
RAPID COMMUNICATIONS

PHYSICAL REVIEW B, VOLUME 63, 100407~R!
Exact ground state properties of the classical Heisenberg model for giant magnetic molecules

Maria Axenovich1 and Marshall Luban2
1Ames Laboratory and Department of Mathematics, Iowa State University, Ames, Iowa 50011

2Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
~Received 13 November 2000; published 21 February 2001!

We find the exact ground state energy and magnetic moment for an arbitrary magnetic fieldH of the
classical Heisenberg model of spins on the vertices of an icosidodecahedron. This model provides an accurate
description of the magnetic properties of the giant paramagnetic molecule$Mo72Fe30% in which 30 Fe31 ions
are coupled via antiferromagnetic exchange. The strong frustration of the magnetic interaction in the molecule
is relaxed when the angle between nearest-neighbor spins is 120°. We predict that the magnetic moment is
linear withH until saturating at a critical fieldHc , and this is consistent with the results of a recent experiment
at 0.46 K. We derive our results using a graph-theoretical construction and a special property, three-
colorability, of the icosidodecahedron. We also consider spins on the vertices of an octahedron, icosahedron,
and dodecahedron.
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The subject of molecular magnets has greatly advan
in recent years1–4 and has led to the synthesis of bu
samples of large paramagnetic molecules with very w
intermolecular but strong intramolecular magnetic inter
tions. The neutral Keplerate species,4 abbreviated as
$Mo72Fe30%, in the substance with molecular formu
@Mo72Fe30O252~Mo2O7~H2O!!2~Mo2O8H2~H2O!!~CH3COO!12
~H2O!91#"150 H2O5$Mo72Fe30%"150 H2O, is by far the larg-
est paramagnetic molecule synthesized to date. It is e
cially interesting due to the fact that 30 paramagnetic F31

ions ~spinsS55/2! are embedded within a molecule on th
vertices of a regular Archimedean polytope,
icosidodecahedron5 ~see Fig. 1!. A crucial role is played by
O-Mo-O bridges mediating antiferromagnetic coupling b
tween nearest-neighbor Fe ions within a given molecule.
$Mo72Fe30% we may thus focus on the magnetic behavior o
system of 30 interacting spins on the complex geometry
the icosidodecahedron. Because of the geometry of the
sites and the antiferromagnetic exchange, magnetic frus
tion and competing ordered states are expected to occur.
analysis of the high-temperature (T.20 K) susceptibility,
which behaves according to a Curie-Weiss law, yields
exchange constantJ/kB'1.57 K between nearest-neighb
spins.6 One generally expects quantum effects to be of
portance for temperaturesT<0.25S(S11)J/kB'3.4 K. Sur-
prisingly, as is shown in Ref. 6, very good agreement
tween experimental data for the spin susceptibility w
classical numerical simulations exists forT.0.1 K. For
these reasons it is extremely interesting to have insight
the nature of the ground state as well as the magnetic
sponse of the classical Heisenberg system.

In this paper we find the exact ground state energy
magnetization for arbitrary magnetic field of the classi
Heisenberg model of spins on an icosidodecahedron a
model for$Mo72Fe30%. The frustration of the magnetic inter
actions in the molecule is relaxed when the relative an
between nearest-neighbor spins is 120°. Using a gra
theoretical construction, we show that no global frustration
left after these bonds are formed. A special property,three-
colorability, of the polytope is shown to be a necessary c
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dition for this behavior. Similar graph-theoretical techniqu
are used to determine the behavior in an external magn
field and to analyze three additional polytopes, the octa
dron, icosahedron, and dodecahedron.

We start from the classical Heisenberg model with sp
located at the vertices of an icosidodecahedron within
external magnetic fieldH:

H5J(̂
i j &

Si•Sj2gmB(
i

H•Si . ~1!

The exchange constantJ is chosen to be positive so as
describe antiferromagnetic coupling. Here theSi ’s denote
classical vectors of length7 AS(S11). The summation̂ij & is
over all distinct nearest-neighbor pairs on the molecule,g is
the spectroscopic splitting factor, andmB denotes the Bohr
magneton. In Fig. 2 we show a planar projection of the po
tope; i.e., all edges and vertices correspond to the o
shown in Fig. 1. In what follows we will first derive an exa
expression for the~classical! ground state energyE0 of Eq.

FIG. 1. The 30 Fe31 ions of the$Mo72Fe30% molecule are lo-
cated on the vertices of an icosidodecahedron.
©2001 The American Physical Society07-1
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~1! for H50, using a graph-theoretical construction. Ne
we generalize the result to the case of a finite magnetic fi
so as to findE0(H) andM (H), the field-dependent magnet
moment forT50 K.

Our derivation of the exact ground state energyE0 of Eq.
~1! without magnetic field proceeds in three steps. First,
determine a lower bound forE0 , which is based on the
physical picture that the frustrated magnetic interaction
dominated by the arrangement of spins on the triang
faces of the icosidodecahedron. Second, we find an u
bound forE0 by explicitly constructing a specific spin con
figuration and determining its energy. Third, we determ
E0 upon observing that both bounds, upper and lower, ar
fact identical.

