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Microscopic theory of quadrupolar ordering in TmTe
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We have calculated the crystal electric field of TmTlex(T) and have obtained that the ground state of a
Tm 4f hole is thel'; doublet in agreement with Msbauer experiments. We study the quadrupole interactions
arising from quantum transitions off4holes of Tm. An effective attraction is found at thepoint of the
Brillouin zonedL . Assuming that the quadrupolar condensation involves a single aﬁmwé show that there
are two variants for quadrupole ordering which are described by the space @dlgpandC2/m. The Landau
free energy is derived in mean-field theory. The phase transition is of second order. The corresponding
quadrupole order parameters are combinationk,gfandE, components. The obtained domain structure is in
agreement with observations from neutron diffraction studies for TmTe. Calculated lattice distortions are found
to be different for the two variants of quadrupole ordering. We suggest to measure lattice displacements in
order to discriminate between those two structures.
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[. INTRODUCTION quadrupolar interaction forces are of short range, it is neces-

The monochalcogenides of rare-earth elements crystallizsary to take into account the structure of the face centered
ing in the rocksalt structure, exhibit interesting electrical,cubic (fcc) lattice and the full matrix character of the qua-
optical and magnetic propertiédn TmTe thulium is in a  drupolar interactions. Furthermore, the couplingTgf and
divalent state with one #hole (4f'% localized at each Tm E,4 representations is important and affects the quadrupolar
site. At room temperature TmTe is a semiconductor with thephase transition. It is the purpose of the present paper to
electron band energy gap 0.25 ¢vom photoemission data investigate the quadrupolar phase transition and to determine
and anf —d band gap 0.35 eVfrom absorption dale Mag-  the crystal structuréspace groupof the quadrupolar ordered
netic structure determination leads to a type-Il antiferromagphase. Hence it is necessary that the symmetries of quadru-
net below the Nel temperaturéTy=0.43 K. Under pressure polar interactions on a fcc lattice are carefully taken into
of 2 GPa TmTe undergoes a semiconductor-metal tranditioraccount. Multipolar interactions &, and T, modes on a
where a ferromagnetic order occumsith a Curie tempera- fcc lattice have been studied earlier in connections with the
ture Tc=14 K for 2.7 GPa. At pressure of 5.7 GPa TmTe problem of orientational order in a molecular crystal, solid
undergoes a structural phase transition to a tetragonals,.l’
structur&’ with a further decrease of resistivityA renewed In constructing a microscopic theory of quadrupolar or-
interest in TmTe has emerged from the recent unexpectedering in TmTe we will use the concepts we have developed
discovery of an antiferroquadrupolékFQ) phase transition recently®°for the description of they-« transition in Ce.
below To=1.8 K at atmospheric pressuteThe transition  We will take advantage of the fact that Tm and Ce are mirror
was first revealed by specific heat measurenfemtsl then  elements in the series of lanthanides. We recall that Ce has
confirmed by elastic constant anomafiesid by neutron dif-  one single electron in thefdshell while Tm has one hole
fraction in an external magnetic field.In the quadrupolar (electron configuration #). While Ce is a metal, TmTe is
ordered state by the application of a uniform magnetic fieldan insulator fofT nearT,,. Hence we will neglect the polar-
superlattice neutron Bragg peaks, corresponding to the wavgation of conduction electrongwhich contributes to the
vector q=(2/a)(1/2,1/2,1/2), appear in addition to the quadrupolar interactidfiin Ce) in our treatment of TmTe.
normal ferromagnetic intensity superimposed on the nucleaBecause of charge transfer from Tm to Te, only a small
peaks? (see for a review Ref. 11 and for recent developmenfraction of conduction electron density is left around the
Refs. 12,18 Thus TmTe has been found to belong to anTm** jon.
increasing family of rare eartls(TmCd, TmAy, CeB;, In zero magnetic field the magnetic susceptibility of
DyB,C,, and so onhwhich exhibit quadrupolar ordering. TmTe shows a small anomaly &, .9 Thus the quadrupolar

An important insight in the nature of the AFQ ordering of ordering is not directly connect®davith the magnetic order-
TmTe can be gained on the basis of a classical description éfig in TmTe which occurs at still lower temperatufg, .
multipoles presented in Refs. 15,16. However, the theoreticalherefore in this paper we limit ourselves to the charge de-
treatment in Refs. 15,16 is based on a phenomenologicgrees of freedom leaving the magnetic properties for future
Hamiltonian where the quadrupole-quadrupole interactiongonsiderations.
are taken to be isotropic in the subspace$ o(Ey) andl's The content of the present paper is the following. In Sec.
(T,g) irreducible representations of the cubic point groupll we calculate the crystal field which refers to thé Hole in
Oy, . In addition, a coupling between these representations i§mTe. The result is compared with experimental data. Next
neglected. Such a treatment has shortcomings and does rn&ec. Ill) we study the quadrupolar interactions and the re-
allow us to determine the crystal structure. Indeed, since theulting phase transition. We suggest condensation schemes
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leading to the monoclinic space grou@/c or C2/m. In TABLE I. Angular-momentum-decomposed electronic charges
order to discriminate between these space groups, we calc@ and total charge®” inside Tm and Te MT spheres and in the
late the accompanying lattice distortiof8ec. I\V) and sug- interstitial region(LAPW calculations, see Ref. 31 for details and
gest synchrotron radiation experiments. Finally, the results of€finitions.

