Interplay between structural, electronic, and magnetic instabilities in EuT₂P₂ (T=Fe, Co) under high pressure

B. Ni, M. M. Abd-Elmeguid, and H. Micklitz

II. Physikalisches Institut, Universita¨t zu Ko¨ln, Zu¨lpicher Strasse 77, 50937 Ko¨ln, Germany

J. P. Sanchez and P. Vulliet

De´partement de Recherche Fondamentale sur la Matie`re Condense´e, CEA/Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France

D. Johrendt

Institut für Anorganische Chemie und Strukturchemie II, Universitätsstrasse 1, 40225 Düsseldorf, Germany (Received 19 October 2000; published 21 February 2001)

¹⁵¹Eu (and ⁵⁷Fe) high-pressure Mössbauer investigations on EuFe₂P₂ reveal that the pressure-induced isostructural phase transition $3 \leq p \leq 9$ GPa is accompanied by a continuous valence transition from Eu²⁺ to Eu³⁺ with the consequence of the disappearance of the $Eu(4f)$ sublattice moment. However, contrary to $EuCo₂P₂$ we find in the high-pressure phase of $EuFe₂P₂$ no magnetic moment on Fe. Volume-dependent band-structure calculations in both systems show that the formation of the 3*d* moment strongly depends on the position of the $3d$ states relative to the Fermi energy and that the filling of the $3d$ states in EuCo₂P₂ is mainly caused by the P-3*p* electrons.

DOI: 10.1103/PhysRevB.63.100102 PACS number(s): 71.27.+a, 75.30.Kz, 76.80.+y

The rare-earth (RE) transition metal (T) phosphides, $RET₂P₂$, crystallizing in the ThCr₂Si₂-type structure belong to an interesting class of materials in which structural instability is intimately connected with electronic and magnetic instabilities. These strong electron correlations lead to the formation of a large variety of ground states in this series. Depending on the type of *RE* and/or *T*, one observes not only different magnetic phenomena such as 4f-sublattice magnetism $(EuCo₂P₂)$,¹ 3*d*-sublattice magnetism $(LaCo₂P₂)²$ or magnetism of both sublattices ($PrCo₂P₂$),³ but also intermediate valent behavior $(EuNi₂P₂)⁴$ or even superconductivity $(LaRu₂P₂)$.⁵ Essentially responsible for such a broad variety of properties is the ability of the $ThCr₂Si₂$ structure to adapt to several elements with various atomic sizes resulting in extremely different lattice parameters. In fact, within the $RET₂P₂$ series, there exists two extremely dissimilar P-P distances along the *c* axis resulting in two isostructural phases: α phase for a large P-P distance ($d_{\text{P-P}} \approx 2.8$ Å) with a nonbonding P-P state; and β phase for a short $d_{P-P} \approx 2.3 \text{ Å}$ forming a P-P single bond state.⁶ Structural phase transitions of first- and second-order between these phases can easily be induced by changing composition, $\frac{7}{1}$ temperature, $\frac{8}{1}$ or applying external pressure.⁹ According to recent band-structure calculations on some RET_2P_2 compounds such structural phase transitions strongly affect the electronic structure of these systems.¹⁰

Towards understanding such an interplay in $RET₂P₂$ systems, we have recently performed high-pressure experiments $($ ¹⁵¹Eu Mössbauer spectroscpopy and x-ray diffraction) on the magnetically ordered compound $EuCo₂P₂$.¹¹ In this system, antiferromagnetism is due to ordering of the $Eu^{2+}(8S_{7/2})$ sublattice moments (T_N =66.5 K) while the Co(3*d*) sublattice exhibits no magnetic moments. Here, high-pressure experiments demonstrated that the pressure-induced first-order structural $(\alpha \rightarrow \beta)$ phase transition at $p > 3$ GPa is connected with a sharp valence transition of Eu from magnetic Eu^{2+} to a nonmagnetic Eu^{3+} (${}^{7}F_{0}$) state. As a consequence, the disappearance of the $Eu(4f)$ sublattice magnetism is accompanied by a simultaneous appearance of Co(3*d*) sublattice magnetism with T_N^* = 260 K.¹¹

