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Frequency-dependent specific heat of viscous silica

Peter Scheidler, Walter Kob,* Arnulf Latz, Jürgen Horbach, and Kurt Binder
Institut für Physik, Johannes Gutenberg-Universita¨t, Staudinger Weg 7, D–55099 Mainz, Germany

~Received 31 July 2000; revised manuscript received 17 November 2000; published 15 February 2001!

We apply the Mori-Zwanzig projection operator formalism to obtain an expression for the frequency de-
pendent specific heatc(z) of a liquid. By using an exact transformation formula due to Lebowitzet al., we
derive a relation betweenc(z) and K(t), the autocorrelation function of temperature fluctuations in the mi-
crocanonical ensemble. This connection thus allows to determinec(z) from computer simulations in equilib-
rium, i.e., without an external perturbation. By considering the generalization ofK(t) to finite wavevectors, we
derive an expression to determine the thermal conductivityl from such simulations. We present the results of
extensive computer simulations in which we use the derived relations to determinec(z) over eight decades in
frequency, as well asl. The system investigated is a simple but realistic model for amorphous silica. We find
that at high frequencies the real part ofc(z) has the value of an ideal gas.c8(v) increases quickly at those
frequencies which correspond to the vibrational excitations of the system. At low temperaturesc8(v) shows a
second step. The frequency at which this step is observed is comparable to the one at which thea-relaxation
peak is observed in the intermediate scattering function. Also the temperature dependence of the location of
this second step is the same as the one of thea peak, thus showing that these quantities are intimately
connected to each other. Fromc8(v) we estimate the temperature dependence of the vibrational and configu-
rational part of the specific heat. We find that the static value ofc(z) as well asl are in good agreement with
experimental data.

DOI: 10.1103/PhysRevB.63.104204 PACS number~s!: 61.20.Lc, 61.20.Ja, 02.70.Ns, 64.70.Pf
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I. INTRODUCTION

If a glass-forming liquid is cooled, dynamic observable
such as the viscosity, the diffusion constant, or the interm
diate scattering function, show a dramatic slowing down1,2

At a certain temperature, the kinetic glass transition temp
tureTg , the typical relaxation time of the system exceeds
time scale of the experiment and the system falls out of e
librium, i.e., becomes a glass.3 In contrast to thesedynamical
observables, allstatic quantities, such as the volume or th
enthalpy, show upon cooling only a relatively weak tempe
ture dependence forT.Tg and the glass transition temper
ture is noticed only by a gentle change of slope in th
temperature dependence. This change of slope is reflect
various susceptibilities, such as the thermal expansion c
ficient or the specific heatcV , as a relatively sudden dro
when the glass transition temperature is reached. The ph
cal picture behind this drop in, e.g.,cV is that at Tg the
structural degrees of freedom fall out of equilibrium and t
specific heat reduces to the one of a solid having only vib
tional degrees of freedom. Hence the height of the drop
usually used to estimate that part of the specific heat ass
ated with the configurational degrees of freedom. Thus
see that this type of experiments can be used to probe
dynamics of the structural degrees of freedom, although
information obtained is rather indirect.

Since the value ofTg is given by the timescale of th
experiment, it can be changed if the sample is cooled w
different cooling rates.4,5 Therefore this dependence open
in principle, the possibility to investigate the temperature
pendence of the configurational part of the specific he
However, since the relaxation time of the system chan
very rapidly with temperature, it is necessary to change
cooling rate significantly~several decades! in order to see a
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significant shift inTg , which is experimentally rather diffi-
cult. An alternative way to probe the dynamics of the stru
tural degrees of freedom by means of the specific heat i
measurec(z), the ~complex! frequency dependence of th
specific heat of the systemin its equilibrium state. Seminal
work in this direction was done by Nagel and co-workers6–10

who proposed an experimental setup that allowed to mea
c(z) also at frequencies as high as 104 Hz. Independent
work in this direction was also done by Christensen a
others.11–14

Using their measurements of the frequency dependenc
the specific heat, Jeong and Moon were able to predict c
ing and heating curves in differential scanning calorime
~DSC! and found good agreement between their predic
curves and the experimental ones.13 Similar results have
been found in molecular dynamics computer simulations.15,16

Thus, these investigations give evidence that the informa
contained in the equilibrium quantityc(z) allows one to un-
derstand also the out-of-equilibrium situation that is enco
tered in DSC experiments aroundTg . A short review of this
can be found in the paper by Simon and McKenna.17

The theoretical interpretation of the measurements ofc(z)
was for some time rather controversial18–23 since the origin
of the frequency dependence ofc(z) was not really clear.
Some of these issues could be clarified by experiments d
by Birge7 and Menon.10 A partial discussion of this dispute i
reviewed in Ref. 17. Very recently Nielsen put forward
theoretical description ofc(z) on purely thermodynamic
arguments.24 In the present paper we will use a statistic
mechanics approach to derive a microscopic expression
c(z) and use this expression, which is identical to the o
derived independently in Ref. 24, to calculate this quan
from a molecular dynamics computer simulation of silic
Interestingly enough this expression has been used befor
©2001 The American Physical Society04-1
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Grest and Nagel25 to calculatec(z) from a computer simu-
lation of a simple liquid. However, in that paper no deriv
tion was given since it seems to have come out ‘‘from
stroke of genius.’’26 Due to limitations of computer re
sources the resulting curves forc(z) were unfortunately
rather noisy, a feature they share with the ones in Ref. 24
contrast to this, great care was taken in the present wor
obtain reliable data, which, in turn, allows us to compare
temperature dependence ofc(z) with the one from other dy-
namical quantities, such as the intermediate scattering fu
tion. Thus, this permits us to compare the relaxation dyna
ics as probed byc(z) with the one observed by mor
microscopic methods, such as neutron or light scattering
periments.

The outline of the paper is as follows: In the next sect
we will use the projection operator formalism to derive
connection betweenc(z) and microscopic variables. In Se
III we will give the details of the model and the simulation
In Sec. IV we will present the results and end in Sec. V w
a summary and discussion.

II. THEORY

In this section we derive an expression that relates
frequency dependent specific heat to the autocorrela
function of kinetic energy fluctuations. Furthermore, w
show how the thermal conductivity can be calculated fr
the generalization of this correlation function to fini
wavevectors.

For a dense simple liquid under triple point conditions t
only slow modes are the local densities of the macrosc
cally conserved quantities, i.e., the number of particles,
total momentum, and the energy. For anN-particle system
these local densities have the form

X~r ,t !5(
i 51

N

Xi~ t !d„r2r i~ t !…, ~1!

where for Xi(t)51 we obtain the local density fluctuatio
r(r ,t), for Xi(t)5pi

a the momentum density in directiona
P$x,y,z%, and forXi(t)5Eiªpi

2/2m1 1
2 ( j 51

N V(ur i2r j u) the
local energy density fluctuation.@HereV(r ) is the potential
energy.# In the hydrodynamic limit the equation of motio
for these densities can be derived by using the exact con
vation laws, some~phenomenological! constitutive equations
that relate the spatial derivatives of the densities to their c
rents, and thermodynamic relations between the fluctuat
of the densities and thermodynamic quantities such as t
perature, pressure, etc.27 This approach is valid as long a
there are no other slow, nonhydrodynamic processes in
system. Well-known examples, for which constitutive equ
tions and thermodynamic relations have to be modified
e.g., introducing frequency dependent thermodynamic
rivatives, are second order phase transitions or systems
internal degrees of freedom.28

As mentioned in Sec. I, the dramatic slowing down of t
dynamics of liquids upon cooling is observed on all leng
scales. But contrary to second order phase transitions no
range order is building up in two particle correlation fun
10420
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tions, since the slowing down of the dynamics seems no
be caused by a growing correlation length. Instead the ph
cal origin for the slow dynamics is the local hindering of th
particle motion, the so-called cage-effect, i.e., it is due t
mechanism operating on themicroscopicscale. However, the
consequences of this local slowing down can of course a
be detected on mesoscopic and macroscopic length sc
e.g., in thermodynamic derivatives, as soon as the time s
of the experiment is comparable to the time scale of
structural relaxation.

