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Elastic instabilities at a sliding interface
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| consider a semi-infinite elastic solid sliding on a flat hard substrate. | present a linear instability analysis to
determine when the steady sliding motion becomes unstable with respect to infinitesimal perturbations. |
consider a general case where the interfacial frictional shear stress depends not only on the sliding velocity but
also on a state variable. | show that when the pressure in the contact area between the solids is constant, no
linear instability occurs if the kinetic friction coefficient increases monotonically with the sliding velocity,
du/dvy>0. However, when the pressure at the interface varies spatially, elastic instabilities may also occur
whenduw,/dvy>0. | discuss the physical origin of this effect, and suggest that these instabilities may be
precursors of the Schallamach waves.
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[. INTRODUCTION I note that the bell-shaped form gf in Fig. 1(a) is due to
the internal friction of the rubber, which is particularly large
During the sliding of a block on a substrate, rapid pro-when the perturbing frequencies are located in the transition
cesses usually occur at the sliding interface indepen@ent zone between the rubbery region and the glassy réegion.
weakly dependentof the velocityv, of the center mass ve- By changing the rubber glass transition temperaturiich
locity of the block. These rapid processes can occur on manjiepends on the molecular composition of the rupliiers
different length scales, starting at molecular distancegpossible to shift the bell-shaped curve along the velocity axis
(nanometers® For elastically soft materials such as rubber Orhy many orders of magnitude:>* This important fact can
gelatine, elastic instabilities have been observed on a macrge sed when choosing a rubb@or a particular applica-

. —7 . -
scopic length SC"?“%- The most well-known instability for  {jon) in order to avoid interfacial stick-slip motion at the
rubberlike materials is the so-called Schallamach WaVeSyharating sliding velocitiegsee below

These wavelike instabilities have been observed for smooth
rubber surfaces sliding on hard smooth substrates. The inst

bilities occur mainly for elastically soft rubbenot rein- . o "
forced with carbon );alac)k at high genough sl?ding speed guency of a stick-slip instability happens to be close to a
' ' mechanical resonandeigenmodg of the system, one may

where the rubber surface in front of the asperity undergoes a ; : . .
buckling that produces detachment waves. These are sm jpect a strong coupling between the stick-slip motion and

regular folds filled with air, which cross the area of contact at"'¢ mechanical resonance, which may result in a highly ex-
velocities significantly greater than the imposed velooigy cited resonance mode. This may have severe mechanical

from the compressive front zone to the tensile back Zone(_:onsequencgejgwse failurg, and is usually accompanied
They move like wrinkles in a carper. In these circumstancesPY @ loud noise? The effect of stick-slip instabilities on the
true sliding does not occur; folds are formed in the rubbeiPerformance of rubber devices has been studied in great de-
and these provide relative motion between the two surfaceil, €.9., in the context of water pump seals or ship propeller
in adhesive contact. Based on experimental observation, in$taves. Here, “squealing’(harmonic oscillationsis often
rough picture we may consider evei§challamachinstabil-  observed, as a result of one of the natural frequencies of the
ity wave as two crack tips that propagate in the same direcsystem being preferentially excitédi.The resulting vibra-
tion and with the same velocity: an opening crdpkeling  tions may be so large that detachment occurs in some inter-
in the front region, and a closing modeeadhering at the  facial areas. In these cases, the selection of a new elastomer
rear. with a different glass transition temperature may remove the
Elastic instabilities usually occur when the kinetic friction stick-slip instabilities(by shifting them to a velocity region
coefficient u, decreases with increasing sliding velocity outside the one at which the devise normally operatee
vo.1®1 However, the Schallamach waves are observedbove.
when du,/dvy>0.27° This is illustrated in Fig. 1, which It is often believed that stick-slip can be removed by lu-
shows experimental results for rubber sliding @ha glass bricating the sliding interface. However, in practice, the op-
substrate, an¢b) a Teflon substrate. Ifa), no Schallamach posite is often observed. Thus, for example, shoes will often
waves were detected, but stick-slip was observed whemake noise when wet or slightly damp. The reason for this is
du,/dvo<O (dashed ling On the other hand, in case), that stick-slip usually has nothing directly to do with the
steady sliding is replaced with Schallamach wave propagamagnitude of the kinetic friction coefficierttvhich may be
tion when the kinetic friction coefficient has reach@gd  strongly reduced upon lubricatinnbut rather, occurs when
~2.2. The Schallamach waves can be considered as a stre$g,/dv,<0. Now, it is easy to understand whtu, /dvg
relieving mechanism that limit the buildup of friction with may be negative when rubber is slid on a lubricated surface:
speed. At a low sliding speed, the lubrication fluid may be nearly

