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Microscopic theory of quadrupolar ordering in TmTe

A. V. Nikolaev* and K. H. Michel
Department of Physics, University of Antwerp, UIA, 2610 Antwerpen, Belgium

~Received 20 July 2000; revised manuscript received 31 October 2000; published 15 February 2001!

We have calculated the crystal electric field of TmTe (T.TQ) and have obtained that the ground state of a
Tm 4f hole is theG7 doublet in agreement with Mo¨ssbauer experiments. We study the quadrupole interactions
arising from quantum transitions of 4f holes of Tm. An effective attraction is found at theL point of the

Brillouin zoneqW L . Assuming that the quadrupolar condensation involves a single arm ofqW L we show that there
are two variants for quadrupole ordering which are described by the space groupsC2/c andC2/m. The Landau
free energy is derived in mean-field theory. The phase transition is of second order. The corresponding
quadrupole order parameters are combinations ofT2g andEg components. The obtained domain structure is in
agreement with observations from neutron diffraction studies for TmTe. Calculated lattice distortions are found
to be different for the two variants of quadrupole ordering. We suggest to measure lattice displacements in
order to discriminate between those two structures.
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I. INTRODUCTION

The monochalcogenides of rare-earth elements crysta
ing in the rocksalt structure, exhibit interesting electric
optical and magnetic properties.1 In TmTe thulium is in a
divalent state with one 4f -hole (4f 13) localized at each Tm
site. At room temperature TmTe is a semiconductor with
electron band energy gap 0.25 eV~from photoemission data!
and anf→d band gap 0.35 eV~from absorption data!.2 Mag-
netic structure determination leads to a type-II antiferrom
net below the Ne´el temperature3 TN50.43 K. Under pressure
of 2 GPa TmTe undergoes a semiconductor-metal transit4

where a ferromagnetic order occurs5 with a Curie tempera-
ture TC514 K for 2.7 GPa. At pressure of 5.7 GPa TmT
undergoes a structural phase transition to a tetrag
structure6,7 with a further decrease of resistivity.4 A renewed
interest in TmTe has emerged from the recent unexpe
discovery of an antiferroquadrupolar~AFQ! phase transition
below TQ51.8 K at atmospheric pressure.8 The transition
was first revealed by specific heat measurements8 and then
confirmed by elastic constant anomalies9 and by neutron dif-
fraction in an external magnetic field.10 In the quadrupolar
ordered state by the application of a uniform magnetic fi
superlattice neutron Bragg peaks, corresponding to the w
vector qW 5(2p/a)(1/2,1/2,1/2), appear in addition to th
normal ferromagnetic intensity superimposed on the nuc
peaks10 ~see for a review Ref. 11 and for recent developm
Refs. 12,13!. Thus TmTe has been found to belong to
increasing family of rare earths14 ~TmCd, TmAu2, CeB6,
DyB2C2, and so on! which exhibit quadrupolar ordering.

An important insight in the nature of the AFQ ordering
TmTe can be gained on the basis of a classical descriptio
multipoles presented in Refs. 15,16. However, the theore
treatment in Refs. 15,16 is based on a phenomenolog
Hamiltonian where the quadrupole-quadrupole interacti
are taken to be isotropic in the subspaces ofG3 (Eg) andG5
(T2g) irreducible representations of the cubic point gro
Oh . In addition, a coupling between these representation
neglected. Such a treatment has shortcomings and doe
allow us to determine the crystal structure. Indeed, since
0163-1829/2001/63~10!/104105~10!/$15.00 63 1041
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quadrupolar interaction forces are of short range, it is nec
sary to take into account the structure of the face cente
cubic ~fcc! lattice and the full matrix character of the qu
drupolar interactions. Furthermore, the coupling ofT2g and
Eg representations is important and affects the quadrup
phase transition. It is the purpose of the present pape
investigate the quadrupolar phase transition and to determ
the crystal structure~space group! of the quadrupolar ordered
phase. Hence it is necessary that the symmetries of qua
polar interactions on a fcc lattice are carefully taken in
account. Multipolar interactions ofEg and T2g modes on a
fcc lattice have been studied earlier in connections with
problem of orientational order in a molecular crystal, so
C60.17

In constructing a microscopic theory of quadrupolar o
dering in TmTe we will use the concepts we have develop
recently18,19 for the description of theg-a transition in Ce.
We will take advantage of the fact that Tm and Ce are mir
elements in the series of lanthanides. We recall that Ce
one single electron in the 4f shell while Tm has one hole
~electron configuration 4f 13!. While Ce is a metal, TmTe is
an insulator forT nearTQ . Hence we will neglect the polar
ization of conduction electrons~which contributes to the
quadrupolar interaction19 in Ce! in our treatment of TmTe.
Because of charge transfer from Tm to Te, only a sm
fraction of conduction electron density is left around t
Tm11 ion.

In zero magnetic field the magnetic susceptibility
TmTe shows a small anomaly atTQ .9 Thus the quadrupola
ordering is not directly connected9 with the magnetic order-
ing in TmTe which occurs at still lower temperatureTN .
Therefore in this paper we limit ourselves to the charge
grees of freedom leaving the magnetic properties for fut
considerations.

The content of the present paper is the following. In S
II we calculate the crystal field which refers to the 4f hole in
TmTe. The result is compared with experimental data. N
~Sec. III! we study the quadrupolar interactions and the
sulting phase transition. We suggest condensation sche
©2001 The American Physical Society05-1
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leading to the monoclinic space groupsC2/c or C2/m. In
order to discriminate between these space groups, we ca
late the accompanying lattice distortions~Sec. IV! and sug-
gest synchrotron radiation experiments. Finally, the result
our work are summarized and commented in the Conclus
~Sec. V!.

