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Superconductive properties of thin dirty superconductor—normal-metal bilayers
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The theory of superconductivity in thin superconductor—normal-m@&hl) sandwichegbilayers in the
diffusive limit is developed within the standard Usadel equation method, with particular emphasis on the case
of very thin superconductive layemg<dy . The proximity effect in the system is governed by the interlayer
interface resistandger channélp;,.. The case ofelativelylow resistancéwhich can still have large absolute
values can be completely studied analytically. The theory describing the bilayer in this limit is of BCS type
but with the minigap(in the single-particle density of stajeS,<A substituting the order parametérin the
standard BCS relations; the original relations are thus severely violated. In the opposite limit of an opaque
interface, the behavior of the system is in many respects close to the BCS predictions. Over the entire range of
pint, the properties of the bilayer are found numerically. Finally, it is shown that the results obtained for the
bilayer also apply to more complicated structures such as SNS and NSN trilayers, SNINS and NSISN systems,
and SN superlattices.
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[. INTRODUCTION trolling the strength of the proximity effect is the
(dimensionlessresistance of the SN interface per channel
It is well known that the majority of metallic supercon- pj,, which is related to the total interface resistaftg as
ductors is well described by the classical BCS theory of
superconductivity. One of the main qualitative features of RyPint
the BCS theory is a simple relation between the supercon- Rint:m'
ductive transition temperaturé, and the low-temperature
value of the energy gap fa-wave superconductor&(0)  where Rq:h/e2 is the quantum resistance, andg,
=1.76T.. Experimentally, violations of this simple relation =.A4/(\g/2)?, with \¢ being the Fermi wavelength, is the
are considered as a sign of some unusual pairing symmetryumber of channels in the interface of aréaWe choose ¢
or even of a non-BCS pairing mechanism; many theories ofeferring to the S layer.
unconventional superconductivity were developed during the Our results show that the values of the interface resist-
last decade, mainly in relation with highs materials. Re- ance can be divided into three rangés:at large resistance,
cently, an evident example of such a violation of the BCSmany characteristics of the superconducfak, n, T,
theory predictions was found in experiments by Kasurabv v»(E), H;, H.,] are almost unaffected by the presence of
al.,2 who studied current-voltage characteristics of a carborthe normal layer, i.e., this is the BCS linfliowever, we note
nanotube contact between two metallic bilayeandwiches  thatE, does not coincide with the order parameter, and even
made of ordinary metals, namely tantalum and gold. Thevanishes ap;, increaseg (b) at low resistance, the theory
observed value of the low-temperature Josephson criticalescribing the bilayer is of BCS type but with the order
current is 40 times larger than the maximum expectecharameterA substituted by the minigaje, (for instance,
(Ambegaokar-Baratoff value’ |.=wA(0)/2eRpe, Where Eg=1.76T;, whereasEg<A); the original BCS relations
the energy gap of the bilayek(0) is estimated from its are thus severely violatedg) at intermediate resistance, the
transition temperature. The source of such discrepancy is néiehavior of the system interpolates between the above two
clear at present. The most recent experinfed@monstrate  regimes.
the existence of intrinsic superconductivity in carbon nano- The paper is organized as follows. In Sec. II, we formu-
tubes. However, the discrepancy could be due to unusudhte the standard technique of the Usadel equations for dirty
superconductive properties of the bilayers. The aim of thesystems,and introduce a convenient angular parametrization
present paper is to investigate these properties. of the quasiclassical Green functions entering these equa-
An essential feature of the experimémias that the su- tions. In Sec. Ill, we apply the Usadel equations to the thin
perconductive layer in the bilayer was very thidg(dy bilayer that we intend to discuss, and present numerical re-
=5 nm/100 nn¥1/20). In the present paper, we investi- sults forA, n, T., andv(E). We start an analytical analysis
gate such a bilayer both analytically and numerically, calcu-of the Usadel equations for the bilayer by calculating the
lating quantities characterizing the superconductivity in thisminigapEg in the density of states in the two limiting cases
proximity system: the order paramet&r the density of the of high and low interface resistané8ec. I\V). Then, in Sec.
superconducting electroms the critical temperaturé., the  V, we elucidate the structure of the theory describing the
(mini)gap E4 in the single-particle density of stat¢é®OS)  system in the so-called Anderson linfiof relatively low
and the DOSv(E) itself, the critical magnetic fieltH, par-  resistancg finding A, n, T, Eg4, and »(E). The critical
allel to the bilayer and the upper critical field,, perpen- magnetic fieldH, (parallel to the bilayerandH, (perpen-
dicular to the bilayer. In our calculations, the parameter condicular to the bilayer are calculated in Secs. VI and VII,
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respectively. In Sec. VIII, we show that the results obtained B. Angular parametrization of the Green function

for the bilayer also apply to more complicated structures e normalization condition allows the angular parametri-
such as SNS and.NSN trilayers, _SNINS and NSISN systems,iion of the retarded Green function:

and SN superlattices. The relationship between our results

and the experimefthat has stimulated our research is dis- . cosé —ie*sing
cussed in Sec. IX. Finally, we present our conclusi(®esc. R=|. _i,. , (6)
X). ie”'¥sin@ —cosé

whered= 6(r,E) is a complex angle which characterizes the
Il. METHOD pairing, ande=¢(r,E) is the real superconducting phase.
The off-diagonal elements of the matti describé the su-
perconductive correlations, vanishing in the bulk of a normal

Equilibrium properties of dirty systems are descrfbby  metal (#=0).

the quasiclassical retarded Green functie(m,E), which is The Usadel equation takes the form
a 2x 2 matrix in the Nambu space satisfying the normaliza-
tion conditionl_i2=i. The retarded Green function obeys the EV20+ iE— E(V(,D)ZCOSG sing+|A|cose=0, (7a)
Usadel equation 2 2

A. Usadel equation

DV(RVR)+i[H,R]=0. 2 V(sirfgVe)=0. (7b)
Here the square brackets denote the commutBteryl/3 is The corresponding boundary conditions are

the diffusion constant with v anldbeing the Fermi velocity V10, =ginl cog ¢, — ¢;)c0s6;Sin 6, — sin §,cos), |

and the elastic mean free path=Ec,+ A(r) with E being (8a)
the energy, WhereaAsZ (the Pauli matrix andﬁ(r) are given
by 0,V 10, =0inl cOSH,SiN 6, —coq ¢, — ¢,)Sin ,cosb, ],
(8b)
. 1 0 R 0 A _ . . . .
0= , A= . 3 Ulsmzelvn@l:O'rsmzarvn@r:gintsm(@r_ @1)sinésing, .
0 -1 —A* 0 (80)
The order parameterA(r) must be determined self- The self-consistency equation for the order paramaigm)
consistently from the equation takes the form
- o\ (o E\ . . _ Vo\ o E o
A(r)= TJO dEtanI‘(ﬁ)[R(r,E)—R(r,—E)]O_d_, A=— . dEtanf 5= |Im[sindle. 9
4

