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Elastic instabilities at a sliding interface

B. N. J. Persson
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I consider a semi-infinite elastic solid sliding on a flat hard substrate. I present a linear instability analysis to
determine when the steady sliding motion becomes unstable with respect to infinitesimal perturbations. I
consider a general case where the interfacial frictional shear stress depends not only on the sliding velocity but
also on a state variable. I show that when the pressure in the contact area between the solids is constant, no
linear instability occurs if the kinetic friction coefficient increases monotonically with the sliding velocity,
dmk /dv0.0. However, when the pressure at the interface varies spatially, elastic instabilities may also occur
when dmk /dv0.0. I discuss the physical origin of this effect, and suggest that these instabilities may be
precursors of the Schallamach waves.
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I. INTRODUCTION

During the sliding of a block on a substrate, rapid pr
cesses usually occur at the sliding interface independen~or
weakly dependent! of the velocityv0 of the center mass ve
locity of the block. These rapid processes can occur on m
different length scales, starting at molecular distan
~nanometers!.1 For elastically soft materials such as rubber
gelatine, elastic instabilities have been observed on a ma
scopic length scale.2–7 The most well-known instability for
rubberlike materials is the so-called Schallamach wav
These wavelike instabilities have been observed for smo
rubber surfaces sliding on hard smooth substrates. The in
bilities occur mainly for elastically soft rubber~not rein-
forced with carbon black!, at high a enough sliding spee
where the rubber surface in front of the asperity undergo
buckling that produces detachment waves. These are s
regular folds filled with air, which cross the area of contac
velocities significantly greater than the imposed velocityv0,
from the compressive front zone to the tensile back zo
They move like wrinkles in a carper. In these circumstanc
true sliding does not occur; folds are formed in the rub
and these provide relative motion between the two surfa
in adhesive contact. Based on experimental observation,
rough picture we may consider every~Schallamach! instabil-
ity wave as two crack tips that propagate in the same di
tion and with the same velocity: an opening crack~peeling!
in the front region, and a closing mode~readhering! at the
rear.

Elastic instabilities usually occur when the kinetic frictio
coefficient mk decreases with increasing sliding veloci
v0.1,8–11 However, the Schallamach waves are obser
when dmk /dv0.0.2–5 This is illustrated in Fig. 1, which
shows experimental results for rubber sliding on~a! a glass
substrate, and~b! a Teflon substrate. In~a!, no Schallamach
waves were detected, but stick-slip was observed w
dmk /dv0,0 ~dashed line!. On the other hand, in case~b!,
steady sliding is replaced with Schallamach wave propa
tion when the kinetic friction coefficient has reachedmc
'2.2. The Schallamach waves can be considered as a s
relieving mechanism that limit the buildup of friction wit
speed.
0163-1829/2001/63~10!/104101~7!/$15.00 63 1041
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I note that the bell-shaped form ofmk in Fig. 1~a! is due to
the internal friction of the rubber, which is particularly larg
when the perturbing frequencies are located in the transi
zone between the rubbery region and the glassy region1,12

By changing the rubber glass transition temperature~which
depends on the molecular composition of the rubber! it is
possible to shift the bell-shaped curve along the velocity a
by many orders of magnitude.1,12,13 This important fact can
be used when choosing a rubber~for a particular applica-
tion!, in order to avoid interfacial stick-slip motion at th
operating sliding velocities~see below!.

Interfacial stick-slip motion may occur on many differe
length and time scales. If~for a finite-sized system! the fre-
quency of a stick-slip instability happens to be close to
mechanical resonance~eigenmode! of the system, one may
expect a strong coupling between the stick-slip motion a
the mechanical resonance, which may result in a highly
cited resonance mode. This may have severe mecha
consequences~devise failure!, and is usually accompanie
by a loud noise.14 The effect of stick-slip instabilities on the
performance of rubber devices has been studied in grea
tail, e.g., in the context of water pump seals or ship prope
staves. Here, ‘‘squealing’’~harmonic oscillations! is often
observed, as a result of one of the natural frequencies of
system being preferentially excited.14 The resulting vibra-
tions may be so large that detachment occurs in some in
facial areas. In these cases, the selection of a new elast
with a different glass transition temperature may remove
stick-slip instabilities~by shifting them to a velocity region
outside the one at which the devise normally operate!, see
above.

