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Electron doping in CaMnO5 induced by Mo for Mn substitution:
An efficient route to orbital and charge ordering

PHYSICAL REVIEW B, VOLUME 63, 100406R)

C. Martin, A. Maignan, M. Hervieu, and B. Raveau
Laboratoire CRISMAT, UMR 6508 CNRS ISMRA et UniverdéeCaen, 6 boulevard Mackal Juin, 14050 Caen cedex, France

J. Hejtmanek
Institute of Physics of ASCR, Cukrovarnicka 10, 16200 Praha 6, Czech Republic
(Received 8 August 2000; revised manuscript received 28 November 2000; published 21 February 2001

The magnetic, transport, and structural investigations of the Gapifo,O; manganites show that orbital
and charge ordering are induced by Mn-site doping in pure calcium based manganites. Starting from a cluster
glass behavior at=0.04, orbital ordering is evidenced fgr=0.10, whereas charge orderifgharacterized by
an incommensurate structure wijk=0.02—0.25% is obtained forx~0.12 with a highT-,~300 K. This charge
ordering effect induced by Mo doping is interpreted in terms of a high valency effect.
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The issue of charge orderinCO) in the manganites neous(+0.01) around the Mo content, equal to the nominal
Ln;_,CaMnO; (Ln=lanthanide is of great importance content(x). The magnetic behavior has been probed by ac
since this phenomenon has a prominent role in the appeasusceptibility[ h,.=3 Oe andf=100 Hz whereas the elec-
ance of the antiferromagneti&FM) state at low tempera- tronic properties have been studied using four-probe resistiv-
ture, and consequently influences the colossal magnetoresi&y, thermoelectriqSeebeck and thermal conductivity mea-
tance(CMR) properties of these materials. First observed forsurements in a quantum design physical properties

the half doped manganités® CO was shown to exist for Measurements systeiiPMS (5-400 K up to 9 J. Electron
other compositions, appearing in the form of single3n Microscopy study has been made with a JEOL 2010 electron

stripes alternating with blocks of M# stripes(or layers, ~ MICroscope, operating between 92 and 370 K.

depending on the value’:® Each of these CO structures is Thle curves x (L) (Fti‘io %))7 of dth_eo clngF—X:\AOXr%
modulated, either commensurate or incommensurate, ar.{sﬂamp es corresponding D7 anax=0.12 clearly show

. . at an AFM state replaces the weak FM state previously
characterized by g modulation vector, closely related to the .
" . observed® for lower doping levels(x~0.02—0.04. In the
composition,g~1—x, which corresponds to the long-range x=0.07 and 0.12 curves, ac-susceptibility maxima are ob-

ordered distribution of the stripes. Such ordered stripes a€arved at 160 and 300 K respectively. They are reminiscent
responsible for the AFM ordering of the spins derived from ot gimilar curves observed for other manganites, which ex-

the CE-type structure, depending on o hibit a structural transition induced by charge and orbital
The melting of this CO state under a magnetic field, gengering?-9225-27

erally observed fox<<0.50, is at the origin of the CMR ef- The structural transitions of these CaMMo,05 com-

fect, due to the collapse of the AFM-CO regions which co-positions have been studied by electron microscopy as a

exist with ferrorgai%netlc metalli¢dFMM) regions at low  function of temperature. For=0.07, a transition is observed

temperature LT?™'° Actually, the CO state stability is at 160 K from the orthorhombic Pnma-type structure with

closely related to the average size of thsite cation, de- « apﬁx 2a,% ap\/—” at room temperaturé¢Fig. 2(a)] to a

creasing asr ) increases® ' Another way of weakening monoclinic ~ structure  with (* a,y2x 2a,Xa2” and

the CO state and inducing ferromagnetism and metallicitys—gp°—¢) andP2, /m space group below 160 [Eig. 2(b)].
consists of doping the Mn site with a magnetic cation such as

Cr, Co, Ni, or Ru°~22From a more general viewpoint, it is 0.020 ]
now currently admitted that the doping of the Mn site by a — x=0.07 f=100Hz ]
foreign cation, whatever its nature, induces disorder on the T eosh hqc=30e 1
Mn sites, and consequently destroys charge ordé&fifg. ’

We report herein on the opposite effect, i.e., CO induced by 1S -

Mn site substitution, in the CaMn,Mo,05 series. Starting S ooto [ ]
from the G-type antiferromagnet CaMnQthe substitution g [

of Mo for Mn first induces a ferromagnetic cluster glass for ~

lower doping levels X<0.04)?* and then we show that be- 0008 T x=0.12 ]
yond a certain doping level of molybdenum, orbital ordering P