In Ref. 21 a formally exact method to derive frequen
dependent constitutive equations and thermodynamic der
tives in the canonical ensemble was introduced, which t
allows to investigate the consequences of the slowing do
of the structural relaxation on thermodynamic and hydro
namic quantities. The main technical tools in that paper
thermodynamic response theory and projection oper
techniques. In such an approach the most important phys
ingredient is the appropriate microscopic definition of t
temperatureu(r i ,pi) as a function of the phase space va
ables r i and pi . From a mathematicalpoint of view the
choice of such a function is not unique since the only co
dition one has to fulfill is that

^u~r i ,pi !&5T, ~2!

where T is the macroscopic temperature. For the case
supercooled liquids alsophysicalconsiderations impose re
strictions to the possible set of functions: In the canoni
ensemble the temperature of the system and also temper
variations are imposed by an external heat bath. There
the definition of the phase space functionu(r i ,pi) should
allow that Eq.~2! holds also in the case thatT is changing on
a time scale that is shorter than the one of the struct
relaxation. ~Such rapid changes occur, e.g., in the ear
mentioned experiments on the frequency dependent spe
heat. But also for the case of a glass belowTg the concept of
a temperature is useful, despite the fact that the true re
ation time of the system is exceedingly large.! The descrip-
tion of the physical coupling mechanisms between the ex
nal temperature variation and those internal degrees
freedom, which follow immediately the external variation
of the temperature, depends on the particularities of the
periment and is therefore beyond the scope of our work.
we want to impose the condition that the internal temperat
in terms of phase space variables follows instantaneously
external temperature changes. Since structural relaxatio
related to rearrangements in space, it can be expected
definitions of u(r i ,pi) that involve the positionsr i do not
fulfill in general this requirement of being ‘‘fast.’’ Excep-
tions are, e.g., high frequency oscillations, which are
course ‘‘fast,’’ although they involve variations in the spati
variables. Conceptionally more convenient is the definit
of a temperature that involves only momentum variabl
Momentum can quickly be exchanged between particles,
hence is transferred easily through the system. One co
quence of this choice will be the possibility of observing t
free gas behavior~at least in the simulation! for the extreme
high frequency limit. Although in real experiments this hig
frequency limit is probably not accessible, this does
4-2
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course not affect the validity of our results. It only mea
that we describe, in addition to the experimentally access
frequency range, also situations, which are beyond the c
bilities of current experiments.

The microscopic definition of the temperature, obeyi
the mentioned mathematical and physical requirements,
be constructed with the help of the kinetic energy of a p
ticle,

u~r i ,pi ![u~pi !5
1

3kBm
pi

2 . ~3!

The canonical averagêu(pi)& is, as required, the macro
scopic temperatureT. However, if one wants to define alo-
cal density related to the temperature, it can of course no
avoided that there is a dependence on spatial variables. T
the best one can do is to make this dependence as simp
possible so that it is possible to extract the fast part eas
For a classical system a convenient microscopic definition
a local temperature field density is therefore given by

T~r ,t !5(
i

u~pi !d„r2r i~ t !…. ~4!

The canonical averagêT(r ,t)& is given by nT, where n
5N/V is the number density. Although it is not a conserv
quantity, in supercooled liquids the temperature fieldT(r ,t)
has a slow component, due to its dependence on the p
tional degrees of freedom. However, the fast fluctuation p
can easily be obtained by subtracting these slow density fl
tuations:

dT~r ,t !5T~r ,t !2Tr~r ,t ! ~5!

or in Fourier space

dTq~ t !5Tq~ t !2Trq~ t !. ~6!

Note that by construction this temperature fluctuation d
not have anystatic coupling to functions of the form
Gq(r N)5G(r N)exp(iq•r i), i.e., that depend only on the po
sitions of the particles,

^dTq* Gq~r N!&50, ~7!

which shows that its dynamic autocorrelation functi
FTT(q,t)5„Tq(t)uTq… cannot be proportional to any mult
point density correlation function.~For later use we have
introduced the notation (AuB)ª^dA* dB&.! Although it is
not possible to prove from the Ansatz equation~5! that
dTq(t) is really a fast variable forq.0, i.e., that it does no
undergo a structural arrest in the canonical ensemble, th
something that can be checked in simulations and below
will demonstrate that this is indeed the case. However, i
important to note that, although there is no static coupl
betweendTq and the density fluctuations, thetime depen-
dence of the temperature fluctuations is nevertheless affe
by the slowing down of structural relaxation, due to tim
dependencies of thermodynamic derivatives like the spe
heat, which are exclusively caused by structural relaxatio
Furthermore we emphasize thatfor q50 this indirect influ-
ence is the only one remaining, so that the time depende
10420
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of FTT(0,t) is no longer dominated by hydrodynamic sing
larities, but shows the same slowing down as the dynam
of the structural degrees of freedom. This was derived in R
21 within linear response theory. In the following we w
briefly sketch the main steps in that derivation in order
clarify the physics behind the final results.

Since in this paper we are interested in the freque
dependent specific heat per particle at constant volume,
first thing to do is to derive a microscopic expression for t
quantity and to relate it to the local fluctuations of the te
perature. For the sake of simplicity we will focus on the ca
of temperature fluctuations for vanishingly small waveve
tors, since in this limit they decouple from the single partic
density and current fluctuations.~However, in the last part of
this section we will also consider finite wavevectors.! To
determinecv(z) we have to calculate, in analogy to thestatic
caseDE5cv

eqDT, the effect of temperature fluctuations o
fluctuations of the total energy. To do this, we adiabatica
switch on a small fieldhT , which is the conjugate field to the
observabledTq defined in Eq.~6!. At t50 the field is
switched off. For this situation the probability distribution
the canonical ensemble is given by

exp„2b~H2hTdTq!…

Tr exp„2b~H2hTdTq!…
, ~8!

where b51/kBT. The field hT is a purely theoretical con
struction, which will enable us to derive for this speci
Gedankenexperiment explicit expressions for the time
pendent temperature—and resulting energy—fluctuatio
The linear coefficient connecting these two fluctuations is
time dependent specific heat. It is an intrinsic property of
system and therefore independent of the details of
Gedankenexperiment used to calculate it.

In the linear response regime the time evolution of a
variableY* (t) is given by

^Y* ~ t !&NE5^Y* ~ t !&1hTb„Y~ t !uTq…, ~9!

where the average on the left-hand side is done in the n
equilibrium ensemble equation~8!, and the ones on the right
hand side are performed in the standard canonical ense
@hT50 in Eq.~8!#. Using Eq.~9! for the caseY5Tq we thus
obtain for the time dependence of the temperature fluctua

^dTq* ~ t !&5hTb„Tq~ t !uTq…5hTbFTT~q,t !, ~10!

and the relaxation of a fluctuation of the energy, Eq.~1! with
Xi5Ei , is given by

^dEq* ~ t !&5hTb„Eq~ t !uTq…. ~11!