II. CRYSTAL FIELD

The issue of the crystal electric field~CEF! of TmTe is
controversial. A Schottky specific heat peak around 5 K
been found indicating that the total CEF splitting is about
K.20 From thermal expansion data at low temperature~2–16
K! the following sequenceG8(0 K)-G7(10 K)-G6(16 K) has
been proposed.21 Recent inelastic neutron scattering expe
ment supports theG8 ground state.22 However, from Möss-
bauer spectroscopy another scheme,G7(0 K)-G8(12 K)
-G6(19.6 K), has been deduced.23 The latter sequence wa
also obtained by detailed ultrasonic velocity measuremen24

Here we would like to remark that some of these results
not direct and depend on conditions, methods and mo
used to fit experimental data.

As a starting point of our derivation of the CEF we rec
that here we consider the effect on the hole in the 4f shell of
Tm11. In comparison with the case of one electron~as in
Ce!, the position of the corresponding energy levels is
versed. For ions of lanthanides in solids the spin-orbit c
pling

VSO5zLW •SW ~2.1!

dominates crystal field effects. The potentialVSO has spheri-
cal symmetry. HereLW and SW are the orbital and the spi
angular momentum operators,JW5LW 1SW is the total angular
momentum, with eigenvalues ofJz : J57/2 andJ55/2. In
Eq. ~2.1! z is the spin-orbit coupling constant. In case of
hole, the lower energy level corresponds to the stateD7/2
~degeneracy 8! and the higher level toD5/2 ~degeneracy 6!.
The experimental energy separation2 nSO52(7/2)z is
given by 1.24 eV, corresponding toz524112 K. In pres-
ence of the cubic crystal fieldVCF, the hole experiences th
potential

V0
f 5VSO1VCF. ~2.2!

SinceVCF has cubic symmetry, the degeneracies of the sp
orbit levels are lifted according to the scheme25

D5/2→G71G8 , ~2.3a!

D7/2→G61G71G8 , ~2.3b!

where G6 , G7 , G8 are irreducible representations of th
double cubic groupOh8 .

Usually for CEF calculations25 the lowestJ multiplet is
used and the CEF 4f Hamiltonian is expressed in terms o
Stevens equivalent operatorsJx , Jy , andJz .26,25A thorough
discussion on microscopic origin of the crystal field effects
given by Newman.27,28 Here we will follow the method of
Refs. 18,19 which allows us to calculate CEF using result
10410
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electron band structure calculations as a starting point.
approach is not restricted to theJ multiplet with lowest en-
ergy. Since we may neglect conduction electrons~see Sec. I!,
the problem of the CEF of one 4f hole then becomes simila
to the CEF of one 4f electron considered in Ref. 18 with th
only difference that in the following we take into account t
radial dependence of the 4f hole in TmTe. Our goal is then
to diagonalize the potentialV0

f and to determine the assoc
ated 14 eigenvalues« i .

In order to proceed, we first need to know the char
distribution in the TmTe unit cell. The previous electro
band structure calculation29 of TmTe in the local density
approximation~LDA ! does not give such information. W
then have performed our linear augmented plane w
~LAPW! calculations using LDA and the muffin-tin~MT!
approximation.30 The MT radii 2.9 and 3.1036 a.u. were ch
sen for Tm and Te, respectively. The MT potential and d
sity of Tm and Te have been obtained self-consistently us
a LAPW basis of;170 plane wave functions on a 20-poi
mesh of the irreducible domain of the fcc Brillouin zon
During the calculations thef electrons of Tm were treated a
core states with an occupation number of 13 but were
lowed to adjust self-consistently to the conduction elect
density. We did tabulate the radial dependenceRf of the J
57/2 electronic 4f states of Tm on a set of 70 points wit
0.111<r<2.971 a.u. Notice thatRf is obtained as an outpu
of the electronic band structure calculation of TmTe a
thereby deviates from the 4f electronic density of a Tm
atom. The results of the charge density calculations
quoted in Table I. Using the MT potential, we have calc
lated the spin-orbit splitting. TheD5/2 states of the 4f hole of
Tm were found to be separated from theD7/2 states bynso8
51.21 eV, which is close to the experimental value of R
2. In the following we consider expression~2.1! of VSO with
z524112 K.

In constructing the crystal field operatorVCF, we restrict
ourselves to the effect of the six nearest Te neighbors
octahedral position around a Tm11 ion at sitenW . ~Later we
will discuss the limitation of the present approach.! Since the
crystal field has cubic symmetry, we write it in form of
multipole expansion, following the method of Ref. 18, A
pendix A:

VCF~nW !5B4
f rL1

F ~nW !1B6
f rL2

F ~nW !. ~2.4!

TABLE I. Angular-momentum-decomposed electronic charg
Ql

A and total chargesQA inside Tm and Te MT spheres and in th
interstitial region~LAPW calculations, see Ref. 31 for details an
definitions!.

A Tm Te interstices

Qs
A 0.161e 1.827e

Qp
A 0.140e 4.084e

sQd
A 0.275e 0.013e

QA 11.509ueu 10.079ueu 21.588ueu
5-2
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MICROSCOPIC THEORY OF QUADRUPOLAR ORDERING . . . PHYSICAL REVIEW B63 104105
Here rL1

F , rL2

F are the hole charge density operators,L1

[( l 54, A1g) refers to the lowest~nontrivial! multipole (l
54) of symmetryA1g ~unit representation ofOh), while
L2[( l 56, A1g) corresponds to the next withl 56. Explic-
itly, we have (p51,2)

rLp

F ~nW !5(
i j

cLp

f ~ i j !u i &nW^ j unW , ~2.5!

where the basis statesu i & are 4f states, and where

cL1

F ~ i j !5^ i uSl 54
A1g u j &, ~2.6a!

cL2

F ~ i j !5^ i uSl 56
A1g u j &, ~2.6b!