0 100 200 300 400

(O0) and then CO are established. T(K)

The preparation of the CaMn,Mo0,05; samples (8=x
<0.15) has been previously report&dn this range, the Mo FIG. 1. T dependence of the real pafy’) of the acy for
substitution, as analyzed by x-ray energy dispersive spectro&aMn, _,Mo,0, samples withx=0.07 andx=0.12. x values are
copy coupled to electron diffractiofiED) is highly homoge- labeled on the graph.
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(b)

FIG. 3. x=0.12. (a) RT [010] bright field image showing a
monoclinic area with twinning domain®ne twinnning domain is
indicated by a small arrowv(b) RT [010] ED pattern of an ordered
(b) area. The modulation vector is parallel & and satellites(see

small arrow$ are the signature of a charge/orbital ordering phe-
FIG. 2. x=0.07.[010] electron diffraction patterns recorded at nomenon.

(& RT and(b) 92 K. The splitting of the reflections is characteristic

of the monoclinic distortion of the celsee small arrows L . . . .
in incommensurate positions. This system of satellites is

In the 92 K[010] ED patterns, a splitting of the reflections characteristic of a CO state, with a modulation vedar,

(see small arrowsis observed, characteristic of the forma- with q values ranging between 0.20 and O[Efg. 3(b)]. The

tion of twinning domains due to the monoclinic distortion. In supercell, with*(1/ q)ap\/ix 2ap><ap\/§,” is similar to

this manganite, no extra spots are detected whatevEnus, those observed for the CO Ln,CaMnO; manganites with
thex=0.07 sample exhibits a monoclinic distortion at 160 K x~0.75/° Such a structure can be described by the regular
which is similar to that observed in th€type AFM  stacking of four Mn planes, in which one Mhplane alter-
structuré®>?” In this magnetic structure, though no CO is nates with three MH™ planes. In these structures, the CO is
evidenced, they orbitals of manganese are polarized alongdriven by 90° arrangements of the ﬁm; orbitals and con-
chains making the OO. As aforementioned, the EDS analysequently the CO and OO occur simultaneously. The differ-
ses of thex=0.12 sample confirm thevalue and the homo- ent crystallite types were then warmed keeping constant the
geneity of the sample. In contrast, the10] ED patterns electron current density~80 pA.cm ). On one hand, in
evidence the coexistence of three structural types from 92 khe minority monoclinic and tweed regions the transitions to
up to 290 K as illustrated in Fig. 3 by the 290 K patterns.the orthorhombic structuré®Pnma are abrupt and occur at
The first one is a monoclinic structure €yy2x2a,  about the same temperature value of 295 K. On the other
Xa,y2" and B=90°—¢) with twinning domaingFig. 3a)], hand, for the majority charge-ordered regions the transition
as described above for thevalues close to 0.1. The param- temperature range is broader. The satellites weaken and be-
eters of the second structure are similar a()\/ix 2a, come streaky a3 increases from 290 K. At 300 K they are
Xap2” and B=90°9 but the ED patterns show cross- scarcely visible and thuSco~300 K.

shaped reflections, the cross arms being elongated along the The electron microscopy results demonstrate that the
[100]* and[001]* directions. This phenomenon is character-maximum of x'(T) at 300 K (Fig. 1) observed for the
istic of a so-called tweed structure. The third structural typex=0.12 sample corresponds to structural transition3 &
which is that of the majority phase, exhibits extra reflections(=Toc). One remarkable feature concerns the different
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FIG. 5. T-dependent thermopower of CalyiMng 03 (X

FIG. 4. T dependence of the reSiStiVimp) for the Samples :012 The transition temperatures of C(CDCO) and AFM (TN)
CaMn,_,Mo,0;. x values are labeled on the graph. Inset: Local gre indicated on the graph.