It is often believed that stick-slip can be removed by
bricating the sliding interface. However, in practice, the o
posite is often observed. Thus, for example, shoes will of
make noise when wet or slightly damp. The reason for thi
that stick-slip usually has nothing directly to do with th
magnitude of the kinetic friction coefficient~which may be
strongly reduced upon lubrication!, but rather, occurs when
dmk /dv0,0. Now, it is easy to understand whydmk /dv0
may be negative when rubber is slid on a lubricated surfa
At a low sliding speed, the lubrication fluid may be near
©2001 The American Physical Society01-1
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completely squeezed out from the rubber-substrate con
area, resulting in a large friction, while at a high-sliding v
locity, a relative thick fluid layer remains trapped betwe
the surfaces. Thus, the kinetic friction coefficient is likely
decrease with increasing sliding velocityv0.

In this paper I consider a semi-infinite elastic solid slidi
on a flat hard substrate. I present a linear instability anal
to determine when the steady sliding motion becomes
stable with respect to infinitesimal perturbations. I conside
general case where the interfacial frictional shear stress
pends not only on the sliding velocity~in the x direction!
vx(x,t) but also on a state variablef(x,t). I show that when
the pressurep0(x) in the contact area between the solids

FIG. 1. ~a! The kinetic friction coefficient for a rubber bloc
sliding on a glass surface. In the dashed part of the friction cu
stick-slip motion is observed.~b! The kinetic friction coefficient for
a rubber block sliding on a Teflon surface. Steady sliding is
served as long asmk is below some critical valuemc , while sliding
occurs via the propagation of Schallamach waves whenmk reach
mc . The figure is based on experimental data presented in Refs
and 21.
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ct

is
n-
a
e-

constant, no linear instability occurs ifdmk /dv0.0, but
only whendmk /dv0,0. However, when the pressurep0(x)
varies withx ~which can be realized by squeezing an elas
body with a slightly curved surface towards the flat substr
surface!, elastic instabilities may also occur fordmk /dv0
.0. We discuss the physical origin of this effect, and su
gest that these instabilities may be precursors of the Sc
lamach waves. I emphasize that although the theory p
sented in this paper was illustrated above with rub
friction, the theory is of general applicability, valid for an
elastic solid. However, for elastically stiff materials, interf
cial stick-slip instabilities may in practice only occur on su
a large length scale that it cannot be observed in norm
sized samples. But sometimes the physical systems of in
est are very large, e.g., earthquake faults, and in these c
the theory presented below should be applicable. Finally,
me note that Adams has studied self-excited oscillations
two elastic half spaces sliding with a constant coefficient
friction. The present paper is a generalization of Ref. 15
that we allow for a general velocity and state-dependent f
tion law, as well as for a spatially varying contact pressu
p0(x).

II. CONSTANT CONTACT PRESSURE p0Äconst

Consider a semi-infinite elastic solid sliding on a flat rig
substrate.~In principle, we could allow the substrate and th
elastic solid to have small wavelength surface roughness,
in this case, we can only consider the system on length sc
much larger than the longest wavelength component of
surface roughness.! Assume that the elastic solid occupie
the half spacez.0, and let (x,y,z) be a coordinate system
with thexy plane on the surfacez50 of the solid, see Fig. 2
We denote the two-dimensional position vector in thez50
plane with x5(x,y). Assume that the stresss i(x,t)
52s i3(x,0,t) acts on the bottom surface of the elastic sol
We assume that the elastic block slides along thex axis, and
that sy50. The frictional stress is assumed to depend ox
and on timet and satisfies

sx~x,t !52m~vx ,f!sz~x,t !, ~1!

where the friction coefficientm depends on the local sliding
velocity vx(x,t) and on the state variablef(x,t). Let us use
a linear stability analysis to determine when the steady s
ing motion becomes unstable. We write

e,

-

20

FIG. 2. Semi-infinite elastic solid (z.0) sliding on a hard sub-
strate (z,0).
1-2
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ELASTIC INSTABILITIES AT A SLIDING INTERFACE PHYSICAL REVIEW B 63 104101
vx5v01dvx ~2!

f5f01df, ~3!

wherev0 and f0 are independent ofx and t. We write the
perturbations

dvx5jei (q•x2vt), df5hei (q•x2vt), ~4!

wherej andh are small numbers. Similarly, we expand

sz5sz
01dsz[p01dsz , ~5!

sx5sx
01dsx . ~6!