The above equations are written in the absence of an external

where the subscript 0.d. denotes the off-diagonal payt magnetic field. To take account of the magnetic field, it is

=mav/ 72 is the normal-metal density of states at the Fe'rmisufﬁcient to substitute the superconducting phase gradient in

level, \ is the effective constant of electron-electron interac-the Usadel Eqs(7) by its gauge invariant form i2v="V ¢

tion in the S layerwhereas we assume=0 and hence\ +2eA, whereA |s.the vector potential and denotes the

=0 in the N laye), and integration is cut off at the Debye SUP€rcurrent velocity. ,

energyw;, of the S material. Physical properties of the system can be expressed in
Equation(2) should be supplemented with the appropriatel€™Ms Of the pairing anglé(r,E). The single-particle den-

boundary conditions at an interface, which read sity of statesy(r,E) and the density of the superconducting
electronsn(r) are given by

Gint

Ul(ﬁlvnﬁl)zar(ﬁrvnﬁr)ZT

[R,R], (5) v=poRe cosh], (10)

where the subscripisandr designate the left and right elec- n= zm—ofochtam‘(E
trode, respectivelyy is the conductivity of a metal in the e? Jo 2T
normal state, and;= G/ A (with G;,,= 1/R;,) is the con-

ductance of the interface per unit area when both left andvheremande are the electron’s mass and the absolute value

right electrodes are in the normal sta¥g, denotes the pro- ©f its charge. The total number of single-particle states in a

jection of the gradient upon the unit vectomormal to the ~Metal is the same in the superconducting and normal states,

Im[ sir? 6], (11)

interface. which is expressed by the constraint
The system of units in which the Planck constant and the ~
2222? of light equal unity{(=c=1) is used throughout the f dE[u(r,E)— ] =0. (12)
. 0
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C. Simple example: The BCS case Dw 926
N N _
The simplest illustration for the above technique is the 2 2 +iIE sindy=0, (193
BCS case, when the order parametér) = Az sis spatially
constant. Its phase can be set equal to zereQ. Then the Do 42
Usadel I_Eqs.(?) are trivially solved, and we can write the_z zs 9 05+iE sin O+ A cos0s=0, (19b)
answer in terms of the sine and the cosine of the pairing 2 72
angle:
g where 6y and 65 denote the pairing anglé at z<0 andz
iA >0, respectively.
sinfgcd E)=+§2, (133 The boundary condition&) reduce to
E°—Agcs

cosbgcdE)= (13b

E
\ EZ_AZBCS.
An infinitesimal termi0 should be added to the eneryto

take the retarded nature of the Green funcibinto account,
which yields

) T
Im[sngBCS(E)]:EABCS5(E_ABCS)- (14

FUN 90 ,
ON—, =0 = GinSIN( s~ O) - (20
Equations(19) can be integrated once, yielding
D (90011 cosgy—1 21
72 | 57| TVEcosON=1n, (213
Ds(d0s\* . .
252 —iE cosfs+ A sinfs=fg. (21b

The functionsfy(E) and fg(E) are determined from the

The usual BCS relations are straightforwardly obtainedsoundary condition?¢/9z=0 at the nontransparent outer
from Egs.(9), (10), and(11) (for simplicity, we consider the suyrfaces of the bilayer, which give

case of zero temperatyre

fN(E):_|E COS&N(_dN,E),

2 (22)
ABCSZZ‘*’DGXP( - ,,0—>\> | (15 fo(E)=—iE cosfg(ds,E)+ A sinf«(ds,E).
. Let us denote GN(E) = BN(— dN ,E), Hs(E): es(ds,E).
0 if E<Agcs Because of the uniformity of the layers, the functions
veed E)= E _ (16) _HN(Z,E) and es(z,E_) are nearly spatially constant. However,_
Vo TH—— if E>Agcs, in order to determine them, we should take account of their
VE“—Agcs weak spatial dependence and make use of the boundary con-
ditions at the SN interface. Substituting
mo
Ngcs™ W?ABCS- (17 On(Z,E)=0N(E)+ 66\ (Z,E),

(23
The critical temperature must be determined from ). 0s(z,E) = 0(E) + 665(2,E)

with vanishingA(Tc); the result is into Egs. (21) and linearizing them with respect to

|6605(Z,E)|, |864(z,E)|<1, we find the solution. Finally,

Aged0)= chBCS: (18  boundary conditions at the SN interface lead to

—iTnyE SinOy(E)=i7sE sin(E) + 75A cosf(E)
=sin 05(E)— On(E) ],

where we have denoted y=20ndN/DnGine: 7s

Let us consider a SN bilayer consisting of a normal metal= 20sds/D gy Using the definition of the interface resis-
(—dy<z<0) in contact(at z=0) with a superconductor tance per channéll), we can represent these quantities as
(0<z<dg). We assume that the layers are tftims assump-
tion will be discussed in Sec. )Xand can be regarded as
uniform, which allows us to set the order paramefeequal
to a constant in the superconductive layere choose its
phasee equal to zerh At the same time, we suppose that with vy and & being the Fermi velocities in the N and S
electron-electron interaction is absent in the normal layerlayers. The ratiory/7s=vndn/Vsds, which is independent
A=0, henceA=0, although the superconductive correla- of interface properties, can also be interpreted as the ratio of
tions (##0) exist in the N layer due to the proximity effect. the global densities of stateger energy intervalin the two
The Usadel Eqs.7) take the form layers considered,

wherey~1.78 is Euler’s constant.
(24)
Ill. USADEL EQUATIONS FOR A THIN BILAYER

Vndy
TN= 27— Pints
Vs

S
Ts= 27 —Pint (25

Vs
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™ Adyron Substituting this into the self-consistency Eg) and simpli-

= (260 fying both its sides byA, we obtain an equation determining
T., which can be cast into the form

The latter interpretation will prove useful for further analy-

7s  Adgrgs

SIS. - .. TCBCS TN 1 Ts+ ™N 1
Havmg solveq_ th_e boundary_ conditiof24), we can de- In b W §+ P - >
termine all equilibrium properties of the systefbecause c STIN cTs7N

knowledge of 65, 6y implies knowledge of the retarded
Green functionR). —In 1+(
A useful representation of the boundary conditié®4) is
obtained as follows. Excludingy(E) from Eq. (24), we
arrive at a single equation for the functieg(E), which can
be written, in terms oEZ=exp(6s), as a polynomial equation

Ts+ TN 2
TSTNWD

(30

where (x) denotes the digamma function. A similar for-
mula [except the logarithmic term in the right-hand side
(r.h.s)] was obtained by McMillafr’® (see also Ref. 11
iCoZ8+ CsZ5+iC,Z%+ CoZ3+iC,Z2+ C,Z+iCo=0 The logarithmic term in the r.h.s. takes account of the finite-
27 ness of the Debye energyp ; it becomes important only in
the limit of a perfect interfacéhe Cooper limit, i.e., when

with real coefficients TsTnop [ (75t T77y) <1. Equation(30) can be solved numeri-
cally over the entire range qf;,; (see Sec. Il B; the ana-
s\ ? A? lytical solution can be found in limiting casésee Sec. V.
C6: — ’TNE ’T_ 1+ E ,
N

B. Numerical results
2

1+—| —1, The solution of Eq(27) can be found numerically. To this

end, we solve the system of two nonlinear equations for the

functions Re&Z(E) and ImZ(E), using the modified Newton

A\VZ A method with normalization.