Interfacial stick-slip motion may occur on many different
?éngth and time scales. (for a finite-sized systejrthe fre-
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FIG. 2. Semi-infinite elastic solidz(>0) sliding on a hard sub-

stick-sli
stead\y \}' P strate g<0).

\ constant, no linear instability occurs @w,/dvy>0, but
~ only whendu, /dvy<0. However, when the pressupg(x)
varies withx (which can be realized by squeezing an elastic
0 | | I | body with a slightly curved surface towards the flat substrate
-8 -4 0 4 8 surface, elastic instabilities may also occur fatu,/dvg
log[v/(1m/s)] >0. We discuss the physical origin of this effect, and sug-
gest that these instabilities may be precursors of the Schal-
lamach waves. | emphasize that although the theory pre-
(b) sented in this paper was illustrated above with rubber
3L friction, the theory is of general applicability, valid for any
i elastic solid. However, for elastically stiff materials, interfa-
cial stick-slip instabilities may in practice only occur on such
a large length scale that it cannot be observed in normal-
sized samples. But sometimes the physical systems of inter-
est are very large, e.g., earthquake faults, and in these cases
the theory presented below should be applicable. Finally, let
me note that Adams has studied self-excited oscillations of
two elastic half spaces sliding with a constant coefficient of
friction. The present paper is a generalization of Ref. 15 in
that we allow for a general velocity and state-dependent fric-
tion law, as well as for a spatially varying contact pressure

Po(X)-

/ Schallamach waves

o

U

steady sliding

-6 5 -4 -3 2
log[v/(1m/s)] Il. CONSTANT CONTACT PRESSURE p,=const

FIG. 1. (@ The kinetic friction coefficient for a rubber block Consider a semi-infinite elastic solid sliding on a flat rigid
sliding on a glass surface. In the dashed part of the friction curvegybstrate(In principle, we could allow the substrate and the
stick-slip motion is observedb) The kinetic friction coefficient for  g|astic solid to have small wavelength surface roughness, but
served as long ag is below some critical valug., while sliding much larger than the longest wavelength component of the
occurs via the propagation of Schallamach waves whgmeach g rface roughnegsAssume that the elastic solid occupies
M- The figure is based on experimental data presented in Refs. Ztﬁ)]e half space>0, and let &,y,z) be a coordinate system
and 21. with thexy plane on the surface= 0 of the solid, see Fig. 2.

We denote the two-dimensional position vector in #e0

ane with x=(x,y). Assume that the stresgr(x,t)
completely _squ_eezed out 1_‘ro_m the rubber-sqbstratg conta& — 0i3(%,0t) acts on the bottom surface of the elastic solid.
area, resulting in a large friction, while at a high-sliding ve-

locity, a relative thick fluid layer remains trapped betweenWe assume that the elastic block slides alongdasis, and

SR S that o,=0. The frictional stress is assumed to dependkon
the surface;. T'hus, thg kmepg: friction F:oefﬁuent is likely to and 0}’] timet and satisfies
decrease with increasing sliding velocity.

