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Enhanced bound-state formation in two dimensions via stripelike hopping anisotropies
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We investigate two-electron bound-state formation in a square two-dimensionalt2J2U model with hop-
ping anisotropies for zero-electron density; these anisotropies are introduced to mimic the hopping energies
similar to those expected in the stripelike arrangements of holes and spins found in various transition metal
oxides. We provide complete analytical solutions to this problem, and thus demonstrate that bound-state
formation occurs at a critical exchange coupling,Jc , that decreases to zero in the limit of extreme hopping
anisotropyty /tx→0. This behavior is found to be qualitatively identical to that of two electrons on a two-leg
ladder in the limit oft interchain/t intrachain→0. Using the latter result as guidance, we have determined that this
bound state corresponds to one electron moving along one chain, with the second electron moving along the
opposite chain, similar to two electrons confined to move along parallel neighboring metallic stripes. Further,
we have found that similar behavior is found in systems doped with two holes away from half filling.
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The experimental verification for the existence of strip
in layered transition-metal oxides, such as the high-Tc super-
conductors, is now robust,1 and yet an important questio
remains: Does the presence of such rivers of charge h
hinder, or even possibly create, the pairing instability t
leads to superconductivity? Simple model calculations t
might shed light on this question are clearly of value, and
this paper we present such a study for a model Hamilton
that we have considered in an attempt to hopefully mim
some of the physics of the stripe phases.

Previous work on the magnetic properties of the ve
weakly doped cuprates2 modeled the observed experimen
support for stripe correlations3 using an effective Hamil-
tonian in which a~spatially! anisotropic exchange interactio
was implemented to represent the stripe-induced magn
energy scales. That is, in the direction parallel to the stri
the full local Cu-Cu exchange would be present, while p
pendicular to the stripes a reduced exchange would be
countered across such rivers of charge. Renormalized Ha
tonians of a similar simplifying spirit were also used in oth
studies of the doped cuprates.4–6

To this end, we have considered an effective Hamilton
in which a carrier’s ability to move along the river of charg
is far larger than its freedom to move between the rive
This reduced mobility reflects a carrier’s lessened ability
move in an antiferromagnetically correlated region, such
exists between the rivers of charge. The simplest realiza
of such ideas corresponds to a model Hamiltonian with lo
magnetic exchange that is the same in all directions, but w
a hopping parameter which is very different in one direct
than the other.~Several studies of holes moving on two-le
ladders near half filling have considered such a problem,
all but one have employed a limit that is different to th
which we have investigated. To be specific, these auth
have considered the hopping between the chains of the
der to be larger than that along each chain.7–10 The recent
work of Weihong,et al.,11 considers a limit similar to that o
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this paper, although their focus is two holes near half fillin
not two electrons near zero filling.!

As a consequence of the above considerations, in this
per we consider the so-calledt-J-U model, which is defined
by

H52 (
^ i , j &,s

t i j ~ci ,s
† cj ,s1h.c.!1(

^ i , j &
Ji j S Si•Sj2

1

4
ninj D

1U(
i

ni ,↑ni ,↓ , ~1!

where the sites of a two-dimensional square lattice of s
Lx3Ly with periodic boundary conditions are labeled by t
indices i and j, t i j , and Ji j are the hopping integrals an
exchange couplings between sitesi andj, respectively,ci ,s is
the annihilation operator for an electron of spins, U is the
on-site Hubbard repulsion energy, andni ,s is the number
operator for electrons at sitei with spin s.

The most familiar strong-coupling variant of the Hubba
model is thet-J model, and the physics of~square lattice!
doped Mott insulators described by this model was review
by Dagotto.12 As emphasized by, e.g., Anderson,13 the vital
component of thet-J Hamiltonian is the constraint of no
double occupancy. That is, in thet-J model one does not us
the electron creation and annihilation operators of Eq.~1!,
but rather one uses constrained creation and annihilation
erators~for example, see the discussions in Ref. 12!. How-
ever, the abovet-J-U Hamiltonian can be used to accomplis
this same mathematical projection by takingU→`—this
simplifying approach has been noted by a variety of
searchers~see, e.g., Refs. 14–16!, and will be used by us
also.

In this paper we restrictt i j andJi j to be nonzero for nea
neighbors~NN! only. Further, we allow the hopping integra
in the x direction, tx , to be different than the hopping inte
gral in the y direction, ty . We have also investigated th
©2001 The American Physical Society06-1
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physics that arises whenJx is allowed to be different than
Jy , but find that no qualitatively new physics arise as long
both Jx and Jy remain nonzero. Thus, from now on we s
J[Jx5Jy , and we analyze the resulting hopping anisotro
problem in terms of

tx[t, r 5
ty

t
. ~2!