3 E , The solution depends on the bilayer's parameters: the
thicknesses of the layers, characteristics of materials consti-

A2 tuting the bilayer, and the quality of the SN interface. This
SCI

c5=[1—<rNE>2](:—§

2
__ Ts
Ca= TNE( TN)

dependence enters Eq27) and (28) via ry and 7. For
numerical calculations, we assume the characteristics of the
5 bilayer to be the same as in the experiment by Kasumov
3(5) LA 1} etal? The superconductive layer is made of tantalulg,
E E ' =5 nm, and the normal layer is made of goldy
=100 nm. Approximate experimental values of the conduc-
2 tivities  ard? 05=0.01 xQ ' cm! and oy
1- E} -1, =1 uQ ! cm . In order to calculate the Fermi charac-
teristics of tantalum and gold, we use the values of the Fermi
energy Er(Ta)=11 eV, E(Au)=5.5 eV, and the free
electrons modet®

Once the parameters have been specified, the solution of
Eq. (27) depends only on the interface resistapgg. Hav-

During further analysis, the choice between the boundaryng found the functioriZ(E) [which is equivalent to finding
conditions in the formg24) and (27) will be a matter of  45(E)], we start from the case of zero temperatufe; 0,
convenience. and study the dependence of the order paramktand of

the superconducting electrons’ density in the S laydiEqgs.

A. Critical temperature (9) and(11)] on p;;. The results are plotted in Fig. 1, where
we also show the dependence of the critical temperéatyre
determined from Eq(30), on pj,; .

The suppression oA, ng, and T, in comparison to
their BCS values in the S layer, is a natural consequence of
proximity to the normal metal. At the same time, there is a
possibility of BCS-like behavior, which implies the BCS re-
lations between the suppressed quantities and the coinci-
dence of the three curves plotted in Fig. 1. However, the
curves split, and the difference between them is largest for
04(E)=i é 1 TN. _ (29) relatively small values op;,.. Figure 2 presents the range

st Ty—iTsTNE 80< p;i,v<<150 on a larger scale.

Ts 2
C3=2_2[1_(TNE)2](T_N)

2
-+
C2— TNE< TN)

T 2
c1=[1—<rNE>2](T—§)

2
-l
Co— TNE( TN)

=€

Ar.

The critical temperature of the bilay@&t, is defined from
the condition of vanishing of the order paramefer Near
T., the superconducting correlations are very smalks1;
nevertheless, the self-consistency E9). has a nonzero so-
lution A#0.

Linearizing the boundary conditior(®4) with respect to
0y and 65, we readily find the solution:
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100 1000 10000

Pint

FIG. 1. Dependence of the order parameter in the S lAyesf .
the superconducting electrons’ density in the S layerand of the 0.01 4 / —— A/ ABCS
bilayer's critical temperaturel. on the interface resistance per // _ ns/nSBCS
channelp;, at zero temperature. All the quantities are normalized s T /T.BC8
by the corresponding BCS values. The discrepancy between the 2 ¢’ ¢
curves implies a violation of the BCS relations betweten ng, 0.001 5 . . . . . . F
andT.. 80 %0 100 110 120 130 140 150

Figure 3 shows the temperature dependence of the orde: Pine
paramete and of the superconducting electrons’ density in FiG. 2. Zoomed part of Fig. 1. In the shown range of relatively
the S layerng. Although the smallep;y the further it is  small resistance;,, the BCS relations betweeh, ng, andT, are
from the BCS limit(corresponding t@;— ), we observe severely violated. The upper and lower graphs differ only in the
that at p;,;=90 the curves are closer to the BCS behaviorscaling of the ordinate axi@ormal and logarithmic, respectively
than atp;;=110. An explanation of this feature is given in
Sec. V. leading tofs= w/2+idg, Oy=w/2+idy, with realdsand
Finally, the energy dependence of the single-particle dens,. In this case, Eq924) can be written as
sity of states in the S and N layerg \(E) is plotted in Fig.
4. The density of states in the bilayer is qualitatively differ- sinhdg+ m\E
ent from the BCS resultL6). In particular, there is a minigap tanhﬁ,\,:w, (323
Ey in the density of states at energies much smaller then
Agcs, and even much smaller thex in the bilayer. In the . s s . . .
next section, we find this minigap analytically in the two 10 ousa
limiting cases of small and large interface resistapgg.
Another feature which can be seen from Fig. 4 is that the, |
order parameteA plays the role of a characteristic energy
scale of the system only in the limit of large,; (see the case

pint=2000). Otherwise, no peculiarity in the DOS is ob- sos bos A -
served atE=A. Some other aspects of the DOS behavior A BCQ)’A B(COS)
will be discussed in Secs. IV, V. ul =" Ns  (N/ng(0) I

| —=— A(T)/4(0) at p,, =90

)
IV. MINIGAP IN THE DENSITY OF STATES 02 | —— ng(T)/ng(0) at p,,=90

In principle, the energy dependence of the single-particle | —— A(T) / A(0) at p,, =110
density of states is different in the S and N layers. At theoo_ o ngT )/n (0) at p,.=110 \
same time, the gap in the DOS is a property of the bilayer as : : S ; Pint= : . : : ;
a whole; the gap is spatially independent because there is n 0.0 0z 0.4 06 08 1.0
localization in the system and each electronic state extend: T/T,
over the whole bilayer.