These experimental findings, however, raise crucial questions that have to be addressed in order to shed light into the nature of electron correlations in these class of materials: (a) Is a first-order structural phase transition necessary for the occurrence of the pressure-induced change of sublattice magnetization $(4f \rightarrow 3d)$, (b) does the formation of the 3*d* moment under high pressure depend on the type of transition metal (Fe, Co, Ni) , and (c) what causes the filling of the 3*d* states?

In order to provide an answer to these questions, we have performed ¹⁵¹Eu (and ⁵⁷Fe) high-pressure Mössbauer effect (ME) experiments on the ferromagnetic compound $EuFe₂P₂$ $(T_C = 27 \text{ K})$.² The ME technique allows to investigate simultaneously possible pressure-induced variations of the valence state of Eu ($Eu^{2+} \rightarrow Eu^{3+}$) via the ME isomer shifts *S* and of the magnetism of the Eu and Fe sublattices, via the effective magnetic hyperfine field, B_{eff} , at the ¹⁵¹Eu and ⁵⁷Fe nuclei, respectively. EuFe₂P₂ is an excellent candidate for such investigations. At ambient pressure the magnetic and electronic properties of $EuFe₂P₂$ are common with those of EuCo₂P₂: magnetic order of EuFe₂P₂ is also due to ordering of the Eu^{2+} sublattice moment while Fe does not carry any magnetic moment.² However, in contrast to $EuCo₂P₂$ the pressure-induced structural $(\alpha \rightarrow \beta)$ phase transition in EuFe₂P₂ is continuous for 3 GPa $\leq p \leq 9$ GPa.¹² Thus, the investigation of the influence of the pressure-induced structural phase transition on the electronic and magnetic properties of EuFe₂P₂ in comparison with $EuCo₂P₂$ should provide B. NI *et al.* PHYSICAL REVIEW B **63** 100102(R)

FIG. 1. ¹⁵¹Eu Mössbauer spectra of EuFe₂P₂ collected at 300 K and at different pressures.

valuable information on the nature of strong electron correlations in these compounds. To obtain a theoretical interpretation of the experimental results, we have performed volume-dependent band-structure calculations on $EuFe₂P₂$ and $EuCo₂P₂$.

A polycrystalline single phase $EuFe₂P₂$ sample was prepared as described elsewhere.¹³ ¹⁵¹Eu ($5\bar{7}$ Fe) high-pressure ME measurements were performed up to 12 GPa at 300 and 4.2 K using a diamond anvil cell $(DAC).$ ¹⁴ ME sources $(^{151}SmF_3 \cong 100$ mCi and ^{57}Co in Rh $\cong 10$ mCi) and absorbers were kept during the measurements at the same temperature. Figure 1 shows some selected ¹⁵¹Eu ME spectra collected at 300 K in the pressure range $0 \le p \le 12$ GPa in which the pressure-induced structural $(\alpha \rightarrow \beta)$ phase transition takes place.12 The ME parameters at ambient pressure and 300 K are in a very good agreement with those previously published.2 As evident from Fig. 1, there is large pressureinduced change of the isomer shift from $S = -10.7$ (2) mm/s at 0 GPa to -0.4 (1) mm/s at 12 GPa. This clearly indicates a change of the valence state of Eu with increasing *p* from the Eu^{2+} state towards Eu^{3+} . The analysis of the pressureinduced change of *S* is displayed in Fig. 2. As shown in the figure, the rate of change of *S* with increasing pressure is enhanced above $p \approx 3$ GPa indicating the onset of valence transition. This is consistent with the change of the lattice parameter a with pressure (see inset of Fig. 2), which shows that the anisotropic increase of the lattice parameter *a* sets in at about $p \approx 3$ GPa and ends before decreasing at $p \approx 9$ GPa.¹² The lattice parameter *c* decreases drastically $(\Delta c/c)$ \approx 13%) as a consequence of the $\alpha \rightarrow \beta$ phase transition. From this we can conclude that the second-order structural phase transition in $EuFe₂P₂$ is connected with a continuous valence change of Eu from Eu^{2+} to Eu^{3+} .