our work are summarized and commented in the Conclusion

(Sec. V. A ™™ Te interstices
A 0.16% 1.82%
Il. CRYSTAL FIELD Qb 0.14G 4,084

The issue of the crystal electric fie[CEP of TmTe is sQi 0.27% 0.01%

controversial. A Schottky specific heat peak around 5 K haga +1.509e| +0.079¢| —1.58de|
been found indicating that the total CEF splitting is about 15
K.2° From thermal expansion data at low temperai@re16
K) the following sequenc€'g(0 K)-I';(10 K)-I"'4(16 K) has
been proposetf. Recent inelastic neutron scattering experi-
ment supports th&g ground staté? However, from Mws-
bauer spectroscopy another schenig;(0 K)-I"g(12K)
-T'¢(19.6 K), has been deducédThe latter sequence was
also obtained by detailed ultrasonic velocity measurenfénts.
Here we would like to remark that some of these results ar
not direct and depend on conditions, methods and mode
used to fit experimental data.

As a starting point of our derivation of the CEF we recall
that here we consider the effect on the hole in theskell of distribution in the TmTe unit cell. The previous electron

Tm*™*. In comparison with the case of one electr@s in . . :
Ce), the position of the corresponding energy levels is re.2and structure calculatiéh of TmTe in the local density

versed. For ions of lanthanides in solids the spin-orbit Cou_approxmanon(LDA) does not give such information. We
lin then have performed our linear augmented plane wave
pling (LAPW) calculations using LDA and the muffin-titMT)
Vegm L6 (2.1 approximatiort® The MT radii 2.9 and 3.1036 a.u. were cho-
SO ' sen for Tm and Te, respectively. The MT potential and den-
dominates crystal field effects. The potentia)o has spheri-  sity of Tm and Te have been obtained self-consistently using

cal symmetry. Herd. and S are the orbital and the spin @ LAPW basis of~170 plane wave functions on a 20-point

> -2 mesh of the irreducible domain of the fcc Brillouin zone.
angular momentum operatord=L + S is the total angular . .
. g a During the calculations thkelectrons of Tm were treated as
momentum, with eigenvalues df: J=7/2 andJ=5/2. In

Eq. (2.1) ¢ is the spin-orbit coupling constant. In case of qcore states with an occupation number of 13 but were al-
q- (2. ¢ P ping ' lowed to adjust self-consistently to the conduction electron
hole, the lower energy level corresponds to the siaig

. density. We did tabulate the radial dependefizeof the J
Elfjheegegfpr)icr:i):n Ei?:l ﬂ:ai:rlg;lerselz?g;%?sg (d_ege(r;%?gyi)g =7/2 electronic 4 states of Tm on a set of 70 points with
so=— . ) .
given by 1.24 eV, corresponding — 4112 K. In pres- 0.111=r=<2.971 a.u. Notice thaR; is obtained as an output

. X . of the electronic band structure calculation of TmTe and
ence O.f the cubic crystal fieNlcr, the hole experiences the thereby deviates from thef4electronic density of a Tm
potential

atom. The results of the charge density calculations are
VE= Vet Ve 2 quoted in T_able |. Using the MT potential, we have calcu-
0— S0t TCk 22 |ted the spin-orbit splitting. ThB 5, states of the # hole of
SinceV g has cubic symmetry, the degeneracies of the spinTm were found to be separated from the, states byA [,

electron band structure calculations as a starting point. Our
approach is not restricted to tllemultiplet with lowest en-
ergy. Since we may neglect conduction electr@ee Sec.)|
the problem of the CEF of onefole then becomes similar
to the CEF of one # electron considered in Ref. 18 with the
only difference that in the following we take into account the
fsadial dependence of thef 4ole in TmTe. Our goal is then
to diagonalize the potentialg and to determine the associ-
ated 14 eigenvalues .

In order to proceed, we first need to know the charge

orbit levels are lifted according to the scheéthe =1.21 eV, which is close to the experimental value of Ref.
2. In the following we consider expressi¢2.1) of Vg with
Dgp—T7+ 1, (233 ¢(=-4112 K.
In constructing the crystal field operatdgg, we restrict
D7p—Te+ 17+, (2.3b  ourselves to the effect of the six nearest Te neighbors in

octahedral position around a Tri ion at siten. (Later we
will discuss the limitation of the present approachince the
crystal field has cubic symmetry, we write it in form of a
multipole expansion, following the method of Ref. 18, Ap-
pendix A:

where I'g, I';, I'g are irreducible representations of the
double cubic grouy,.