By taking the limit U/t→` the only two ~dimensionless!
energy scales left in this problem areJ/t and r.

The physics of thet-J-U model for isotropic NN hopping
(r 51) in the dilute electron density limit is clear: the an
ferromagnetic exchange provides an attractive interaction
tween the electrons on neighboring sites forming a sin
state; however, a bound state that is formed from this in
action must do so in a manner which excludes double oc
pancy, a result that must follow inU→` limit. As men-
tioned above, this problem for isotropic hopping a
exchange has already been studied elsewhere.14,15 Here we
shall analyze the bound-state threshold exchange, to be
noted byJc /t, as a function of hopping anisotropyr.

We consider the situation in which there are only tw
electrons present, in which case we can write the sin
wave function of a two-electron system as14,15

c5(
i , j

f~ i , j !ci ,↑
† cj ,↓

† u0&, ~3!

whereu0& denotes the empty lattice. Any bound state can
solved for by the direct solution of the Schro¨dinger equation.
Expressingf( i , j ) in terms of its Fourier transform, the latte
of which involves the center of mass and relative mome
given by Q5k11k2 and q5 1

2 (k12k2), with f(k1 ,k2)
5fQ(q), where

f~k1 ,k2!5
1

N (
i , j

e2 ik1•r i2 ik2•r jf~ i , j ! ~4!

with N5LxLy , the resulting equation for the bound-sta
energyE and its associated wave functionfQ(q) is
n
s
s

p

10050
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fQ~q!5

U

N (
k

fQ~k!2
1

N (
k

J~qÀk!fQ~k!

E2«S Q

2
1qD2«S Q

2
2qD . ~5!

The dispersions«(k) andJ(k), the former of which includes
the hopping anisotropy, are given by«(k)522t(coskx
1r cosky) andJ(k)52J(coskx1cosky).

The lowest-energy bound states for thet-J-U model have
zero center-of-mass momentum (Q50), and a method of
solution for these states was presented in the papers of L14

and Pethukovet al.15 However, in these papers the autho
were considering a two-dimensional square plane with i
tropic hopping, and thus were able to exploitCx5Cy , where

Cx5
1

N (
k

f~k!cos~kx! Cy5
1

N (
k

f~k!cos~ky!, ~6!

a result that follows from thes-wave symmetry of the bound
state. In our problem the Hamiltonian has a reduced sym
try, leading toCxÞCy ~for rÞ1), and thus we have em
ployed a different approach that allows for us to identify t
threshold exchangeJc /t that leads to bound-state formatio
This method, in application to this and other interesti
problems~triangular, honeycomb, and kagome lattices! is ex-
plained elsewhere.17

We find that the bound state for the anisotropic hopp
problem is always symmetric underp rotations, and is also
symmetric under reflections along thex or y directions. That
is, the ground state transforms under the identity represe
tion of the rectangular point group, and thus continuou
interpolates with thes-wave bound state forr 51. The
thresholdJc /t as a function ofr is given by the following
expression:

Jc

t
52

16p2r 5/2

g~r ! F f ~r !2Af ~r !22
g~r !

64p3r 3G , ~7!

wheref andg are functions given by
f ~r !5
1

32

F4~r 32r 21r 21!sin21A r

r 11
222pr 314r 5/212pr 214Ar G

p2r 5/2
~8!
ly
the

ably
to

f

g~r !52~r 221!sin21A r

r 11
2pr 212r 3/212Ar .

The resultingJc /t vs r is plotted in Fig. 1 from which~i! the
r 51 limit of Jc /t52 result is found, confirming the know
isotropic result,14,15 and ~ii ! the surprising result that a
r→0, Jc /t→0. This latter result is important—it implie
that one can form bound states for arbitrarily smallJ/t if one
is able to create a situation in which the hopping anisotro
 y

is large enough. Further, it implies that for a fixedJ/t, the
binding energy of two electrons will become increasing
larger as this anisotropy is increased. We have plotted
bound-state energy vsr, for J/t52 in Fig. 2, from which it is
seen that a large hopping anisotropy can lead to remark
large binding energies. While acknowledging our inability
relate this system directly to the high-Tc systems, without
further trepidation we evaluated ther→0 limit of the bind-
ing energy for J/t50.3. We found a binding energy o
6-2
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0.0068t, and in units in whicht is roughly an eV, this implies
a binding energy of roughly 100 K, a provocative energy

The question remains, what is the nature of the corre
tions in such bound states? In an attempt to answer this q
tion, we have solved the same problem as above not fo
infinite two-dimensional plane, but for a two-leg ladde
Technically, this involves nothing more than using

(
q

→ 1

2 (
qy50,p

1

2pE2p

1p

dqx ~9!

in the various wave vector sums that appear in the evalua
of bound-state wave function and energy. The resultingJc /t
as a function ofr is given by

Jc

t
5

@~11r !212Ar 1r 22A~11r 2!214r #

r 11
~10!