In analogy to the static case we define the frequency
pendent specific heatcv(z) as the coefficient between th
fluctuation in the energy and the one in temperature:

^dEq* ~z!&5cv~z!^dTq* ~z!&, ~12!

where dEq(z) and dTq(z) are the Laplace transforms o
dEq(t) anddTq(t), respectively. Hence we now have to e
press„Eq(t)uTq… from Eq. ~11! as a functional ofdTq(t).
4-3
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The Laplace transform of„Eq(t)uTq… is „EquR(z)uTq…, with
the resolventR(z)51/(L2z) and the Liouville operatorL.
Using a projection operator formalism with the operatorP
5udTq)(dTqudTq)21(dTqu to project on temperature fluc
tuations, the correlator (EquR(z)uTq) can be written as21

„EquR~z!uTq…5$~EquTq!2„EquR8~z!uLTq…%
1

STT
c ^dTq* ~z!&.

~13!

Here R8(z)ªQ/(QLQ2z), with Q512P, is the reduced
resolvent which describes the dynamics in the directions
phase space perpendicular to temperature fluctuations~and
by using the more general formalism from Ref. 21 also p
pendicular to density and current fluctuations!. The quantity
STT

c is defined as

STT
c 5^dTq* ~0!dTq~0!&52NT2/3, ~14!

and is independent ofq. ~The superscriptc indicates the ca-
nonical ensemble.! From Eq.~13! the expression for the spe
cific heat can be read off. We introduce the projection ope
tors Prªurq)(rqurq)(rqu and Qrª12Pr and use the
equations

LQrEq
K52LQrEq

P1O~q!52LQEq
P , ~15!

2QLQ

z2QLQ
5Q2

zQ

z2QLQ
, ~16!

whereEq
K andEq

P are the Fourier transform of the kinetic an
potential energy fieldsEK(r ) andEP(r ), respectively.29 The
specific heat can now be expressed as21

cv~z!5cv
eq1

b

NT
lim
q→0

z„Eq
PuR8~z!uEq

P
…, ~17!

where cv
eq5cv5b/(NT)limq→0(EquQruEq) is the equilib-

rium value of the specific heat30 per particle. We emphasiz
that Eq.~17! is an exact expression for the frequency dep
dent specific heat at constant volume. It only relies on Eq.~5!
as a physical reasonable definition of temperature fluc
tions.

Expression~17! reveals the physical origin of the fre
quency dependence of the specific heat very clearly: Du
the process of structural relaxation the system probes
potential energy landscape. This dynamics is governed
the ~slow! relaxation of the densities and their higher ord
products and hence gives rise to a nontrivial slow dynam
even in the projected dynamicsR8(z), although the latter
does not contain any hydrodynamic poles.

Expression~17! is the ideal starting point for approxima
tion schemes like the mode coupling theory. However,
exact calculations ofcv(z), e.g., in computer simulations,
cannot be used, since it is not possible to implement
projected dynamics. To solve this problem we will now e
presscv(z) in terms of correlation functions that can be me
sured in a real dynamics, such asFTT(q,t). For this we
make use of Refs. 21 and 31 where similar calculation as
presented forcv(z) were done forcp(z), the specific heat a
10420
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constant pressure, as well as the frequency dependent
conduction coefficientl̃(z). Using these results it can b
shown that for small wavevectors the Laplace transform
FTT(q,t) obeys the exact equation of motion

FTT~q,z!ª i E
0

t

dt exp~ izt!^dTq* ~ t !dTq~0!&

5
2STT

c 3kB/2

zcp~z!1l̃~z!q22z3
cp~z!2cv~z!

z22q2KB~z!/~mn!

,

~18!

whereKB(z) is the frequency dependent bulk modulus andn

is the particle density.21,31Although in generall̃ depends on
frequency z, theoretical arguments show21 that in super-
cooled liquids this dependence is only weak, in agreem
with experimental findings.7 Thereforel̃(z) can be replaced
by its static value,l̃(z50)5 il/n, wherel is the equilib-
rium heat conduction coefficient.32 Note that the form for the
equation forFTT(q,z) is exactly as the one in linearize
hydrodynamics27 except that now the transport coefficien
and the thermodynamic derivatives are generalized to fu
tions of the complex frequencyz.

In the limit of vanishing wavevectors we thus obtain fro
Eq. ~18! the following relation betweenFTT(q,z) andcv(z):

lim
q→0

FTT~q,z!

STT
c

5
23kB

2zcv~z!
. ~19!

We emphasize thatcv(z) as it occurs in Eqs.~18! and~19!
is exactly the dynamic specific heat from Eq.~12! that relates
fluctuations in temperatures to the ones in energy. Using
~19!, we thus can express this dynamic specific heat b
standard correlation function:

cv~z!5
23kBSTT

c

2zFTT~q50,z!
. ~20!

Therefore we find that in the canonical ensemble the spe
heat can be expressed by the autocorrelation function of
temperature fluctuations, a quantity which is readily acc
sible in simulations.~An equivalent definition of the specific
heat in terms of potential energy fluctuations is given in R
33.!

It is important to note that the expression~18! for FTT is
valid only in thecanonicalensemble. To obtain the corre
sponding relation in themicrocanonicalensemble, a genera
transformation due to Lebowitzet al. can be used,34 which
relates averages of time dependent functions in the canon
ensemble to their averages in the microcanonical ensem
DenotingdT(q50) by dT0 we thus obtain:
4-4
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FTT~ t !5^dT0* ~ t !dT0&c5^dT0* ~ t !dT0&mc1
b2kB

Ncv
eqU]^T0&

]b U2

5FTT
(mc)~ t !1

Nb2

kBcv
eqS ]1/b

]b D 2

5FTT
(mc)~ t !1

N

cv
eqkBb2

.

~21!

Here we used, that^T0&5NT. Equation~21! implies that the
temperature autocorrelation function in the canonical and
microcanonical ensemble are exactly the same up to a
stant shift. This shift is due to the existence of the fluctu
tions in the total energy in the canonical ensemble, he
fluctuations that do not exist in the microcanonical ensem
In the canonical ensemble there is, forq50, a component of
the temperature fluctuationdT(t) proportional todE/cv

th .
The fluctuation of the total energydE does not depend on
time due to energy conservation during the Hamiltonian
namics. This time-independent part of the fluctuation cau
also a time independent contribution to the correlation fu
tion FTT

c (t), which can be expressed aŝdE* dE&c /
(cv

eqcv
eq)5N/(kBb2cv

eq). Here we have used the relatio
^dE* dE&c5cv

eqNkBT2. This combination of energy conse
vation under Hamiltonian dynamics and properties of
statistical ensemble explains why the temperature autoco
lation function in the canonical ensemble does not deca
zero, even in the liquid. It is also the reason for the appe
ance of the 1/z-pole in Eq.~19!.

If we sett50 in Eq.~21!, the equilibrium specific heatcv
eq

can thus be written as

3kB

2cv
eq

512K~0!, ~22!

where we have used Eq.~14! and have introduced the no
malized temperature autocorrelation function

K~ t !ªFTT
(mc)~ t !/STT

c . ~23!