The presence of the gap thus implies that the density of FIG. 3. Temperature dependence &fand ng at pj,=90 and
states vanishes in both layers, when the energy is below theL0. The temperature is normalized by the critical valiye which
gap: depends onp;; A and ng are normalized by their zero-

temperature values. For comparison, the same dependence is also
Rg cosfs]=Rdg cosfy]=0, (31 plotted for the BCS case.
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0.012
3.0 1 Pie=80 | 5] Pinc =110
0.010 4
25 4 I 254
=2 204 I 2.0 4 s 0.008
=~ 8
w5 L 154 g
> [y 0.006
N >
1.0 F1o] | imme e e w
0.004
05 1 — SandNlayers [ %51 S layer
—— Nlayer
0.0 4 - 0.0 0.002
0.0 05 1.0 1.5 2.0 0.0 05 1.0 15 20
0.000 T T T T T T
3.0 Pine =150 [ 501 Pine = 2000 | 100 150 200 250 300 350 400
2.5 L 25 Pint
° 20 2.0 FIG. 5. Minigap in the single-particle density of statggversus
LT"I . . pint- The minigap is normalized by the BCS gap vallig-s. Egis
1. . . . . .
ES \ a nonmonotonic function op;,;, reaching its maximum apj;
101 I' Lol L =160. The inset showBg(pin) on a wider(logarithmig scale over
| Pint -
0.5 0.5
—— N layer
001 . . . 400 : . . . E
0.0 05 1.0 1.5 2.0 0.0 05 1.0 15 2,0 Ccoséy _Tllrz. (35b)
E/A E/A N

FIG. 4. Energy dependence of the single-particle DOS, normal:rhe assumption is readily checked, and the result is

ized by the normal-metal DOSy(E)/v,, in the S and N layers at
pim=280, 110, 150, and 2000. The enerfyis normalized by the E _1 if TsTNA >1. (36)
order parameter, which is different in all the four case$To ™ TstT TN
avoid confusion, we note that actu@h absolute units relation
between the minigaps in the DOS does not correspond to what is Equations(34) and(36) imply thatEg is a nonmonotonic
seen from the figurg The figure demonstrates drastic difference of function of the interface resistance: with increasepgf, it
the DOS in the bilayer from the BCS cagg. (16)]. first increases at smafl;; [Eq. (34)] and then decreases at
large pin; [EQ. (36)]. Therefore Eg4 reaches its maximum at
Ts TA some intermediate value ofp;;, corresponding to
coshdy=— 7_—NCOSh’-‘}sJr TN_ESInhﬁS' (32D 7orA/(7s+ 7y)~1, hencep;,~140. Numerical results for
Eg4 are shown in Fig. 5.
Assuming that sinb<> 7 E at small energies, from Eq§32) At first sight, vanishing of the minigaR, in the limit of
we obtaindy= 95, and, finally, an opague interface seems to contradict the general tendency
to the BCS behavior. However, this contradiction is more
E apparent than real. Actually, the DOS curve for the S layer
—_— (33 does approach the BCS res(®6) in this limit, showing the
EZ—ES standard peculiarity aE~Agcs. At the same time, below
. o ) Agcs, the DOS curve sharply drops to very small values
with Eq=75A/(7s+ 7y). This is a BCS-like resulfcf. EQ.  (which are still finite in contrast to the BCS casand turns
(13b)], although the order parametdics is substituted by  to zero only atE=E,. Simultaneously, the DOS in the N
the minigapE, . The assumption is readily checked, and we|ayer approaches theonstant normal-metal value. The ten-

COSfAg=CoSfy=

obtain dency to such behavior is illustrated by Fig. 4, the case
=2000.
E - 7s it TsTNA <1 (34) The results(33) and (35) are valid not only below the
9yt s Tst TN minigap but also right above {tn which case the real parts

of 65 and 6y differ from 7r/2), providing a comparison be-
Now we proceed to the opposite limit of large interfacetween the DOS in the S and N layers. Equati88) demon-
resistance. Assuming sirfiy<7E and sinhds<1, we solve strates the equality of the DOS in the two layers at relatively
Egs.(32) and finally obtain small p;,; (see Fig. 4, the case,=80). Proceeding to the
limit of an opaque interface, we should note that the approxi-
E mation which led to Eq¥35) fails in a narrow vicinity ofg
COSfOg=——————=—1i (359 [this fact does not affect the result for the minig&p) itself,
TAVE - 1ry A but the incorrect divergence of the DOS &t E, disap-
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peard. Equations(35) demonstrate that outside this region, This parameter can be considered as a result of averaging
at energies right above the minigap, the DOS in the N layewith the weighting factors:, which are proportional to the
exceeds the DOS in the S layer by the large faetdr (see  global normal-metal DOS per unit interval of energy,

Fig. 4, the case;,;=2000). « Adv, (note that the interaction parameter is zero in the N
Finally, we note that the results of the present section aréayer.
similar to those obtained by McMill&r (see also Ref. 1)1 At the same time, we would like to emphasize that the
Anderson limit does not reduce to the Cooper limit with
V. ANDERSON LIMIT small corrections. On the contrary, due to the relatibn

o . ) ) <wp, the Cooper limit's condition isiot satisfied over the

In the limit of relatively low interface resistancéhe  ost part of the Anderson limit's validity range; therefore,
Anderson limi}, the theory describing the bilayer can be ,q minigapE4 and the quantities calculated below differ
developed analytically. The condition defining this limit is drastically from the Cooper limit expressions.
A . NA<1. ) . Now we proceed to calculate the density of the supercon-

First of all, we need to determing(E) [or Z(E)] solving  qycting electrons in the S layex. On this way, we imme-
Eq. (24) [or Eq.(27)] over the entire range of energiks diately encounter the problem that the above solutg of

In the regionE>4A, the solution of Eq(27) can be writ- g4 (24) at E<A is not accurate enough for our purpose. In
ten asZ=1+0Z, with [5Z|<1. Keeping terms up to the fact as we will see below, the principal contribution to the
second order iZ, we obtain integral (11) determiningng comes from a narrow region of
energies nearEy. At the same time, Eq.(38) yields

§Z7=— A(L—imE) _ (37)  Im[sirf65]=0 and hence no contribution at all froB<A.
TsTTIN i E We thus have to calculate a correction to E28). Assuming
Ts N this correction to be small, we linearize E§4) and obtain
This result is general in the sense that it is valid for arbitrary iE
values ofpj;. sinfs=———— +X(E), (43
At E<A, the same calculation as for the minigap leads to N ES
the result .
with
infs=sin o 'Eqg (39) E
sinfg=sin fy=——, ™
s N E2-E2 X(E)= - g =772 (44)
B I
with the minigapE, given by Eq.(34). [To avoid confusion, (1+ TN) 1 ( E

we note that under the less strict limitations fyA, A o . L

used in Eq(34), the BCS-like result¢33) and(38) are valid which is valid for allE<A except for a narrow vicinity of

only up to energies of the order & .] Ey- . . s
Now Im[sinég] is readily calculated, and in the case of The accurate consideration of the minigap’s vicinity is

zero temperatureT =0, the self-consistency EG) can be  Possible due to the fact thgZ| <1 in this region. We define
solved, yielding a dimensionless quantity as

2/3
A Ts+ aN ABCS TSTNWD 2|™/7s E: (TSA)
Aoce | e ) Zwg VY oy - (39 E, 1T T g (45
BCS S D S N 211+ —=
N

The relation between the order paramefeand the minigap
Eq is given by Eq.(34), which immediately yields and consider the regiofE—Ey<Ey. The function
Im[sirfg], which determinesig, has a peak at~1. An
analysis of the coefficient28) shows that only the terms
that contain zeroth, first, and third order Znshould be re-
tained in Eq.(27). Then, after rescaling

2 TN/TS

E

ABCS

g

Agcs TSTNWD
1+
ZLUD

Ts+ TN (40)

