibrium state Seminal
At a certain temperature, the kinetic glass transition temperawork in this direction was done by Nagel and co-worRet$
ture Ty, the typical relaxation time of the system exceeds thevho proposed an experimental setup that allowed to measure
time scale of the experiment and the system falls out of equie(z) also at frequencies as high as*1Blz. Independent
librium, i.e., becomes a glassn contrast to thesdynamical ~ work in this direction was also done by Christensen and
observables, albtatic quantities, such as the volume or the others!!~4
enthalpy, show upon cooling only a relatively weak tempera- Using their measurements of the frequency dependence of
ture dependence fdr>T, and the glass transition tempera- the specific heat, Jeong and Moon were able to predict cool-
ture is noticed only by a gentle change of slope in theiring and heating curves in differential scanning calorimetry
temperature dependence. This change of slope is reflected (BSC and found good agreement between their predicted
various susceptibilities, such as the thermal expansion coeturves and the experimental ortésSimilar results have
ficient or the specific heat,, as a relatively sudden drop been found in molecular dynamics computer simulatioris.
when the glass transition temperature is reached. The physlus, these investigations give evidence that the information
cal picture behind this drop in, e.gcy is that atTy the  contained in the equilibrium quantity(z) allows one to un-
structural degrees of freedom fall out of equilibrium and thederstand also the out-of-equilibrium situation that is encoun-
specific heat reduces to the one of a solid having only vibratered in DSC experiments aroufig. A short review of this
tional degrees of freedom. Hence the height of the drop isan be found in the paper by Simon and McKehha.
usually used to estimate that part of the specific heat associ- The theoretical interpretation of the measurementy of
ated with the configurational degrees of freedom. Thus wavas for some time rather controversfaf® since the origin
see that this type of experiments can be used to probe th& the frequency dependence ofz) was not really clear.
dynamics of the structural degrees of freedom, although th&ome of these issues could be clarified by experiments done
information obtained is rather indirect. by Birge” and Menon'® A partial discussion of this dispute is
Since the value off 4 is given by the timescale of the reviewed in Ref. 17. Very recently Nielsen put forward a
experiment, it can be changed if the sample is cooled wittiheoretical description of(z) on purely thermodynamic
different cooling rate&> Therefore this dependence opens,argument$? In the present paper we will use a statistical
in principle, the possibility to investigate the temperature de-mechanics approach to derive a microscopic expression for
pendence of the configurational part of the specific heatc(z) and use this expression, which is identical to the one
However, since the relaxation time of the system changederived independently in Ref. 24, to calculate this quantity
very rapidly with temperature, it is necessary to change thérom a molecular dynamics computer simulation of silica.
cooling rate significantlyseveral decadg¢sn order to see a Interestingly enough this expression has been used before by
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Grest and Nag#? to calculatec(z) from a computer simu- tions, since the slowing down of the dynamics seems not to
lation of a simple liquid. However, in that paper no deriva- be caused by a growing correlation length. Instead the physi-
tion was given since it seems to have come out “from acal origin for the slow dynamics is the local hindering of the
stroke of genius.?® Due to limitations of computer re- particle motion, the so-called cage-effect, i.e., it is due to a
sources the resulting curves fa(z) were unfortunately ~mechanism operating on tingicroscopicscale. However, the
rather noisy, a feature they share with the ones in Ref. 24. lsonsequences of this local slowing down can of course also
contrast to this, great care was taken in the present work tbe detected on mesoscopic and macroscopic length scales,
obtain reliable data, which, in turn, allows us to compare thee.g., in thermodynamic derivatives, as soon as the time scale
temperature dependencedafiz) with the one from other dy- of the experiment is comparable to the time scale of the
namical quantities, such as the intermediate scattering funstructural relaxation.
tion. Thus, this permits us to compare the relaxation dynam- In Ref. 21 a formally exact method to derive frequency
ics as probed byc(z) with the one observed by more dependent constitutive equations and thermodynamic deriva-
microscopic methods, such as neutron or light scattering exives in the canonical ensemble was introduced, which thus
periments. allows to investigate the consequences of the slowing down
The outline of the paper is as follows: In the next sectionof the structural relaxation on thermodynamic and hydrody-
we will use the projection operator formalism to derive anamic quantities. The main technical tools in that paper are
connection between(z) and microscopic variables. In Sec. thermodynamic response theory and projection operator
[l we will give the details of the model and the simulations. techniques. In such an approach the most important physical
In Sec. IV we will present the results and end in Sec. V withingredient is the appropriate microscopic definition of the

a summary and discussion. temperatured(r; ,p;) as a function of the phase space vari-
ablesr; and p;. From amathematicalpoint of view the
Il. THEORY choice of such a function is not unique since the only con-

dition one has to fulfill is that
In this section we derive an expression that relates the
frequency dependent specific heat to the autocorrelation (o(ri,p))=T, 2

function of kinetic energy fluqtgations. Furthermore, we  here T is the macroscopic temperature. For the case of
show how the thermal conductivity can be calculated fromg, o rcogled liquids alsphysical considerations impose re-

the generalization of this correlation function to finite gyrictions to the possible set of functions: In the canonical
wavevectors. ensemble the temperature of the system and also temperature

For a dense simple liquid under triple point conditions they 4 iations are imposed by an external heat bath. Therefore

only slow modes are t'he Io_cal densities of the MAcroscopige definition of the phase space functiéfr;,p;) should
cally conserved quantities, i.e., the number o_f particles, the,ow that Eq.(2) holds also in the case thatis changing on
total momentum, and the energy. For Brarticle system  , ime scale that is shorter than the one of the structural
these local densities have the form relaxation. (Such rapid changes occur, e.g., in the earlier
mentioned experiments on the frequency dependent specific
heat. But also for the case of a glass belbythe concept of
a temperature is useful, despite the fact that the true relax-
ation time of the system is exceedingly lang€he descrip-
where forX;(t)=1 we obtain the local density fluctuation tjon of the physical coupling mechanisms between the exter-
p(r,t), for Xj(t)=p;* the momentum density in directiom  nal temperature variation and those internal degrees of
e{x,y,z}, and forX;(t) =E; =:pi2/2m+%2}\‘:lV(|ri—rj|) the  freedom, which follow immediately the external variations
local energy density fluctuatiofHere V(r) is the potential ~of the temperature, depends on the particularities of the ex-
energy] In the hydrodynamic limit the equation of motion periment and is therefore beyond the scope of our work. But
for these densities can be derived by using the exact consere want to impose the condition that the internal temperature
vation laws, soméphenomenologicalconstitutive equations in terms of phase space variables follows instantaneously the
that relate the spatial derivatives of the densities to their curexternal temperature changes. Since structural relaxation is
rents, and thermodynamic relations between the fluctuation®lated to rearrangements in space, it can be expected that
of the densities and thermodynamic quantities such as tengefinitions of 6(r;,p;) that involve the positions; do not
perature, pressure, éttThis approach is valid as long as fulfill in generalthis requirement of being “fast.” Excep-
there are no other slow, nonhydrodynamic processes in th@gons are, e.g., high frequency oscillations, which are of
system. Well-known examples, for which constitutive equa-course “fast,” although they involve variations in the spatial
tions and thermodynamic relations have to be modified byyariables. Conceptionally more convenient is the definition
e.g., introducing frequency dependent thermodynamic deef a temperature that involves only momentum variables.
rivatives, are second order phase transitions or systems witldlomentum can quickly be exchanged between particles, and
internal degrees of freedoffi. hence is transferred easily through the system. One conse-
As mentioned in Sec. |, the dramatic slowing down of thequence of this choice will be the possibility of observing the
dynamics of liquids upon cooling is observed on all lengthfree gas behaviofat least in the simulatiorfor the extreme
scales. But contrary to second order phase transitions no lorfggh frequency limit. Although in real experiments this high
range order is building up in two particle correlation func- frequency limit is probably not accessible, this does of