SL1
[S4

A1g and SL2
[S6

A1g being the site symmetry adapte

functions32 ~SAF!. The functionS4
A1g is given explicitly by

Eq. ~A8! of Ref. 18, the functionS6
A1g is

S6
A1g~Q,f!5A1

8
Y6

0~Q,f!2A7

8
Y6

4,c~Q,f!. ~2.7!

The superscriptF stands for quantum transitions betweenf
states of the hole. Taking as basis states the functions o
irreducible representationsT1u , T2u andA2u of Oh , we ob-
tain the diagonal coefficients cL1

F (A2u)520.23505,

cL1

F (T2u)520.03917, cL1

F (T1u)50.11752 for L1 and

cL2

F (A2u)50.20118, cL2

F (T2u)520.15088, cL2

F (T1u)

50.08382 forL2. Notice that there is no term withl 58 in
the expansion series~2.4!.25 Although in principle one can
consider the function32 Sl 58

A1g , the corresponding matrix ele

ments^ i uSl 58
A1g u j & vanish for 4f orbitals. The coefficientsB4

f

andB6
f are given by

B4
f 5

6

A4p
Qeff ehvL1

F
0
• , ~2.8a!

B6
f 5

6

A4p
Qeff ehvL2

F
0
• . ~2.8b!

Hereeh refers to the charge of the hole,Qeff to the effective
charge of Te, andvLp

F
0
• is given by the radial average of th

Lp-th multipole of the Coulomb potential

vLp

F
0
• 5E dr r 2R f

2~r !vLp0~nW ,nW 8;r ,r 8!, ~2.9a!

whereRf is the radial function19 and

vLp0~nW ,nW 8;r ,r 8!5
1

A4p
E dV~nW !dV~nW 8!

SLp
~V~nW !

uRW ~nW !2RW 8~nW 8!u
.

~2.9b!

In the last integrals we haveRW (nW )5XW (nW )1rW(nW ) whereXW (nW )
is the lattice site position andrW(nW ) the hole~electron! radius
vector,rW5(r ,VW ), VW 5(Q,f).
10410
he

We takeQeff5QTe, Table I. In Eqs.~2.9a,~2.9b! nW refers
to a Tm lattice site, whilenW 8 refers to any of its six Te
neighbors. Diagonalization ofVCF(nW ) leads to the crysta
field term scheme without spin-orbit coupling:

«~G!5B4
f cL1

F ~G!1B6
f cL2

F ~G!, ~2.10!

where G5A2u , T2u , and T1u . Our calculations yieldB4
f

535.73 K, B6
f 51.631 K and«(A2u)528.07 K, «(T2u)

521.646 K,«(T1u)54.336 K. Including next the spin-orbi
coupling and proceeding as in appendix A of Ref. 18,
obtain the CEF term spectrum« i of the 4f hole, quoted in
Table II.

If one goes beyond the present nearest neighbor appr
mation, the calculation becomes much more complex. C
sidering the charge contributions from the twelve neighb
ing Tm sites andQint521.588ueu from the interstitial
region, we find that the crystal field splittings between e
ergy levels increase by roughly an order of magnitude
comparison with the values of Table II,«(G8,1)2«(G7,1)
562.9 K,«(G6)2«(G7,1)5102.5 K. The increase is mainl
caused by a larger positive value ofQeff in Eqs.~2.8a!, ~2.8b!
when the homogeneous electron charge distribution in
interstitial region is taken into account.33 Notice, however,
that the sequenceG7-G8-G6 with G7 as a ground state is
conserved. The other remote shells of neighbors have b
found to produce little changes on the calculation since
corresponding integrals vary as34 uRW (nW )2RW (nW 8)u25 for SL1

A1g

and uRW (nW )2RW (nW 8)u27 for SL2

A1g. The magnitude of the CEF

splittings in the latter approach is reduced by several effe
screening due to polarization of conduction electrons19

which are still present on each Tm site~see Table I!, and an
inhomogeneous charge distribution in the interstitial volum
The first effect is due to the coupling of 4f localized elec-
trons with 5d conduction electron states which was d
cussed by Newman.28 In our model the interactions with th
conduction electrons are given by Eq.~4.10! of Ref. 19.
However, such calculation would require a self-consist
procedure19 for 4f and conduction electrons included in a
electron band structure scheme and is beyond the scop
the present work which is focused on quadrupolar orderi
Some authors35,27have emphasized the role of covalent mi
ing which involves one-electron matrix elements between
4 f electrons with 5d electrons on other atoms. Notice th
such effects imply nonorthogonal basis functions on nei
boring sites. In LAPW~Ref. 31! and linear muffin-tin orbital

TABLE II. Calculated CEF spectrum of a 4f hole in the disor-
dered phase (T.TQ), n«514 389.4 K.

i « i

1,2 G7,1 0 K
326 G8,1 5.81 K
7,8 G6 9.65 K
9,10 G7,2 n«

11214 G8,2 n«16.60 K
5-3
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~LMTO! ~Ref. 36! methods of electron band structure calc
lations there is no overlap between MT basis functions
longing to different sites, while 4f electronic wave functions
are confined inside MT spheres. The covalent effect whic
associated with anisotropic character of chemical bond
then may be described by inhomogeneity of electron cha
distribution in the interstitial region and inside MT sphere
Since there is a large portion of electronic charge situate
the interstices (Qint) it is likely that the effect of the charge
inhomogeneity is appreciable.