Substituting Eqs.~2!–~6! in Eq. ~1! and expandingm to lin-
ear order indvx anddf gives:

sx
01dsx52S mk~v0!1

]m

]vx
dvx1

]m

]f
df D ~p01dsz!,

~7!

wheremk(v0)5m@v0 ,f0(v0)#. Thus,

sx
052mk~v0!p0 ~8!

dsx52mk~v0!dsz2S ]m

]vx
dvx1

]m

]f
df D p0 . ~9!

Using the theory of elasticity~assuming an isotropic elasti
media for simplicity!, one can calculate the displaceme
field u on the surfacez50 in response to the stress distrib
tions dsx anddsz . We have

dui~q,v!5Mi j ~q,v!ds j~q,v! ~10!

or, in matrix form,

du~q,v!5M ~q,v!ds~q,v!, ~11!

where the matrix16

M52
i

rcT
2S 1

P~q,v! FQ~k,v!~ ẑq2qẑ!

1S v

cT
D 2

~pLẑẑ1pTq̂q̂!G1
1

pT
eeD , ~12!

whereq̂5q/q, e5 ẑ3q̂ and where

P5S v2

cT
2 22q2D 2

14q2pTpL , ~13!

Q52q22v2/cT
212pTpL , ~14!

pT56S v2

cT
2 6 i e2q2D 1/2

, pL56S v2

cL
2 6 i e2q2D 1/2

,

~15!

where the1 and2 sign refers tov.0 andv,0, respec-
tively, and wheree is an infinitesimal positive number. In th
equations above,r, cT , andcL are the mass density and th
transverse and longitudinal sound velocities of the solid,
spectively. In this paper, we will consider the sliding of
10410
t
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elastic solid~e.g., rubber! on a rigid flat surface. We assum
that the two solids~for all times! are in contact over the
whole z50 plane so thatduz50 for z50. We will also
assume thatdsy50 so that Eq.~11! takes the form:

dux5Mxxdsx1Mxzdsz , ~16!

05Mzxdsx1Mzzdsz . ~17!

Equations~9! and ~17! gives

dsx5
2p0

12mk~v0!Mzx /Mzz
S ]m

]vx
dvx1

]m

]f
df D . ~18!

Combining Eqs.~16! and ~17! gives

dsx5
Mzzdux

MxxMzz2MxzMzx
. ~19!

Sincedvx52 ivdux , using Eqs.~18! and ~19! gives

Mzzdvx

MxxMzz2MxzMzx

5
ivp0

12mk~v0!Mzx /Mzz
S ]m

]vx
dvx1

]m

]f
df D .

~20!

From Eq.~12! we get

Mxx52
i

rcT
2

pT

P S v

cT
D 2

, ~21!

Mzz52
i

rcT
2

pL

P S v

cT
D 2

, ~22!

Mxz5
i

rcT
2

Q

P
qx , ~23!

Mzx52
i

rcT
2

Q

P
qx . ~24!

Thus

Mzz

MxxMzz2MxzMzx
5

ircT
2P~v/cT!2pL

Q2q21pLpT~v/cT!4 , ~25!

Mzx

Mzz
5

Qqx

pL~v/cT!2 . ~26!

If we write v5 iacTq ~where q5uqxu) and k5cT /cL
5@(122n)/(222n)#1/2 ~wheren is the Poison ratio! we get

Mzz

MxxMzz2MxzMzx
5rcT

2aqG~a!, ~27!
1-3
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G~a!5
a~k2a211!1/2@~a212!224~a211!1/2~k2a211!1/2#

a4~a212!2~k2a211!1/22@21a222~a212!2~k2a211!1/2#2
, ~28!
r-
th
in

g

ing

g

r-
Mzx

Mzz
5 iH ~a! sgn~qx!, ~29!