N
X<r,t>=i§l Xi (1) 8(r —ri(1)), (1)
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course not affect the validity of our results. It only meansof ®(0,t) is no longer dominated by hydrodynamic singu-
that we describe, in addition to the experimentally accessibléarities, but shows the same slowing down as the dynamics
frequency range, also situations, which are beyond the capaf the structural degrees of freedom. This was derived in Ref.
bilities of current experiments. 21 within linear response theory. In the following we will
The microscopic definition of the temperature, obeyingbriefly sketch the main steps in that derivation in order to
the mentioned mathematical and physical requirements, caslarify the physics behind the final results.
be constructed with the help of the kinetic energy of a par- Since in this paper we are interested in the frequency
ticle, dependent specific heat per particle at constant volume, the
first thing to do is to derive a microscopic expression for this
quantity and to relate it to the local fluctuations of the tem-
perature. For the sake of simplicity we will focus on the case
of temperature fluctuations for vanishingly small wavevec-
tors, since in this limit they decouple from the single particle

1
o(ri,pi>zo<pi>=mp?. (3)

The canonical averagéd(p;)) is, as required, the macro-

scopic tgmperatur@. However, if one wants to definele- density and current fluctuationddowever, in the last part of
cal density related to the temperature, it can of course not bﬁﬂs section we will also consider finite wavevectprso

avoided that there is a dependence on spatial variables. Thu&eterminec (2) we have to calculate, in analogy to theatic
the best one can do is to make this dependence as simple c?gseAEzé)quT the effect of temp,erature ﬂ(‘:l]ituations o
possible 50 that it is possible to extract the fa-St part -E'TaS”yIuctuationsvof tr'1e total energy. To do this, we adiabaticall
For a classical system a convenient microscopic definition oF X , 9y o . y
switch on a small fieldh;, which is the conjugate field to the

a local temperature field density is therefore given by observablesT, defined in Eq.(6). At t=0 the field is
q .(6).

switched off. For this situation the probability distribution in

T(r,t)=zi 0(p;) o(r —ri(1)). (4)  the canonical ensemble is given by
The canonical averagé€T(r,t)) is given bynT, wheren exp(— B(H—hydTy))
=N/V is the number density. Although it is not a conserved Trexp(— B(H— hTéTq)), ®)

quantity, in supercooled liquids the temperature fig{d,t)
has a slow component, due to its dependence on the poskhere 5=1/kgT. The field hy is a purely theoretical con-
tional degrees of freedom. However, the fast fluctuation parstruction, which will enable us to derive for this special
can easily be obtained by subtracting these slow density fludsedankenexperiment explicit expressions for the time de-
tuations: pendent temperature—and resulting energy—fluctuations.
The linear coefficient connecting these two fluctuations is the
OT(r,t)=T(r,t)=Tp(r,t) (5)  time dependent specific heat. It is an intrinsic property of the
system and therefore independent of the details of the
Gedankenexperiment used to calculate it.
ST()=To()—=Tpg(t). (6) In the linear response regime the time evolution of any
variableY* (t) is given by
Note that by construction this temperature fluctuation does
not have anystatic coupling to functions of the form (Y*(0))ne=(Y* (1)) +heB(Y(1)[Ty), 9
Gy(r M)=G(r M)exp(q-r;), i.e., that depend only on the po-
sitions of the particles,

or in Fourier space

where the average on the left-hand side is done in the non-

equilibrium ensemble equatidB), and the ones on the right-
(8T*Gy(rV))=0, (77 hand side are performed in the standard canonical ensemble

4 [hr=0 in Eq.(8)]. Using Eq.(9) for the caser =T, we thus

which shows that its dynamic autocorrelation functionobtain for the time dependence of the temperature fluctuation

dDTT(q,t)=(Tq(t)|Tq) cannot be proportional to any multi-

point density correlation function(For later use we have (6T4 (1) =h1B(T4(1)|Te)=h1BP11(q,1), (10

introduced the notationA|B):=(5A* §B).) Although it is _ _ _

not possible to prove from the Ansatz equatits) that and the _rela_xatlon of a fluctuation of the energy, Bg.with

8T4(1) is really a fast variable fog>0, i.e., that it does not Xi=E;, is given by

undergo a structural arrest in the canonical ensemble, this is * _

something that can be checked in simulations and below we <5Eq (t)>_hTﬁ(Eq(t)|Tq)'

will demonstrate that this is indeed the case. However, it is

important to note that, although there is no static couplin

betweensT, and the density fluctuations, titeme depen-

dence of the temperature fluctuations is nevertheless affect

by the slowing down of structural relaxation, due to time (SE* (2))=c,(2)(6T* (2)) (12)

dependencies of thermodynamic derivatives like the specific a Y a ’

heat, which are exclusively caused by structural relaxationsvhere 6Ey(z) and 6T(z) are the Laplace transforms of

Furthermore we emphasize thfat q=0 this indirect influ- ~ SE4(t) and 6T(t), respectively. Hence we now have to ex-

ence is the only one remaining, so that the time dependenqﬂress(Eq(t)|Tq) from Eg. (11) as a functional ofsT(t).

11
In analogy to the static case we define the frequency de-

gpendent specific heat,(z) as the coefficient between the
eflélctuation in the energy and the one in temperature:
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The Laplace transform ofEy(t)|T,) is (Eq|R(2)|T,), with
the resolvenR(z) =1/(L—2z) and the Liouville operatoL.
Using a projection operator formalism with the operafor
=18Tg) (T4 8T,) (ST, to project on temperature fluc-
tuations, the correlatorH;|R(z)|T,) can be written &

1
(Eq| R(Z)|Tq):{(Eq|Tq) - (qu R,(Z)|£Tq)}SCT <5T; (Z)>
T
(13

Here R'(2):=Q/(QLQ—2z), with Q=1—P, is the reduced

resolvent which describes the dynamics in the directions of

phase space perpendicular to temperature fluctuatiams

by using the more general formalism from Ref. 21 also per-

pendicular to density and current fluctuatiprishe quantity
S is defined as

Str=(8T%(0)6T4(0))=2NT2/3, (14)

and is independent af. (The superscript indicates the ca-
nonical ensemblg From Eq.(13) the expression for the spe-
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constant pressure, as well as the frequency dependent heat

conduction coefficient (z). Using these results it can be
shown that for small wavevectors the Laplace transform of
d+1(qg,t) obeys the exact equation of motion

t
@TT(q,z):ifodtexp(izt)ng(t)ﬂq(O))