In summary we here obtain the sequenceG7-G8-G6 with
G7 as ground state, in agreement with results from Mo¨ss-
bauer spectroscopy23 and ultrasonic velocity
measurements.24 Although the present calculation of CEF
incomplete our estimations show that the sequence is lik
to be conserved in a full treatment of the problem. The
perimental identification of the ground state asG8 is in con-
tradiction with the present calculations. The discrepancy
arise due to strong fluctuations of quadrupole density wh
occurs at temperatureT;223 K and affect the experimen
tal results. Indeed, the presence of quadrupolar fluctuat
have been found at 3 K in Mössbauer studies of TmTe.23 It is
necessary to analyze both the experimental conditions
methods of obtaining the CEF levels and of identifying t
states. Further investigations and full calculations of CEF
needed in order to clarify the issue. On the other hand,
want to stress that theoretically a quadrupole order can o
even if the ground state of the 4f hole isG7 ~or G6) while G8
remains an excited state.18,24

III. PHASE TRANSITION

Here we will discuss the antiferroquadrupolar phase tr
sition in TmTe. In fact this phase transition is a structu
one, with the concomitant symmetry change cu
→monoclinic. In the following we will continue to exploi
the duality electron-hole between Ce and TmTe. In Ref.
we have shown that the Coulomb interaction operator
tween 4f electrons~holes! on a fcc lattice is obtained as
double multipole expansion

U f f5
1

2 ( 8
nW nW 8

(
LL8

rL
F ~nW !vLL8~nW 2nW 8!rL8

F
~nW 8!. ~3.1!

Here the expansion coefficientsvLL8 are given by

vLL8~nW 2nW 8!5E dr r 2E dr8 r 82R f
2~r !R f

2~r 8!

3vLL8~nW ,nW 8; r ,r 8!, ~3.2a!

where

vLL8~nW 2nW 8;r ,r 8!5E dV~nW !dV~nW 8!
SL~ n̂!SL~ n̂8!

uRW ~nW !2RW 8~nW 8!u
.

~3.2b!

For details on the radial average in Eq.~3.2a!, see Ref. 19.
Here SL(n̂), n̂[@Q(nW ),f(nW )#, are site symmetry adapte
functions,32 L stands for (l ,t), wherel accounts for the an
10410
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5(G,k), G denoting the irreducible representation of the s
point group andk labeling the rows ofG. In our case,l 52
~quadrupoles! and G stands for the representationsT2g (k
5123) and Eg (k51,2) of the cubic site groupOh . The
corresponding SAFsST2g

k and SEg

k are given by Eqs.~2.16!

and ~2.15! of Ref. 18. The quantityrL
F (nW ) stands for the

multipolar density

rL
F ~nW !5(

i j
cL

F ~ i j !u i &nW^ j unW , ~3.3!

with

cL
F ~ i j !5E dV^ i un̂&SL~ n̂!^n̂u j &. ~3.4!

Introducing Fourier transforms

rL
F ~qW !5

1

AN
(

nW
eiqW •XW (nW )rL

F ~nW !, ~3.5a!

vLL8~qW !5 (
hW Þ0

8eiqW •XW (hW )vLL8~hW !, ~3.5b!

where qW is the wave vector, we get for the quadrupol
quadrupole interaction

UQQ
f f 5

1

2 (
qW

(
LL8

rL
F ~qW !†vLL8~qW !rL8

F
~qW !. ~3.6!

The 535 matrix vLL8 is given by the expressions~A1!,
~A6!, and ~A7! of Ref. 17. This matrix has negative eige
values at some points of the Brillouin zone~BZ!. The largest
negative eigenvalues have been found at theX andL points
of the BZ. Since the superstructure reflections have b
found by neutron-diffraction experiments10 on TmTe at theL
point of the BZ,qW L5(2p/a)(1/2,1/2,1/2), we limit in the
following our considerations to theL point.

There are four arms of the star* qW L which we label by
qW L

15(1/2,1/2,1/2),qW L
25(21/2,1/2,1/2),qW L

35(1/2,21/2,1/2),

and qW L
45(21/2,21/2,1/2), in units (2p/a). At qW 5qW L

i , i
5124, the eigenvalue spectrum of the quadrupole ma

vLL8 is the same and for simplicity we consider the armqW L
1 .

Notice that at theL point there is a coupling between com
ponents ofT2g andEg symmetry@see Eq.~A7! of Ref. 17#.
We write

v~qW L
1!5F vTT vTE

vET 0̂
G , ~3.7!

where 0̂stands for the 232 zero matrix,vTT describes the
333 matrix between components ofT2g symmetry,

vTT~qW L
1!524F 0 b b

b 0 b

b b 0
G , ~3.8!
5-4
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andvTE stands for the 332 T2g2Eg coupling matrix,

vTE~qW L
1!524F l n

l 2n

m 0
G , ~3.9!

andvET5(vTE)†. The elementsb, l, m andn are obtained
by integrals of the type~3.2a!, ~3.2b!.

Diagonalizing the matrixvTT we obtain the eigenvalue
28b, 4b, 4b and eigenvectors

S8T2g

1 ~qW L
1!5

1

A3
@ST2g

1 ~qW L
1!1ST2g

2 ~qW L
1!1ST2g

3 ~qW L
1!#,

~3.10a!

S8T2g

2 ~qW L
1!5

1

A2
@ST2g

1 ~qW L
1!2ST2g

2 ~qW L
1!#, ~3.10b!

