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Superconductive properties of thin dirty superconductor–normal-metal bilayers
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L. D. Landau Institute for Theoretical Physics, 117940 Moscow, Russia
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The theory of superconductivity in thin superconductor–normal-metal~SN! sandwiches~bilayers! in the
diffusive limit is developed within the standard Usadel equation method, with particular emphasis on the case
of very thin superconductive layers,dS!dN . The proximity effect in the system is governed by the interlayer
interface resistance~per channel! r int . The case ofrelatively low resistance~which can still have large absolute
values! can be completely studied analytically. The theory describing the bilayer in this limit is of BCS type
but with the minigap~in the single-particle density of states! Eg!D substituting the order parameterD in the
standard BCS relations; the original relations are thus severely violated. In the opposite limit of an opaque
interface, the behavior of the system is in many respects close to the BCS predictions. Over the entire range of
r int , the properties of the bilayer are found numerically. Finally, it is shown that the results obtained for the
bilayer also apply to more complicated structures such as SNS and NSN trilayers, SNINS and NSISN systems,
and SN superlattices.
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I. INTRODUCTION

It is well known that the majority of metallic supercon
ductors is well described by the classical BCS theory
superconductivity.1 One of the main qualitative features o
the BCS theory is a simple relation between the superc
ductive transition temperatureTc and the low-temperature
value of the energy gap fors-wave superconductors:D(0)
51.76Tc . Experimentally, violations of this simple relatio
are considered as a sign of some unusual pairing symm
or even of a non-BCS pairing mechanism; many theories
unconventional superconductivity were developed during
last decade, mainly in relation with high-Tc materials. Re-
cently, an evident example of such a violation of the BC
theory predictions was found in experiments by Kasumovet
al.,2 who studied current-voltage characteristics of a carb
nanotube contact between two metallic bilayers~sandwiches!
made of ordinary metals, namely tantalum and gold. T
observed value of the low-temperature Josephson cri
current is 40 times larger than the maximum expec
~Ambegaokar-Baratoff! value3 I c5pD(0)/2eRtube, where
the energy gap of the bilayerD(0) is estimated from its
transition temperature. The source of such discrepancy is
clear at present. The most recent experiments4 demonstrate
the existence of intrinsic superconductivity in carbon na
tubes. However, the discrepancy could be due to unu
superconductive properties of the bilayers. The aim of
present paper is to investigate these properties.

An essential feature of the experiment2 was that the su-
perconductive layer in the bilayer was very thin (dS /dN
55 nm/100 nm51/20). In the present paper, we inves
gate such a bilayer both analytically and numerically, cal
lating quantities characterizing the superconductivity in t
proximity system: the order parameterD, the density of the
superconducting electronsn, the critical temperatureTc , the
~mini!gap Eg in the single-particle density of states~DOS!
and the DOSn(E) itself, the critical magnetic fieldHc par-
allel to the bilayer and the upper critical fieldHc2 perpen-
dicular to the bilayer. In our calculations, the parameter c
0163-1829/2001/63~9!/094518~14!/$15.00 63 0945
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trolling the strength of the proximity effect is th
~dimensionless! resistance of the SN interface per chann
r int , which is related to the total interface resistanceRint as

Rint5
Rqr int

2Nch
, ~1!

where Rq5h/e2 is the quantum resistance, andNch
5A/(lF/2)2, with lF being the Fermi wavelength, is th
number of channels in the interface of areaA. We chooselF
referring to the S layer.

Our results show that the values of the interface res
ance can be divided into three ranges:~a! at large resistance
many characteristics of the superconductor@D, n, Tc ,
n(E), Hc , Hc2# are almost unaffected by the presence
the normal layer, i.e., this is the BCS limit~however, we note
thatEg does not coincide with the order parameter, and e
vanishes asr int increases!; ~b! at low resistance, the theor
describing the bilayer is of BCS type but with the ord
parameterD substituted by the minigapEg ~for instance,
Eg51.76Tc , whereasEg!D); the original BCS relations
are thus severely violated;~c! at intermediate resistance, th
behavior of the system interpolates between the above
regimes.