Usually for CEF calculatiors the lowestJ multiplet is
used and the CEFf4Hamiltonian is expressed in terms of
Stevens equivalent operataks, J,, andJ,.?** A thorough
discussion on miclggggtl)_ipic origin Olfl t?eilcrys':]al fieldr(]affdect]'cs is

iven by Newmart.“® Here we will follow the method o ~ - ~
gRefs. 1g,19 which allows us to calculate CEF using results of Ver(n) =Bipl,(n) +Bgpl (n). 2.4
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Here pil, piz are the hole charge density operatafs, TABLE II. Calculated CEF spectrum of afole in the disor-

=(1=4, Ay,) refers to the lowestnontrivial) multipole ( dered phaseT(>To), Ae=14389.4 K.
=4) of symmetryA;4 (unit representation oDy), while
A,=(1=6, Ayy) corresponds to the next wilh=6. Explic-

| Ej

itly, we have p=1,2) 1,2 r,1 0K
3-6 g1 581K
F o oy— foiNiy /i - 7,8 r 9.65 K
(m=2 ¢l (iD]i)ails, (2.5 ! 5
PA, RN URIDENIE 010 o o~
where the basis stat¢iy are 4f states, and where 1i-14 T's,2 Aet6.60K
ok, (i) =(iS%]}), (2.6a

We takeQ.=QT® Table I. In Eqs(2.9a,(2.9b) n refers
C/F\z(ij):<i|§ig6|j>' (2.6b to .a ™m |att|(.3€ S|te,. Whllen refeis to any of its six Te
neighbors. Diagonalization o¥-«n) leads to the crystal
sAleAAlg and SAZESQ:LQ being the site symmetry adapted field term scheme without spin-orbit coupling:
functions? (SAF). The functlo.nS':1g |§ given explicitly by 8(F):B£Cil(r)+BgC/F\2(r), (2.10
Eqg. (A8) of Ref. 18, the functlorfslglg is

1 5 whereI'=A,,, T,,, and Ty,. Our calculations yieIoBf1
f
(@ &)= \ﬁYO 0 &) — \ﬁth,c 0 6. (2. =35.73 K, Bg=1.631 K ande(A,,)=—8.07 K, &(T,,)

5 (0, ¢) 8 5(0.¢) 8 6 (0.4). 27 =—1.646 K,e(T,,) =4.336 K. Including next the spin-orbit
coupling and proceeding as in appendix A of Ref. 18, we
obtain the CEF term spectrum of the 4f hole, quoted in

able 1.

The superscripE stands for quantum transitions between 4
states of the hole. Taking as basis states the functions of t

irreducible representatioris,,, T,, andA,, of O,, we ob- i b d th iahb .

tain the diagonal coefficientsct (As)= —0.23505 If one goes beyond the present nearest neighbor approxi-
- - Ag2u ' ' mation, the calculation becomes much more complex. Con-

Cx,(T2y)=—0.03917, cj (T4,)=0.11752 for A, and sidering the charge contributions from the twelve neighbor-

ch (A,)=0.20118, cf (T,)=-0.15088, cf (T;,) ing Tm sites andQ™=—1.588e| from the interstitial

— 0.08382 forA ,. Notice that there is no term with=8 in _ "€dion, we find that the crystal field splittings between en-

the expansion serie®.4).25 Although in principle one can ergy levels increase by roughly an order of magnitude in

i . 1 . . _ comparison with the values of Table B(I'g,1)—e(I'7,1)
consider the functioif S{lgs, the corresponding matrix ele —62.9 K,&(I'g)— &(T',1)=102.5 K. The increase is mainly

ments(i|S9|j) vanish for 4 orbitals. The coefficient8}  caused by a larger positive value®f in Eqs.(2.83, (2.8b

and Bg are given by when the homogeneous electron charge distribution in the

interstitial region is taken into accoutit.Notice, however,

( 6 E. that the sequencE&,-I'g-I'g with I'; as a ground state is
By= \/EQeff €nUa, 00 (2.83 conserved. The other remote shells of neighbors have been
found to produce little changes on the calculation since the

6 corresponding integrals vary¥4R(n)—R(n’)|~® for Sﬁig
f_ F oo R
Be= /_47TQe“eth20' (28D and|R(n)—R(n")| =7 for Sﬁlzg The magnitude of the CEF

splittings in the latter approach is reduced by several effects:
screening due to polarization of conduction electrbhs,
which are still present on each Tm sitee Table), and an

Heree, refers to the charge of the hol@. to the effective
charge of Te, andipb is given by the radial average of the

A,-th multipole of the Coulomb potential inhomogeneous charge distribution in the interstitial volume.
The first effect is due to the coupling off 4ocalized elec-
vf [)=j drr2R3(r)v, o(n,n’;r,r’), (2.9 trons with 5 conduction electron states which was dis-
P P cussed by Newmaf?. In our model the interactions with the
whereR; is the radial functiok’ and conduction electrons are given by E@.10 of Ref. 19.
However, such calculation would require a self-consistent
1 S, (Q(n) proceduré® for 4f and conduction electrons included in an
vao(nn'r,r)= —f do(mdan’)—>r———. electron band structure scheme and is beyond the scope of
P N |IR(nN)—R’(n")] the present work which is focused on quadrupolar ordering.