S8T2g

3 ~qW L
1!5

1

A6
@ST2g

1 ~qW L
1!1ST2g

2 ~qW L
1!22ST2g

3 ~qW L
1!#.

~3.10c!

In the basis S8T2g

1 (qW L
1), S8T2g

2 (qW L
1), SEg

2 (qW L
1), S8T2g

3 (qW L
1),

SEg

1 (qW L
1) the matrixv(qW L

1) becomes block-diagonal

v~qW L
1!5243

2b 0 0 0 0

0 2b A2n 0 0

0 A2n 0 0 0

0 0 0 2b 2A3

2
m

0 0 0 2A3

2
m 0

4 .

~3.11!

We find its eigenvalues, of which lL
1522(2b

1Ab218n2) andlL
252(b1Ab218n2) are double degen

erate whilelL
3528b is nondegenerate. From numerical ca

culations we obtainb5233.54, m5229.05 K, l514.53
K, n5225.16 K andlL

152224.4 K, lL
2590.3 K, andlL

3

5268.3 K. These results are in agreement with the symm
relations 2n5A3m, 2l52m, that hold for quadrupole-
quadrupole Coulomb interactions on a fcc lattice. The low
eigenvaluelL

1 has the eigenvectors

S(1)~qW L
1!520.5972~ST2g

1 2ST2g

2 !10.5356SEg

2 ,

~3.12a!

S(2)~qW L
1!510.3448~ST2g

1 1ST2g

2 !20.6895ST2g

3 10.5356SEg

1 ,

~3.12b!

where we omit the argumentsqW L
1 on the right hand sides. In

addition, we consider the corresponding functions in r
space
10410
ry

st

l

S(1)~V!520.5972@ST2g

1 ~V!2ST2g

2 ~V!#10.5356SEg

2 ~V!,

~3.13a!

S(2)~V!510.3448@ST2g

1 ~V!1ST2g

2 ~V!#

20.6895ST2g

3 ~V!10.5356SEg

1 ~V!.

~3.13b!

These two functions are shown in Fig. 1~a!–1~b!. We inves-
tigate their transformational properties in detail in the A
pendix.

The quadrupolar densities which correspond to the fu
tions S(a), a51,2, are given by the expression

ra
F~nW !5(

i j
u i &nWca

F~ i j !^ j unW ~3.14a!

with

ca
F~ i j !5^ i uS(a)u j &5E dV^ i un̂&S(a)~ n̂!^n̂u j &.

~3.14b!

@Compare with expressions~3.3!, ~3.4!.#
The functionsS(a) belong to the two-dimensional sma

representationEg of the little group 3̄m (D3d) of * qW L ( t̂5

representation in Kovalev’s notation37!. The irreducible rep-
resentation of the space groupFm3̄m comprises eight such
functions, with two functions from four arms of* qW L , that is,
S(1)(qW L

1), S(2)(qW L
1); S(1)(qW L

2), S(2)(qW L
2); S(1)(qW L

3), S(2)(qW L
3);

and S(1)(qW L
4), S(2)(qW L

4). In principle, there are many poss

bilities for condensations schemes at* qW L involving one,
two, three, or four arms.38,39 Experimentally, reflections as
sociated with all four components of the star* qW L were
clearly observed10 and had different intensities even in sma
applied magnetic fields. On this basis it was concluded
Ref. 10 that each arm of* qW L is associated with a domain
We then limit our consideration to the case where a sin
arm, sayqW L

1 , is involved in the symmetry lowering which
occurs due to the quadrupolar ordering. In such case
following two condensation schemes are possible:39

FIG. 1. Schematic pictures of two variants of quadrupole or
parameter~quadrupole density!. m is the mirror plane,C2 is the
rotation axis.~a! S(1), Eq.~3.13a!, which leads toC2/c, Eq.~3.15a!.
~b! S(2), Eq. ~3.13b!, which leads toC2/m, Eq. ~3.15b!.
5-5
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Fm3̄m: L3
1@^r1

F~qW L
1!&5ANr1#→C2/c~Z52!,

~3.15a!

Fm3̄m: L3
1@^r2

F~qW L
1!&5ANr2#→C2/m~Z52!.

~3.15b!

Here ra
F(qW ) stands for the Fourier transform ofra

F(nW ),
^•••& denotes a thermal average, andra are the order pa-
rameter amplitudes. Correspondingly, in real space we ob

^ra
F~nW !&5ra cos@qW L

1
•XW ~nW !#, a51,2. ~3.16!

Both structures are monoclinic, with the mirror plane@11̄0#,
see also Figs. 1~a!–1~b!. As follows from Eq.~3.16! ^r1

F(nW )&
and ^r2

F(nW )& change from1r1 to 2r1 and from 1r2 to
2r2, respectively, along the@110# direction. The resulting
pattern as well as the monoclinic unit cell are shown in F
2. We speak of an antiferroquadrupolar order. AtqW L

1 there are
still three variants of condensations of the type~3.15a! and
three of the type~3.15b!. For example, we consider the co
densation inC2/c, Eq. ~3.15a!. The three variants involve
condensations of quadrupolar functionsS8(1) which are ob-
tained fromS(1) through rotations by the angles 0, 2p/3, and
4p/3 about the cubic axis@111#. Notice that this functions
can be expressed in terms of a linear combinations ofS(1),
S(2) since they form a basis of the little group 3m̄ (D3d) of
qW L