As mentioned above, in the case of $EuCo₂P₂$ the pressureinduced valence transition $Eu^{2+} \rightarrow Eu^{3+}$ was found to be accompanied by a simultaneous appearance of Co(3*d*) magne-

FIG. 2. Pressure dependence of the ¹⁵¹Eu Mössbauer isomer shift *S* at 300 K as deduced from the least square fits of the measured ME spectra. The inset shows the anisotropic variation of lattice parameters a and c of $EuFe₂P₂$ with pressure according to Ref. 12.

tism. In order to inspect whether the same magnetic phenomena occurs in EuFe₂P₂ [i.e., appearance of Fe(3*d*) magnetism], we have performed 151 Eu and 57 Fe highpressure ME experiments at 4.2 K and at 9 GPa. Figure $3(a)$ displays 151Eu ME spectra collected at 0 and 9 GPa and at 4.2 K. At ambient pressure we find, as expected, a magnetically split Eu^{2+} spectrum which is due to the ordering of the Eu^{2+} moments below T_c . Both values of B_{eff} (-30.3 T) and $S(-10.6 \text{ mm/s})$ are in a very good agreement with those already published.² At 9 GPa and 4.2 K (the high-pressure β phase) the magnetic hf splitting disappears, one observes a single quadrupole broadened absorption line located at *S* \approx -0.9 mm/s corresponding to the Eu³⁺ state. These results

FIG. 3. (a) ¹⁵¹Eu Mössbauer spectra ($T=4.2$ K) at ambient pressure and 9 GPa. The magnetic hf splitting at $p=0$ GPa corresponds to the Eu^{2+} , whereas the single line absorption (nonmagnetic) corresponds to the Eu^{3+} state. (b) ^{57}Fe Mössbauer single line absorption spectrum in the high-pressure phase $(\beta$ phase) of $EuFe₂P₂$ at 9 GPa and 4.2 K, which shows that the Fe sublattice does not exhibit magnetic moments.

FIG. 4. Calculated total 3*d* density of states (DOS) of Fe in $EuFe₂P₂$ (a, a') and Co in $EuCo₂P₂$ (b,b') both at ambient pressure $(\alpha$ phase) and in the high-pressure phase (β phase), respectively. Dashed lines at $E-E_F=0$ mark the position of the Fermi energy E_F .

clearly demonstrate the disappearance of the $Eu(4f)$ sublattice magnetism in the high-pressure phase of $EuFe₂P₂$. In order to search for a possible existence of Fe sublattice magnetic moment in the high-pressure phase of $EuFe₂P₂$, we have performed $57Fe$ ME measurement at 9 GPa (4.2 K) on the same sample in the DAC. As evident from Fig. $3(b)$ one also observes a single line absorption pattern, indicating that the Fe sublattice does not exhibit any magnetic moment in the high pressure (β) phase of EuFe₂P₂. This finding is quite surprising, since both $EuFe₂P₂$ and $EuCo₂P₂$ undergo pressure-induced structural $(\alpha \rightarrow \beta)$ phase transition and reveal corresponding valence changes of Eu from Eu^{2+} to $Eu³⁺$ that results in a disappearance of the Eu(4*f*) sublattice magnetism.