H~a!5
21a222~a211!1/2~k2a211!1/2

a2~k2a211!1/2
, ~30!

where sgn(qx)5qx /q51 if qx.0 and 21 if qx,0. Note
that

G~a!→ 2

a~11k2!
and H~a!→2k2 ~31!

asa→0. Using Eqs.~20!, ~27!, and~29!, we can write

G~a!dvx5
2p0 /~rcT!

12 iH ~a!mk~v0!sgn~qx!
S ]m

]vx
dvx1

]m

]f
df D .

~32!

The state variablef is assumed to satisfy1,8,17

]f

]t
512vxf/D. ~33!

Here,D is a microscopic distance with which the two su
faces must move relative to each other in order to break
~local! ‘‘bond’’ between the surfaces. For example, if cha
interdiffusion occurs at the interface, thenD will be some
fraction of the chain length. Note that whenvx50 ~station-
ary contact! this equation givesf5t, i.e.,f equals the time
of stationary contact. On the other hand, for uniform slidin
vx5const, Eq.~33! gives f5D/vx , which is the average
time a junction survives before being broken by the slid
motion. Using Eq.~33! gives

2 ivh512~v01j!~f01h!/D, ~34!

or

v0f05D, ~35!

2 ivh52jf0 /D2v0h/D. ~36!

Thus

h5
2jD/v0

2

11aqDcT /v0
, ~37!

or

df5
2dvxD/v0

2

11aqDcT /v0
. ~38!

Combining Eqs.~32! and ~38! gives
10410
e

,

G~a!5
2p0 /~rcTv0!

12 iH ~a!mk~v0!sgn~qx!
S a1

b

11aqDcT /v0
D ,

~39!

where

a5v0

]m

]vx
, b52

D

v0

]m

]f
, ~40!

where the partial derivatives are evaluated forvx5v0 and
f5f05D/v0. Now, let us first consider very small slidin
velocities v0. This case is equivalent to the smalla limit
whereG(a)'2/@a(11k2)# and H(a)'2k2. Substituting
these results in Eq.~39! gives

2

a~11k2!
5

2p0 /~rcTv0!

11 ik2mk~v0!sgn~qx!
S a1

b

11aqDcT /v0
D .

~41!

Replacinga52 iv/cTq we get

A~v!p05q, ~42!

where

A~v!5
iv~11k2!/~2rcT

2v0!

11 ik2mk~v0!sgn~qx!
S a1

b

12 ivD/v0
D .

~43!

Equation~42! is a second-order equation ina that is easy
to solve:

a52
1

2 S a1b

aq̄
2

1

laD 6F1

4 S a1b

aq̄
2

1

laD 2

2
1

laq̄
G 1/2

,

~44!

whereq̄5qDcT /v0 and

l5
~11k2!p0 /~rcTv0!

2@11 ik2mksgn~qx!#
. ~45!

The steady sliding state is unstable when Imv.0 or Rea
.0. Thus, the boundary line in the (q,v0) plane separating
the uniform sliding state from the stick-slip region is dete
mined by the condition Rea50, which gives

ReS a1b

aq̄
2

1

laD 50, ~46!

or

a1b52
qDE/p0

~11k2!~11n!
, ~47!

whereE52rcT
2(11n) is the elastic modulus. But since
1-4
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ELASTIC INSTABILITIES AT A SLIDING INTERFACE PHYSICAL REVIEW B 63 104101
dmk~v0!

d ln v0
5v0

dm~v0 ,D/v0!

dv0
5v0

]m

]vx
1v0

]m

]f

df0

dv0
5a1b,

~48!

we get

dmk

d ln v0
52

qDE/p0

~11k2!~11n!
. ~49!

Let us now consider three different cases.
A. State-independent friction. Let us first assume that th

friction coefficient only depends on the instantaneous slid
velocity vx :

m~vx ,f!5m~vx!. ~50!

In this case, Eq.~46! reduces tomk8(v0)50. Note that this
equation is independent ofq. Thus, stick-slip instabilities
will occur at the sliding interface in those vertical strips
the (v0 ,q) plane wheremk8(v0),0, while steady motion oc-
curs whenmk8(v0).0. This is illustrated in Fig. 3~a! for a
typical case where there is only one stick-slip region
‘‘low’’ sliding velocities.

B. State- and rate-dependent friction I. We assume,1,8,17

m~vx ,f!5mk
0~Bi ln vx1B'ln f!. ~51!