In this paper | consider a semi-infinite elastic solid sliding
on a flat hard substrate. | present a linear instability analysis
to determine when the steady sliding motion becomes un-
stable with respect to infinitesimal perturbations. | consider a
general case where the interfacial frictional shear stress devhere the friction coefficientt depends on the local sliding
pends not only on the sliding velocityin the x direction  velocity v,(x,t) and on the state variablg(x,t). Let us use
v4(x,t) but also on a state variabig(x,t). | show that when a linear stability analysis to determine when the steady slid-
the pressurey(x) in the contact area between the solids ising motion becomes unstable. We write

ox(X,1) == u(vy, @) ox(X,1), ()
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ELASTIC INSTABILITIES AT A SLIDING INTERFACE
Vy=Ug+ Ovy (2

¢=¢ot 60, ©)

wherevq and ¢, are independent of andt. We write the
perturbations

Svy= gei(Q-X*wt), Sp= nei(Q-X*wt), (4)
where ¢ and » are small numbers. Similarly, we expand

©)

(6)

Substituting Eqs(2)—(6) in Eq. (1) and expandings to lin-
ear order indv, and d¢ gives:

g,=0 +50'Z Po+ 60,

o= 0'2+ o0y .

Ot Sory=— L +6
Oy Ox= (Vo) v, Uyt 0—,¢ ¢ | (Po T3,
(7
where uy(vo) = ulvo, do(vo)]- Thus,
o=~ m(vo)Po (8)
I
50x=—Mk(vo)50z—(§5vx ¢5¢)po C)

Using the theory of elasticityassuming an isotropic elastic

media for simplicity, one can calculate the displacement
field u on the surface=0 in response to the stress distribu-
tions o, and do,. We have

oui(g,w)=Mjj(g,w) d0(q,w) (10
or, in matrix form,
Su(q,w)=M(q,w)Sc(q,w), (11
where the matri¥
| ( ! { (k,w)(Z )
= 79— qz
o2 Bl | Q@)@
w\? .. ~n 1
+| —| (pLzz+prqq) |+ —ee/, (12)
Cr Pt
whereq=q/q, e=zxq and where
(1)2 2
P=<gz—2q2 +49°prpy (13)
z
Q=20%—w?/cF+2p7p., (14)
(1)2 1/2 (1)2 1/2
pr== C—Tiie—qz) , pL=t<C—Eiie—q2) ,
(15

where the+ and — sign refers tow>0 andw<0, respec-
tively, and wheree is an infinitesimal positive number. In the
equations above, ¢y, andc, are the mass density and the

transverse and longitudinal sound velocities of the solid, re-

spectively. In this paper, we will consider the sliding of an
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elastic solid(e.g., rubberon a rigid flat surface. We assume
that the two solids(for all times are in contact over the
whole z=0 plane so thatbu,=0 for z=0. We will also
assume thabo,=0 so that Eq(11) takes the form:

(16)

Suy=M S0+ M,,00,,

0=M,, 804+ M,,60,. (17)
Equations(9) and(17) gives

—Po
1- i (vo)M M4,

Soy=

oot G500
7. 0ot <9¢>5¢' (18)

Combining Egs(16) and(17) gives

s M, ,0uy 19
o= .
X MxxMzz_szsz
Since dvy=—iwduy, using Eqs(18) and(19) gives
M z0vx
MxxMzz_szsz
iwpg ( p i )
O —0d]|.
1 (Vo) M 4 /M, \ duy Uxt (9¢ ¢
(20
From Eq.(12) we get
2
-~ I Pt
M pct P (CT) ' (21
2
P
i Q
sz—p—cg qu, (23
i Q
Zx— pC-%— qu (24)
Thus
. 2 2
M, _ipctP(wlcr)pe (25
MM~ MM,y Q%g%+p pr(w/cr)?’
M
ZX: qu 5. (26)
Mg, pL(w/CT)

If we write w=iacrq (where q=|qg,|) and x=cq/c_
=[(1-2v)/(2—2v)]¥? (wherev is the Poison ratipwe get

IleZ

2
2z szsz ( 7)

=pctaqG(a),

M, xM
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a(K2a2+ 1)1/2[(a2+ 2)2—4(a2+ 1)1/2(K2a2+ 1)1/2]

Gla)= )
(@) a4(a2+2)2(K2a2+1)1/2—[2-1-a2—2(a2+2)2(K2a2+1)1/2]2

(28)

