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We investigate two-electron bound-state formation in a square two-dimensiedat U model with hop-
ping anisotropies for zero-electron density; these anisotropies are introduced to mimic the hopping energies
similar to those expected in the stripelike arrangements of holes and spins found in various transition metal
oxides. We provide complete analytical solutions to this problem, and thus demonstrate that bound-state
formation occurs at a critical exchange couplidg, that decreases to zero in the limit of extreme hopping
anisotropyt, /t,—0. This behavior is found to be qualitatively identical to that of two electrons on a two-leg
ladder in the limit oft;erchain tintrachain— 0- Using the latter result as guidance, we have determined that this
bound state corresponds to one electron moving along one chain, with the second electron moving along the
opposite chain, similar to two electrons confined to move along parallel neighboring metallic stripes. Further,
we have found that similar behavior is found in systems doped with two holes away from half filling.
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The experimental verification for the existence of stripesthis paper, although their focus is two holes near half filling,
in layered transition-metal oxides, such as the Higtsuper-  not two electrons near zero filling.
conductors, is now robudtand yet an important question ~ As a consequence of the above considerations, in this pa-
remains: Does the presence of such rivers of charge helper we consider the so-calléel-U model, which is defined
hinder, or even possibly create, the pairing instability thaty
leads to superconductivity? Simple model calculations that 1
might shed light on this question are clearly of value, and in ,_ _ at oA le e_Zhn.
this paper we present such a study for a model Hamiltonian H= <i%,, t'J(Ci*UCJ*”+h'C')+<i§,j:> J”(S S 4n|nj)
that we have considered in an attempt to hopefully mimic
some of the physics of the stripe phases. .

Previous work on the magnetic properties of the very +U§i“ MM, @
weakly doped cupratésnodeled the observed experimental
support for stripe correlatiofsusing an effective Hamil- Where the sites of a two-dimensional square lattice of size
tonian in which aspatially anisotropic exchange interaction LxX Ly with periodic boundary conditions are labeled by the
was implemented to represent the stripe-induced magnetigdicesi andj, t;j, and J;; are the hopping integrals and
energy scales. That is, in the direction parallel to the stripe§Xchange couplings between sitedj, respectivelyg; , is
the full local Cu-Cu exchange would be present, while perthe annihilation operator for an electron of spin U is the
pendicular to the stripes a reduced exchange would be e®n-site Hubbard repulsion energy, and, is the number
countered across such rivers of charge. Renormalized Hamipperator for electrons at sitewith spin o.
tonians of a similar simplifying spirit were also used in other ~ The most familiar strong-coupling variant of the Hubbard
studies of the doped cuprat&s. model is thet-J model, and the physics dbquare lattice

To this end, we have considered an effective Hamiltoniardoped Mott insulators described by this model was reviewed
in which a carrier’s ability to move along the river of charge by Dagotto*? As emphasized by, e.g., Andersbtithe vital
is far larger than its freedom to move between the riverscomponent of the-J Hamiltonian is the constraint of no
This reduced mobility reflects a carrier's lessened ability todouble occupancy. That is, in tite model one does not use
move in an antiferromagnetically correlated region, such aghe electron creation and annihilation operators of @g.
exists between the rivers of charge. The simplest realizatiohut rather one uses constrained creation and annihilation op-
of such ideas corresponds to a model Hamiltonian with locaerators(for example, see the discussions in Ref). 12ow-
magnetic exchange that is the same in all directions, but witlever, the aboveJ-U Hamiltonian can be used to accomplish
a hopping parameter which is very different in one directionthis same mathematical projection by takit——this
than the other(Several studies of holes moving on two-leg simplifying approach has been noted by a variety of re-
ladders near half filling have considered such a problem, busearchergsee, e.g., Refs. 14—16and will be used by us
all but one have employed a limit that is different to thatalso.
which we have investigated. To be specific, these authors In this paper we restridt; andJ;; to be nonzero for near
have considered the hopping between the chains of the ladieighbors(NN) only. Further, we allow the hopping integral
der to be larger than that along each chaif. The recent in the x direction,t,, to be different than the hopping inte-
work of Weihong,et al,'* considers a limit similar to that of gral in they direction, t,. We have also investigated the
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physics that arises wheb, is allowed to be different than U 1

Jy, but find that no qualitatively new physics arise as long as N ; Pk~ ; J(g—k) ¢q(k)

both J, andJ, remain nonzero. Thus, from now on we set bo(a)= ) . (5)
{34

J=J,=J,, and we analyze the resulting hopping anisotropy
problem in terms of
t The dispersions (k) andJ(k), the former of which includes
L= r=1 (2)  the hopping anisotropy, are given by(k)= —2t(cosk,
+r cosky) andJ(k) =2J(cosk,+cosk,).