This friction law has been found to describe the low-veloc
behavior of many systems of practical importance, e.g., st
sliding on stone, or paper sliding on paper. The first term
the right-hand side~RHS! of Eq. ~51! describes the velocity
dependence of the kinetic shear stress at low-sliding vel
ties ~creep!, while the second state-dependent term can h
different origins, e.g., resulting from an increase in the c
tact area~due to perpendicular creep! with increasing time of
stationary contact, or it may result from the~thermally acti-
vated! formation of capillary bridges between microscop
cally close but noncontacting surface asperities. Using
~51! gives

dmk

d ln v0
5mk

0~Bi2B'! ~52!

and Eq.~49! takes the form

B'2Bi5
qDE/p0

mk
0~11k2!~11n!

. ~53!

Since B' and Bi are assumed to be velocity independe
stick-slip instabilities will occur forq,qc @whereqc is de-
termined by Eq.~53!#, while steady sliding occurs forq
.qc . The dynamical phase diagram is shown in Fig. 3~b!,
where we have taken into account that the kinetic frict
coefficient always increases at high enough velocityv0,
which gives rise to a highv0 cutoff in the stick-slip region
@this effect is not included in the friction law~51! that only
can describe the low velocity creep behavior#. Thus, if the
sliding body has a linear size;L,1/qc , no interfacial stick-
slip motion will occur. As an application, let us consider t
recent experimental study of sliding friction of elastomer
a rough hard glass surface.7 In this case, it was observed th
10410
g

t

e
n

i-
e
-

q.

,

the sliding dynamics of the rubber block could be relative
well-described by the friction law~51! with D'1 mm
andB'2Bi;0.00620.044 depending on the temperatureT.
The ~average! pressurep0'0.1 MPa and if we use the

FIG. 3. Schematic dynamical phase diagrams~a!–~c! for three
different friction laws. The dahed areas denote the region in
(v0 ,q) plane where nonsteady~stick-slip! motion occurs at the in-
terface.v0 is the sliding velocity far away from the interface, andq
the wave vector associated with the perturbation of the steady
ing motion. ~a! is for the state-independent friction law@see Eq.
~50!#, while ~b! and~c! are for the state-dependent friction laws~51!
and~54!. In ~b! we have taken into account that the kinetic frictio
coefficient always increases at high enough velocityv0, which
gives rise to a highv0-cutoff in the stick-slip region@this is not
included in the friction law~51! that can only describe the low
velocity ~creep! behavior#.
1-5
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B. N. J. PERSSON PHYSICAL REVIEW B 63 104101
low-frequency elastic modulusE'3 MPa in Eq. ~53! we
conclude that interfacial stick-slip instabilities, with th
wavelengthl larger thanlc52p/qc50.121 cm, should oc-
cur at the sliding interface. However, the rubber block in
experiment was only 0.28 cm thick, which is comparable
lc , while the calculation is for a semi-infinite rubber bloc
No information related to interfacial instabilities was pr
sented in Ref. 7.

C. State- and rate-dependent friction II. We now consider
a model where the static friction force increases with
time of stationary contact because of interdiffusion. In t
simplest possible case one assumes that the increase i
static friction force is characterized by a single relaxat
time t and write,1,11

m~vx ,f!5mk
0@Bi ln vx1C~12e2f/t!#. ~54!

The friction dynamics that result from this friction law ha
been found to be in good agreement with the experiment
mica surfaces covered with chain molecules,~see Ref. 1 and
Refs. 18 and 19!. From Eq.~54!

dmk

d ln v0
5mk

0S Bi2
CD

v0t
e2D/v0tD , ~55!

and Eq.~49! takes the form

Ce2D/v0t~D/v0t!2Bi5
qDE/p0

mk
0~11k2!~11n!

. ~56!

This boundary line separating stick-slip from steady slid
is shown in Fig. 3~c!. If q5q(v0) denotes the equation fo
the boundary line, the maximumq for which stick-slip insta-
bilities are possible is determined byq8(v0)50 giving v0
5D/t andq5p0(11k2)(11n)/DEe, wheree52.718.