Mgy —Po/(pCrvo) b
M, 1) s9ma). @9 Gl i @ moosarian | T 1T agDer /v
(39
2+ a?—2(a?+ D)V kPa?+1)12 where
H(a): 20,2 2 1/2 ! (30)
a“(k“a+1) P D
Ll b=—-— ﬁ_ﬂ (40)
where sgng,)=q,/q=1 if g,>0 and -1 if q,<0. Note a vor?vx’ Vg d¢p’
that where the partial derivatives are evaluated #Qe=v, and
¢=¢po=D/lvy. Now, let us first consider very small sliding
G(a)— > and H(a)— — k2 (3D velocitiesvy. This case is equivalent to the small limit
a(l+ k%) where G(a)~2 a(1+ «?)] and H(«)~ — «2. Substituting
asa—0. Using Eqs(20), (27), and(29), we can write these results in Eq39) gives
_ 2 —pPo/(pCrvg) b
Po/(pCr) du Jn _ 0 TUo at
= B — _— 2 . -
Gl 0= i () v sariay | av, T 56 9¢ ) a1+ k) 14ikuy(ve)sgrg,) | 1+eaDerlvg
(32 (41
The state variable is assumed to satisfj-1’ Replacinga= —iw/crq we get
” A(@)Po=0, (42)
== 1-v,¢/D. (B3 where
Here, D is a microscopic distance with which the two sur- iw(1+ K2)/(2pC-2|—UO) b
faces must move relative to each other in order to break the = 141 k2 uvg) SO Gy 1—iwDlvg)
(local) “bond” between the surfaces. For example, if chain K Hi(U0)SIN Ay 43)
interdiffusion occurs at the interface, thénhwill be some
fraction of the chain length. Note that when=0 (station- Equation(42) is a second-order equation inthat is easy

ary contack this equation givegh=t, i.e., ¢ equals the time to solve:
of stationary contact. On the other hand, for uniform sliding,

vy=const, Eq.(33) gives ¢=D/v,, which is the average l/a+b 1 lja+tb 1 )2 1 |%
i ; i ; : idi a=—z|———|F|-| —=——| —— ,
tlme_ a jungtlon survives before being broken by the sliding 2\ ag ra 4\ "ag \a raq
motion. Using Eq(33) gives (44)
—lon=1=(vo+ &) (pot 7)/D, (349 whereq=qDcr/v, and
or 2
1+« [(pctv
)\:( ')Zpo (pCr o). (45)
vopo=D, (35 2[1+ik“psgndy) ]
_ The steady sliding state is unstable whendm0 or Rea
—lwn=—E¢o/D—von/D. (30  >0. Thus, the boundary line in they,) plane separating
Thus the uniform sliding state from the stick-slip region is deter-
mined by the condition Re=0, which gives
—éD/vg b 1
N= T S (37 atb_1\_
1+ anCT/UO Re( aa \a 01 (46)
or or
—5vxD/v% qDE/pg
Sp=7————. 38 S e
¢ 1+ aqDcrlvg (38) ath (1+ &%) (1+v)’ (“47)
Combining Eqgs(32) and(38) gives whereE=2pc3(1+ v) is the elastic modulus. But since
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du(ve)  du(ve,Dlvg) p dp depg

= =yt p— —— (a)
dinvg vo dvg Uoé’vx Uoé’d) dug

=a+b,
(48)
we get T

dux  qDE/pg 49 //
dinvg  (1+&%)(1+v)" (49
Let us now consider three different cases.
A. State-independent frictiohet us first assume that the /

steady

friction coefficient only depends on the instantaneous sliding
velocity vy :

Vo—>
w(vy, )= p(vy). (50)
In this case, Eq(46) reduces tou,(vo)=0. Note that this (b)
equation is independent af. Thus, stick-slip instabilities
will occur at the sliding interface in those vertical strips in steady
the (vo,q) plane whereu,(vo) <0, while steady motion oc-
curs whenu,(vg)>0. This is illustrated in Fig. @ for a
typical case where there is only one stick-slip region at /
“low” sliding velocities.
B. State- and rate-dependent frictionWe assumé?®?’