1 . Otherwise, the consideration is the same as forS(1), S(2).
The corresponding monoclinic unit cells are obtained fr
that in Fig. 2 through the same rotations by the angle
2p/3, and 4p/3. For example, for the rotation by 2p/3 the
basal (xy) plane ~see Fig. 2! transforms to (yz) while the
monoclinic mirror plane@11̄0# becomes@011̄#. These three
variants correspond to the so-called ‘‘S domains’’ which
have been observed in neutron diffraction experiments10 for
a given arm of* qW L . However, the total number of domain
for the condensation toC2/c is twelve. The same holds fo
the second condensation scheme, Eq.~3.15b!, to the C2/m
monoclinic structure. We conclude that on the basis of d
from neutron diffraction10 on TmTe it is not possible to de
duce which of the two ordered structures actually occurs
TmTe. Both structures are monoclinic and lead to the

FIG. 2. Monoclinic unit cell in respect to cubic system of axe
Black and white circles refer to Tm sites where in case ofC2/c
structure^r1

F& ~in case ofC2/m ^r2
F&) is taken with the sign1 for

black and2 for white circles.
10410
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main structure observed in experiment.10 On the other hand,
from our theoretical analysis of coupling matrices we can
rule out one structure in favor of the other. In the next s
tion we show that the two types of quadrupolar ordering c
be distinguished by lattice displacements which accomp
the transition. The condensation scheme~3.15a! corresponds
to that given by Eq.~3.10a! of Ref. 40, where two complex
basis functions of thet̂5 irreducible representation are use

In the following we study the thermodynamics of the qu
drupolar phase transitions. Taking into account the first c
densation scheme, Eq.~3.15a!, we obtain for the quadrupole
coupling at a sitenW 1 for one sublattice ($nW 1%)

UQQ
f f ~nW 1!5lL

1r1r1
F~nW 1!, ~3.17!

wherer1 is the order parameter amplitude and wherer1
F(nW 1)

is the quadrupolar density operator. The mean field Ham
tonian reads

HMF~nW 1!5UQQ
f f ~nW 1!1V0

f ~nW 1!, ~3.18!

whereV0
f , Eq. ~2.2!, describes the crystal field and the spi

orbit coupling. Starting withHMF and using methods which
have been developed for molecular crystals,41 we obtain the
following approximate expression for the Landau free e
ergy:

F/N5F0 /N1Ar1
21Br1

4 . ~3.19!

As in Ref. 18, we ignored the noncommutativityUQQ
f f and

V0
f . HereF0 is the free energy in the disordered phase

F0 /N52T ln Z0 , ~3.20!

where

Z05(
i 51

14

e2« i /T ~3.21!

is the sum of states and« i are the crystal field energy levels
The expansion coefficients in Eq.~3.19! are

A5
1

2 S T

x(2)
1lL

1D , ~3.22a!

B5
T

24@x(2)#2 S 32
x(4)

@x(2)#2D , ~3.22b!

where

x(2)5(
i j

c1
F~ i j !c1

F~ j i !e2« i /T/Z0 , ~3.23a!

x(4)5(
i jhl

c1
F~ i j !c1

F~ jh !c1
F~hl !c1

F~ l i !e2« i /T/Z0 .

~3.23b!

The calculation ofx(2) andx(4) requires the knowledge o
the crystal field. Using the values of« i from Table II and the
corresponding calculated eigenvectors, we obtain the res

.
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quoted in Table III. Since there is no third order cubic i
variant in expression~3.19! and sinceB.0, the phase tran
sition is of second order, with the transition temperatu
given by

Tc5x(2)ulL
1u ~3.24!

and the order parameter amplitude given atT,Tc by

r1~T!56A2
A

2B
56Ak

Tc2T

T
, ~3.25!

where

k5
12~x(2)!3

3~x(2)!22x(4)
. ~3.26!

With lL
152224.4 K we findTc54.9. This value is more

than twice the experimental temperatureTQ51.8 K. We as-
cribe the origin of the discrepancy to the screening effec
conduction electrons from Tm and Te sites and from
interstitial region. The question may arise why in case
cerium the polarization of conduction electrons leads to
increase of transition temperature,19 while in case of TmTe it
has the opposite effect. We recall that in Ce quadrupo
constructed from conduction electrons are in close con
and their ordering greatly reduces the repulsion between
duction electrons. In TmTe 4f holes and conduction elec
trons around Tm sites are at larger distances and the p
ization of conduction electrons merely reduces the resul
effective quadrupolar value.

Finally we mention that with Eqs.~3.17!–~3.24! we
readily obtain the corresponding expressions for the sec
condensation scheme~3.15b! by replacing the index 1 inr1
andc1( i j ) by the index 2. The numerical values ofx(2), x(4),
B and Tc remain the same and therefore no distinction
tweenC2/c andC2/m can be made at this point.

IV. LATTICE DISTORTIONS

The quadrupolar ordering and symmetry lowering is
companied by a distortion of the cubic lattice. Such effe
are known to occur in molecular crystals~see for a review
Ref. 42! and our present treatment18,19 was inspired by the
theory of orientational order in molecular solids.43,42

We consider the Tm atoms located on a non rigid
lattice and denote the lattice displacement of the Tm nuc
at sitenW by uW (nW ). For the 4f hole coordinates we have

RW ~nW !5XW ~nW !1rW~nW !1uW ~nW !, ~4.1!

TABLE III. Calculated parameters of the Landau free ene
expansion, see text for details.

x(2) x(4) B/T k

0.0219 0.000768 121.5 0.188
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whereXW (nW ) stands for equilibrium nuclear position. We e
pand the intersite potential~3.1! in terms of atomic lattice
displacements. The first order correction to the poten
reads

UQQT
(a) 5

1

2 ( 8
nW nW 8

(
n

vn8
(a)~nW 2nW 8;r ,r 8!S(a)~ n̂!S(a)~ n̂8!