— 8 3Kg/2
cp(2)=C,(2)
72— q%Kg(2)/(mn)
(18)

zc)(2)+N(2)g*~2°

whereKgy(2) is the frequency dependent bulk modulus and

is the particle densit§™>* Although in generak depends on
frequency z, theoretical arguments shétvthat in super-
cooled liquids this dependence is only weak, in agreement

cific heat can be read off. We introduce the projection operawith experimental finding$ ThereforeX (z) can be replaced

tors Pp==|pq)(pq|pq)(pq| and Q,:==1—P, and use the
equations

LQ,Eq=—LQ,E{+0(q)=—LQE], (15)

q

—QLQ _ o zQ
z—QLQ z—QLQ’
whereEg andEg are the Fourier transform of the kinetic and

potential energy field&X(r) andEP(r), respectively’® The
specific heat can now be expressetias

(16)

17

c,(2)=cH+ % |im0 2(EgIR'(2)|Ep),
q~>

where c;%=c,=B/(NT)limy_o(Eq|Q,|E,) is the equilib-
rium value of the specific heBtper particle. We emphasize

that Eq.(17) is an exact expression for the frequency depen

dent specific heat at constant volume. It only relies on(EQ.

as a physical reasonable definition of temperature fluctua-

tions.
Expression(17) reveals the physical origin of the fre-

by its static valueX(z=0)=i\/n, wherex is the equilib-
rium heat conduction coefficiedf.Note that the form for the
equation ford1(qg,z) is exactly as the one in linearized
hydrodynamic%’ except that now the transport coefficients
and the thermodynamic derivatives are generalized to func-
tions of the complex frequency

In the limit of vanishing wavevectors we thus obtain from
Eqg. (18) the following relation betwee®1+(q,z) andc,(z):

®11(q,2) _ —3Kg

lim = = 526,02

q—0

(19

We emphasize that,(z) as it occurs in Eq9418) and(19)
is exactly the dynamic specific heat from E#j2) that relates
fluctuations in temperatures to the ones in energy. Using Eq.

(19), we thus can express this dynamic specific heat by a
standard correlation function:

—3kgStr

guency dependence of the specific heat very clearly: During
the process of structural relaxation the system probes the
potential energy landscape. This dynamics is governed by
the (slow) relaxation of the densities and their higher orderTherefore we find that in the canonical ensemble the specific
products and hence gives rise to a nontrivial slow dynamicéieat can be expressed by the autocorrelation function of the
even in the projected dynamid?’(z), although the latter temperature fluctuations, a quantity which is readily acces-
does not contain any hydrodynamic poles. sible in simulations(An equivalent definition of the specific
Expression(17) is the ideal starting point for approxima- heat in terms of potential energy fluctuations is given in Ref.
tion schemes like the mode coupling theory. However, for33)
exact calculations of,(z), e.g., in computer simulations, it It is important to note that the expressi@8) for &1t is
cannot be used, since it is not possible to implement thealid only in the canonicalensemble. To obtain the corre-
projected dynamics. To solve this problem we will now ex-sponding relation in thenicrocanonicalensemble, a general
pressc,(z) in terms of correlation functions that can be mea-transformation due to Lebowitet al. can be used} which
sured in a real dynamics, such ds;1(q,t). For this we relates averages of time dependent functions in the canonical
make use of Refs. 21 and 31 where similar calculation as justnsemble to their averages in the microcanonical ensemble.
presented foc,(z) were done forc,(z), the specific heat at Denoting5T(q=0) by 6T, we thus obtain:

c,(2)= (20

2z011(q=02)
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B2 | 9(To)|2 consideratiorfs as well as from experimerftsve know that
Dr1(t) =(8T5 (1) 6To)c= (T (1) 6Ty met——¢ the heat conduction coefficients do rfot only very weakly
Nctl 9B depend on frequency. In analogy to the specific heat at con-
NB2 [ 915\ 2 stant volumec,(z), the specific heat at constant pressure,
= (MmO (t)+ i(ﬁ) =M (t) + . Cp(2), will also depend on frequency. Using a generalization
i kgcd\ 9B TT ct%g B2 of Legendre transformations between different thermody-

namic ensembles it can be shown tbgfz) can be written in
@D the formcy(z) =cp™ zA(2), whereA(z) is a frequency de-
Here we used, thdfTy)=NT. Equation(21) implies that the  pendent function with a positive spectridmEor z=w+ie,
temperature autocorrelation function in the canonical and thé is given by lim._qA(w+i€)=A'(w)+iA"(w). The value
microcanonical ensemble are exactly the same up to a cof A”(w) at w=0 has several contributions, one being pro-
stant shift. This shift is due to the existence of the fluctuajportional to the longitudinal viscosity, = 7+ 3 s, Where
tions in the total energy in the canonical ensemble, hencey, and 5 are the bulk and shear viscosity, respectively. The
fluctuations that do not exist in the microcanonical ensemblerelaxation timer, of ®+1(q,t) which is related to the hydro-
In the canonical ensemble there is, fpr 0, a component of dynamic pole can be calculated by determining the fre-
the temperature fluctuatioAT(t) proportional to 5E/cf)h. guency at which the main denominator of E#8) vanishes
The fluctuation of the total energ§E does not depend on up to orderq®. Making the Ansatz H,=wg=—iD7q?
time due to energy conservation during the Hamiltonian dy-+iBg*—Aqg* we obtain
namics. This time-independent part of the fluctuation causes

also a time independent contribution to the correlation func- A"(w=0) ) y—

tion ®S$(t), which can be expressed a&E* 5E)./ wg=—iDq 1_7 7d +WD$QZ
(cS%cS) =N/ (kgB%ct). Here we have used the relation P

(8E* SE)=c®NkgT2. This combination of energy conser- , A (0=0) ,

vation under Hamiltonian dynamics and properties of the + T e 4 (25
statistical ensemble explains why the temperature autocorre- Cp

lation function in the canonical ensemble does not decay tQ\/herey is c®Yc®, y—1 is the Landau-Placzek ratio, and
zero, even in the quuid. It is also the reason for the appeary s the srtJatié bulk modulus. The real part indicates an
ance of the %-pole in Eq.(19. B experimentally undetectable shift of the position of the Ray-
If we sett=0 in Eq.(21), the equilibrium specific heaf  |gjgh peak to finite frequencies. Since it is the frequency of
can thus be written as an overdamped harmonic oscillation, it does not influence
the relaxation timer, of the correlator in real time. From Eq.