Putting this back into Eq.~21! and using Eq.~20! we finally
obtain

cv~z!5
3kB/2

12K~ t50!2z LT@K~ t !#~z!
, ~24!

where LT stands for the Laplace transform.
Equation~24!, with a slightly different definition of the

function K(t), was first used in Ref. 25 as anad hocgener-
alization of Eq.~22! to nonvanishing frequencies and lat
derived within thermodynamic response theory by Nielse24

So far we have focused on the autocorrelation function
Tq in the limit q→0. In the following we will now consider
the caseq.0. From Eq.~18! it follows immediately that for
small but not vanishingq the decay ofFTT(q,t) is domi-
nated by the hydrodynamic pole atv52 iD Tq2 with DT

5l/(ncp
eq). Below we will see that it is important to con

sider also corrections of orderq2 to DT . As it will turn out,
the frequency dependence of the specific heat will give
main contribution in these corrections. From theoreti
10420
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considerations21 as well as from experiments7 we know that
the heat conduction coefficients do not~or only very weakly!
depend on frequency. In analogy to the specific heat at c
stant volume,cv(z), the specific heat at constant pressu
cp(z), will also depend on frequency. Using a generalizat
of Legendre transformations between different thermo
namic ensembles it can be shown thatcp(z) can be written in
the formcp(z)5cp

eq1zD(z), whereD(z) is a frequency de-
pendent function with a positive spectrum.31 For z5v1 i e,
it is given by lime→0D(v1 i e)5D8(v)1 iD9(v). The value
of D9(v) at v50 has several contributions, one being pr
portional to the longitudinal viscosityh l5hV1 4

3 hS , where
hV andhS are the bulk and shear viscosity, respectively. T
relaxation timetq of FTT(q,t) which is related to the hydro
dynamic pole can be calculated by determining the f
quency at which the main denominator of Eq.~18! vanishes
up to order q6. Making the Ansatz 1/tq5vR52 iD Tq2

1 iBq42Aq4 we obtain

vR52 iD Tq2S 12
D9~v50!

cp
eq

DTq21
g21

KBg/mn
DT

2q2D
1DT

2 D8~v50!

cp
eq

q4, ~25!

whereg is cp
eq/cv

eq, g21 is the Landau-Placzek ratio, an
KB is the static bulk modulus. The real part indicates
experimentally undetectable shift of the position of the Ra
leigh peak to finite frequencies. Since it is the frequency
an overdamped harmonic oscillation, it does not influen
the relaxation timetq of the correlator in real time. From Eq
~25! the relaxation time up to orderq0 of the exponentially
decaying temperature autocorrelation function is thus gi
by

tq5
1

vR
5

ncp
eq

l

1

q2
1

D9~v50!

cp
eq

2DT

g21

KBg/~mn!
1O~q2!.

~26!

It is interesting to note that for the case of supercoo
liquids the term proportional toq0 is only positive due to the
existence of a frequency dependent specific heat, i.e.,
D9.0. Without it, the subtraction of the positive Landa
Placzek ratiog21 would lead to a negative offset in a plo
of tq against 1/q2. Below we will check the validity of thisq
dependence and calculate from this relation the value ol.
Note that in the case offinite wavevectors the autocorrelatio
functions ^dTq* (t)dTq(0)& in the canonical and microca
nonical ensemble are identical, and hence it is not neces
to use the transformation formula of Lebowitzet al.34

III. MODEL AND DETAILS OF THE SIMULATIONS

In this section we discuss the system we used to test
ideas presented in the previous section and give the detai
the simulations. At the end we also briefly discuss the infl
ence of finite size effects on the results.

Although the formalism presented in the previous sect
4-5
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SCHEIDLER, KOB, LATZ, HORBACH, AND BINDER PHYSICAL REVIEW B63 104204
is of course applicable to all types of glass forming liquids
is of special interest to investigate a system which exists
in reality, since this opens the possibility to compare
results from the simulations with those from experiments.
do a simulation of a real material one needs a potential
describes reliably the interactions between the atoms of
substance. In the case of silica such a potential does ind
exist, since a decade ago van Beestet al. ~BKS! usedab
initio calculations to obtain a classical force field for th
material.35 The functional form of this potential is given by

fab~r !5
qaqbe2

r
1Aab exp~2Babr !2

Cab

r 6

a,bP@Si,O#, ~27!

wherer is the distance between two ions of typea and b.
The value of the constantsqa , qb , Aab , Bab , andCab can
be found in Ref. 35. The short range part of the potential w
truncated and shifted at a distance of 5.5 Å, which lead
a better agreement of the results for the density of vitre
silica as predicted from this model with the experimen
values.5 In the past it has been shown that this potentia
able to reproduce reliably various properties of amorph
silica, such as its structure, its vibrational and relaxatio
dynamics, the static specific heat below the glass transi
temperature, and the conduction of heat.5,36–46 Thus, it is
reasonable to assume that this potential will also reprod
well the quantities needed to calculate the frequency dep
dent specific heat, i.e., the correlation functionK(t) in Eq.
~23!.

Using the BKS potential, the equations of motion we
integrated with the velocity form of the Verlet algorithm
with a time step of 1.6 fs. The sample was first equilibra
by coupling it every 50 time steps to a stochastic heat b
for a time which allowed the system to relax at the tempe
ture of interest.~We assumed a sample to be relaxed if t
coherent intermediate scattering function at the waveve
corresponding to the main peak in the static structure fa
had decayed to zero within the time span of t
equilibration.47! After this equilibration we started a micro
canonical run for the production from which we determin
the equilibrium dynamics at various temperatures. The te
peratures investigated were 6100, 4700, 4000, 3580, 3
3000, and 2750 K. At the lowest temperatureK(t) decays so
slowly that runs with 30 million time steps were needed
equilibrate the sample, which corresponds to a real time
49 ns. All the simulations were done at a constant densit
2.36 g/cm3 which corresponds to a pressure around 0
GPa.15 Since the temperature expansion coefficient of sil
is small,5,48 it can be expected that a constant pressure si
lation would basically give the same results as our simu
tion.

To obtain also results in the glass at room temperature
cooled the sample from 3000 to 2750 K with a cooling ra
around 3•1011 K/s, and then rapidly quenched it to 300 K
The so obtained glass was annealed for additional 300
time steps before we started the measurement of the va
quantities.
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Since the main observable of interest,K(t), is a collective
variable, it has a relatively large statistical error. Therefo
we averaged all the runs over 200 independent samples
T>4700 K, over 100 samples for 4000 K>T>3000 K,
and 50 samples forT52750 K. In order to make so man
independent runs the system size had to be rather sm
Therefore we choose a system of 112 silicon and 224 oxy
ions in a cubic box of size 18.8 Å. The Coulombic part
the potential was evaluated with the Ewald method an
parametera of 7.5 Å21. All these calculations took aroun
eight years of single CPU time on a parallel computer w
high end workstation processors.

As it was shown in Refs. 46 and 49, thedynamicsof
network glass formers shows quite strong finite size effe
since the small systems lack the acoustic modes at s
wavelength. Thus it can be expected that if we determ
K(t) for a system of 336 particles the result will be differe
from the ones for a system of macroscopic size. In orde
check the influence of the system size on our results we h
made some test runs with 1008 particles and found, in ag
ment with the results of Refs. 46 and 49, that at long tim
the dynamics of the larger system is a bit faster than the
of the small one.15 However, the qualitative behavior of th
various relaxation functions are independent of the sys
size and therefore we can expect that the results present
this work will hold also for larger systems.

IV. RESULTS

In this section we present the results from our simulati
i.e., the temperature dependence ofK(t) and the frequency
dependence of the specific heat. At the end we briefly disc
the time and temperature dependence of the generalizatio
K(t) to finite wavevectors.

As it is obvious from Eq.~24!, the first step in the calcu
lation of the frequency dependent specific heat is to de
mine K(t), the autocorrelation function of the fluctuation
the kinetic temperature. SinceK(t) is a collective quantity it
is relatively difficult of determine it with high accuracy. Thi
is shown in Fig. 1~a! where we plot K(t)/K(0) at T
53000 K. Each of the thin curves corresponds to the av
age over ten independent samples. From the figure we
ognize that even if the shape of the different curves is qu
similar, their height varies considerably. Thus one sho
realize that even if the average over 100 samples give
quite nice and smooth curve~bold solid curve! it still might
be subject to a significant statistical error.