3@un~nW !2un~nW 8!#, ~4.2!

where

vn8
(a)~nW 2nW 8; r ,r 8!5E dV~nW !E dV~nW 8!S(a)~ n̂!S(a)~ n̂8!

3
]

]Xn~nW !
U 1

RW ~nW !2RW 8~nW 8!
U

uW 50

.

~4.3!

Here the indexa (a51,2) corresponds to the two variants
antiferroquadrupole ordering, Eqs.~3.15a!, ~3.15b!. We re-
call that nW 2nW 8 stands forXW (nW 2nW 8)[XW (kW ). We take the
average over the radial dependence of the 4f hole

vn8
(a)~kW !5E dr r 2E dr8 r 82R f

2~r !R f
2~r 8!vn8

(a)~kW ; r ,r 8!.

~4.4!

One has the symmetry relation

vn8
(a)~kW !52vn8

(a)~2kW ! ~4.5!

on the fcc lattice. In the followingkW labels the twelve neares
neighboring Tm sites around a Tm ion taken as origin. P
ceeding as in Ref. 18 we rewrite the expression~4.2! as an
operator in the space of the 4f hole

UQQT
(a) 5

1

2 ( 8
nW nW 8

(
n

vn8
(a)~nW 2nW 8!

3ra
F~nW !ra

F~nW 8!@un~nW !2un~nW 8!#, ~4.6!

where ra
F(nW ) is defined by expressions~3.14a!, ~3.14b!.

Transforming to Fourier space we find

UQQT
(a) 5 i(

kW
(

pW
vn8

(a)~kW ,pW !ra
F~2pW 2qW !ra

F~pW !un~kW !,

~4.7!

where

vn8
(a)~kW ,pW !5~Nm!21/2(

kW
vn8

(a)~kW !

3cosF S pW 1
kW

2
D •XW ~kW !GsinFkW•XW ~kW !

2
G .

~4.8!

y
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Herem is the nuclear mass of Tm. In order to obtain the fr
energy contribution fromUQQT

(a) , we take the long wave

length limit kW→0 and retain only linear terms inkW . We then
consider pW near qW L

1 and apply the condensation schem

~3.15a!, ~3.15b!. Finally we replace the displacementsun(kW )
by their instantaneous thermal expectation values^un(kW )&.
After some algebra we obtain

FQQT
(a) 5

N

2ANm
~ra!2 (

n5x,y,z
@ ikxLxn

(a)1 ikyLyn
(a)1 ikzLzn

(a)#

3^un~kW !&, ~4.9!

wherera is the order parameter amplitude. In Eq.~4.9! we
have defined

Lxn
(a)52a@vn8

(a)~3!1vn8
(a)~2!1vn8

(a)~6!1vn8
(a)~5!#,

~4.10a!

Lyn
(a)52a@vn8

(a)~1!1vn8
(a)~3!1vn8

(a)~4!2vn8
(a)~6!#,

~4.10b!

Lzn
(a)52a@vn8

(a)~1!1vn8
(a)~2!2vn8

(a)~4!2vn8
(a)~5!#.

~4.10c!

Here the argumentskW 5126 of vn8
(a) stand forXW (kW ), with

XW (1)5(0,1,1), XW (2)5(1,0,1), XW (3)5(1,1,0), XW (4)5(0,
21,1), XW (5)5(21,0,1), XW (6)5(21,1,0) in units a/2,
wherea is the cubic lattice constant. Introducing the hom
geneous strains

lim
kW→0

ikm^un~kW !&5AmNemn , n5x,y,z, ~4.11!

we obtain

FQQT
(a) @e,r#/N5ra

2@Lxx
(a)~exx1eyy!1Lzz

(a)ezz

12Lxy
(a)exy12Lxz

(a)~exz1eyz!#.

~4.12!

~From the symmetry of the order parameters it follows t
Lxx

(a)5Lyy
(a) andLxz

(a)5Lyz
(a) .! It is convenient to work in the

system of axes which reflects the monoclinic symmetry, F
2. We therefore consider the coordinate systemx8y8z8,
wherex8 axis corresponds to@11̄0#, y8 - to @110# andz8 to
@001# directions of the cubic system. Notice that the ne
axes are obtained by the clockwise rotation about thez axis
by p/4. SinceLmn (m,n5x,y,z) is a tensor of the secon
rank, we writeFQQT@e,r# in the new coordinate system a

FQQT
(a) @e8,r#/N5ra

2@L8xx
(a)exx8 1L8yy

(a)eyy8 1L8zz
(a)ezz8

12L8yz
(a)eyz8 #. ~4.13!

In the transformed coordinate system the elastic term of
free energy reads
10410
e

s

-

t

.

e

FTT@e8#/~VcN!5
1

2
c5~e8xx

2 1e8yy
2 !1

1

2
c11e8zz

2

1c12~exx8 1eyy8 !ezz8 1c6exx8 eyy8

1~c112c12!e8xy
2 12c44e8yz

2 , ~4.14!

where we have introduced the notationsc55(c111c12)/2
1c44, c65(c111c12)/22c44 andc11, c12, c44 are the cubic
elastic constants. MinimizingFQQT1FTT with respect to the
strainsemn8 for a given configuration with a fixed expectatio
valuera we obtain

exx8 52
ra

2

2c44nVc
@L8 xx

(a)~c11c52c12
2 !2L8 yy

(a)~c11c62c12
2 !

22L8 zz
(a)c12c44#, ~4.15a!

eyy8 52
ra

2

2c44nVc
@L8 yy

(a)~c11c52c12
2 !2L8 xx

(a)~c11c62c12
2 !