In the limit of a perfect interfacé&he Cooper limi}, which is

defined by the conditiorsrywp /(7s+ 7y) <1, EQ.(40) re- (T5A)13
produces classical Cooper’s restilgeneralized to the case Z=—nY, (46)
of different Fermi parameters in the S and N lay€rs: 148
™
2 . . . .
Eg(pin—0)= ZwDeXF{ - W) , (41)  we obtain a cubic equation for the functioffe):
Yo
4Y3—eY+i=0, (47

with the effective interaction parameter

which can be solved analytically.
Vosh. (42) The densi_ty of the superconducting electrangsat zero
Tst TN temperature is now readily calculated:

(voh)=
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pine= 80, the curvesis/nS°Sand T./T2Stend to coincide,

Ns Eq 11(7sA)%® 275A and A/Agcs exceeds them by the large factor+ Iy /7s)
FS:ES ( Ts Ch ( 7s\? =15 I

S 27 1+ — a1+ = The temperature dependencefofindng, shown in Fig.
N N 3, is quite different ap;,,= 90 andp;,;= 110; atp;,,= 90, the

75 curves are much closer to the BCS behavior. This is also

1+ — explained by approaching the Anderson limit, where the

| ™Nyopp N (49  curves coincide with the BCS ones.
Ts 7sA ' The DOS in the S and N layers coincide in the Anderson

limit [Egs. (33) and (38)], showing the standard BCS-like
peculiarity atE=E4. The tendency to such behavior is illus-
with Eg4 given by Eq.(40). The first term in the curly brack- trated by the DOS curve fqr,=80 in Fig. 4.
ets is the principal one; the two other terms become compa-

rable to unity only near the upper limit of applicability of Eq. VI. PARALLEL CRITICAL EIELD
(48). N o
The critical temperature of the bilay& is determined by We proceed to calculate the critical magnetic field

Eqg. (30). In the Anderson limit, ¢s+ 7y)/7sm>T., and, directed along the plane of the bilayer. As it was mentioned

#(x)~Inx atx>1, we obtain superconducting phase gradient in the Usadel Egsmust

be substituted by its gauge invariant form, which can be
expressed via the supercurrent velogityThe spatial distri-
—9 (49)  bution ofv in the bilayer can be found as follows.
Agcs Let us direct thex axis along the magnetic field. The
supercurrentg= —env are directed along the bilayer and
with E4 given by Eq.(40). Interestingly, this result explains perpendicularly toH, i.e., j=(0,j(z),0) and v=(0,v(z),0).
a discrepancy in the formulas fdr, of a thin bilayer that NearH,, the magnetic field inside the bilayer is uniform, so
were found by Coopét and McMillan® This discrepancy is  the vector potential can be chosen f&s (0,—zH,0). The
discussed in the classical paper by McMilfahwe conclude  supercurrent velocity distribution is determined by the equa-
that both cited results are correct, but their applicabilitytion Vxv=eH/m. Another essential point is the continuity
ranges are different, although within the Anderson limit.of v at the SN interface, which follows from the continuity of

Cooper's result corresponds to a perfect interfacethe superconducting phase [see the boundary condition
TsTnwp [ (Tst 7y) <1, whereas McMillan’s formula applies  (8¢)]. The result is

in the casergrywp /(7s+ 7) > 1.

Now we can discuss the general structure of the theory e
describing the bilayer in the Anderson limit. In the limit v(2)=vo~ 2, (52)
pini— 0, our results for the pairing angte(which is constant ) . ) )
over the entire bilayerd= 5= 6y) vield expressions which Wherev is the supercurrent veIOC|t_y_ at the interface, which
can be obtained from the BCS onf&qs. (13) and (14)] if ~ must be determined from the condition that the total charge
we substitute the BCS order paramelgy.s by the bilayer’s transfer across the bilayer’s cross section is zero:
minigapEg. At p;,>0, corrections to this simple result are
small while the Anderson limit's conditions are satisfied. f
Therefore, we obtain a BCS-type theory wil substituting
Agcsin all formulas.

The results of this section immediately explain the nu-
m_erical results in the limit of relatively smadzl_im,_ s_how_n in eH nsdé—nNdﬁ
Fig. 2. As we have found, the Anderson limit implies the 0:(%)
following relations between the quantities under discussion:

The density of the superconducting electrons is constant in
each layer g andny).

T, _ Eq
TBCS_
C

d

Z i(2)dz=0, (53)

leading to

nedg+nydy (54)

Eg:;ch (50 NearH., the superconducting correlations are smdl|,
<1, and the Usadel E@74) for the paring angl#(z,E) can
be linearized:

mO'S
nS: ™ 2 g (51) DN (92 HN ) ) )
> 7 +(IE—2m*Dy\v?) 8y=0, (55a
which substitute Eq418) and(17). For the Ta/Au bilayer to
which the numerical results refer, the Anderson limit is valid 5
at piy<<80 (we see that the values @f, can be large al- D_Sa_%jL(iE_Zszsvz)gSHM:o_ (55b)
though they arerelatively small. Therefore, approaching 2 572

094518-8
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At the same time, the second Usadel Et) is trivial: its lhs
is proportional to

V((sirf8)v)=sin 20(V @)v+ (sirf o) Vv, (56)

where both terms vanish due to the fact tNat is directed
along thez axis whereay is parallel to they axis.

The pairing angled is almost spatially constant in each

layer; this allows us to average each of E@sh) over the
thickness of the corresponding layer, obtaining

E|Z=OZD_N(EN_|E)6N1 (574
d0g 2dg .
Gz o= p LUE-E9bst[All,  (57b
where
EN:2m2DN<V2(Z)>N y
(58

Es=2m’Dg(v¥(2))s
are H-dependent energies. Using E¢S2) and (54), we ex-

press them vidd. and the densities of the superconducting

electrons:
2112
DgeHg

- , Nu(dstdy)?
ST 6

d2+3d3——M—|,
S N(nSdS+nNdN)2

(59
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FIG. 6. Parallel critical fieldH., normalized by the BCS value,
versusp;, at zero temperature. The upper and lower graphs differ
only in the scaling of the ordinate aximormal and logarithmic,
respectively. The nature of the steep behavior bf. at piy

and Ey is obtained by the interchange of all the S and N=120-123, which is best seen from the lower graph, is explained

indices.
Substituting Eq.(57) into the boundary condition&20)
(which should be linearizedwe find
0N: T5|A|/{T5Es+ TNEN+ TSTNESEN_ TSTNEZ

—iE[ 75+ 7yt 7sTn(Est En) T,

(603

0S:(l+ TNEN_iTNE)aN. (60b)

The order parameteX cancels out from the self-consistency

in the text. The inset showd . (p;,) on a wider scale ovep,; .

thus taking exactly the same form as E@9) below (which
determines the perpendicular upper critical fiefdwe de-
noteEg=Eg+ 1/7g, Ey=En+1/7y.