stick-slip

p(vx, )= (B INv+B,In ). (5) ///
This friction law has been found to describe the low-velocity
behavior of many systems of practical importance, e.g., stone
sliding on stone, or paper sliding on paper. The first term on
the right-hand sidéRHS) of Eq. (51) describes the velocity ©
dependence of the kinetic shear stress at low-sliding veloci-
ties (creep, while the second state-dependent term can have
different origins, e.g., resulting from an increase in the con-
tact areadue to perpendicular cregwith increasing time of
stationary contact, or it may result from titaermally acti-
vated formation of capillary bridges between microscopi-
cally close but noncontacting surface asperities. Using Eq.
(51) gives

steady

duk
din Uo

and Eq.(49) takes the form

stick-slip
v

= u(Bj—B,) (52) L

FIG. 3. Schematic dynamical phase diagrai@s-(c) for three

qDE/p, different friction laws. The dahed areas denote the region in the
B, —By= 0 5 . (53 (vo,q) plane where nonsteadsgtick-slip) motion occurs at the in-
M1+ x)(1+v) terface, is the sliding velocity far away from the interface, apd

Since B, and BH are assumed to be velocity independent,.the wave vector associated with the perturbation of the steady slid-

tick-slio instabiliti i forg< h is d ing motion. (a) is for the state-independent friction lajgee Eq.
stic .'S Ip Instabiiiies wi qccur org q? [_W ereqc Is de- (50)], while (b) and(c) are for the state-dependent friction lagd)
termined by Eq.(53)], while steady sliding occurs foq

- : : . . and(54). In (b) we have taken into account that the kinetic friction
>0c. The dynamical phase diagram is shown in Fih)3  coefficient always increases at high enough velogity which

where we have taken into account that the kinetic frictiongjyes rise to a high -cutoff in the stick-slip regiorthis is not
coefficient always increases at high enough velocity  included in the friction law(51) that can only describe the low
which gives rise to a higl, cutoff in the stick-slip region  velocity (creep behavioi.

[this effect is not included in the friction la@bl) that only

can describe the low velocity creep behayidorhus, if the

sliding body has a linear sizeL<1/q., no interfacial stick- the sliding dynamics of the rubber block could be relatively
slip motion will occur. As an application, let us consider thewell-described by the friction law51) with D~1 um
recent experimental study of sliding friction of elastomer onandB, — B~ 0.006-0.044 depending on the temperatlte

a rough hard glass surfaén this case, it was observed that The (averagg pressurep,~0.1 MPa and if we use the
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low-frequency elastic moduluE~3 MPa in Eq.(53) we A(w)po=|ay, (60)
conclude that interfacial stick-slip instabilities, with the
wavelength\ larger thar\ .= 27/q.=0.1-1 cm, should oc- Wwhich is identical to Eq(42). Next, let us find a solution to
cur at the sliding interface. However, the rubber block in theEQ. (57) corresponding to a nonuniform pressure distribu-
experiment was only 0.28 cm thick, which is comparable totion. For example, if
\c, While the calculation is for a semi-infinite rubber block.
No information related to interfacial instabilities was pre- f(x)=uy In(b*+x%/a?), (61)
sented in Ref. 7. . )

C. State- and rate-dependent friction We now consider Wherea and b are positive numbers witlh>1, then the
a model where the static friction force increases with theStrain
time of stationary contact because of interdiffusion. In the

2
simplest possible case one assumes that the increase in the £(x)= 2xuy /a 62
static friction force is characterized by a single relaxation b2+ x°/a®’
time 7 and write>! _
and since
(vx, ¢)=piByinu,+C(1-e"?M]. (54
- . e 1 2x'/a? 1 1
The friction dynamics that result from this friction law has — | dx’ T
been found to be in good agreement with the experiment for 27 b?+x'?%/a?\ x—x'+ie x—x'—ie

mica surfaces covered with chain moleculege Ref. 1 and

2b/a
Refs. 18 and 1P From Eq.(54) = T (63)
d/'l’k 0 CDh —Dlvgr
dTuo:’“k(B_ var® Blvo ) (55  Eq.(57) takes the form
and Eq.(49) takes the form —2b/a 5 2o
mz—ADO(X)M(b +x“/a ):0 (64)
Ce—D/UOT(D/ )_B — qDE/pO (56) . . . . e .
Vo7 [ 101+ K2 (1+v) This equation is satisfied if we choose

.Thish boun_da'r:)_/ IinBec)s?fparatirEg itié:k-slitp fr;)hm steadty in;jing 0 2Pyb2Inb 5
is shown in Fig. &). If g=q(v,) denotes the equation for Po(X)=
the boundary line, the maximumfor which stick-slip insta- (b?+x%/a?)In(b?+x?/a%)
bilities are possible is determined lay (vy) =0 giving vg with
=D/7 andq=py(1+ «?)(1+ v)/DEe, wheree=2.718.