In order to obtain a good lower bound for the ground st
energy, we use the fact that each bond between nea
neighbor spins belongs to exactly one of the 20 triangles
that each spin belongs to exactly two triangles. Thus we
split the summation over all bonds according to

J(̂
i j &

Si•Sj5
J

2 (
t51

20

@st
223S~S11!#>20ED , ~2!

where t denotes the index of the triangle with total spinst
5Si1Sj1Sk , and i, j, and k are the three sites that form
trianglet. All bonds are taken into account by this procedu
Here ED52 3

2 JS(S11) is the ground state energy of th
classical Heisenberg model of spins on a single triangle.
obtain Eq.~2! we used the well-known resultSi•Sj5S(S
11)cos(2p/3) for a classical triangle with antiferromagnet
exchange, where the relative angles between the three s
are all 120°, implying that the three spin vectors are cop
nar. Note thatst

250 in this case. This leads to

E0>230JS~S11!. ~3!

FIG. 2. Planar projection of the icosidodecahedron. All edg
and vertices are identical to those shown in Fig. 1. The grap
three-colorable; i.e., one can decorate the graph with three co
such that no neighboring vertices have the same color. Physic
the three colors correspond to the three different directions of s
with a relative angle 120°.
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In the next step we calculate the energyẼ of a specific
realizable spin configuration. This energy is necessarily
upper bound for the ground state energy, i.e.,

E0<Ẽ. ~4!

If we are able to find a configuration with energyẼ
520ED , we can combine Eqs.~3! and~4! and have an exac
expression for the ground state energy. Thus our procedu
successful if we can find a configuration with an ener
which is 20 times the energy of the triangle ground state
order to find out whether such a configuration exists, o
may use the following recipe. Start with one given triang
on the icosidodecahedron and fix the spins to have rela
angles of 120°. Fix all neighboring spins to have relati
angles of 120° to those of the starting triangle. Continue t
procedure trying to make an assignment for all 30 spins s
that ‘‘on the other side’’ of the polytope nearest-neighb
spins meet the 120° requirement. If now all spin vectors
configured to have a relative angle of 120° between nea
neighbors, we will have found a configuration with ener
20ED . Of course, for such a large molecule this recipe
very complex and cumbersome.

An elegant solution to this problem can be found by us
a graph-theoretical approach. Here we interpret the pro
tion of the molecule on the plane as a graph with vertic
corresponding to Fe ions of the molecule~Fig. 2!. Instead of
analyzing relative spin directions on the molecule, we ass
to each vertex of this graph one of three different colors
we can color the graph in a manner that there are no ne
boring vertices with the same color, the graph is cal
three-colorable.8 As explicitly shown in Fig. 2, the graph o
the icosidodecahedron is indeed three-colorable. It is n
easy to recognize that a three-colorable graph can be d
rated by a spin configuration with all spins on all triangl
having a relative angle of 120° between nearest neighb
and all spins are coplanar. Each of the three colors co
sponds to one of the allowed spin vectors. Thus, due to
special property, three-colorability, of the icosidodecah
dron, we have found a trial configuration with energyẼ
520ED , which must be an upper bound forE0 . Combining
this result with Eq.~3!, we arrive at the final result

E0520ED5230JS~S11!. ~5!

We have thus found an exact expression for the ground s
energy of the classical Heisenberg model of the icosidode
hedron.

We have been unable to rigorously exclude the possib
of noncoplanar ordering which is degenerate with the pla
configuration described. However, numerical simulation6

performed on the classical Heisenberg model for tempe
turesT,J/kB support the fact that there are only configur
tions in which all spins are coplanar. Assuming this, we fi
from a straightforward case analysis that all possible allo
able coplanar configurations can be generated from
shown in Fig. 2 by using an arbitrary automorphism of
graph of the icosidodecahedron and an arbitrary permuta
of the three colors.
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Our method can also be applied to other polytopes. In
case of the octahedron, which is also decomposable into
angles and the vertices admit a proper three-coloring, we
that all spins are coplanar with relative angle 120° betw
nearest neighbors. On the other hand, one cannot provi
proper three-coloring for an icosahedron. In this case f
colors are necessary, implying that the angle betw
nearest-neighbor spins is different from 120° and that
spins are not coplanar. Both conclusions are confirmed
numerical simulations which give6 a relative angle of 116.6°
for nearest-neighbor spin vectors. Finally, the dodecahed
is a polytope which is three-colorable; however, it is n
decomposable in terms of triangles, but only in terms
pentagons. For this system numerical simulations show6 that
there is a relative angle of 138.2° between nearest-neigh
spin vectors. We thus expect a considerably different m
netic response at low temperatures for spins on an icos
dron or dodecahedron.

The argumentation of the previous paragraphs, includ
our graph coloring construction, can straightforwardly
generalized to the case of a finite magnetic field. Similar
Eq. ~2!, we rewrite the Hamiltonian as a sum over term
from different triangles:

H5(
t51

20 F J

2
@st

223S~S11!#2
gmB

2
H•stG . ~6!

The factor of1
2 in front of the magnetic field term takes int

account that each spin is shared by two neighboring
angles. A lower bound for the ground state energy is ag
given by that of a single triangle in a fieldH/2 times the
number of triangles, i.e.,

E0~H !>20ED~H/2!. ~7!