3kg _ (25) the relaxation time up to ordey® of the exponentially
=1-K(0), (22 . ! A :
2c%d decaying temperature autocorrelation function is thus given
by
where we have used E(l4) and have introduced the nor-
malized temperature autocorrelation function 1 nc¥1 A'(w=0) y—1
_ - _"" _ 2
TenT N @ o DTKgyl(mn )
K(t) =09 (t)/Str. (23) “R g Cp BY 6
Putting this back into Eq.21) and using Eq(20) we finally
obtain It is interesting to note that for the case of supercooled
liquids the term proportional tq° is only positive due to the
3kg/2 existence of a frequency dependent specific heat, i.e., that

¢, (2)= (24 A7>0. without it, the subtraction of the positive Landau-
Placzek ratioy—1 would lead to a negative offset in a plot
where LT stands for the Laplace transform. of 7, against 1¢%. Below we will check the validity of thig
Equation(24), with a slightly different definition of the gependence and calculate from this relation the valuk.of
functionK(t), was first used in Ref. 25 as @l hocgener-  Note that in the case dihite wavevectors the autocorrelation
alization of Eq.(22) to nonvanishing frequencies and later f,nctions (8T (1)8T4(0)) in the canonical and microca-

derived within thermodynamic response theory by Nie?é‘en. nonical ensemble are identical, and hence it is not necessary
So far we have focused on the autocorrelation function oty \;se the transformation formula of Lebowitt al 3

Tq in the limit g—0. In the following we will now consider
the casg>0. From Eq.(18) it follows immediately that for
small but not vanishingy the decay of®(q,t) is domi-
nated by the hydrodynamic pole at=—iDq? with Dy In this section we discuss the system we used to test the
=7\/(nc§q). Below we will see that it is important to con- ideas presented in the previous section and give the details of
sider also corrections of ordef to D. As it will turn out,  the simulations. At the end we also briefly discuss the influ-
the frequency dependence of the specific heat will give thence of finite size effects on the results.

main contribution in these corrections. From theoretical Although the formalism presented in the previous section

1—-K(t=0)—zLT[K()](2)’

Ill. MODEL AND DETAILS OF THE SIMULATIONS
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is of course applicable to all types of glass forming liquids, it ~ Since the main observable of interds{t), is a collective
is of special interest to investigate a system which exists alswariable, it has a relatively large statistical error. Therefore
in reality, since this opens the possibility to compare thewe averaged all the runs over 200 independent samples for
results from the simulations with those from experiments. Tor=4700 K, over 100 samples for 4000=KT=3000 K,
do a simulation of a real material one needs a potential thadnd 50 samples fof =2750 K. In order to make so many
describes reliably the interactions between the atoms of thimidependent runs the system size had to be rather small.
substance. In the case of silica such a potential does indeétherefore we choose a system of 112 silicon and 224 oxygen
exist, since a decade ago van Beesal. (BKS) usedab ions in a cubic box of size 18.8 A. The Coulombic part of
initio calculations to obtain a classical force field for this the potential was evaluated with the Ewald method and a
material®® The functional form of this potential is given by parametew of 7.5 A~1. All these calculations took around
eight years of single CPU time on a parallel computer with
qaneZ Cus high end workstation processors.

r T Aap XN~ Bggl) — (6 As it was shown in Refs. 46 and 49, tldynamicsof
network glass formers shows quite strong finite size effects
w,B<[Si,0] 27) since the small systems lack the acoustic.modes at sr_naII

' T wavelength. Thus it can be expected that if we determine
wherer is the distance between two ions of typeand . K(t) for a system of 336 particles the result will be different
The value of the constants,, dsz, A,g, B,g, andC,, can from the ones for a system of macroscopic size. In order to
be found in Ref. 35. The short range part of the potential wagheck the influence of the system size on our results we have
truncated and shifted at a distance of 5.5 A, which leads téhade some test runs with 1008 particles and found, in agree-
a better agreement of the results for the density of vitreougent with the results of Refs. 46 and 49, that at long times
silica as predicted from this model with the experimentalthe dynamics of the larger system is a bit faster than the one
values® In the past it has been shown that this potential isof the small oné® However, the qualitative behavior of the
able to reproduce reliably various properties of amorphouyarious relaxation functions are independent of the system
silica, such as its structure, its vibrational and relaxationapize and therefore we can expect that the results presented in
dynamics, the static specific heat below the glass transitiofhis work will hold also for larger systems.
temperature, and the conduction of he#t-*® Thus, it is

¢aﬁ(r):

reasonable to.ellssume that this potential will also reproduce IV. RESULTS

well the quantities needed to calculate the frequency depen-

dent specific heat, i.e., the correlation functié(t) in Eq. In this section we present the results from our simulation,
(23). i.e., the temperature dependencekdt) and the frequency

Using the BKS potential, the equations of motion weredependence of the specific heat. At the end we briefly discuss
integrated with the velocity form of the Verlet algorithm the time and temperature dependence of the generalization of
with a time step of 1.6 fs. The sample was first equilibratedK(t) to finite wavevectors.
by coupling it every 50 time steps to a stochastic heat bath As it is obvious from Eq(24), the first step in the calcu-
for a time which allowed the system to relax at the temperalation of the frequency dependent specific heat is to deter-
ture of interest(We assumed a sample to be relaxed if themine K(t), the autocorrelation function of the fluctuation in
coherent intermediate scattering function at the wavevectdhe kinetic temperature. Sinégt) is a collective quantity it
corresponding to the main peak in the static structure factois relatively difficult of determine it with high accuracy. This
had decayed to zero within the time span of theis shown in Fig. & where we plotK(t)/K(0) at T
equilibration?”) After this equilibration we started a micro- =3000 K. Each of the thin curves corresponds to the aver-
canonical run for the production from which we determinedage over ten independent samples. From the figure we rec-
the equilibrium dynamics at various temperatures. The temegnize that even if the shape of the different curves is quite
peratures investigated were 6100, 4700, 4000, 3580, 3258jmilar, their height varies considerably. Thus one should
3000, and 2750 K. At the lowest temperatit&) decays so realize that even if the average over 100 samples gives a
slowly that runs with 30 million time steps were needed toquite nice and smooth curv@old solid curve it still might
equilibrate the sample, which corresponds to a real time obe subject to a significant statistical error.

49 ns. All the simulations were done at a constant density of In Fig. 1(b) we show the time dependence k¢t)/K(0)

2.36 g/lcni which corresponds to a pressure around 0.87or all temperatures investigated. From this figure we see that
GPa!® Since the temperature expansion coefficient of silicafor all temperatures this correlator decays within 10ps to

is small>*8it can be expected that a constant pressure simwa value smaller than 0.2, i.e., very rapidly. For the highest
lation would basically give the same results as our simulatemperatureK(t) then shows a small shoulder at around
tion. 0.01 ps, a feature which, at these temperatures, is not ob-

To obtain also results in the glass at room temperature weerved in correlation functions such as the intermediate scat-
cooled the sample from 3000 to 2750 K with a cooling ratetering functionF(q,t), whereq is the wavevectot** (See
around 310' K/s, and then rapidly quenched it to 300 K. Ref. 47 for a definition of (q,t).) With decreasing tempera-
The so obtained glass was annealed for additional 300 00@ire this shoulder extends to larger and larger times until we
time steps before we started the measurement of the varioebserve at the lowest temperature a well defined plateau
guantities. which extends over several decades in time. Thus from this
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FIG. 2. Frequency dependencefotw) andg(w/2)/8 (dashed
S0k 3950K and solid curves, respectivelyBold lines: T=3000 K, thin lines:

———- 470K 3000K T=300 K.