In the limit p;—, EQs.(61) lead to the BCS result. In
this case, the layers uncouple, the density of the supercon-
ducting electrons in the N layer vanisheg;/ns—0, and
Eq. (619 finally yields

BCS BC
Eq. (9). However, the resulting equation alone does not suf- InTC _ E DdeHc Sds]2> —1&(1) 62)

fice for determiningH (T) because it containEg and Ey,

which are functions ofy/ng. Therefore, to obtain a closed

T 2 127 T 2

. . ayn . BC .
system, we must consider the self-consistency equation td¥hich determines the parallel critical fiekd]; T) of a thin

gether with the equation determining the ratig/ng; the
latter equation is obtained from E(L1). The resulting sys-
tem of two nonlinear equations for the quantitids and

nn/ng is
2wp wa i‘( E ) Im 6g
In = dEtanh — ,
Ages Jo 2T/ A

deEt E Im 62
o N anh > |1m dy

ns rdEt EI 62
O'SO an 2T m S

with 6y and 65 given by Eqs(60). The first equation of the

(61a

, (61b)

superconducting film. Another immediate consequence of
Egs.(61) is the critical temperature of the bilay&f, which

can be found from the conditiokl;(T;)=0: in this case,
Eqgs.(61) reproduce EQq(30).

The system of Eqs(61) can be solved numerically at
arbitrary values of the temperatufeand the interface resis-
tancep;,; the results foH are presented in Figs. 6 and 7.

A remarkable feature of the functidt.(p;,) at zero tem-
perature (Fig. 6) is the steep behavior oH. at pj
=120-123. This feature is due to rearrangement of the su-
percurrents inside the bilayer, which occurs in the following
way. The supercurrent velocity changes across the thickness
of the bilayer according to the simple linear 1d®82). This
supercurrent distribution may be characterized by the posi-
tion of the stationary point,, where the supercurrent veloc-

system, Eq(61a, can be written via the digamma functions, ity is zero:v(z,) =0, hencezo=mvy/eH. At large values of

094518-9
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FIG. 7. Temperature dependence of the parallel critical ti&ld FIG. 8. Position of the stationary poiat, of the supercurrent

atpiy=121.2. The experimental value bif;(0), analyzed with the  distribution versusp,, at zero temperature. The coordinag is
use of the results shown in Fig. 6, suggests that this valyg,of normalized by the S layer thickneds. The fast shift irnz, from the
corresponds to the experiment by Kasumetval. (Ref. 2. The  center of the S layer at largs,, to (nearly the center of the N layer

critical field is normalized by its zero-temperature value, and theat smallp;,, corresponds to the steep dropHi, shown in Fig. 6.
temperature is normalized by the correspondiig For compari-
son, the same dependence is plotted for the BCS case. ™

2
TsEst TnEn _ Agcs| Agcs /1+ TSTN®WD
2(1)D 7'S+ TN

the interface resistangs,;, the density of the superconduct- sty 2
supercurrents circulate only in the S part of the system; thig/hich determined ;. This result can be compared to the

s

(65

ing electrons in the N layer is very smatl, /ng<1, and the

case corresponds to BCS case, which corresponds to the limijt—c. In this
case, the density of the superconducting electrons in the N
ds layer vanishesny /ns— 0, and the self-consistency equation
=7 - (63 yields
Then, while decreasing;,;, a shift in z; occurs. Now the scs. Ascs
supercurrents in the S layer are not compensdtedhe Es o (66)

sense of the charge transfetherefore, they must be com- BCS. . _ _
pensated by the supercurrents in the N layer, which are ewhereEg~~is given by Eq.(59) with ny=0. Finally,
hanced due to significant increasenig. This situation cor-

responds to the beginning of the dropHR . The ratio of the HBCS— \/§(D0 — A /&
superconducting electrons’ densities grows rapidly, ap- ¢ T mégeds’ “BCST VAges
proaching the Anderson limit valug,/ns= o /o (see Sec.
VI A below); simultaneouslyz, tends to

(67)

where®,=7r/e is the flux quantum, andgcsis the corre-
lation length in the dirty limit.

oed2— ond? Remarking that the rhs of Ed65) is identical toEgy/2

sUs— onOy . L .
(64)  with the minigapE, given by Eq.(40), we see that E]65),
determining the parallel critical field of the bilayer in the

and the steep drop iHl,, finishes. For the bilayer to which Anderson limit, is obtained from the BCS E(f6) if we
the numerical results refedg<dy andog<oy, so Eq.(64)  Substitute the order paramet&gcs by the minigapE, (in

272 (rdst ondn)’

yields zy~ — dy/2. accordance with the results of Sec) &hd theH-dependent
This scenario is illustrated by Fig. 8, which has been ob£nergyES“® by the corresponding averaged quantityfs
tained numerically. +7NEN)/ (75t 7). S .
The analytical solution of Eq$61) at zero temperature in The explicit result for the parallel critical field of the bi-
the Anderson limit is presented below. layer, obtained from Eq(65), can be cast into a BCS-like
form:
A. H. at zero temperature in the Anderson limit ) \/5‘1)0

In the zero-temperature Anderson lintdefined by the Hc—wgd : (68)
conditionstsEg, TnEn<€1), the ratio of the superconduct- eff
ing electrons’ densitie$61b) becomes independent of the The bilayer’s correlation lengtl is the characteristic space
magnetic fieldny/ns= oy /o, and the self-consistency Eg. scale on which the order parameter the pairing angle,

(619 yields or the Green functionvaries in the absence of the magnetic

094518-10
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field. In the Anderson limitunder discussion the explicit Dy 826y Dy.
formula for ¢ is a natural generalization of the BCS expres- - 5 —P?0y+iE6y=0, (729
sion[see Eq(67)] which implies thaD g must be substituted 2 gz 2
by the averaged diffusion consta¢ld) and Agcg must be
substitutedin accordance with the results of Sec). by the Ds #%0s Dg. 5 i
bilayer's characteristic energy scale, the minigap [Eq. 7?‘ 7'3 OstiEfst+A=0. (72
(40):
We cannot solve these equations straightforwardly because
/(D) T7sDst+ 7Dy near the upper critical field, the order parameiép) is a
&= E,’ <D>:W' 69 nontrivial unknown function of the in-plane coordinape
(while thez dependence is absent due to the small thickness
The effective thickness of the bilayer in E@8) is of the bilayey. In this situation, we employ the following
approach.
der=[ (osds+ ondy) (osdd+ ondy) Averaging each of Eqs(72) over the thickness of the
+ 30y dedy(dt dy) 2] Y2 (o ds+ oydy). corresponding layer, we obtain
In the case of equal conductivities,s= oy, the effective N
thickness is simply the geometrical ortg=dg+dy . This

case corresponds to a uniform density of the superconducting |, 0=
electrons,ng=ny, which implies a continuous distribution 0z Ds
of the supercurrents, centered at the middle of the bilay
[this can be also seen from E@4) which yieldsz,=(dg
+dy)/2 in the casess=oy]. However, in a more subtle 1 (o0
situation when the conductivities are different, the density of On(p,E)= d—f dzoy(z,p,E), (74a
the supercurrent experiences a jump at the SN interface; this N/ —dn
nontrivial supercurrent distribution results in the nonequiva- 1 e