In Fig. 1~b! we show the time dependence ofK(t)/K(0)
for all temperatures investigated. From this figure we see
for all temperatures this correlator decays within 1022 ps to
a value smaller than 0.2, i.e., very rapidly. For the high
temperaturesK(t) then shows a small shoulder at arou
0.01 ps, a feature which, at these temperatures, is not
served in correlation functions such as the intermediate s
tering functionF(q,t), whereq is the wavevector.41,44 ~See
Ref. 47 for a definition ofF(q,t).! With decreasing tempera
ture this shoulder extends to larger and larger times until
observe at the lowest temperature a well defined plat
which extends over several decades in time. Thus from
4-6
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FREQUENCY-DEPENDENT SPECIFIC HEAT OF . . . PHYSICAL REVIEW B 63 104204
point of view K(t) behaves qualitatively similar toF(q,t).
Since for this quantity it is customary to refer to this fin
decay as the ‘‘a relaxation’’ we will use the same term in th
case ofK(t) as well. Note that the height of the plateau
K(t) is only around 0.1, which shows that most of the c
relation of the kinetic energy is lost during the brief ballis
flight of the particles,t<1022 ps, inside the cage.

From the figure we also see that with decreasing temp
ture the correlation function starts to show a minimum
short times. The reason for this feature is that at low te
peratures and short times the system behaves similar
harmonic solid and thus it can be expected that the con

FIG. 1. Time dependence of the normalized kinetic energy
tocorrelation function.~a! T53000 K; each thin curve is the ave
age over ten different samples; the average over these curves
the bold curve.~b! K(t)/K(0) for all temperatures investigated.~c!
Bold curves:K(t) for T53000 K andT5300 K; thin curves:
velocity-autocorrelation functionJ(2t)/6kBT ~see the Appendix! at
the same temperatures.
10420
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tion betweenK(t) and the velocity-autocorrelation functio
J(t), see Eq.~A7! in the Appendix, starts to hold.~We re-
mind the reader that in supercooled liquids the veloci
autocorrelation function shows a dip at short times.! That
this is indeed the case is demonstrated in Fig. 1~c!, where we
compare the two correlators at a high and a low temperat
We see that forT5300 K, i.e., in the glass where the ha
monic approximation is valid,K(t) and J(2t) are identical
within the accuracy of the data~solid lines!. For temperatures
at which the system is still able to relax the situation is d
ferent. At short timesK(t) ~bold dashed line! shows oscilla-
tions with extrema which are located at the same times
which also J(2t) ~thin dashed line! shows maxima and
minima. Thus the harmonic-like character of the motion
these time scales is clearly seen. For larger times, howe
J(2t) goes rapidly to zero whereasK(t) shows the above
discussed plateau before it decays to zero at very long tim

In order to investigate this point in more detail we c
make use of Eq.~A8!, which relates the spectrum ofK(t),
K̂(v), to g(v), the time Fourier transform of the velocity
autocorrelation function. At low temperatures the lat
quantity is nothing else than the density of states of the s
tem.~In order to calculate these Fourier transforms we ma
use of the Wiener-Khinchin theorem which relates the pow
spectrum of a time dependent signal to the Fourier transf
of the corresponding autocorrelation function.50! In Fig. 2 we
show K̂(v) for a temperature in the melt and in the gla
~dashed lines! and compare these curves withg(v/2)/8 at the
same temperatures~solid lines!. We see that, within the ac
curacy of our data, in the glass the two curves are ind
identical. @We remind the reader that the two peaks at h
frequencies correspond to intra-tetrahedral motion of the
oms, whereas the broad band at lower frequencies co
sponds to~mostly! delocalized inter-tetrahedral motion.51,52#
For the case of the melt, however, the two curves dif
significantly from each other. Although the general shape
K̂(v) and g(v/2) are similar, the former quantity has
much smaller intensity at the two peaks at high frequenc
but a higher one in the broad band. Note that this ‘‘exces
in low frequency modes has nothing to do with the fact th
K(t) shows at long times aa relaxation, whereasJ(2t) does
not, since atT53000 K the typical frequencies of thea

-

ves

FIG. 2. Frequency dependence ofK̂(v) and g(v/2)/8 ~dashed
and solid curves, respectively!. Bold lines:T53000 K, thin lines:
T5300 K.
4-7
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SCHEIDLER, KOB, LATZ, HORBACH, AND BINDER PHYSICAL REVIEW B63 104204
relaxation are smaller than 1 THz, and their contribution
the spectra can only be seen as the narrow peak atv50 ~see
Fig. 2!.53 Thus from this figure we can conclude that at lo
temperatures the harmonic approximation is very go
whereas at intermediate temperatures significant deviat
are observed.

Sincec(z) is related to the Laplace transform ofK(t), see
Eq. ~24!, one has to calculate this transform with high acc
racy. From Fig. 1~b! we see, however, that at low temper
turesK(t) extends over many decades in time which ma
the calculation of this transform a nontrivial matter. Fro
this figure one also recognizes that, despite the large num
of samples we used, the curves have still a signific
amount of noise, most noticeable at long times and the l
est temperatures, since for these we used fewer sam
Since within the accuracy of the data the shape of the cu
does,in the late a-relaxation regime, not depend on tem
perature, we substituted forT<4700 K that part of the
curve which was below 0.02 by the corresponding part of
curve for T56100 K, after having it shifted to such larg
times that the resulting curve was smooth at 0.02. Sub
quently the so obtained curves were smoothed and
Laplace transform calculated making use of the formula
Filon.54

In Fig. 3 we show the real and imaginary part ofc(z) for
all temperatures investigated.~In the following we will as-
sumez5v1 i e, with e→0.! To discuss the frequency de
pendence of these curves let us focus for the momen
c8(v) for T52750 K, the lowest temperature at which w
could equilibrate our system. At very high frequenciesc8(v)
becomes independent ofv and has a value of 1.5, which i

FIG. 3. Frequency dependence of the specific heat for all t
peratures investigated.~a! Real part.~b! Imaginary part.
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the specific heat of an ideal gas. This result is reasona
since these high frequencies correspond to times at which
dynamics of each particle is not affected by the other on
i.e., they move just ballistically. Upon lowering the fre
quency the specific heat rises rapidly since we are now in
frequency regime in which the dynamics of the system
mainly dominated by vibrations, see Fig. 2. Therefore
these frequencies the system can take up energy giving
to the increase ofc8(v). Note that before this increase oc
curs, c8(v) shows a little dip around 40 THz, i.e., it fall
below the ideal gas value. This dip can easily be underst
by the harmonic picture proposed above, because the spe
heat for a single harmonic oscillator shows a singularity at
resonance frequency. Since in our system we have m
different oscillators that have typical frequencies betwee
and 80 THz, this singularity is smeared out and results in
dip and subsequent strong increase ofc8(v). The same
mechanism is the reason for the little peak at around 5 T

If the frequency is decreased further,c8(v) stays constant
until v21 is on the order of the time scale of thea relax-
ation, i.e., the time scale of the structural relaxation. In t
frequency range the system is again able to take up en
and hencec8(v) increases again. At even lower frequenci
c8(v) becomes constant, i.e., it has reached the value of
staticspecific heat. This sequence of features inc8(v) can of
course also be found inc9(v), since the two functions are
related by the Kramers-Kronig relation. In Fig. 3~b! we see
that at high frequencies the imaginary part has a peak wh
corresponds to the vibrational excitations in the system.
much lower frequencies we find thea peak which corre-
sponds to the structural relaxation process, i.e., the typ
dynamics in which particles change their neighbors. For
ture reference we will introduce the terms ‘‘vibrational an
configurational part of the specific heat’’ by which we me
the height of the plateau inc8(v) at intermediate frequencie
and the height of the step at low frequencies, respectiv
and will denote them bycconf andcvib .55