0.2

tion betweenK (t) and the velocity-autocorrelation function
J(t), see Eq.(A7) in the Appendix, starts to holdWe re-
mind the reader that in supercooled liquids the velocity-
autocorrelation function shows a dip at short timeBhat
this is indeed the case is demonstrated in Fig), Wwhere we
compare the two correlators at a high and a low temperature.
- We see that foif=300 K, i.e., in the glass where the har-
10° 10" 10% 10° 10° monic approximation is validK(t) andJ(2t) are identical
t[ps] within the accuracy of the dataolid lineg. For temperatures
0.2 at which the system is still able to relax the situation is dif-

‘ e T23000K ferent. At short time«(t) (bold dashed lineshows oscilla-
tions with extrema which are located at the same times at
which also J(2t) (thin dashed ling shows maxima and
minima. Thus the harmonic-like character of the motion on
these time scales is clearly seen. For larger times, however,
J(2t) goes rapidly to zero whered§(t) shows the above
discussed plateau before it decays to zero at very long times.

In order to investigate this point in more detail we can
make use of Eq(A8), which relates the spectrum &f(t),

K(w), to g(w), the time Fourier transform of the velocity-
10° autocorrelation function. At low temperatures the latter
quantity is nothing else than the density of states of the sys-
FIG. 1. Time dependence of the normalized kinetic energy aulem.(In order to calculate these Fourier transforms we made
tocorrelation function(a) T=3000 K; each thin curve is the aver- use of the Wiener-Khinchin theorem which relates the power
age over ten different samples; the average over these curves givepectrum of a time dependent signal to the Fourier transform
the bold curve(b) K(t)/K(0) for all temperatures investigate(d) of the corresponding autocorrelation functi¥nin Fig. 2 we
Bold curves:K(t) for T=3000 K andT=300 K; thin curves: showK(w) for a temperature in the melt and in the glass
velocity-autocorrelation functio(2t)/6kgT (see the Appendixat (dashed linesand compare these curves withw/2)/8 at the
the same temperatures. same temperaturdsolid lineg. We see that, within the ac-
curacy of our data, in the glass the two curves are indeed
point of view K(t) behaves qualitatively similar t6(q,t).  identical.[We remind the reader that the two peaks at high
Since for this quantity it is customary to refer to this final frequencies correspond to intra-tetrahedral motion of the at-
decay as the & relaxation” we will use the same term in the 0ms, whereas the broad band at lower frequencies corre-
case ofK(t) as well. Note that the height of the plateau in SPonds tomostly) delocalized inter-tetrahedral motioh®
K(t) is only around 0.1, which shows that most of the cor-For the case of the melt, however, the two curves differ
relation of the kinetic energy is lost during the brief ballistic Significantly from each other. Although the general shape of
flight of the particlesf<10"2 ps, inside the cage. K(w) and g(w/2) are similar, the former quantity has a
From the figure we also see that with decreasing temperanuch smaller intensity at the two peaks at high frequencies
ture the correlation function starts to show a minimum atbut a higher one in the broad band. Note that this “excess”
short times. The reason for this feature is that at low temin low frequency modes has nothing to do with the fact that
peratures and short times the system behaves similar to ka(t) shows at long times a relaxation, wherea3(2t) does
harmonic solid and thus it can be expected that the conneaiot, since atT=3000 K the typical frequencies of the

K(t)/K(0)

=1

107 10

o
-

K(t), J(2t)y/ek,T

o
o

-0.1 -
t[ps]
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5.0 — E— ‘ the specific heat of an ideal gas. This result is reasonable
- T SN (@) since these high frequencies correspond to times at which the
4.0 S dynamics of each particle is not affected by the other ones,

i.e., they move just ballistically. Upon lowering the fre-

quency the specific heat rises rapidly since we are now in the
frequency regime in which the dynamics of the system is
mainly dominated by vibrations, see Fig. 2. Therefore at

c’(w) [ky/particle]
w
o

20 - these frequencies the system can take up energy giving rise
: to the increase of’' (w). Note that before this increase oc-
10 curs, c’(w) shows a little dip around 40 THz, i.e., it falls
' below the ideal gas value. This dip can easily be understood
by the harmonic picture proposed above, because the specific
14 heat for a single harmonic oscillator shows a singularity at its
resonance frequency. Since in our system we have many
1.2 different oscillators that have typical frequencies between 1

1.0 and 80 THz, this singularity is smeared out and results in the

8 dip and subsequent strong increase cdfw). The same

§0-8 mechanism is the reason for the little peak at around 5 THz.

£0.6 If the frequency is decreased furthef(w) stays constant

304 until =1 is on the order of the time scale of the relax-

oo v ation, i.e., the time scale of the structural relaxation. In this
0.2 . b frequency range the system is again able to take up energy
0.0 i4\ o 4 s and hence’ (w) increases again. At even lower frequencies

e

10

10 ¢’ (w) becomes constant, i.e., it has reached the value of the
o/2r [THZ]

staticspecific heat. This sequence of features'ifw) can of

- . .
FIG. 3. Frequency dependence of the specific heat for all tem¢OUrse also be found io”(w), since the two functions are

peratures investigateda) Real part.(b) Imaginary part. related by the Kramgrs-Kronig rglation. In Figlb3 we see .
that at high frequencies the imaginary part has a peak which

relaxation are smaller than 1 THz, and their contribution tocorresponds to the vibrational excitations in the system. At
the spectra can only be seen as the narrow peak=dd (see  much lower frequencies we find the peak which corre-
Fig. 2).%° Thus from this figure we can conclude that at low sponds to the structural relaxation process, i.e., the type of
temperatures the harmonic approximation is very goodlynamics in which particles change their neighbors. For fu-
whereas at intermediate temperatures significant deviatiortsire reference we will introduce the terms “vibrational and
are observed. configurational part of the specific heat” by which we mean
Sincec(z) is related to the Laplace transformi{t), see  the height of the plateau it/ (w) at intermediate frequencies
Eq. (24), one has to calculate this transform with high accu-and the height of the step at low frequencies, respectively,
racy. From Fig. 1b) we see, however, that at low tempera- and will denote them bg.¢ andc,;, .>°
turesK(t) extends over many decades in time which makes Let us now discuss the temperature dependence (o)
the calculation of this transform a nontrivial matter. Fromand c¢”(w). From Fig. 3a) we see that the specific heat at
this figure one also recognizes that, despite the large numbétitermediate frequencies is essentially independentT,of
of samples we used, the curves have still a significansince the vibrational motion of the ions is just a weak func-
amount of noise, most noticeable at long times and the lowtion of temperature. The main effect of an increase in tem-
est temperatures, since for these we used fewer samplgserature is that the height of the flat region at very srmall
Since within the accuracy of the data the shape of the curvese., the static specific heat increases and that the crossover
does,in the late a-relaxation regime not depend on tem- from this region to the plateau at intermediate frequencies
perature, we substituted fof<4700 K that part of the moves to higher frequencies. At the highest temperature this
curve which was below 0.02 by the corresponding part of theerossover frequency has moved up to such high frequencies
curve forT=6100 K, after having it shifted to such large that no intermediate plateau is visible anymore, which means
times that the resulting curve was smooth at 0.02. Subsehat in the system there is no longer a separation of time
qguently the so obtained curves were smoothed and thecales for the vibrational and relaxational processes. Further-
Laplace transform calculated making use of the formula bymore we find that at the highest temperature the height of the