By taking the limit U/t—c the only two (dimensionless The lowest-energy bound states for tag&U model have
energy scales left in this problem aié andr. zero center-of-mass momentur®£0), and a method of

The physics of thé-J-U model for isotropic NN hopping  solution for these states was presented in the papers &f Lin
(r=1) in the dilute electron density limit is clear: the anti- and Pethukowet al® However, in these papers the authors
ferromagnetic exchange provides an attractive interaction bavere considering a two-dimensional square plane with iso-
tween the electrons on neighboring sites forming a singletropic hopping, and thus were able to explBit=C, , where
state; however, a bound state that is formed from this inter-
action must do so in a manner which excludes double occu- 1 1
pancy, a result that must follow ik —o limit. As men- C=N Ek: p(kjcodk)  Cy=y zk: ¢(k)cogky), (6)
tioned above, this problem for isotropic hopping and
exchange has already been studied elsewMeredere we  a result that follows from the-wave symmetry of the bound
shall analyze the bound-state threshold exchange, to be dstate. In our problem the Hamiltonian has a reduced symme-
noted byJ./t, as a function of hopping anisotropy try, leading toC,#C, (for r#1), and thus we have em-

We consider the situation in which there are only twoployed a different approach that allows for us to identify the
electrons present, in which case we can write the singlethreshold exchangé,/t that leads to bound-state formation.

E—¢

2,
> Ta

wave function of a two-electron system*a% This method, in application to this and other interesting
problems(triangular, honeycomb, and kagome latticissex-
lﬁ:iEj ¢(i,j)c{chT’l|0>, 3 plained elsewher¥.

We find that the bound state for the anisotropic hopping
roblem is always symmetric under rotations, and is also
ymmetric under reflections along tker y directions. That

is, the ground state transforms under the identity representa-
tion of the rectangular point group, and thus continuously
%terpolates with thes-wave bound state for=1. The
thresholdJ./t as a function ofr is given by the following

where|0) denotes the empty lattice. Any bound state can b
solved for by the direct solution of the Schiinger equation.
Expressings(i,j) in terms of its Fourier transform, the latter
of which involves the center of mass and relative moment
given by Q=k;+k, and gq=3(k;—ky), with ¢(ky,kp)

= ¢q(q), where expression:
1 . .
¢(k1,k2)=—z e—lkl-ri_lkz'rj¢(i'j) (4) J. 16772I‘5/2 R g(r)
N i, —_—=— f(r)— f(r) - , (7)
. . . t g(r) 647°r3
with N=L,L,, the resulting equation for the bound-state
energyE and its associated wave functigi,(q) is wheref andg are functions given by
|
r
1 {4(r3— re+r— 1)sin‘1\/m— — 2713441524 27-rr2+4\/F}
f(N=25, —o ®
|
r is large enough. Further, it implies that for a fixéft, the
g(r)=2(r>=1)sin"* T mr242r3242.r. binding energy of two electrons will become increasingly

larger as this anisotropy is increased. We have plotted the
The resultingl./t vsr is plotted in Fig. 1 from whichi) the  bound-state energy vsfor J/t=2 in Fig. 2, from which it is
r=1 limit of J./t=2 result is found, confirming the known seen that a large hopping anisotropy can lead to remarkably
isotropic result*!® and (ii) the surprising result that as large binding energies. While acknowledging our inability to
r—0, J./t—0. This latter result is important—it implies relate this system directly to the high- systems, without
that one can form bound states for arbitrarily sndatlif one  further trepidation we evaluated the-0 limit of the bind-
is able to create a situation in which the hopping anisotropyng energy forJ/t=0.3. We found a binding energy of
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FIG. 1. The dashed line is a plot of E(), and shows how the
threshold exchange for bound-state formatidp/t, varies as a
function of hopping anisotropyr,, for an infinite two-dimensional
plane. The solid line is a plot of Eq10), which is the same quan-
tity for a two-leg ladder. Note the rapid declinedgp/t=0 for both

systems ag—0.