Let us now discuss the temperature dependence ofc8(v)
and c9(v). From Fig. 3~a! we see that the specific heat
intermediate frequencies is essentially independent ofT,
since the vibrational motion of the ions is just a weak fun
tion of temperature. The main effect of an increase in te
perature is that the height of the flat region at very smallv,
i.e., the static specific heat increases and that the cross
from this region to the plateau at intermediate frequenc
moves to higher frequencies. At the highest temperature
crossover frequency has moved up to such high frequen
that no intermediate plateau is visible anymore, which me
that in the system there is no longer a separation of t
scales for the vibrational and relaxational processes. Furt
more we find that at the highest temperature the height of
plateau at small frequencies has decreased, i.e., that the
of the static specific heat has decreased. This effect is m
likely related to the fact that silica shows a density anoma
which for the present model occurs at around 4600 K.5

The temperature dependence just discussed is also fo
in the imaginary part ofc(z) in that, with increasing tem-
perature, thea peak moves continuously to higher freque
cies until it merges with the microscopic peak. All this b

-
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FREQUENCY-DEPENDENT SPECIFIC HEAT OF . . . PHYSICAL REVIEW B 63 104204
havior is qualitatively similar to the one found for dynam
observables that measure the structural relaxation, suc
the dynamic susceptibility.56,57 Thus this gives evidence tha
the observable related to the structural relaxation andc(z)
are closely connected to each other.

We also note that at low temperatures the form of
curves at low frequencies as well as their temperature de
dence resembles very much the ones found
experiments.6–10,13The main difference is that in the simula
tion it is possible to measurec(z) even at such high frequen
cies that the effect of the microscopic vibrations becom
visible. Thus it is possible to follow continuously the evol
tion of c(z) from the microscopic regime to the mesoscop
one, i.e., to investigate the whole frequency dependenc
c(z) from the liquid state to the viscous state. In contrast
this, experiments can probe only the frequency range be
104 Hz and therefore only thea regime is observable. How
ever, since experimentally it is much simpler to equilibra
the material also at temperatures close to the glass trans
temperature,c(z) can be measured at significantly low
temperatures than in a simulation.

Finally we mention that we have included in Fig. 3 al
the data forT5300 K, i.e., a temperature at which the sy
tem is deep in the glass state. We see that this curve foll
the pattern of the equilibrium curves very well in that
shows also the ‘‘harmonic resonance’’ at high frequenc
and then a plateau at lower frequencies. No second plate
seen inc8(v) @or ana peak inc9(v)] at very small frequen-
cies since at this temperature these features would occ
such lowv that they are not visible within the time span
the simulation~or even an experiment!.

Since the part of the specific heat that is related to
structural relaxation is thea-relaxation peak at low frequen
cies, we will study this peak now a bit in more detail. In Fi
4 we show an enlargement of this peak for intermediate
low temperatures. We clearly see that with decreasing t
perature the area under the peak becomes smaller, w
means that the configurational part of the specific heat
creases. This temperature dependence might be some

FIG. 4. Main figure: Frequency dependence of thea peak for
intermediate and low temperatures. Inset: Same curves scale
the height of their maximum versusv/vmax, where vmax is the
location of the maximum. Dashed line: Kohlrausch-Williams-Wa
function.
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unexpected since for other dynamic susceptibilities, such
the one connected to the intermediate scattering funct
one finds that the so-called time temperature superpos
principle is valid, i.e., a decrease in temperature just gi
rise to a horizontal shift of thea peak.41,57 However, since
the area under thea peak is related via the Kramers-Kroni
relation to the height of the step at low frequency inc8(v),
i.e., the configurational part of the specific heat, it is n
surprising that this area depends on temperature, and b
we will show that this is indeed the case. This tendency
also be easily understood from Eq.~24!: For this we assume
that in thea-relaxation regime at low temperatures the fun

tion K(t) can be written asK(t,T)5 f (T)K̃„t/t(T)…, where
f (T) is the height of the plateau andt(T) is the typical
relaxation time. That this assumption is reasonable can
inferred from Fig. 1~b!. It is now simple to show thatc9(v)

can be approximated byc9(v)' c̃9„vt(T)…f (T)/„12K(t

50)…25 c̃9„vt(T)…f (T)4(cv
eq)2/9kB

2 , with a master function

c̃9. @Here we also made use of Eq.~22!.# Since the function
c̃9 is assumed to be independent of temperature, we see
the whole T dependence ofc9(v) is given by a shift in
frequency proportional tot(T) and a vertical rescaling by
f (T)(cv

eq)2. Thus we conclude that the configurational part
the specific heat is proportional tof (T)(cv

eq)2. For the
present system both,f (T) andcv

eq, decrease with decreasin
temperature, and thus it is clear that the same is true
cconf. However, in certain materials, such as fragile gla
formers, it is sometimes observed that the specific heatin-
creaseswith decreasing temperature. Thus in these cases
temperature dependence ofcconf does not have to decreas
monotonically, but it might, e.g., exhibit a local maximum

Although the height of thea peak changes, its shap
seems to be independent of temperature. To demonstrate
we plot in the inset of Fig. 4c9(v)/c9(vmax) vs v/vmax,
where vmax(T) is the location of thea peak. Since the
curves for the different temperatures fall on top of ea
other, to within the accuracy of the data, we conclude t
the shape does indeed not change with temperature.
included in the figure is the Fourier transform of
Kohlrausch-Williams-Watts-law with a stretching expone
0.9. We see that this functional form fits the master cu
quite well, at least if one does not go to too high frequenc
At these higher frequencies the scaling breaks down du
the presence of the microscopic peak. We also mention
the ~relatively large! value of the stretching parameter is re
sonable, since in strong glass formers the stretching in
structural relaxation is usually weak, and indeed we ha
found that also for the present model the structural relaxa
shows only a weak stretching.41

Further evidence that the structural relaxation and the
quency dependent specific heat are closely connected to
other can be obtained by comparing the typical time sca
for these functions. For this we have calculated the~incoher-
ent! intermediate scattering functionFs(q,t)47 for a
wavevectorq51.7 Å21, which corresponds to the locatio
of the first peak in the static structure factor.44 We have
defined thea-relaxation timetF

a , aP$Si, O%, by the time it

by
4-9
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SCHEIDLER, KOB, LATZ, HORBACH, AND BINDER PHYSICAL REVIEW B63 104204
takes this correlation function to decay to 1/e of its initial
value. To characterize the time scale for the specific hea
have determined fromc9(v) the position of the maximum o
the a peak and defined the relaxation timetc as 1/vmax. In
Fig. 5 we show the temperature dependence of these re
ation times in an Arrhenius plot. From that graph we see t
the relaxation timestc andtF

a track each other very well in
that at low temperatures both of them show an Arrhenius
with a very similar activation energy~numbers are given in
the figure!. With increasing temperature, deviations from th
law are seen, the origin of which have been discus
elsewhere,44 but also these deviations are the same for b
quantities. That the structural relaxation and the specific h
do indeed track each other is demonstrated in the in
where we plot the ratiostF

a/tc as a function of inverse tem
perature. Since we see that these ratios are independe
temperature to within the accuracy of the data, we can c
clude that the temperature dependence of the three quan
is indeed the same.