activation energyd In p/dT ! vs T for the corresponding=0.07

andx=0.12 samples. . o .
Finally it is worth pointing out that the value of 0.20-0.25

shape of they’(T) curves of thex=0.12 sample, compared observed at room temperature $o¥0.12 is in perfect agree-
to the x=0.07 one. On|y one maximum is observed for ment with the theoretical value of 0.24 expected for such a
x=0.07, whereas fok=0.12, an additional change of slope CMn35MngEMoS’,JO; composition.
is observedFig. 1) at 160 K. This shoulder one thg'(T) To further elucidate the transport properties, thermoelec-
curve can be attributed to the appearance of long-range AFNfic power measurements were carried out. The different
ordering(see below. Consequently fox=0.07, the appear- characteristic temperature$oo and Ty are identified for
ance of AFM coincides with orbital orderingT(~Tqoq), x=0.12 in Fig. 5 coherently with the resistivity daféig. 4).
whereas forx=0.12 AFM appears at a lower temperature For this composition, the negative value of thermopower at
than charge orderingT<Tco=Too)- high temperature agrees with an electronlike conduction in
The p(T) curves(Fig. 4) are consistent with the above the bottom of spin polarized Mey—O 2po* band. The
statements. The=0.07 andx=0.12 samples exhibit a metal high absolute value, unusual for a classical metallic picture,
to insulator transition at decreasing temperatdrg, coin- can be interpreted as a simultaneous impact of relatively
ciding with the temperature of the maxima of theé(T) small band filling, which shifts the Fermi energy to band
curves, i.e., withT o or Tco/Too- Thus, Ty, increases dra- edge, and electron correlations: two effects which coherently
matically asx increases, from 160 K far=0.07 up to 300 K should increase the small bare metallic thermopower. This
for x=0.12. Note also that thpsgy k Values increase as the metallic behavior is hardly observed since bel®wn,~ 300
Mo content(x) increases, as expected if one refers to theK the thermopower starts to decrease. We interpret this de-
impurity scattering process. To illustrate more clearly thecrease, in agreement with resistivity and ED data, as a con-
observedp discontinuities, the temperature dependence obequence of carrier localization due to the CO/OO effect.
the local activation energy, defined 44,.,=d In p/d(1/T),  Then a change of slope with a further decay below 170 K
is given in the inset of Fig. 4. For the=0.07 sample, a (Ty) is observed. Belowly when the temperature is low-
single peak ofW,.., is observed with a maximum at 132 K ered, it reaches a minimum 6230 «V/K at about 100 K,
and a minor shoulder at 145 K. For higher Mo content, i.e.and finally increases abruptly below this temperature to
for x=0.12 in Fig. 4, a double peak feature W, is ob-  reach~0 uV/K at 10 K.
tained and the temperature difference between the peaks in- In summary, all these results show the possibility to in-
creases consistently with the decoupling of CQx4) and  duce orbital ordering by substituting Mo species for MA"
spin ordering Ty)- in CaMnG,. But more importantly, charge ordering induced
The evolution of the magnetic and transport properties oby Mn-site substitution is evidenced, Mn-site substitution
these CaMp_,Mo,O; oxides mimics remarkably the behav- made by different authors leading to the opposite, i.e., the
ior previously reported for the Sm,CaMnO; series?® %It destruction of CO due to the disorder on the Mn site. More-
can be explained by the injection of electrofiscrease of over, it is remarkable that charge ordering develops at un-
Mn3* conten} in the CaMnQ matrix, according to the usually high temperature,Tco reaching 300 K for
charge equation 3 MAi=Mo®"+2 Mn®" of the substitu- CaMn, gdVing 1,03, & temperature significantly larger than the
tion reaction, whereas in the $m,CaMnO; system, elec- maximum temperature of 280 K observed in the
trons (Mn3*) are introduced by the replacement of?Cdy  Sm,_,CaMnO; system’**°The high valency of molybde-
Snt*. A cluster glass behavior is observed in both system&um (Mo®*) can explain its exceptional ability to induce
at very close MA™ content(0.10 Mr** per Mn site corre-  charge ordering. It allows the crucial Mnlevel (0.20-0.25
sponding tox~0.04 andy~0.90, respectively. In the same Mn*" per Mn) required for CO to be reached, using a mini-
way, charge ordering appears beyond a*Mnoncentration mum of M&* species(0.12 MdP* per Mn) so that the Mn
which is the same, namely 0.20 ®nper Mn site, in both lattice is not highly disturbed. It is possible that the similar
system corresponding t%=0.10 andy=0.80, respectively. ionic radius for MG" and Mrf* does not affect too much the
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formation of the majority MA" planes in the CO structures.

Finally, doping of Mn sites by M® avoids the size mis-
match and eventual magnetic interactions on Hesite,
which is sometimes encountered in,LCaMnO; manga-
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freely at higher temperature, being, of course, limited by a
critical value of the M8" level. This possibility to induced

the MrP*/Mn** charge ordering in manganites by Mn-site
substitutions demonstrates once more the richness and com-

nites, so that the ordering of orbitals and charges can develggexity of these materials.
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