In order to illuminate this last point, we have performed volume-dependent linear muffin tin orbital (LMTO-47 $Code¹⁵$) band-structure calculations using density-functional theory in the local-density approximation (LDA) with the atomic spheres approximation (ASA).¹⁶ Experimental geometries (lattice parameters and atomic positions for α and β phases) were used throughout without further optimization. The ASA radii were calculated from Hartree potentials. Reciprocal space investigations were performed by the tetrahedron method¹⁷ using 436 irreducible κ points. The basis sets consisted of 6*s*/5*d*/4*f* for Eu, 4*s*/4*p*/3*d* for Fe and Co, and 3*s*/3*p* for P. The 6*p* orbitals of Eu and 3*d*-orbitals of P were ''downfolded.''18 Spin-polarized calculations were made using the exchange correlation potential of von Barth and Hedin.19 All iterations converged to total energy changes smaller than 10^{-5} Rydberg.

The calculated densities of states (DOS) of EuFe₂P₂ and $EuCo₂P₂$ at ambient pressure (α phase) show typical patterns characteristic for ThCr₂Si₂-type compounds.¹⁰ In the following we only focus on the Fe- and Co-3d DOS in $EuFe₂P₂$ and $EuCo₂P₂$, respectively.²⁰ In Figs. 4(a) and 4(b) we show the spin-polarized Fe- and Co-3d DOS (sum of spin \uparrow and spin \downarrow) in the α phase of EuFe₂P₂ and EuCo₂P₂, respectively.

FIG. 5. Calculated $P-3p$ - and $3s$ -DOS in EuCo₂P₂ for the α and β phases.

As evident from this figure, a DOS-peak representing $dd\sigma^*$ antibonding states of metal $3d_{xy}$ orbitals¹⁰ is located above E_F at energies $\Delta E = E - E_F \approx 1.2$ eV for EuFe₂P₂, but only 0.15 eV for $EuCo₂P₂$ due to one additional valence electron in the Co 3*d* shell. The analysis of these calculations reveal that neither Fe nor Co exhibit a 3*d* magnetic moment in these compounds. These results are in good agreement with those obtained experimentally. $1,2$

Now, we discuss the 3*d* DOS for Fe and Co in EuFe₂P₂ and $EuCo₂P₂$ in the β phase. In EuFe₂P₂ [Fig. 4(a)] we find that the Fe(3*d*) moment remains zero as in the α phase: In the β phase the filling of the Fe(3*d*) band increases and consequently the Fe-3*d* DOS gets closer to E_F ($\Delta E \sim 0.8$) eV). However, the 3*d* DOS at E_F remains rather low and no magnetic splitting takes place. This is consistent with our experimental observation of the absence of the Fe magnetic moment in the β phase of EuFe₂P₂. On the other hand, in the β phase of EuCo₂P₂ the increase of Co(3*d*) band filling results in a considerable enhancement of the DOS peak at E_F and a magnetic splitting takes place, which clearly indicates the formation of a Co magnetic moment. It is obvious that the proximity of the Co-3d DOS-peak to E_F already at ambient pressure is the reason for a moment formation in the high-pressure phase of $EuCo₂P₂$. The calculated magnetic moment for β -EuCo₂P₂ is found to be $0.66\mu_B$ /Co in a very good agreement with the estimated experimental value of $0.6\mu_B$.¹¹ These results raise an interesting question, whether the excess electrons for a *d*-band filling originates from the pressure-induced valence transition of Eu $\left[\text{Eu}^{2+}(4f^{7})\rightarrow \text{Eu}^{3+}(4f^{6})\right]$ or the formation of the P-P bond $(2P^{3-} \rightarrow P_2^{4-})$. As shown in Fig. 5 our bandstructure calculations show a strong reorganization of the P-3*p* DOS when going from α to β phases, whereas the Eu levels (not shown) are not much affected. In fact, we find that the charge on the P site (3p states) is lower in the β phase than the α phase which hints a transfer of electrons to fill the 3*d* band. This shows that the electronic transition from the nonbonding to the P-P single bond state is mainly responsible for the filling of the 3*d* states and thereby for the moment formation of Co in $EuCo₂P₂$. This filling is not sufB. NI *et al.* PHYSICAL REVIEW B **63** 100102(R)

ficient to generate a moment on Fe in $EuFe₂P₂$ because of the lower valence electron count of Fe compared with Co.