Filon>* plateau at small frequencies has decreased, i.e., that the value
In Fig. 3 we show the real and imaginary partogk) for  of the static specific heat has decreased. This effect is most
all temperatures investigate@in the following we will as-  likely related to the fact that silica shows a density anomaly,

sumez=w+ie, with e—0.) To discuss the frequency de- which for the present model occurs at around 4600 K.
pendence of these curves let us focus for the moment on The temperature dependence just discussed is also found
c’'(w) for T=2750 K, the lowest temperature at which we in the imaginary part ot(z) in that, with increasing tem-
could equilibrate our system. At very high frequenaééw) perature, thex peak moves continuously to higher frequen-
becomes independent af and has a value of 1.5, which is cies until it merges with the microscopic peak. All this be-
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unexpected since for other dynamic susceptibilities, such as
the one connected to the intermediate scattering function,
one finds that the so-called time temperature superposition
principle is valid, i.e., a decrease in temperature just gives
rise to a horizontal shift of ther peak*">” However, since
the area under the peak is related via the Kramers-Kronig
relation to the height of the step at low frequencycilfw),
i.e., the configurational part of the specific heat, it is not
surprising that this area depends on temperature, and below
we will show that this is indeed the case. This tendency can
also be easily understood from E@4): For this we assume
10° 10° 10 10° 102 107 10° that in thea-relaxation regime at low temperatures the func-
w/2r[THZ] tion K(t) can be written a¥ (t,T)=f(T)K(t/#(T)), where
FIG. 4. Main figure: Frequency dependence of thgeak for f(T) is_ the- height of the plateau .anr:(.T) is the typical
intermediate and low temperatures. Inset: Same curves scaled f§laxation time. That this assumption is reasonable can be

the height of their maximum Versus/wpay, Where o, is the  inferred from Fig. 1b). It is now simple to show that"(w)
location of the maximum. Dashed line: Kohlrausch-Williams-Wattscan be approximated bg”(w) %E”(wr(T))f(T)/(l— K(t

function. =0))2=C"(w7(T))f(T)4(cc%?/9K3 , with a master function

havior is qualitatively similar to the one found for dynamicf - [Here we also made use of B@2).] Since the function

observables that measure the structural relaxation, such &s 1S @ssumed to be independent of temperature, we see that
the dynamic susceptibili§?®” Thus this gives evidence that the wholeT dependence ot”(w) is given by a shift in

the observable related to the structural relaxation egg) ~ fréquency proportional ta(T) and a vertical rescaling by
are closely connected to each other. f(T)(c®92. Thus we conclude that the configurational part of

We also note that at low temperatures the form of thethe specific heat is proportional t6(T)(c;9)?. For the
curves at low frequencies as well as their temperature depepresent system botti(T) andc;’, decrease with decreasing
dence resembles very much the ones found irtemperature, and thus it is clear that the same is true for
experiment$-1%3The main difference is that in the simula- c,. However, in certain materials, such as fragile glass
tion it is possible to measurg z) even at such high frequen- formers, it is sometimes observed that the specific reat
cies that the effect of the microscopic vibrations becomesreaseswith decreasing temperature. Thus in these cases the
visible. Thus it is possible to follow continuously the evolu- temperature dependence @f,,; does not have to decrease
tion of ¢c(z) from the microscopic regime to the mesoscopicmonotonically, but it might, e.g., exhibit a local maximum.
one, i.e., to investigate the whole frequency dependence of Although the height of thex peak changes, its shape
c(z2) from the liquid state to the viscous state. In contrast toseems to be independent of temperature. To demonstrate this
this, experiments can probe only the frequency range belowe plot in the inset of Fig. £"(w)/C"(®wma) VS @/ ®may,

10* Hz and therefore only the regime is observable. How- where w,,,(T) is the location of thea peak. Since the
ever, since experimentally it is much simpler to equilibratecurves for the different temperatures fall on top of each
the material also at temperatures close to the glass transitiasther, to within the accuracy of the data, we conclude that
temperaturec(z) can be measured at significantly lower the shape does indeed not change with temperature. Also
temperatures than in a simulation. included in the figure is the Fourier transform of a

Finally we mention that we have included in Fig. 3 also Kohlrausch-Williams-Watts-law with a stretching exponent
the data forT=300 K, i.e., a temperature at which the sys-0.9. We see that this functional form fits the master curve
tem is deep in the glass state. We see that this curve followguite well, at least if one does not go to too high frequencies.
the pattern of the equilibrium curves very well in that it At these higher frequencies the scaling breaks down due to
shows also the “harmonic resonance” at high frequencieghe presence of the microscopic peak. We also mention that
and then a plateau at lower frequencies. No second plateautise (relatively large value of the stretching parameter is rea-
seeninc’(w) [or ana peak inc”(w)] at very small frequen- sonable, since in strong glass formers the stretching in the
cies since at this temperature these features would occur atructural relaxation is usually weak, and indeed we have
such loww that they are not visible within the time span of found that also for the present model the structural relaxation
the simulation(or even an experiment shows only a weak stretchirfg.

Since the part of the specific heat that is related to the Further evidence that the structural relaxation and the fre-
structural relaxation is the-relaxation peak at low frequen- guency dependent specific heat are closely connected to each
cies, we will study this peak now a bit in more detail. In Fig. other can be obtained by comparing the typical time scales
4 we show an enlargement of this peak for intermediate anébr these functions. For this we have calculated(theoher-
low temperatures. We clearly see that with decreasing tement intermediate scattering functiorF4(q,t)*’ for a
perature the area under the peak becomes smaller, whishavevectorg=1.7 A~1, which corresponds to the location
means that the configurational part of the specific heat deof the first peak in the static structure facférwe have
creases. This temperature dependence might be somewldsfined thex-relaxation timerf, a €{Si, G}, by the time it

c”(w) [k,/particle]
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10T K™ FIG. 6. Temperature dependencecgf,; andc,;,, the configu-

o ' rational and vibrational part of the specific heat, respectively, and of

FIG. _5' _Mam figure: _Temperature _dependen(_:e of t_hetheir sumcSd. The dashed line is the specific heat as calculated
a-relaxation times as determined from the incoherent intermediat¢, 1, the harmonic approximatiofRef. 42. The curves with the

scattering function and the frequency dependent specific heat. T@nall symbols are experimental data from Refs. 59 and 60.
straight lines are fits with an Arrhenius law. Inset: ratio of these