I i i S
lence ofdq to the geometrical thickness of the bilayer. 04(p,E) = d_Jo d7 64(2,p,E). (74b)

P2os+iEOs+A|. (73D

2

®fhe averaged pairing angles entering the rhs of Et®.are

Vil. PERPENDICULAR UPPER CRITICAL FIELD Substituting Egs.(73) into the boundary condition$20)

Now we turn to calculating the upper critical field;,  (which should be linearized we obtain a system of two
perpendicular to the plane of the bilayer. differential equations for the functioé(p,E):

As in the case of the parallel critical field, we start with
discussing the supercurrent distribution, which is now a %
function of the sample boundaries in tkg-plane, perpen- ™2
dicular to the magnetic fieltl (the magnetic field is directed
along thez axis). The infinite bilayer under consideration can =0s— On. (75)

be thought of as a disk of a large radius; let us assume _ . e
—0, y=0 at the axis of the disk. Then the supercurrent From the vicinity of the superconductive transition it fol-

distribution is axially symmetric, and, with the gauge choserl®Ws that Fhe pairing anglé depends on the order parameter
asA=[Hr]/2, the superconducting phase must be constant® linéarly:
¢=0, which yields a simple result for the supercurrent ve-

DS"Z .
:TS __P 93+|E03+A

s
P<oN—IE 6y >

. A
locity: v=eA/m. On(p,E)= ﬂ (763
Near H,,, the superconducting correlations are small, an(E)
|#|<1, and the Usadel equations can be linearized:
A(p)
D Os(p,E)= ao(E)’ (76b)
—E(—iV+2eA)20+iE0+A=O, (719 s
where the functiong(E) andag(E) are spatially indepen-
AV =0, (71D dent. Then Eqgs(75) can be rewritten as
The second of these equations is trivially satisfied because %ﬁﬂA(p)z iE+ — an(E) —1”A(p) (773
0(r) is axially symmetric. 2 ag(E) '
Thus, the Usadel equations reduce to the single(Etp
for the pairing angled(r,E). Introducing the cylindrical co- DSISZA _lig 1/ agE) 1 B (A
ordinates < (z,p) and denoting®= —iV ,+2eA(p), we re- 2 PAlp)=|IE+ s\ an(E) Tas(B)|Alp).
write this equation as (770
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We see that the order parameter must be an eigenfunctiol

of the differential operatoP?. Moreover, in order to obtain
the largest value dfl .,, we should choose the eigenfunction
corresponding to the lowest eigenvalire complete analogy
with Refs. 16 and 1)7 The solution of the emerging eigen-

value problem is readily found thanks to its formal equiva- ~
lence to the problem of determining the Landau levels of at° 0

two-dimensional particle with the “mass” I/ and the
charge—2e in the uniform magnetic fieldH directed along
the third dimension. The lowest Landau levelDgH; the
function ag(E) is straightforwardly determined,

n(DneH—IE)
{1+ (DneH—IE)]’

ag(E)=DseH—-IE+ (78
and we substitutég(p,E) into the self-consistency Eq9).
The order parameteA(p) cancels out, and the resulting
equation, which determinell;,(T), can be cast into the

form
TBCS - Tt 7 ) 2 1
In——=— N1+ N —(,//(—)
T Tgt TN TSTN®D 2
2 V(Es—En) P +dirgmy| \2 47T
4
X| Es+En+ \/(53—5N)2+ )
TSTN
1 Es— & 1 1
+o1- == ol =+
2 V(Es—En)P+airgmy| \2  A4nT
4
X| EstEn— \/(gs_gN)2+ ) (79
TSTN
where
1
ES:DSeHC2+—,
7s
(80)

1
5N=DNeHC2+ —_—
™N

areH-dependent energies. The logarithmic term in the rhs of
Eq. (79) takes account of the finiteness of the Debye energy

wp ; it becomes important only in the limit of a perfect in-
terface (the Cooper limit, i.e., when rgrywp /(75+ )
<1.

In the limit p;;,— <0, EQ.(79) yields the classical result of
Maki'® and de Genné8for the BCS case,

1 DgeHES 1
“”(TW Y2

BCS
Tc

T

In

(81)

layers of arbitrary thicknesgvhen the magnetic field is di-
rected perpendicularly to themAnother immediate conse-
guence of Eq(79) is the critical temperature of the bilayer

PHYSICAL REVIEW B 63094518

[2]

Q

m
o
O

I

H02/ chBCS

o
|

2000
Pint

90 100 110 120 130 140
L . . ) ) .

8 102 -

@

3

I 103 -

-~

8

T 10 F
10 -
108

120 130 140

Pint

80 20 100 110 150

FIG. 9. Perpendicular upper critical fiel,,, normalized by its
BCS value, versug;, at zero temperature. The upper and lower
graphs differ only in the scaling of the ordinate aki®rmal and
logarithmic, respectively The inset showd »(pi,) on a wider
scale ovem;y .

T., which can be found from the conditidd.,(T;)=0: in
this case, Eq(79) reproduces Eq.30).

Equation(79) can be solved numerically at arbitrary val-
ues of the temperatufeand the interface resistanpg;; the
results forH, are presented in Figs. 9 and 10.

The analytical solution of Eq.79) at zero temperature in
the Anderson limit is presented below.

A. H, at zero temperature in the Anderson limit

In the zero-temperature Anderson lintdefined by the
conditionsDseH,<1/7g, DyeH<<1/7y), EQ.(79) yields

2
Agcs TSTNWD
1+
2(1)D ’TS+ TN

where the zero-temperature BCS value of the upper critical
field, as follows from Eq(81), is

Heo (75t 7n)Ds TS

EZCS 'TsD S+ TND N

(82

D,
27l

It is instructive to rewrite the perpendicular upper critical

HBCS: ABCS _
€2 2eDg

(83

field of the bilayer(82) in the standard BCS-like form
which is valid for bulk superconductors and superconductive yer(82)

P

Heo=——,
2mwé?

c2 (84)
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2dy, S layers of thickness &, identical SN interfacgs
Moreover, the same applies to systems composed of two
bilayers in nonideal contact with each other: SNINS and
NSISN (where | stands for an arbitrary potential baryjer

1.0 4

0.8

= because the presence of a potential barrier does not violate
I%' 06 - the applicability of the symmetry argument. Thus, all the
~ results obtained for the bilayéexceptH.) are also valid for
E,; 044 - these structures.
T —— Py = 80 and BCS curve -