0.0068&, and in units in which is roughly an eV, this implies
a binding energy of roughly 100 K, a provocative energy.

Technically, this involves nothing more than using
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of bound-state wave function and energy. The resuliif/g

as a function of is given by
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FIG. 2. The value of the bound-state enerBys, relative to the

is equal to—4t(1+r), as a function of for J/t=2 for the infinite

for all r.
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FIG. 3. The pair correlation for the bound state of the two-leg
ladder evaluated for all electron positions, and then summed to
yield the probabilities that the electrons are on the same chain or on
opposite chains. This quantity is shown as a function of hopping
anisotropy,r, and as in the previous figure, all data corresponds to
J/t=2. Note that asr—0 the electrons are restricted to be on

opposite chains only.

and is also shown in Fig. 1. Thus, we see that both the

The question remains, what is the nature of the Corre|aiﬂﬁnite two-dimensional plane and the infinitely Iong two-Ieg
tions in such bound states? In an attempt to answer this queldder behave in a similar fashion. Further, the nonanalytic
tion, we have solved the same problem as above not for abehavior ofJ./t is quantitatively similar in the extreme hop-
infinite two-dimensional plane, but for a two-leg ladder. Ping anisotropy limit: in the limit ofr—0 the two-
dimensional infinite plane had./t~(37/4)r, while the
two-leg ladder hag./t~2r.

We have exploited this similarity by evaluating the pair-
correlation function for the two-leg ladder, noting that the
simpler geometry of the two-leg ladder more readily allows
. . _ . for us to understand the spatial character of the extreme hop-
in the various wave vector sums that appear in the evaluatloaing anisotropy bound states. More specifically, we have cal-
culated the probability that the two electrons are on the same
chain or are on opposite chains. Our results as a function of
r are shown in Fig. 3, from which it is seen that the character
of the large hopping anisotroggmallr) bound states is two
electrons moving on opposite chains, with the pairing result-
ing from a spin-exchange interaction between the chains
(when the electrons are on neighboring 9ites

This situation is qualitatively similar to two electrons
moving in neighboring stripes that still experience an ex-
change coupling between the stripes due to the antiferromag-
netically correlated domain between the stripes, but which
have an effective hopping frequency that is much larger
along the metallic rivers of charge than between such rivers.
In this very simplistic picture, it seems that stripe correla-
tions leading to parallel rivers of charge separated by anti-
ferromagnetically correlated domains caat least enhance
bound-state formation.

We have been able to examine the above systems analyti-
cally because of the relative simplicity of the zero-density
two-electron problem. Of course, the natural question is:
Does this result extrapolate to systems that are doped away
bottom of the two-electron noninteracting band, the latter of whichfrom half filling? To address this question we have consid-
ered the problem of two holes in an otherwise half-filled

two-dimensional plane. For this value &ft a bound state is found 12X2 two-leg ladder fold/t=0.3. For allr the ground state
is Q=0 and transforms under the identity representation of
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TABLE I. The two-hole binding energyE,, defined asky 11—our data is listed below in Table I. Lastly, we again
=E,n—2En+Eqn, calculated for a 122 two-legt—J ladder  evaluated the probability that the holes existed on the same

with J/t=0.3, as a function of anisotropy parameter or opposite chains of the two-leg ladder, and our results are
qualitatively similar to those of the two-electron problem
r Ep that we have shown in Fig. [he two-hole correlations near
r=1 have a greater probability of being on the opposite
10 —0.1189 chains(about 0.62, but otherwise these two systems behave
0.8 —0.1614 in very similar ways.
0.6 —0.2224 Thus, the zero-density two-electron problem, and the two
0.4 —0.2803 holes away from half-filling problem, behave in a very simi-
0.2 —0.3137 lar manner and are suggestive of the benefits of stripes in
0.1 —0.3254 forming bound states. Whether or not this physics extrapo-

lates to the pairing instabilities and, e.g., enhances the mean-
field superconducting transition temperatures, is being inves-

the rectangular point group; however, we have evaluated thteIgated presently.

pairing correlation functions discussed in Ref. 10, and find We thank David Johnston and Massimiliano Capezzali for
that ad-wave like pairing symmetry is present for allThe  many helpful comments, and Andrew Callan-Jones and Fred
binding energy is again found to be substantially enhancetlastos for assistance. This work was supported in part by the
by the hopping anisotropy, a result previously noted in RefNSERC of Canada.
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