relaxation times. temperatures that are well below tiiexperimental glass

transition temperature, which is at 1450°Ka value that

takes this correlation function to decay tee Idf its initial seems to be reproduced reasonably well by the present
value. To characterize the time scale for the specific heat wgodel** Hence we find that,;, is affected by anharmonic
have determined froro”(w) the position of the maximum of  effects even at relatively low temperatures. We also mention
the a peak and defined the relaxation timgas 1y, In that the vibrational partc,;, in the temperature range
Fig. 5 we show the temperature dependence of these relag750 K<T<3500 K seems to be in nice agreement with a
ation times in an Arrhenius plot. From that graph we see thafinear extrapolation of the experimental specific heat of the
the relaxation times, and 7¢ track each other very well in - glass belowT,=1450 K to higher temperatures, i.e., if one
that at low temperatures both of them show an Arrhenius laweaves out the increase of the specific heat due to the glass
with a very similar activation energfnumbers are given in transition.
the figure. With increasing temperature, deviations from this  The temperature dependenceaf, is much more pro-
law are seen, the origin of which have been discussedounced than the one of;,, in that it shows around 4000 K
elsewheré;’ but also these deviations are the same for botha crossover from a relatively weak temperature dependence
quantities. That the structural relaxation and the specific heait highT to a stronger one at low. Furthermore we see that
do indeed track each other is demonstrated in the inset . is significantly smaller than,;,, which is in agreement
where we plot the ratiosg/ 7. as a function of inverse tem- with the experimental result that strong glass formers show
perature. Since we see that these ratios are independent @fly a small drop in the specific heat when the temperature is
temperature to within the accuracy of the data, we can conlowered below the glass transition temperature, i.e., when the
clude that the temperature dependence of the three quantitiesiaxational degrees of freedom are fro2éWe also note
is indeed the same. that for a strong glass former one expects that the Kauzmann

In the discussion of Fig.(8) we have mentioned that the temperatureT is very small® From the figure it seems,
increase inc’(w) at high frequencies is due to the vibra- however, that a naive extrapolation@f,to lower tempera-
tional degrees of freedom, whereas the step at lower frequerdres leads to an intercept with the temperature axis around
cies is due to the relaxation of the configurational degrees of ., ~2000 K. Since the inequalityl .,,~=Tx must hold,
freedom. By measuring the heights of these two steps it thughis type of extrapolation thus leads to an estimateT pf
becomes possible to determine the contribution of the vibra=2000 K. This high estimate of is corroborated by re-
tional and configurational degrees of freedom to the stati¢ent results of the same model in whith was estimated by
specific heat and to investigate how these quantities depente direct calculation of the entropy and a subsequent ex-
on temperaturé® The results obtained are shown in Fig. 6, trapolation to lower temperaturés.
where we plotc’d, the value ofc’ (w) at very low frequen- These results foifx depend of course crucially on the
cies which is hence the static specific hegt,, the height way c.,,is extrapolated to lower temperatures. From Fig. 6
of the step irc’ (w) at low frequencies, andl,;,, the value of it is clear that it is also possible to make this extrapolation in
c'(w) at intermediate frequencies. Several observations casuch a way that, e.g., & =1450 K its value is around
be made: Firstlyc,;, shows a very regular temperature de- 0.5kg/particle, i.e., equal to the height of the step in the
pendence which can be approximated well by a linear funcexperimental curve aftT, (see experimental curves in
tion of temperature, at least in the temperature range invesigure).%® If the extrapolation is done in this way, the estimate
tigated. An extrapolation of this temperature dependence tof T,,sis moved to much lower temperatures. Thus it will be
lower temperatures shows that;, attains the harmonic very interesting to attempt to do simulations at even lower
value of Xg only at low temperatures~1000 K), i.e., at temperatures in order to minimize the effects of this extrapo-
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FIG. 8. Relaxation time for the autocorrelation function
FIG. 7. Time dependence of the autocorrelation function of thed(q,t)/T? multiplied by g versus the square of the wavevector.
generalized temperature fluctuatiosd ((t). The different line  The straight line is a fit with the functional form given by Eg6).
styles correspond to different temperatures and the different thickThis line is given byg?r=0.0180 ps A2+0.0104° ps.
ness to different wavevectors.

1(b)]. It reflects the fact that the thermal conductivityis

lation. For this it will of course be necessary to equilibrateonly a weak function of temperature, see E2f).
the system at even lower temperatures, which is computa- From the plot we also see that the typical time scale over
tionally difficult. One promising way to achieve this is the which the correlation functions decay, increases with de-
so-called method of “parallel tempering,” and work in this creasing wavevector, in qualitative agreement with &6)
direction is presently don€%8 which predicts a2 dependence. To determine thelepen-

Also included in the figure is the specific heat of the sys-dence of this decay we define a decay tinfg) as the time
tem as calculated from the harmonic approximdtion it takes the correlation function to decay to 0.1 of their initial
(dashed ling This was done by determining the eigenvaluesvalue. The wave-vector dependencerfd) is shown in Fig.
of the dynamic matrix, and hence the density of stgigs), 8 where we plog?7(q) vs g2. (Since within the accuracy of

and using the expression our data the temperature dependenc® ¢f(q,t) is indepen-
h? [*w?g(w)expthol(kgT)) d_ent of T we sho_w only one set of data point§rom this _
o — J > do. (28)  figure we recognize that for small wavevectors the relaxation
kgT</o (exp(hw/(kgT))—1) time scales indeed likg~?+ const, as expected from hydro-

2dynamics (straight ling, that however, this linear depen-
é%ence breaks down for large wavevectors. Furthermore we
see that the slope of this straight line is positive, which
means that the second term in E86) is larger than zero.
From this equation it follows that the intercept of the straight
1Jine with the abscissa is given bycy¥\, wheren is the

More details on this calculation can be found in Ref. 4
where it has been shown that this theoretical curve agre
very well with experimental data below the glass transition
temperatureT, (see the experimental data of Sositaand

Richetet al.?° and the theoretical curve of Horbaeh al*?

in the figurg. From the graph we see that an extrapolation O.particle density and is the thermal conductivity. We read

¢, to lower temperatures extrapolqtes Nicely to the EXPEI ot an intercept 0.0180 ps/Aand with the specific heat of
mental data and that an extrapolationagf, to lower tem- 4kg per particle, see Fig.(8), we obtaink =2.4 WAKm).

peratures can be joined smoothly to the curve from the harThis value is in good agreement to the one determined by a

Lna?g&faﬁgﬁgo;:renigﬁgiszzﬁfV\?i?ﬁve\z/?cgh t(?t?lte:he two types Ofcompletely different method in the simulation by Jund and
The expressions derived in Sec. Il were valid for a”JuII|er_1 who foundy =13 Wikm) around 1999 K e

wavevectorss and onlv at the end. fe. in E¢L9), we re- experimental values for this quantity range between 2 and 3
v y K ' W/(Km) at high temperatures #=1000 K*%i.e., our value

stricted ourselves t@=0 in order to obtain the equation ._. ; . .
relating the frequency dependent specific heat to the tems " agreement also with the experimental daéote that in

: 2 . experiments it is found that the is a strong function of
perature fluctuations. After having investigated so far th .
. emperature for temperatures belewl000 K. For higher
temperature dependence afz), we now turn our attention

K . . temperatures it seems, however, to level off and thus it can
to ®7(q,t), the autocorrelation function ofT4(t), which be extrapolated reasonably safely to temperatures in the melt.