In the discussion of Fig. 3~a! we have mentioned that th
increase inc8(v) at high frequencies is due to the vibr
tional degrees of freedom, whereas the step at lower freq
cies is due to the relaxation of the configurational degree
freedom. By measuring the heights of these two steps it t
becomes possible to determine the contribution of the vib
tional and configurational degrees of freedom to the st
specific heat and to investigate how these quantities dep
on temperature.58 The results obtained are shown in Fig.
where we plotcv

eq, the value ofc8(v) at very low frequen-
cies which is hence the static specific heat,cconf, the height
of the step inc8(v) at low frequencies, andcvib , the value of
c8(v) at intermediate frequencies. Several observations
be made: Firstly,cvib shows a very regular temperature d
pendence which can be approximated well by a linear fu
tion of temperature, at least in the temperature range in
tigated. An extrapolation of this temperature dependenc
lower temperatures shows thatcvib attains the harmonic
value of 3kB only at low temperatures ('1000 K), i.e., at

FIG. 5. Main figure: Temperature dependence of
a-relaxation times as determined from the incoherent intermed
scattering function and the frequency dependent specific heat.
straight lines are fits with an Arrhenius law. Inset: ratio of the
relaxation times.
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temperatures that are well below the~experimental! glass
transition temperature, which is at 1450 K,61 a value that
seems to be reproduced reasonably well by the pre
model.44 Hence we find thatcvib is affected by anharmonic
effects even at relatively low temperatures. We also men
that the vibrational partcvib in the temperature rang
2750 K<T<3500 K seems to be in nice agreement with
linear extrapolation of the experimental specific heat of t
glass belowTg51450 K to higher temperatures, i.e., if on
leaves out the increase of the specific heat due to the g
transition.

The temperature dependence ofcconf is much more pro-
nounced than the one ofcvib , in that it shows around 4000 K
a crossover from a relatively weak temperature depende
at highT to a stronger one at lowT. Furthermore we see tha
cconf is significantly smaller thancvib , which is in agreement
with the experimental result that strong glass formers sh
only a small drop in the specific heat when the temperatur
lowered below the glass transition temperature, i.e., when
relaxational degrees of freedom are frozen.62 We also note
that for a strong glass former one expects that the Kauzm
temperatureTK is very small.63 From the figure it seems
however, that a naive extrapolation ofcconf to lower tempera-
tures leads to an intercept with the temperature axis aro
Tconf'2000 K. Since the inequalityTconf<TK must hold,
this type of extrapolation thus leads to an estimate ofTK
>2000 K. This high estimate ofTK is corroborated by re-
cent results of the same model in whichTK was estimated by
the direct calculation of the entropy and a subsequent
trapolation to lower temperatures.64

These results forTK depend of course crucially on th
way cconf is extrapolated to lower temperatures. From Fig
it is clear that it is also possible to make this extrapolation
such a way that, e.g., atT51450 K its value is around
0.5kB /particle, i.e., equal to the height of the step in t
experimental curve atTg ~see experimental curves i
figure!.65 If the extrapolation is done in this way, the estima
of Tconf is moved to much lower temperatures. Thus it will b
very interesting to attempt to do simulations at even low
temperatures in order to minimize the effects of this extra

te
he

FIG. 6. Temperature dependence ofcconf andcvib , the configu-
rational and vibrational part of the specific heat, respectively, an
their sumcv

eq. The dashed line is the specific heat as calcula
from the harmonic approximation~Ref. 42!. The curves with the
small symbols are experimental data from Refs. 59 and 60.
4-10
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lation. For this it will of course be necessary to equilibra
the system at even lower temperatures, which is comp
tionally difficult. One promising way to achieve this is th
so-called method of ‘‘parallel tempering,’’ and work in th
direction is presently done.66–68

Also included in the figure is the specific heat of the s
tem as calculated from the harmonic approximatio42

~dashed line!. This was done by determining the eigenvalu
of the dynamic matrix, and hence the density of statesg(v),
and using the expression

cv5
h2

kBT2E0

`v2g~v!exp~hv/~kBT!!

„exp~hv/~kBT!!21…2
dv. ~28!

More details on this calculation can be found in Ref.
where it has been shown that this theoretical curve ag
very well with experimental data below the glass transit
temperatureTg ~see the experimental data of Sosman59 and
Richetet al.,60 and the theoretical curve of Horbachet al.42

in the figure!. From the graph we see that an extrapolation
cv

eq to lower temperatures extrapolates nicely to the exp
mental data and that an extrapolation ofcvib to lower tem-
peratures can be joined smoothly to the curve from the h
monic approximation, thus showing that the two types
calculations are consistent with each other.

The expressions derived in Sec. II were valid for
wavevectorsq and only at the end, i.e., in Eq.~19!, we re-
stricted ourselves toq50 in order to obtain the equatio
relating the frequency dependent specific heat to the t
perature fluctuations. After having investigated so far
temperature dependence ofc(z), we now turn our attention
to FTT(q,t), the autocorrelation function ofdTq(t), which
measures the fluctuations in temperature at finite wave
tors. From the definition ofFTT(q,t) it is clear that this
function should scale likeT2. That this is indeed the case
shown in Fig. 7, where we showFTT(q,t)/T2 for various
wavevectors and temperatures. Since for each waveve
the curves for the different temperatures fall on top of ea
other we recognize immediately that theT22 dependence is
correct. Note that this weak temperature dependence foq
.0 is in strong contrast to the one found forq50 @see Fig.

FIG. 7. Time dependence of the autocorrelation function of
generalized temperature fluctuationsdTq(t). The different line
styles correspond to different temperatures and the different th
ness to different wavevectors.
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1~b!#. It reflects the fact that the thermal conductivityl is
only a weak function of temperature, see Eq.~26!.

From the plot we also see that the typical time scale o
which the correlation functions decay, increases with
creasing wavevector, in qualitative agreement with Eq.~26!
which predicts aq22 dependence. To determine theq depen-
dence of this decay we define a decay timet(q) as the time
it takes the correlation function to decay to 0.1 of their init
value. The wave-vector dependence oft(q) is shown in Fig.
8 where we plotq2t(q) vs q2. ~Since within the accuracy o
our data the temperature dependence ofFTT(q,t) is indepen-
dent of T we show only one set of data points.! From this
figure we recognize that for small wavevectors the relaxat
time scales indeed likeq221const, as expected from hydro
dynamics ~straight line!, that however, this linear depen
dence breaks down for large wavevectors. Furthermore
see that the slope of this straight line is positive, whi
means that the second term in Eq.~26! is larger than zero.
From this equation it follows that the intercept of the straig
line with the abscissa is given byncp

eq/l, where n is the
particle density andl is the thermal conductivity. We rea
off an intercept 0.0180 ps/Å2 and with the specific heat o
4kB per particle, see Fig. 3~a!, we obtainl52.4 W/~Km!.
This value is in good agreement to the one determined b
completely different method in the simulation by Jund a
Jullien who foundl'1.3 W/~Km! around 1000 K.43 The
experimental values for this quantity range between 2 an
W/~Km! at high temperatures ifT>1000 K,48 i.e., our value
is in agreement also with the experimental data.~Note that in
experiments it is found that thel is a strong function of
temperature for temperatures below'1000 K. For higher
temperatures it seems, however, to level off and thus it
be extrapolated reasonably safely to temperatures in the m
Since this temperature dependence ofl is due to anharmo-
nicities one can conclude that these become effectively in
pendent ofT in the temperature range of the supercoo
melt.!

V. SUMMARY AND DISCUSSION

The goal of this paper is to show how the frequency d
pendent specific heat,cv(z), is related to the dynamics of th

e

k-

FIG. 8. Relaxation time for the autocorrelation functio
FTT(q,t)/T2 multiplied byq2 versus the square of the wavevecto
The straight line is a fit with the functional form given by Eq.~26!.
This line is given byq2t50.0180 ps Å2210.0101q2 ps.
4-11
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particles on the microscopic level. For this we use the Mo
Zwanzig projection operator formalism to derive an ex
expression forcv(z) @Eq. ~17!#. This expression allows us t
identify the physical mechanism which causes the freque
dependence ofcv(z), namely the relaxation of the potentia
energy during the structural relaxation. Using an exact tra
formation formula by Lebowitzet al., we obtain an equation
which relatescv(z) to the Laplace transform ofK(t), the
autocorrelation function of temperature fluctuations@Eq.
~24!# in the microcanonical ensemble, and which thus can
used to determinecv(z) from a computer simulation. This
relation has been derived previously by Nielsen24 on the ba-
sis of thermodynamic arguments. In contrast to that appro
we are, however, also able to generalize the correlatorK(t)
to finite wavevectors and to relate the time dependence
these quantities to the thermal conductivity of the syste
Eq. ~26!.