029 ——— p. =110 IX. DISCUSSION

----- Pine = 125 An essential property of the bilayer used throughout the

, , , , , ) paper is its small thickness. Now we shall argue that the
00 02 04 08 08 10 bilayer studied in the experiment by Kasumetval? (and to
T/T, which our numerical results refecan be considered thin.
The Usadel Eqq19) imply that the characteristic space scale
_FIG. 10. Temperature dependence of the perpendicular uppesf the bilayer’s properties variation igDy s/E, for the N
critical field H,, at pi, =80, 110, 125, and in the BCS case. In eachand S layers, respectively. However, the correct determina-
case, the critical field is normalized by its zero-temperature valugjion of the characteristic energy scdlg is a nontrivial prob-
and the temperature is normalized by the correspondingAc- lem. Our results suggest thBt, is always smaller than the
cording to the results of Sec. V, the curves in the BCS and Ander- L P
son Qait=80) limits coincide. At intermediate values pf,, the O:g:::h%z;arrxgz?eég}nt?ﬁe Ecso;:gf’ld(@g:ﬂﬁi)r,nitEOE a?s-
curves can lie both abovepf;=110) and below g;,,=125) the P o - bp » 0
: n determined by the minigalg, [see Eq(34)]. For the follow-
BCS curve. . . . o 9 . "
ing discussion, it is convenient to write the condition of the
small thickness of the bilayer as

0.0 1

where¢ is the bilayer’s correlation length given by E§9)
[the physical interpretation of this result fgrprecedes Eq.

(69)]. /A [Agcs [Dns
dys<\/=—\/——\/——. 85
NS Eo A Agcs ®9

VIII. SNS, NSN, SNINS, NSISN, AND SUPERLATTICES R .
The individual layers’ thicknesses adg =100 nm anddg

Our results forA, ng, T¢, Eq, »(E), andH, (i.e,,all =5 nm. The third multiplie(the BCS correlation lengjtin
the results exceptl;) can be directly applied to more com- the rhs of the conditioi85) equals 194 and 16 nm for the N
plicated structures such as SNS and NSN trilayers, SNIN&nd S layers, respectively. At the same time, each of the first
and NSISN systems, and SN superlattices. two multipliers in the rhs of the conditio{85) exceeds unity.

Let us consider, for example, a symmetric SNS trilayerWe can thus conclude that the bilayer can indeed be consid-
consisting of two identical S layers of thickne$sseparated ered thin.
by a N layer of thickness@,. The SN interfaces can have = Now we turn to a possible experimental application of our
arbitrary (but equal resistances. As before, teaxis is per-  results. Our results provide a method for determirnpng, a
pendicular to the plane of the structure. This trilayer can bevery important parameter of the bilayer which is not directly
imagined as composed of two identical bilayers perfectymeasurable. By analyzing the experimehtalvalues T,
joined together along the N sides. Indeed, the pairing afigle =0.4 K andH.=0.1 T, we getp;w~111 andp;,~121,
has zeroz derivative on the outer surfaces of the bilayers,respectively. Within the experimental accuracy of the bilay-
thus producing the corre¢symmetric in thez direction) so-  er’s parameters, the two estimates fgy should be consid-
lution for 6 in the resulting trilayer. Consequently, the sym- ered close. Interestingly, the valyg~121 extracted from
metric SNS trilayer has exactly the same physical propertiethe measured value ¢f, corresponds to the extremely nar-
[A, ns, T¢, Eg, v(E), andH,] as the SN bilayer con- row region of the steep drop id(pin) (see Fig. 6.
sidered in the present paper. The only point where the above Finally, we wish to remark on a peculiarity of real sys-
reasoning fails is the calculation of the parallel critical field tems which can be relevant when one compares our findings
H.. In this case, the combination of the supercurrent distriwith an experiment. The point is that during the fabrication
butions in the two bilayers does not yield the correct distri-of a bilayer, the interface between S and N materials cannot
bution in the resulting SNS trilayer, which implies that the be made ideally uniform. In other words, the local interface
Usadel equations for the two systems are different. resistance possesses spatial fluctuations. At the same time, as

Evidently, the above reasoning, based on the formalve have shown, the bilayer’s properties are highly sensitive
equivalence of the outer-surface boundary condition for the¢o the interface quality, which could lead to complicated be-
bilayer to the symmetry-caused condition in the middle ofhavior not reducing to the simple averaging of the interface
the SNS trilayer, also holds for symmetric NSN trilayés  resistance embodied ip;;. One possibility could be a
layers of thicknessly, S layer of thickness &, identical  percolation-like proximity effect. We leave the study of in-
SN interfaces and SN superlattice@N layers of thickness homogeneity effects for further investigation.
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X. CONCLUSIONS

We have studied, both analytically and numerically, theE

proximity effect in a thin SN bilayer in the dirty limit. The

PHYSICAL REVIEW B 63094518

cases of small and largg,; show that in the Anderson limit,
g Increases with increasing,;, whereas in the limit of an
opaque interfaceEy tends to zero. Thusky reaches its

layers were supposed to be thin enough to ensure uniforf@Ximum in the region of intermediajg; .

properties of each layer across its thickness. The strength o

the proximity effect is governed by, the resistance of the
SN interface per channel.

The quantities calculated wet®, the order parameter;
ng, the density of the superconducting electrons in the
layer; T, the critical temperaturé&sy andv(E), the minigap

¢ The most interesting case of relatively low interface resis-
tance(the Anderson limit has been considered analytically.
The simple BCS relations betweeX, ng, T., H., and
H, are substituted by similar ones wilhy, standing instead

of A. The relation between the minigaf, and the order

parameten\ in this limit is expressed by Ed34), implying

in the density of states and the DOS itséif; andH.,, the that in the case wherg;< 7y, the BCS relations are strongly
critical magnetic field parallel to the bilayer and the upperViolated(by more than the order of magnitude for the above-
critical field perpendicular to the bilayer. mentioned Ta/Au bilayer The DOS in the S and N layers
These quantities were calculated numerically over the eng0incide, showing BCS-like behavior with the standard pe-
tire range ofp;.. For this purpose, the characteristics of thecUliarity at E=Eg. It should be emphasized that absolute
bilayer were assumed to be the same as in the experiment B@lUes Of i corresponding to the Anderson limit can be
Kasumov et al? that originally stimulated our research 1arge; for the Ta/Au bilayer this limit is already valid at
(Ta/Au bilayer,ds/dy=1/20). In the limit of an opaque in- Pint= 80. ) ,
terface,A, ns, T., H., andH, approach their BCS val- All the results(exc_eptHC) obtained for the bilayer also
ues. At the same timé&, does not coincide with the order apply to more complicated structures such as SNS and_NSN
parameters, andE,— 0 whenp;— =, although in general, trilayers, SNINS and NSISN systems, and SN superlattices.

the energy dependence of the DOS in the S and N layers,
vg(E) and vy(E), approaches the BCS and normal-metal
results, respectively.

The minigapE, demonstrates nonmonotonic behavior as  This research was supported by the RFBR Grant No. 98-
a function of p;,,. Analytical results for the two limiting 02-16252.
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