(2.9p  Some authorS?’have emphasized the role of covalent mix-

In the last int | hav(m) = X (7 + F(1) whereX(n ing which involves one-electron matrix elements between the
n the last integrals we hawe(n) = X(n) +r(n) whereX(n) 4f electrons with ® electrons on other atoms. Notice that

is the lattice site position and(n) the hole(electron radius  sych effects imply nonorthogonal basis functions on neigh-
vector,r=(r,Q), Q=(0,¢). boring sites. In LAPWRef. 31 and linear muffin-tin orbital
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(LMTO) (Ref. 36 methods of electron band structure calcu-gular dependence of the multipolar expansion and
lations there is no overlap between MT basis functions be=(I",k), I' denoting the irreducible representation of the site
longing to different sites, while #electronic wave functions point group andk labeling the rows of". In our case] =2
are confined inside MT spheres. The covalent effect which isquadrupoles and I' stands for the representatiofigy (k
associated with anisotropic character of chemical bonding=1—-3) andEgy(k=1,2) of the cubic site grou®;. The
:jhen l|)”nay be discribed by ilnhomogengity 0(1; eIectronhchargeorresponding SAFs‘;Zg and s'ég are given by Eqgs(2.16
istribution in the interstitial region and inside MT spheres. B,z

Since there is a large portion of electronic charge situated i nd _(2'13 of R?f' 18. The quantityp(n) stands for the
the interstices Q™) it is likely that the effect of the charge multipolar density
inhomogeneity is appreciable. R

In summary we here obtain the sequetcel g-T"g with p/':\(n)=2 cﬁ(ij Midadils, 3.3
I'; as ground state, in agreement with results fromsk4o g
bauer spectroscopy  and ultrasonic velocity  with
measurement¥. Although the present calculation of CEF in

incomplete our estimations show that the sequence is likely E. A Al

to be conserved in a full treatment of the problem. The ex- Ca(l] ):f dQi[mSy(n)(nlj). 34
perimental identification of the ground statelgsis in con-

tradiction with the present calculations. The discrepancy can Introducing Fourier transforms

arise due to strong fluctuations of quadrupole density which L

occurs at temperature~2—3 K and affect the experimen- N XM F /2

tal results. Indeed, the presence of quadrupolar fluctuations pA(Q)= \/_NEn: e XMpii(n), (3.59
have been foundt® K in Mossbauer studies of TmTélt is

necessary to analyze both the experimental conditions and R R R

methods of obtaining the CEF levels and of identifying the var (@)= €9 XMy (), (3.5b

states. Further investigations and full calculations of CEF are h#0

needed in order to clarify the issue. On the other hand, W@vhered is the wave vector, we get for the quadrupole-
want to stress that theoretically a quadrupole order can OCCYfadrupole interaction

even if the ground state of the 4ole isI'; (or I'g) while I'g

remains an excited stat®?* 1 ) ) )
Ugo=5 = 2 ph(@oan (@l (). (36

IIl. PHASE TRANSITION a AA

_— . The 5X5 matrixv, ,/ is given by the expressior(&\1),
Here we will discuss the antiferroquadrupolar phase tran- AA . : ) .
sition in TmTe. In fact this phase transition is a structuraI(AG)’ and (A7) of Ref. 17. This matrix has negative eigen-

one, uih the " concomian symmetry. change cuic/ S5 S0 Dot f 16 Sloun 1o Toe e
—monoclinic. In the following we will continue to exploit 9 9 P

the duality electron-hole between Ce and TmTe. In Ref. 1 f the BZ. Since t_he superstructure reflections have been
. . ound by neutron-diffraction experimefton TmTe at the.
we have shown that the Coulomb interaction operator be-""

tween 4 electrons(holeg on a fcc lattice is obtained as a Point of the BZ,q,=(27/a)(1/2,1/2,1/2), we limit in the
double multipole expansion following our considerations to thie point.

There are four arms of the stetrﬁ,_ which we label by
1w, - - - - 1 2 T3 _
Uff:_ 2 E p/':\(n)UAA'(n_n,)pi/(nl)- (31) qL_(_)1/2’1/2’1/2)’qL_( 1/2,1/2,1/2),q|_—(1/2, _)1/2_11/2),
VY and q'=(—1/2,-1/2,1/2), in units (2r/a). At q=q , i
=1-4, the eigenvalue spectrum of the quadrupole matrix

Here the expansion coefficients . are given by ) o i R
vaar IS the same and for simplicity we consider the aﬂ‘n

- -, ) o2 ., Notice that at the point there is a coupling between com-
vaar(N=n ):J drr J dr’ r"RE(rRF(r’) ponents ofT,, and E, symmetry[see Eq(A7) of Ref. 17.
. We write
Xvpp(nn'sorr’), (3.29 ToTE
1% 1%
where b = ~ |, 3.
v(agp) ETH 3.7

UAA,(ﬁ_ﬁ';r,r'):j dQ(ﬁ)dQ(ﬁ')M where Ostands for the X2 zero matrix,y'" describes the

IR(N)—R'(n")| 3% 3 matrix between components 5, symmetry,
(3.2b 0 B B
For details on the radial average in E§.23, see Ref. 19. .
Here S,(n), n=[O(n),¢(n)], are site symmetry adapted o™(q)=—4[ B 0 B|, 3.8
functions®? A stands for [, 7), wherel accounts for the an- B B O
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andv 'F stands for the 82 T,,— E4 coupling matrix,

A v
v B =—4| N —v|, 3.9
n 0

andvET=(v"5)". The elementss, \, u and v are obtained
by integrals of the typé3.23, (3.2h).