In summary, our high-pressure results reveal that the pressure-induced structural phase transition in $EuFe₂P₂$ is connected with a continuous valence transition from magnetic Eu^{2+} to a nonmagnetic Eu^{3+} state. In contrast to $EuCo₂P₂$, we find in the high-pressure phase of $EuFe₂P₂$ no magnetic moment on Fe. Volume-dependent band-structure calculations on both systems show that the condition for the formation of the 3*d* moment strongly depends on the type of transition metal and the proximity of the 3*d* states relative to E_F . It is shown that the electronic transition from the nonbonding to the P-P single bond state is mainly responsible for the filling of the 3*d* states. We feel that our results would stimulate further experimental and theoretical efforts for a better understanding of pressure-induced magnetic and electronic phenomena in strongly correlated electron systems.

- ¹M. Reehuis, W. Jeitschko, M. H. Möller, and P. J. Brown, J. Phys. Chem. Solids **53**, 687 (1992).
- ${}^{2}E$. Mörsen, B. D. Mosel, W. Müller-Warmuth, M. Reehuis, and W. Jeitschko, J. Phys. Chem. Solids **49**, 785 (1988).
- 3 M. Reehuis, P. J. Brown, W. Jeitschko, M. H. Möller, and T. Vomhof, J. Phys. Chem. Solids 54, 469 (1993).
- ⁴R. Nagarajan, E. V. Sampathkumaran, L. C. Gupta, and R. Vijayaraghavan, Phys. Lett. **84A**, 275 (1981).
- 5W. Jeitschko, R. Glaum, and L. Boonk, J. Solid State Chem. **69**, 93 (1987).
- 6 R. Hoffman and C. Zhang, J. Phys. Chem. **89**, 4175 (1985), and references therein.
- ⁷ A. Wurth *et al.*, Z. Anorg. Allg. Chem. **623**, 1418 (1997).
- 8 C. Huhnt *et al.*, Physica B **240**, 26 (1997).
- 9^9 C. Huhnt, W. Schlabitz, A. Wurth, A. Mewis, and M. Reehuis, Phys. Rev. B 56, 13 796 (1997).
- ¹⁰D. Johrendt *et al.*, J. Solid State Chem. **130**, 254 (1997).
- ¹¹M. Chefki et al., Phys. Rev. Lett. **80**, 802 (1998).
- ¹²C. Huhnt, W. Schlabitz, A. Wurth, A. Mewis, and M. Reehuis,

Physica B 252, 44 (1998).

- 13W. Jeitschko, U. Meisen, and U. Scholz, J. Solid State Chem. **55**, 331 (1984).
- 14G. R. Hearne, M. Pasternak, and R. D. Taylor, Rev. Sci. Instrum. **65**, 3787 (1994).
- ¹⁵O. K. Andersen and O. Jepsen, *Tight-Binding LMTO* (Max-Planck-Institut für Festkörperforschung, Stuttgart, 1994).
- 16O. K. Andersen and O. Jepsen, Z. Phys. B: Condens. Matter **97**, 35 (1995).
- 17O. Jepsen and O. K. Andersen, Solid State Commun. **9**, 1763 $(1971).$
- 18W. R. L. Lambrecht and O. K. Andersen, Phys. Rev. B **34**, 2439 $(1986).$
- 19 U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972) .
- ²⁰The extremely narrow Eu $4f$ bands are not accurately described by the LDA. A correct treatment would require a $LDA+U$ approach and the spin-orbit coupling. This has, however, no influence on the modification of the 3*d* states.