Because of the three-colorability of the polytope, a co
figuration that corresponds to the ground state energy
single triangle in half the field can be utilized for all triangl
to yield a realizable configuration of the 30 spins of the ico
dodecahedron. This globally compatible configuration a
has energy 20ED(H/2), and it serves as an upper bound
E0(H). Thus the ground state energy is

E0~H !520ED~H/2!. ~8!

The energy of the Heisenberg model with magnetic field
a triangle was determined in Sec. II B 2 of Ref. 9. Usi
those results and Eq.~8!, we obtain

E0~H !5220S 3

2
JS~S11!@113~H/H̃c!

2# D , ~9!

for H,H̃c , whereH̃c56JAS(S11)/(gmB), and

E0~H !52120JS~S11!@113~H2H̃c!/~2H̃c!#, ~10!

for H.H̃c . These results demonstrate that the magn
properties of$Mo72Fe30% are due to the strong magnetic co
relations on its triangles.

Using our explicit formulas forE0(H), we immediately
arrive at expressions for experimentally relevant quantit
10040
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the ground state magnetic momentM (H)52]E0(H)/]H
and the ground state susceptibilityx5]M /]H. The behavior
for the ground state moment is shown by the solid lines
Fig. 3. Note the linear behavior up to the critical fieldH̃c .
For larger fields the moment is saturated and independen
H. At this point we remark that the moment of the satura
state is 30gmBAS(S11). However, this value is larger tha
the maximally allowed momentMmax530gmBS of a
quantum-mechanical system, an effect which is, of cou
beyond our classical treatment. To adapt it to a descriptio
$Mo72Fe30%, we suggest that the linear dependence ofM on
H should be used untilMmax is reached at the critical field

Hc5
S

AS~S11!
H̃c5

6JS

gmB
; ~11!

for larger fields,M remains saturated at this value. Due to t
rather small value ofJ, the physically relevant critical field
Hc is experimentally accessible. Using the values of all
relevant parameters, including6 g51.974, Eq. ~11! yields
Hc517.7 T. These predictions are consistent with the res
of recent6 measurements~shown as solid squares in Fig. 3! at
0.46 K on $Mo72Fe30%. In particular, the observed value o
Hc is consistent with our predicted value.

Using Eq.~9!, we note that forH,Hc , the exact value
for the classical ground state susceptibility per molecule
given by

x55~gmB!2/J. ~12!

This translates into a value ofx54.67 emu/mol. This value
coincides with both the low-temperature value of the susc

FIG. 3. Magnetic field dependence of the magnetic momen
the classical Heisenberg model for spins on an icosidodecahe
in the low-temperature limit~solid lines!. Below the critical field
Hc517.7 T, M is strictly linear in H, whereas it is saturated fo
larger fields. Experimental data~Ref. 6! for a sample of$Mo72Fe30%
at 0.46 K as obtained using a pulsed field technique are given by
solid squares. Use of the pulsed field leads to an estimated effe
temperature of approximately 4 K. To keep the figure legible,
have chosen to display only a very small fraction of the measu
data set.
7-3
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tibility determined by classical numerical simulations6 and,
remarkably, with susceptibility measurements performed6 at
H50.5 T down to 0.12 K.

Summarizing, using a graph-theoretical approach,
have determined the classical ground state energy of
Heisenberg model of an icosidodecahedron, the structur
$Mo72Fe30%, the largest magnetic molecule synthesized
date. Using two special properties of the icosidodecahed
graph ~being decomposable into triangles and its pro
three-colorability!, we were able to show that in the groun
state the relative angle between nearest-neighbor spin ve
is 120°. This surprising result has immediate consequen
for the magnetic field dependence of the magnetic mom
and the susceptibility. We found that the limiting (T→0 K)
magnetic moment is strictly linear withH until a critical field
Hc'17.7 T and is saturated~all spins parallel! for H.Hc .
Recent measurements6 of M versusH, performed at 0.46 K,
are consistent with these predictions, including our value
Hc . Using the same line of argument, analogous results
be derived for the octahedron. We have predicted that
icosahedron and dodecahedron will have a different m
netic response at low temperatures.

Our strategy for determining the ground state energy w
to derive an upper as well as lower bound forE0 , which are
d

o
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identical, where the upper bound was determined from
explicit construction. This is similar to the strategy used
Moessner and Chalker10 who also determined the classic
ground state of the pyrochlore lattice, consisting of tetra
dra that share sites, where frustration plays an essential
for the determination of the ground state configuration
well.11

The paramagnetic molecule$Mo72Fe30% is truly excep-
tional since the presentclassical treatment, limited to 0 K,
provides a result for the dependence of the magnetic mom
on magnetic field that is consistent with measurements
0.46 K. The success of the classical treatment is explaine
a study of an approximate quantum model12,13of $Mo72Fe30%
showing that quantum deviations from the classical res
should be manifested only below 50 mK.
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