Diagonalizing the matrix T we obtain the eigenvalues
-8, 48, 4B and eigenvectors

FIG. 1. Schematic pictures of two variants of quadrupole order
a1 1 1,21 T 21 parameter(quadrupole densily m is the mirror planeC, is the
S ng(q,_) = ﬁ[Sng(q'-) + Sng(qL) + S?T’zg(qL)]' rotation axis(a) SV, Eq.(3.133, which leads taC2/c, Eq.(3.153.
(3.10a (b) $?, Eq.(3.13b, which leads taC2/m, Eq. (3.15h.

. s<1>(Q)=—0.5972:3}29(9)—s%zg(ﬂ)]+o.53565§g(ﬂ),
sS4, (ah)= E[S%%(d&)—sag(dtn, (3.10h (3.133

sS@Q)=+ 0.344$s$29(9) + s%zg(m]
1

13 1\ 1 51 2 1\ 1
S'7,,(00) = S, (A0 + S, (a0~ 25y, (G ~0.68955%, (Q)+0.53565¢ (Q).
(3.100 (3.13b
In the basis S’%zg(qﬁ), S@ZQ(QD, Ség(fﬁ): S'ig((ﬁ), These two functions are shown in Figal-1(b). We inves-
Sé (ab the matriXU(ﬁﬁ) becomes block-diagonal tigate their transformational properties in detail in the Ap-
. .
pendix.
28 0 0 0 o 1 The quadrupolar densities which correspond to the func-
tions S(*), @=1,2, are given by the expression
0 -8 2v 0 0
) 0 V2v 0 0 0 pi(ﬁ>=; DESKONSIE (3.143
v(qh)=—4 \f :
0 0 0 — —-\/=
A 2M with
0 0 0 \ﬁ 0
L 2 ] cz<u>=<i|s<“>|j>=f da(i[n)s(n)(nlj).
(3.11) (3.14b

We find its eigenvalues, of whichal=-2(—p [Com - -
pare with expression8.3), (3.4).]
2 _
TVBTH8YY) andA =2(B+ BT+ 8v7) are double degen-  The functionsS“) belong to the two-dimensional small
eratg whilex; = —8_,6' is nondegenerate. From numerical cal- representatiorE, of the little group_3n (Dsy) oOf *aL (75
culations we obtain3=—33.54, u=—29.05 K,A=14.53 o reqentation in Kovalev's notatith The irreducible rep-

_ 1_ 2_ 3
K, v=—25.16 K andA 2.24'4 K, AL 90'.3 K, andAy resentation of the space gro&m3m comprises eight such
=268.3 K. These results are in agreement with the symmetr¥ . . . ofa .
relations 2=3u, 2\=— g, that hold for quadrupole- unctions, with two functions from four arms dfq, , that is,

quadrupole Coulomb interactions on a fcc lattice. The lowes8™ (D), SP(al); SU(ap), SP(af); sU(ad), SD(aP);

eigenvalue\{ has the eigenvectors and SY(qp), S?(q). In principle, there are many possi-
. bilities for condensations schemes *%¢, involving one,
s(ql)= —O.597ZS%ZQ—S$29)+0.535652 , two, three, or four arm&3° Experimentally, reflections as-

¢] >
(3.123  sociated with all four components of the st&g, were
clearly observetf and had different intensities even in small
3(2)(5&)=+0-34483%2 +S$2 )—0.6895?2 +0.53565: , applied magnetic fields. Qn this basis it was concluded in
¢ ’ ’ Ref. 10 that each arm ofq, is associated with a domain.
(312D e then limit our consideration to the case where a single

where we omit the argumenﬁ{ on the right hand sides. In arm, sayﬁﬁ, is involved in the symmetry lowering which
addition, we consider the corresponding functions in reabccurs due to the quadrupolar ordering. In such case the
space following two condensation schemes are possible:
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FIG. 2. Monoclinic unit cell in respect to cubic system of axes.
Black and white circles refer to Tm sites where in caseC@fc
structure(pf) (in case ofC2/m(p5)) is taken with the sign+ for
black and— for white circles.

Fm3m: L3 [(pi(aD))= VNpi]—C2/c(2=2),
(3.153

Fm3m: L3[(p5(ql))=VNp,]—C2m(Z=2).
(3.15h

Here pf(q) stands for the Fourier transform qf}(n),
(---) denotes a thermal average, ang are the order pa-

PHYSICAL REVIEW B 63 104105

main structure observed in experiméhOn the other hand,
from our theoretical analysis of coupling matrices we cannot
rule out one structure in favor of the other. In the next sec-
tion we show that the two types of quadrupolar ordering can
be distinguished by lattice displacements which accompany
the transition. The condensation sche{®4.53 corresponds
to that given by Eq(3.109 of Ref. 40, where two complex
basis functions of the® irreducible representation are used.
In the following we study the thermodynamics of the qua-
drupolar phase transitions. Taking into account the first con-
densation scheme, E(.153, we obtain for the quadrupole

coupling at a siten; for one sublattice {n;})