S L EV€Gince this temperature dependencenof due to anharmo-
tors. From the definition ofbyy(q,t) it is clear that this nicities one can conclude that these become effectively inde-

. . 2 . - - -
func‘uoq ShQUId scale likg®. That this is mdezed the gase IS pendent ofT in the temperature range of the supercooled
shown in Fig. 7, where we sho#(q,t)/T< for various melt)

wavevectors and temperatures. Since for each wavevector
the curves for the different temperatures fall on top of each
other we recognize immediately that tfie? dependence is
correct. Note that this weak temperature dependence|for  The goal of this paper is to show how the frequency de-
>0 is in strong contrast to the one found fpr=0 [see Fig. pendent specific heat,(z), is related to the dynamics of the

V. SUMMARY AND DISCUSSION

104204-11



SCHEIDLER, KOB, LATZ, HORBACH, AND BINDER PHYSICAL REVIEW B63 104204

particles on the microscopic level. For this we use the Mori-K(t), and depend only very weakly on temperature. From
Zwanzig projection operator formalism to derive an exactthe q dependence of the relaxation time of this correlator we
expression foc,(z) [Eq. (17)]. This expression allows us to calculate the thermal conductivity and find good agree-
identify the physical mechanism which causes the frequencyent of our value with the one in experiments and a com-
dependence of,(z), namely the relaxation of the potential puter simulation in whichh was determined by a different
energy during the structural relaxation. Using an exact transnethod.
formation formula by Lebowitzt al, we obtain an equation We also point out that, since our simulations have been
which relatesc,(z) to the Laplace transform dk(t), the  done at constant volume, it is clear that the frequency depen-
autocorrelation function of temperature fluctuatiofsq.  dence ofc(z) and the strong temperature dependence of
(24)] in the microcanonical ensemble, and which thus can bevn.y, the location of thex peak inc”(w), is notthe result of
used to determine,(z) from a computer simulation. This the frequency and temperature dependence of the macro-
relation has been derived previously by Nieemn the ba-  scopic density. Some time ago Zwanzig proposesisen-
sis of thermodynamic arguments. In contrast to that approactially) the following mechanism for thd dependence of
we are, however, also able to generalize the correl{0)  @max:2° A change in temperature will, in general, give rise to
to finite wavevectors and to relate the time dependence di change in densitgsince most real experiments are done at
these quantities to the thermal conductivity of the systemgonstant pressure and not densifYue to the high value of
Eq. (26). the bulk viscosity, this volume relaxation will be slow and
By using molecular dynamics computer simulations of aoccur on the time scale of therelaxation, and henog, will
simple but quite realistic model for silica, we have deter-be frequency dependent. Since, in turn, the frequency depen-
mined the time and temperature dependendé(0f. We see  dence of the viscosity is due to the slow relaxation of the
that at low temperatures this correlator shows a two-step destructure on the microscopic scale, Zwanzig thus argued that
cay, similar to the one that is found in the time correlationthe reason for thd dependence ok iS just anindirect
functions for structural quantities, such as the intermediateffect of the slow microscopic dynamics. Since in a system
scattering function. In contrast to these correlators the heighwith constant volume this mechanism is not present and our
of the plateau at intermediate timdecreasesvith decreas- simulations demonstrate that,,,, does show a strong de-
ing temperature, a trend that can be understood by realizingendence, we conclude that the reason for this dependence
that at very low temperaturd$(t) is directly related to the must be a different one.
autocorrelation function of the velocity. Finally, we also mention that from the shape of the
From the time dependence kft) we have calculated the peak inc”(w) it is also possible to calculate the time depen-
frequency dependent specific heat. In contrast to previoudence of the enthalpy in a cooling and heating experiment.
numerical investigations the accuracy of our data is high-or this we made simulations in which the sample was first
enough to analyze in detail the frequency dependence of theooled with a finite cooling rate through the glass transition
real and imaginary part of(z). We find that at very high temperature and subsequently reheated afigvelsing the
frequencies the value af (w) is the one of an ideal gas and equilibrium data forc(z) we were able to reproduce accu-
that with decreasing frequency it shows a rapid increaseately the time and temperature dependence of the
which is due to the vibrational excitations of the system. Atenthalpy*>*®which shows that if one knows treguilibrium
low temperatures we see th&t w) shows a second increase quantity c(z), one is also able to predict the system in an
at those low frequencies that correspond to the time scales olut-of-equilibrium situation.
the structural relaxation. This frequency dependence is also
reflected inc”(w) where the first and second increase are
reflected by the microscopic andpeak, respectively. Thus

we find that the frequency dependencecgf) is qualita- We thank U. Fotheringham and F. Sciortino for useful
tively very similar to the one found in the dynamical suscep-giscussions. This work was supported by Schott Glas and the

tibility for structural quantities, which shows how intimately pEG under SEB 262. Part of this work was done at the
connected these quantities are. Further evidence for this caqy_rz in Jiich.

be obtained from the observation that the location of éhe

peak inc”(w) shows the same temperature dependence as

the structural relaxation, in agreement with experimental ~APPENDIX: RELATION BETWEEN THE DENSITY
findings0:12:13 OF STATES AND THE AUTOCORRELATION FUNCTION
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are able to determine the vibrational and the configurational

part of the specific heat. We find that the former is signifi- For a purely harmonic system with the Hamiltonian

cantly higher than the latter, which is in agreement with the 2 2,2

. . . 7 . p mQ“r
experimental observation that in strong liquids the drop in H= — + (A1)
the specific heat at the glass transition is relatively small. 2m 2

Finally, we have calculated the time dependence of the
autocorrelation functions of temperature fluctuations at finitemomenta and space coordinates are Gaussian variables. This
wavevectors. In agreement with our theoretical predictionsimplifies considerably the evaluation of the normalized au-
these functions decay much faster than the onge0, i.e.,  tocorrelation function of the kinetic enerd¢§(t). For a set of
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Gaussian variables with zero mean the four point correlatioi\l averages are in the canonical ensemble and we used that
function (ABCD) can be expressed by the two point corre-<pi>:kBT. From Eq.(21) we know, by using the value of

lation functions:

(ABCD)=(AB)(CD)+(AC)(BD)+(AD)(BC).
(A2)

Using this relation, the autocorrelation functi¢p?(t)p?)
can be written as

(PZ(DP2)=2(p,(1)p,)2+(p2)(p2).

Since(pﬂ(t)py>=5W(pi>cos()t, the autocorrelation func-
tion ®(t) is given by

(A3)

Prr(t)= (p*()p?) —(p*)?) (A4)
TT 9m2k25 < >
=2 S (php? (A5)
T2
=§(cos{2m)+l). (AB)

the specific heat of a harmonic oscillator in three dimensions
c®=3kg, that®{19(t) = ®1(t) — T%3. By defining the ve-
locity autocorrelation functiord(t)=m{v(t)v) and noting,
that for a harmonic oscillatafv (t)|v)=3ksT/m cost) we
obtain the result

J(2t)

K(t)= W (A7)

Taking the Fourier transform of EA7) and using, that the
density of stateg)(w)=2J(w)/(3kgT),%° we arrive at the
result

R(w) 9(w/2)

(A8)
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