22L8 zz
(a)c12c44#, ~4.15b!

ezz8 52
ra

2

nVc
@L8 zz

(a)~c111c12!2c12~L8 xx
(a)1L8 yy

(a)!#,

~4.15c!

eyz8 52
ra

2

2c44Vc
L8 yz

(a) , ~4.15d!

where n522c12
2 1c11(c111c12). The shear distortioneyz8

implies that in the monoclinic phases the angle between
axesym8 andzm8 attached to the crystal deviates fromp/2 by
a'2eyz8 .

We now present numerical results for the quadrupole
der in theC2/c structure. In the monoclinic system of axe
(x8y8z8) the calculated values are quoted in Table IV.~The
shear anglea'23231024r1

2.! For calculations ofemn8 we
took the elastic constantsc11510 285, c1253969 andc44
51188 in units K/Å3 from Ref. 9. Returning now to the
original cubic system of axes (x,y,z) we find

exx5eyy520.0731024r1
2 , ezz524.6631024r1

2 ,

TABLE IV. Calculated parametersL8 mn
(1) and homogeneous

strainsemn8 for the quadrupolar orderingFm3̄m→C2/c; r1 is the
order parameter amplitude.

mn xx yy zz yz

L8 mn
(1) 155.7 K 94.2 K 311.1 K 243.6 K

@emn8 /(r1)2#3104 22.08 11.95 24.66 216.0
5-8
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exy512.0231024r1
2 , exz5eyz5211.331024r1

2 .
~4.16!

For the condensation scheme~3.15b! to the C2/m quad-
rupole structure the calculated values are quoted in Tab
~the shear anglea526.8431024r1

2). In the initial cubic
system of axes we find

exx5eyy523.1331024r1
2 , ezz511.4631024r1

2 ,
~4.17!

exy5215.7431024r1
2 , exz5eyz522.4231024r1

2 .

We conclude that the two possibilities of quadrupole or
lead to completely different displacements in the monocli
phase.

V. CONCLUSIONS

We present a microscopic model of quadrupole orde
TmTe. For a 4f hole aboveTQ we have obtained the se
quenceG7-G8-G6 of the crystal electric field~CEF! energy
spectrum withG7 as ground state which is in agreement w
results from Mo¨ssbauer spectroscopy23 and ultrasonic veloc-
ity measurements.24 The splitting of CEF levels is found to
be small if only contributions from six Te nearest neighbo
of a Tm site are taken into account.

We have considered quadrupolar interactions betweenf
holes located on Tm sites. On the basis of neutron diffrac
experiments10 indicating that a single arm of* qW L is respon-
sible for the quadrupole structure, we have studied the qu
rupole interactions at theL point of the BZ. We have found
that the quadrupole coupling between 4f holes becomes at
tractive at theL point thus driving a structural phase trans
tion with concomitant lowering of the crystal symmetr
Starting with the mean-field Hamiltonian we have deriv
the Landau free energy, calculated the transition tempera
and foundTc54.9 K. The overestimation of the transitio
temperature is ascribed to a screening effect from conduc
electrons which has not been considered in the present w
The structure of TmTe belowTQ is monoclinic~Fig. 2! but
there are still two possibilities for the quadrupole order p
rameter. These quadrupole order parameters are express
real space in terms ofT2g andEg components and visualize

TABLE V. Calculated parametersL8 mn
(2) and homogeneous

strainsemn8 for the quadrupolar orderingFm3̄m→C2/m; r2 is the
order parameter amplitude.

mn xx yy zz yz

L8 mn
(2) 9.2 K 488.9 K 63.0 K 52.3 K

@emn8 /(r2)2#3104 112.61 218.87 11.46 23.42
s-

re
.
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in Fig. 1. The condensation ofr1
F , Eq. ~3.15a!, leads to the

C2/c structure while the condensation ofr2
F , Eq. ~3.15b!,

leads to theC2/m. Although both structures are monoclin
their symmetries are different. Both of them result in t
domain variants which have been observed experimenta
We conclude that on the basis of the present experime
data and our theoretical studies it is impossible to determ
unambiguously the actual quadrupole order in TmTe. W
have shown that such discrimination could be done in resp
to lattice distortions which develop belowTQ . Starting from
the quadrupole-quadrupole interactions on a deformable
tice, we have derived the couplings of the quadrupoles w
the atomic lattice displacements. We have calculated the
responding lattice distortions and suggest experiments w
can be decisive in determining which quadrupole order
realized in TmTe.
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APPENDIX A

Here we investigate transformational properties of fun
tionsS(1)(V) andS(2)(V), Eqs.~3.13a!, ~3.13b! ~see Fig. 1!.
Below we omit the argumentV of the functions. We recall
that the functionsST2g

1 , ST2g

2 , andST2g

3 are proportional to the

Cartesian componentsyz, zx, and xy, respectively. There-
fore, for the reflectionm through the plane@11̄0#

m~ST2g

1 2ST2g

2 !52~ST2g

1 2ST2g

2 !, ~A1!

m~ST2g

1 1ST2g

2 !51~ST2g

1 1ST2g

2 !, ~A2!

while for the rotationC2 by p about the axis@11̄0#

C2~ST2g

1 2ST2g

2 !52~ST2g

1 2ST2g

2 !, ~A3!

C2~ST2g

1 1ST2g

2 !51~ST2g

1 1ST2g

2 !. ~A4!

Therefore,

mS(1)52S(1), ~A5!

C2S(1)52S(1), ~A6!

while

mS(2)5S(2), ~A7!

C2S(2)5S(2). ~A8!
,
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