UGo(N)=A{pspf(ny), (3.17

wherep, is the order parameter amplitude and wh@f(eﬁl)
is the quadrupolar density operator. The mean field Hamil-
tonian reads

HM (1) =U§o(n1) +V(ny), (3.18

wherevg, Eq. (2.2), describes the crystal field and the spin-
orbit coupling. Starting wittH“F and using methods which
have been developed for molecular crysfalse obtain the
following approximate expression for the Landau free en-

rameter amplitudes. Correspondingly, in real space we obtaiargy:

(ph(n)=p,cofqi-X(n)], @=12. (3.1

Both structures are monoclinic, with the mirror pldrigl0],
see also Figs.(®)—1(b). As follows from Eq.(3.16) (p’ (n))
and (p5(n)) change from+p; to —p; and from +p, to

— po, respectively, along thg110] direction. The resulting
pattern as well as the monoclinic unit cell are shown in Fig
2. We speak of an antiferroquadrupolar orderﬁé\lthere are
still three variants of condensations of the ty{8e159 and
three of the typd3.150. For example, we consider the con-
densation inC2/c, Eq. (3.153. The three variants involve
condensations of quadrupolar functioB$) which are ob-
tained fromS™®) through rotations by the angles 023, and
44r/3 about the cubic axif111]. Notice that this functions
can be expressed in terms of a linear combinationS(bf
S since they form a basis of the little groupn§ D) of
qi . Otherwise, the consideration is the same asfor, S(2).

The corresponding monoclinic unit cells are obtained from
that in Fig. 2 through the same rotations by the angle 0O,

2713, and 4r7/3. For example, for the rotation by3 the
basal ky) plane (see Fig. 2 transforms to ¥z) while the
monoclinic mirror plang 110] becomeg 011]. These three
variants correspond to the so-called ‘domains” which
have been observed in neutron diffraction experim@rits

a given arm of* ﬁL. However, the total number of domains
for the condensation t€2/c is twelve. The same holds for
the second condensation scheme, 8915h, to the C2/m

FIN=FoIN+Ap3+Bp]. (3.19

As in Ref. 18, we ignored the noncommutativityy, and
Vg. Here F, is the free energy in the disordered phase

FoIN=—TInZ,, (3.20

where

14
ZO:E e*si/T
=1

is the sum of states ang are the crystal field energy levels.
The expansion coefficients in E(B.19 are

(3.21

AT 22
=3 @"—)\L , (3.223
T x@
T @p | o) .
where
x®=23 ci(ij)ciive iMzy, (3233

1]

X(4>:% ch(ij)ci(jhcthhct(liye 2T/ z,.
1j
(3.23b

monoclinic structure. We conclude that on the basis of data

from neutron diffractiot® on TmTe it is not possible to de-

The calculation ok® andx*) requires the knowledge of

duce which of the two ordered structures actually occurs irthe crystal field. Using the values of from Table Il and the
TmTe. Both structures are monoclinic and lead to the docorresponding calculated eigenvectors, we obtain the results
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TAB.LE Ill. Calculated pgrameters of the Landau free energywherei(ﬁ) stands for equilibrium nuclear position. We ex-
expansion, see text for details. pand the intersite potentidB.1) in terms of atomic lattice
displacements. The first order correction to the potential
reads

x@ x(*) B/T k

0.0219 0.000768 1215 0.188

I Cla)e e - .,
UE?%TZEZ/ > v, @(n—n";r,r’)S®(n)s(n’)
quoted in Table Ill. Since there is no third order cubic in- "

variant in expressiofi3.19 and sinceB>0, the phase tran- x[uv(ﬁ)—uy(ﬁ’)], 4.2
sition is of second order, with the transition temperature
given by where

Tc:X(2)|)\i|

@328 yr@@-n; r,r’)=fdﬂ(ﬁ)fdQ(ﬁ’)S(“)(ﬁ)S(“)(ﬁ’)

and the order parameter amplitude giverTatT. by

L7 1 |
A T—T aX,(n) [R(N—R'(n") |-
pu(T)==% \/— B * \/k—cT : (3.25 u=0
4.3
where Here the indexx (a=1,2) corresponds to the two variants of
antiferroquadrupole ordering, Eg&.153, (3.15hH. We re-
12(x(?))3 call thatn—n’ stands forX(n—n')=X(x). We take the
- 3(x@)2—x®" (3.26 average over the radial dependence of ttiehdle

With )\ﬁ_=—224.4 K_we findT.=4.9. This value is more U;(a)(;):f drrZJ dr’ rlznfz(r)sz(r,)v;m)(;; rr).
than twice the experimental temperatlig=1.8 K. We as-
cribe the origin of the discrepancy to the screening effect of (4.4
conduction electrons from Tm and Te sites and from thepne has the symmetry relation
interstitial region. The question may arise why in case of
cerium the polarization of conduction electrons leads to an
increase of transition temperatufayhile in case of TmTe it
has the opposite effect. We recall that in Ce quadrupole&
cor&sttr:upteddfrc_)m condtLIJcUOS eIecglons ar? n Ctlofv(\a/ conta eighboring Tm sites around a Tm ion taken as origin. Pro-
and their ordering greatly reduces the repulision between co eeding as in Ref. 18 we rewrite the expressiér2) as an
duction electrons. In TmTe f4holes and conduction elec- ;