III. SPATIALLY VARYING CONTACT PRESSURE
p0Äp0„x…

Let us now assume that the pressure distributionp
5p(x) varies withx. It is easy to generalize the study pr
sented above to get the following integral equation fordux
5 f (x):

1

2pE dx8S 1

x2x81 i e
1

1

x2x82 i e
D f 8~x8!

2A~v!p0~x! f ~x!50, ~57!

where, using that for rubberlike materialsn'0.5 and hence
k'0:

A~v!5
iv

2rcT
2S ]m

]vx
2

]m

]f

D/v0
2

12 ivD/v0
D . ~58!

Let us first consider a constant pressurep0(x)5const. In
this case, the solutions to Eq.~57! have the form

f ~x!5u1eiqxx. ~59!

Substituting this in Eq.~57! gives
10410
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A~v!p05uqxu, ~60!

which is identical to Eq.~42!. Next, let us find a solution to
Eq. ~57! corresponding to a nonuniform pressure distrib
tion. For example, if

f ~x!5u1 ln~b21x2/a2!, ~61!

where a and b are positive numbers withb.1, then the
strain

f 8~x!5
2xu1 /a2

b21x2/a2 , ~62!

and since

1

2pE dx8
2x8/a2

b21x82/a2 S 1

x2x81 i e
1

1

x2x82 i e
D

52
2b/a

b21x2/a2 , ~63!

Eq. ~57! takes the form

22b/a

b21x2/a2 2Ap0~x!ln~b21x2/a2!50. ~64!

This equation is satisfied if we choose

p0~x!5
2P0b2 ln b

~b21x2/a2!ln~b21x2/a2!
~65!

with

AP052
1

ab ln b
. ~66!

Note that p0(0)5P0 and that p0(x).0 for all x, while
p0(x)→0 asx→6`.

Since a.0 and b.1, Eqs. ~58! and ~66! predict that
Im v.0 if dmk /dv0.0. Thus, the steady sliding state
unstable with respect to small perturbations whendmk /dv0
.0, in sharp contrast to the case of a constant pres
p(x)5p0 where steady sliding is unstable only whe
dmk /dv0,0.

Let us calculate the pressurep1 corresponding to the dis
placement fielddux5 f (x). From Eqs.~16! and ~17! we get

dsz~qx!52
Mzx

MxxMzz2MxzMzx
dux~qx!

5
2k2

11k2 rcT
2~ iqx!dux~qx!. ~67!

Thus, returning to real space,

p1~x!5
2k2

11k2 rcT
2 f 8~x!5

2k2

11k2 rcT
2 2xu1 /a2

b21x2/a2 . ~68!
1-6
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Note that while p0(x) is symmetric aroundx50, p1(x)
changes sign asx→2x. Since p1 decays slower with in-
creasing uxu than p0(x), the total pressurep(x)5p0(x)
1p1(x) will be negative for somex. Within the present
model, this indicates that, for arbitrary low sliding veloci
~assumingdmk /dv0.0), detachment will occur in some in
terfacial region. However, for elastically soft materials su
as rubber, adhesion is very important, and a large eno
negative pressure is necessary in order to break the rub
substrate bond. Thus, for real systems, detachment will o
only for a high enough sliding velocity. A more comple
analysis of the detachment process requires an extensio
the model above to take into account the adhesion; in
case it would be very interesting to perform a nonlinear
stability analysis to the third order, in order to gain a dee
insight into the detachment process.

We note that the integral Eq.~57!, for a given pressure
p0(x), will, in general, have an infinite set of solution
~‘‘eigenvectors’’! f n(x). In the present paper we have on
studied one of these solutions. The other solutions may
may not, be associated with eigenvalues with Imvn.0. If
this inequality is satisfied, the steady sliding motion is u
stable with respect to the perturbationf n(x).
er
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IV. SUMMARY

I have studied the sliding of a semi-infinite elastic solid
a flat hard substrate and determined when the steady sli
motion becomes unstable with respect to infinitesimal per
bations. I assumed that the interfacial frictional shear str
depends not only on the sliding velocity but also on a st
variable. When the pressure in the contact area between
solids is constant, no linear instability occurs if the kine
friction coefficient increases monotonically with the slidin
velocity, dmk /dv0.0. However, when the pressure at th
interface varies spatially, elastic instabilities may also oc
whendmk /dv0.0. These instabilities may be precursors
the Schallamach waves.
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