FIG. 1. The dashed line is a plot of Eq.~7!, and shows how the
threshold exchange for bound-state formation,Jc /t, varies as a
function of hopping anisotropy,r, for an infinite two-dimensional
plane. The solid line is a plot of Eq.~10!, which is the same quan
tity for a two-leg ladder. Note the rapid decline toJc /t50 for both
systems asr→0.

FIG. 2. The value of the bound-state energy,Ebs , relative to the
bottom of the two-electron noninteracting band, the latter of wh
is equal to24t(11r ), as a function ofr for J/t52 for the infinite
two-dimensional plane. For this value ofJ/t a bound state is found
for all r.
10050
-
s-

an

n

and is also shown in Fig. 1. Thus, we see that both
infinite two-dimensional plane and the infinitely long two-le
ladder behave in a similar fashion. Further, the nonanal
behavior ofJc /t is quantitatively similar in the extreme hop
ping anisotropy limit: in the limit of r→0 the two-
dimensional infinite plane hasJc /t;(3p/4)Ar , while the
two-leg ladder hasJc /t;2Ar .

We have exploited this similarity by evaluating the pa
correlation function for the two-leg ladder, noting that th
simpler geometry of the two-leg ladder more readily allo
for us to understand the spatial character of the extreme h
ping anisotropy bound states. More specifically, we have
culated the probability that the two electrons are on the sa
chain or are on opposite chains. Our results as a functio
r are shown in Fig. 3, from which it is seen that the charac
of the large hopping anisotropy~small r ) bound states is two
electrons moving on opposite chains, with the pairing res
ing from a spin-exchange interaction between the cha
~when the electrons are on neighboring sites!.

This situation is qualitatively similar to two electron
moving in neighboring stripes that still experience an e
change coupling between the stripes due to the antiferrom
netically correlated domain between the stripes, but wh
have an effective hopping frequency that is much lar
along the metallic rivers of charge than between such riv
In this very simplistic picture, it seems that stripe corre
tions leading to parallel rivers of charge separated by a
ferromagnetically correlated domains can~at least! enhance
bound-state formation.

We have been able to examine the above systems ana
cally because of the relative simplicity of the zero-dens
two-electron problem. Of course, the natural question
Does this result extrapolate to systems that are doped a
from half filling? To address this question we have cons
ered the problem of two holes in an otherwise half-fill
1232 two-leg ladder forJ/t50.3. For allr the ground state
is Q50 and transforms under the identity representation

h

FIG. 3. The pair correlation for the bound state of the two-l
ladder evaluated for all electron positions, and then summed
yield the probabilities that the electrons are on the same chain o
opposite chains. This quantity is shown as a function of hopp
anisotropy,r, and as in the previous figure, all data corresponds
J/t52. Note that asr→0 the electrons are restricted to be o
opposite chains only.
6-3
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the rectangular point group; however, we have evaluated
pairing correlation functions discussed in Ref. 10, and fi
that ad-wave like pairing symmetry is present for allr. The
binding energy is again found to be substantially enhan
by the hopping anisotropy, a result previously noted in R

TABLE I. The two-hole binding energy,Eb , defined asEb

5E2h22E1h1E0h , calculated for a 1232 two-leg t2J ladder
with J/t50.3, as a function of anisotropy parameterr.

r Eb

1.0 20.1189
0.8 20.1614
0.6 20.2224
0.4 20.2803
0.2 20.3137
0.1 20.3254
e

10050
he
d

d
f.

11—our data is listed below in Table I. Lastly, we aga
evaluated the probability that the holes existed on the sa
or opposite chains of the two-leg ladder, and our results
qualitatively similar to those of the two-electron proble
that we have shown in Fig. 3@the two-hole correlations nea
r 51 have a greater probability of being on the oppos
chains~about 0.62!, but otherwise these two systems beha
in very similar ways#.

Thus, the zero-density two-electron problem, and the t
holes away from half-filling problem, behave in a very sim
lar manner and are suggestive of the benefits of stripe
forming bound states. Whether or not this physics extra
lates to the pairing instabilities and, e.g., enhances the m
field superconducting transition temperatures, is being inv
tigated presently.
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