. . operator in the space of the fole
trons around Tm sites are at larger distances and the polar-

v, @(Kk)=—0v,D(—k) (4.5

n the fcc lattice. In the followiné labels the twelve nearest

ization of conduction electrons merely reduces the resulting

fecti drupolar val @ 1SS @

effective quadrupolar value. UQQTZEZ > v, (n—n")
Finally we mention that with Eqs(3.17—(3.24 we nn’ v

readily obtain the corresponding expressions for the second . - R
condensation schem(®.15h by replacing the index 1 ip; Xpa(Mpg(n)lu,(n)—u,(n)], (4.6
andc,(ij) by the index 2. The numerical valuesxf), x*), I . _

B and T, remain the same and therefore no distinction beWhere p,(n) is defined by expression3.143, (3.14b.

tweenC2/c andC2/m can be made at this point. Transforming to Fourier space we find
IV. LATTICE DISTORTIONS U(Q‘?gﬁi% 2 v, (K,p)ph(—p—d)pk(p)u,(K),
p
The quadrupolar ordering and symmetry lowering is ac- 4.7

companied by a distortion of the cubic lattice. Such effects

are known to occur in molecular crystalsee for a review Where

Ref. 42 and our present treatméft® was inspired by the

theory of orientational order in molecular solitf? v/ @K p)=(Nm)~Y> v’ (@(x)
We consider the Tm atoms located on a non rigid fcc : ' P

lattice and denote the lattice displacement of the Tm nucleus

at siten by u(n). For the 4 hole coordinates we have xooa{ - Kk

p+ 5]

R(n)=X(n)+r(n)+u(n), 4.1 (4.9
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Herem s the nuclear mass of Tm. In order to obtain the free TABLE IV. Calculated parameters\’ﬁiﬁ and homogeneous
energy contribution fronUEg%T, we take the long wave- strainse,, for the quadrupolar orderingm3m— C2/c; p, is the

length limitk— 0 and retain only linear terms k We then ~ ©rder parameter amplitude.
considerﬁ near cﬁ and apply the condensation schemes

N 2% XX yy zz yz
(3.153, (3.15h. Finally we replace the displacementg k) o
by their instantaneous thermal expectation val(egK)). , A my 155.7K 942K 31L1K 2436 K
After some algebra we obtain [€./(p)?]X10°  —2.08  +195  —4.66 —16.0

Flod = N (pa)? 2 [ikAD +ik Al +ik,AL)] 1 1

T 2 Nm T Sy Y “ Frile' J/(VeN) = S es(e 5t €'7) + Seue's,

XU |Z , 4.9 ’ ' ’ ror
< V( )> ( ) +C12(EXX+ eyy)ezz+C66xx6yy

\év:\feredpe?ife(tjhe order parameter amplitude. In £4.9) we +(Cqq— Clz)f'nyr 20446’52’ (4.14

Ai‘;j)=—a[v;(“)(3)+v;(a)(Z)+vL(“)(6)+v,',(“)(5)], where we have introduced the notatioos=(cq;+Cq9)/2

(4.10a +Cysa, Cg=(Cq1FCq19)/2—Cyqandcyq, Cqi, Cyq are the cubic
elastic constants. Minimizing o1+ F11 with respect to the
Aﬁ): —a[v! (1) +v,((3)+v @(4) =y @(6)], strainse;,,, for a given configuration with a fixed expectation
(4.100 value p, we obtain

AL =—alv} (1) v, (2) =0, (4)~v, (5)]. P2
(4.100 Exx= — m[/\’ (ciucs—cl)— A’ §/L;/)(Cllcﬁ_ c3))
Here the argum?nt§= 1-6 of vj’,(“) stand for)?SE), with — 2" (9¢,,Caal, (4.153
X(1)=(0,1,1), X(2)=(1,0,1), X(3)=(1,1,0), X(4)=(0,
—~1,1), X(5)=(—1,0,1), X(6)=(—1,1,0) in units a/2, ,
wherea is the cubic lattice constant. Introducing the homo- , P ) (@) 2 ' (@) 2
geneous strains €y~ mm yy (€11C5—C12) = A" (C11C6 — C1p)
. _ 1 (@)
limik ,(u,(k))=+VmNe,,, v=xy,z, (411 2M"37C12Ca4], (4.15b
k—0
we obtain , P (@) (@) s A (@)
€22= " Ay [A"7 (it —Co( AT+ AP ],
C
FE3Le.plIN=pil Al (€t €y + AL €s, (4.150
+2A D e+ 20 (€t €)1,
2
(412 €= A (4.150

. TR

(From the symmetry of the order parameters it follows that

A§§)=A§,§? andAi‘é):A%) .) It is convenient to work in the 5 _ .,
where A = —2c7,+¢y5(C11+C15). The shear distortiore,,

system of axes which reflects the monoclinic symmetry, Fig,"' '’ i mt
2. We therefore consider the coordinate systehy'z’, implies that in the monoclinic phases the angle between the

wherex’ axis corresponds tblTO], y' - to[110] andZ’ to axesy,, andz/, attached to the crystal deviates frani2 by