By using molecular dynamics computer simulations o
simple but quite realistic model for silica, we have det
mined the time and temperature dependence ofK(t). We see
that at low temperatures this correlator shows a two-step
cay, similar to the one that is found in the time correlati
functions for structural quantities, such as the intermed
scattering function. In contrast to these correlators the he
of the plateau at intermediate timesdecreaseswith decreas-
ing temperature, a trend that can be understood by reali
that at very low temperaturesK(t) is directly related to the
autocorrelation function of the velocity.

From the time dependence ofK(t) we have calculated the
frequency dependent specific heat. In contrast to prev
numerical investigations the accuracy of our data is h
enough to analyze in detail the frequency dependence o
real and imaginary part ofc(z). We find that at very high
frequencies the value ofc8(v) is the one of an ideal gas an
that with decreasing frequency it shows a rapid incre
which is due to the vibrational excitations of the system.
low temperatures we see thatc8(v) shows a second increas
at those low frequencies that correspond to the time scale
the structural relaxation. This frequency dependence is
reflected inc9(v) where the first and second increase a
reflected by the microscopic anda peak, respectively. Thu
we find that the frequency dependence ofc(z) is qualita-
tively very similar to the one found in the dynamical susce
tibility for structural quantities, which shows how intimate
connected these quantities are. Further evidence for this
be obtained from the observation that the location of thea
peak inc9(v) shows the same temperature dependence
the structural relaxation, in agreement with experimen
findings.10,12,13

From the height of the two mentioned steps inc8(v), we
are able to determine the vibrational and the configuratio
part of the specific heat. We find that the former is sign
cantly higher than the latter, which is in agreement with
experimental observation that in strong liquids the drop
the specific heat at the glass transition is relatively small

Finally, we have calculated the time dependence of
autocorrelation functions of temperature fluctuations at fin
wavevectors. In agreement with our theoretical predicti
these functions decay much faster than the one forq50, i.e.,
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K(t), and depend only very weakly on temperature. Fr
theq dependence of the relaxation time of this correlator
calculate the thermal conductivityl and find good agree
ment of our value with the one in experiments and a co
puter simulation in whichl was determined by a differen
method.

We also point out that, since our simulations have be
done at constant volume, it is clear that the frequency dep
dence ofc(z) and the strong temperature dependence
vmax, the location of thea peak inc9(v), is not the result of
the frequency and temperature dependence of the ma
scopic density. Some time ago Zwanzig proposed~essen-
tially! the following mechanism for theT dependence of
vmax:

20 A change in temperature will, in general, give rise
a change in density~since most real experiments are done
constant pressure and not density!. Due to the high value of
the bulk viscosity, this volume relaxation will be slow an
occur on the time scale of thea relaxation, and hencecp will
be frequency dependent. Since, in turn, the frequency de
dence of the viscosity is due to the slow relaxation of t
structure on the microscopic scale, Zwanzig thus argued
the reason for theT dependence ofvmax is just anindirect
effect of the slow microscopic dynamics. Since in a syst
with constant volume this mechanism is not present and
simulations demonstrate thatvmax does show a strongT de-
pendence, we conclude that the reason for this depend
must be a different one.

Finally, we also mention that from the shape of thea
peak inc9(v) it is also possible to calculate the time depe
dence of the enthalpy in a cooling and heating experime
For this we made simulations in which the sample was fi
cooled with a finite cooling rate through the glass transit
temperature and subsequently reheated aboveTg . Using the
equilibrium data forc(z) we were able to reproduce accu
rately the time and temperature dependence of
enthalpy,15,16which shows that if one knows theequilibrium
quantity c(z), one is also able to predict the system in
out-of-equilibrium situation.
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APPENDIX: RELATION BETWEEN THE DENSITY
OF STATES AND THE AUTOCORRELATION FUNCTION

OF THE KINETIC ENERGY FOR A HARMONIC SYSTEM

For a purely harmonic system with the Hamiltonian

H5
p2

2m
1

mV2r2

2
~A1!

momenta and space coordinates are Gaussian variables.
simplifies considerably the evaluation of the normalized
tocorrelation function of the kinetic energyK(t). For a set of
4-12
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Gaussian variables with zero mean the four point correla
function ^ABCD& can be expressed by the two point corr
lation functions:

^ABCD&5^AB&^CD&1^AC&^BD&1^AD&^BC&.
~A2!

Using this relation, the autocorrelation function^pm
2 (t)pn

2&
can be written as

^pm
2 ~ t !pn

2&52^pm~ t !pn&
21^pm

2 &^pn
2&. ~A3!

Since ^pm(t)pn&5dmn^pm
2 &cosVt, the autocorrelation func

tion FTT(t) is given by

FTT~ t !5
1

9m2kB
2
„^p2~ t !p2&2^p2&2

… ~A4!

5
2

9m2kB
2 (

m
^pm~ t !pm&2 ~A5!

5
T2

3
„cos~2Vt !11…. ~A6!
10420
n
-
All averages are in the canonical ensemble and we used
^pm

2 &5kBT. From Eq.~21! we know, by using the value o
the specific heat of a harmonic oscillator in three dimensi
cv

eq53kB , thatFTT
(mc)(t)5FTT(t)2T2/3. By defining the ve-

locity autocorrelation functionJ(t)5m^v(t)v& and noting,

that for a harmonic oscillator„vW (t)uvW …53kBT/m cos(Vt) we
obtain the result

K~ t !5
J~2t !

6kBT
. ~A7!

Taking the Fourier transform of Eq.~A7! and using, that the
density of statesg(v)52J(v)/(3kBT),69 we arrive at the
result

K̂~v!5
g~v/2!

8
. ~A8!
.
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4R. Brüning and K. Samwer, Phys. Rev. B46, 11 318~1992!.
5K. Vollmayr, W. Kob, and K. Binder, Phys. Rev. B54, 15 808

~1996!.
6N. O. Birge and S. R. Nagel, Phys. Rev. Lett.54, 2674~1985!.
7N. O. Birge, Phys. Rev. B34, 1631~1986!.
8P. K. Dixon and S. R. Nagel, Phys. Rev. Lett.61, 341 ~1988!.
9P. K. Dixon, Phys. Rev. B42, 8179~1990!.

10N. Menon, J. Chem. Phys.105, 5246~1996!.
11T. Christensen, J. Phys.~Paris!, Colloq. 46, 635 ~1985!.
12H. Leyser, A. Schulta, W. Doster, and W. Petry, Phys. Rev. E51,

5899 ~1995!.
13Y. H. Jeong and I. K. Moon, Phys. Rev. B52, 6381~1995!.
14M. Beiner, J. Korus, H. Lockwenz, K. Schro¨ter, and E. Donth,

Macromolecules29, 5183~1996!.
15P. Scheidler, Diploma thesis~Universität Mainz, 1999!.
16P. Scheidler, W. Kob, and K. Binder~unpublished!.
17S. L. Simon and G. B. McKenna, J. Chem. Phys.107, 8678

~1997!.
18D. W. Oxtoby, J. Chem. Phys.85, 1549~1986!.
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