Ill. SPATIALLY VARYING CONTACT PRESSURE APy= (66)

Po=Po(X) abinb’

Let us now assume that the pressure distributipn Note thatpe(0)=Py and thatpy(x)>0 for all x, while
=p(x) varies withx. It is easy to generalize the study pre- Po(X)—0 asx— * .

sented above to get the following integral equation dar, Sincea>0 andb>1, Egs.(58) and (66) predict that
=f(x): Imw>0 if du,/dvyg>0. Thus, the steady sliding state is
unstable with respect to small perturbations widen, /dv
1 g ( 1 1 )f >0, in sharp contrast to the case of a constant pressure
JR— ! + ! ! — g .
o x tie  X—x'—ic (x") gitxk)/dl;))g;(l)v.here steady sliding is unstable only when
—A(w)po(x)f(x)=0, (57) Let us calculate the pressupg corresponding to the dis-

. . . placement fieldSu,= f(x). From Egs.(16) and(17) we get
where, using that for rubberlike materiats=0.5 and hence

k~0: .

So,(gy)=— ou )
iw [ du D/US Ox My xMzz— My Mz x(qx

Alw)= 2pCT2 dvy  d¢ 1—iwDlvy) (58) 2k? 5.

= T3 2 PCT(10x) SUx(Tx).- (67)
Let us first consider a constant presspgéx) =const. In
this case, the solutions to E(h7) have the form Thus, returning to real space,
f(X):UleinX. (59) 2K2 2K2 5 2xul/a2

— 2¢1 —
Substituting this in Eq(57) gives Pa(¥) =7 zpctt (=1 2pCTz 22 (698
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Note that while po(x) is symmetric aroundk=0, p;(x) IV. SUMMARY
changes sign ag— —X. Sincep; decays slower with in-
creasing x| than py(x), the total pressurep(x)=py(X)
+p1(x) will be negative for somex. Within the present
model, this indicates that, for arbitrary low sliding velocity
(assumingd uy /dv¢>0), detachment will occur in some in-
terfacial region. However, for elastically soft materials such
as rubber, adhesion is very important, and a large enou

I have studied the sliding of a semi-infinite elastic solid on
a flat hard substrate and determined when the steady sliding
motion becomes unstable with respect to infinitesimal pertur-
bations. | assumed that the interfacial frictional shear stress
depends not only on the sliding velocity but also on a state
ariable. When the pressure in the contact area between the
olids is constant, no linear instability occurs if the kinetic
substrate bond. Thus, for real systems, detachment will Occpfﬁctio_n coefficient increases monotonically with the sliding
' ’ ’ l'\'felocny, du/dvy>0. However, when the pressure at the

only for a high enough sliding velocity. A more complete erface varies spatially, elastic instabilities may also occur

. . o
analysis of the detachment Process requires an e_xten_smn_\(]%en du/dvy>0. These instabilities may be precursors of
the model above to take into account the adhesion; in thl',[;he Schakllam?ich Waves

case it would be very interesting to perform a nonlinear in-
stability analysis to the third order, in order to gain a deeper
insight into the detachment process.

We note that the integral E¢57), for a given pressure | thank T. Baumberger, C. Caroli, G. Heinrich, and O.
po(x), will, in general, have an infinite set of solutions Rosin for useful discussions and preprints, and BMBF for a
(“eigenvectors”) f,(x). In the present paper we have only grant related to the German-Israeli Project Cooperation
studied one of these solutions. The other solutions may, ofNovel Tribological Strategies from the Nano-to-Meso
may not, be associated with eigenvalues withdp>0. If  Scales.” | also thank Pirelli Pneumatici for a research grant
this inequality is satisfied, the steady sliding motion is un-related to “Physical principles of rubber friction and appli-
stable with respect to the perturbatiby(x). cation to tires.”
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