[001] directions of the cubic system. Notice that the new“wzeyr

axes are obtained by the clockwise rotation aboutzthgis We now present numerical results for the quadrupole or-
by /4. SinceA ,, (u,v=x,y,2) is a tensor of the second der in theC2/c structure. In the monoclinic system of axes
. mv i) 1)

rank, we writeF oo €,p] in the new coordinate system as (x"y’z") the calculated values are quoted in Table (Vhe
) QQTLE:P ~ —4 2 ; ’
shear anglex~—32x10 “p7.) For calculations ofe,, we

F@ Tl 51IN=p2[A @Dl + A" (@D 1 A (D! took the_ elas_tic constants; ;=10 285, c12=_3969 andc,,
Qo€ PIN=pLlA Sl enct Ay eyt A7 €, =1188 in units K/& from Ref. 9. Returning now to the
+2A'§f§)€§z _ (4.13  original cubic system of axex(y,z) we find
In the transformed coordinate system the elastic term of the L L,
free energy reads €xx= €yy=—0.07<X10 "p1, €,;=—4.66xX10 “p1,
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TABLE V. Calculated parameters\’ﬁi’ and homogeneous in Fig. 1. The condensation @f, , Eq. (3.153, leads to the
strainse,,, for the quadrupolar orderingm3m— C2/m; p, isthe  C2/c structure while the condensation pg, Eq. (3.15h,

order parameter amplitude. leads to theC2/m. Although both structures are monoclinic
their symmetries are different. Both of them result in the

4 XX Yy 2z yz domain variants which have been observed experimentally.

A'fy) 9.2 K 4889 K 630K 523K  We conclude that on the basis of the present experimental

data and our theoretical studies it is impossible to determine

unambiguously the actual quadrupole order in TmTe. We

have shown that such discrimination could be done in respect
€xy= +2.02¢ 107402, €= €= —11.3% 1074p2. to lattice distortions which dgvelop peloWQ. Starting from

the quadrupole-quadrupole interactions on a deformable lat-

(4.16 tice, we have derived the couplings of the quadrupoles with

For the condensation schen®15h to the C2/m quad- the atomic lattice displacements. We have calculated the cor-

rupole structure the calculated values are quoted in Table Vesponding lattice distortions and suggest experiments which

(the shear angler=—6.84x10 *p?). In the initial cubic can be decisive in determining which quadrupole order is

system of axes we find realized in TmTe.

[€,,/(p2)?1X10"  +12.61 —18.87 +1.46 —3.42

4 2 —4 2
6= €yy=—3.13X107%p7, €= +1.46x10 *p7, ACKNOWLEDGMENTS
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lead to completely different displacements in the monoclinic
phase. APPENDIX A

Here we investigate transformational properties of func-
V. CONCLUSIONS tionsSV(Q) andSA(Q), Egs.(3.133, (3.130 (see Fig. 1
We present a microscopic model of quadrupole order iB€low we omit the argumeri of the functions. We recall
TmTe. For a 4 hole aboveT, we have obtained the se- that the functionsSy, , Sy, and§r29 are proportional to the
quencel';-I'g-I'g of the crystal electric fieldCEF) energy  Cartesian componentsz, zx, andxy, respectively. There-
spectrum withl'; as ground state which is in agreement with fore for the reflectiom through the plang110]
results from M@sbauer spectroscopyand ultrasonic veloc-

ity measurement& The splitting of CEF levels is found to m(S$zg—S$zg)= —(S%zg—sig)- (A2)
be small if only contributions from six Te nearest neighbors
of a Tm site are taken into account. m(s%zf S%Zg) =+ (S%ZQJF 5%29)' (A2)

We have considered quadrupolar interactions betwden 4
holes located on Tm sites. On the basis of neutron diffractioqynile for the rotationC, by 7 about the axi§110]

experiment¥ indicating that a single arm dfci,_ is respon-

sible for the quadrupole structure, we have studied the quad- Cz(S%zg—Sig): —(S%Zg— Sig), (A3)
rupole interactions at the point of the BZ. We have found

that the quadrupole coupling betweefi Holes becomes at- C2(311'2 +S$2 )= +(S%2 +5$2 ). (A4)
tractive at thel point thus driving a structural phase transi- g 9 g 9

tion with concomitant lowering of the crystal symmetry. Therefore,
Starting with the mean-field Hamiltonian we have derived 1) (1)
the Landau free energy, calculated the transition temperature mSH=—sW), (A5)
and foundT.=4.9 K. The overestimation of the transition

temperature is ascribed to a screening effect from conduction C,SM=—s), (A6)
electrons which has not been considered in the present worlghije

The structure of TmTe beloWq is monoclinic(Fig. 2) but

there are still two possibilities for the quadrupole order pa- mg?)=582), (A7)
rameter. These quadrupole order parameters are expressed in

real space in terms df,, andE, components and visualized C,S?=53), (A8)

*Also at Institute of Physical Chemistry of RAS, Leninskii pros-  Lander, and G. R. ChoppiriElsevier Science, Amsterdam,
pect 31, Moscow, 117915, Russia. 19949, Vol. 19, p. 177.
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