The paper is organized as follows. In Sec. II, we form
late the standard technique of the Usadel equations for d
systems,5 and introduce a convenient angular parametrizat
of the quasiclassical Green functions entering these eq
tions. In Sec. III, we apply the Usadel equations to the t
bilayer that we intend to discuss, and present numerical
sults forD, n, Tc , andn(E). We start an analytical analysi
of the Usadel equations for the bilayer by calculating t
minigapEg in the density of states in the two limiting case
of high and low interface resistance~Sec. IV!. Then, in Sec.
V, we elucidate the structure of the theory describing
system in the so-called Anderson limit~of relatively low
resistance!, finding D, n, Tc , Eg , and n(E). The critical
magnetic fieldsHc ~parallel to the bilayer! andHc2 ~perpen-
dicular to the bilayer! are calculated in Secs. VI and VII
©2001 The American Physical Society18-1
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respectively. In Sec. VIII, we show that the results obtain
for the bilayer also apply to more complicated structu
such as SNS and NSN trilayers, SNINS and NSISN syste
and SN superlattices. The relationship between our res
and the experiment2 that has stimulated our research is d
cussed in Sec. IX. Finally, we present our conclusions~Sec.
X!.

II. METHOD

A. Usadel equation

Equilibrium properties of dirty systems are described6 by
the quasiclassical retarded Green functionR̂(r ,E), which is
a 232 matrix in the Nambu space satisfying the normaliz
tion conditionR̂251̂. The retarded Green function obeys t
Usadel equation

D¹~R̂¹R̂!1 i @Ĥ,R̂#50. ~2!

Here the square brackets denote the commutator,D5vl /3 is
the diffusion constant with v andl being the Fermi velocity
and the elastic mean free path,Ĥ5Eŝz1D̂(r ) with E being
the energy, whereasŝz ~the Pauli matrix! andD̂(r ) are given
by

ŝz5S 1 0

0 21D , D̂5S 0 D

2D* 0 D . ~3!

The order parameterD(r ) must be determined self
consistently from the equation

D̂~r !5
n0l

4 E
0

vD
dE tanhS E

2TD @R̂~r ,E!2R̂~r ,2E!#o.d.,

~4!

where the subscript o.d. denotes the off-diagonal part,n0
5m2v/p2 is the normal-metal density of states at the Fer
level, l is the effective constant of electron-electron intera
tion in the S layer~whereas we assumel50 and henceD
50 in the N layer!, and integration is cut off at the Deby
energyvD of the S material.

Equation~2! should be supplemented with the appropria
boundary conditions at an interface, which read7

s l~R̂l¹nR̂l !5s r~R̂r¹nR̂r !5
gint

2
@R̂l ,R̂r #, ~5!

where the subscriptsl andr designate the left and right elec
trode, respectively;s is the conductivity of a metal in the
normal state, andgint5Gint /A ~with Gint51/Rint) is the con-
ductance of the interface per unit area when both left
right electrodes are in the normal state.¹n denotes the pro-
jection of the gradient upon the unit vectorn normal to the
interface.

The system of units in which the Planck constant and
speed of light equal unity (\5c51) is used throughout the
paper.
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B. Angular parametrization of the Green function

The normalization condition allows the angular parame
zation of the retarded Green function:

R̂5S cosu 2 ieiwsinu

ie2 iwsinu 2cosu D , ~6!

whereu5u(r ,E) is a complex angle which characterizes t
pairing, andw5w(r ,E) is the real superconducting phas
The off-diagonal elements of the matrixR̂ describe6 the su-
perconductive correlations, vanishing in the bulk of a norm
metal (u50).

The Usadel equation takes the form

D

2
¹2u1F iE2

D

2
~¹w!2cosuGsinu1uDucosu50, ~7a!

¹~sin2u ¹w!50. ~7b!

The corresponding boundary conditions are

s l¹nu l5gint@cos~w r2w l !cosu lsinu r2sinu lcosu r #,
~8a!

s r¹nu r5gint@cosu lsinu r2cos~w r2w l !sinu lcosu r #,
~8b!

s lsin2u l¹nw l5s rsin2u r¹nw r5gintsin~w r2w l !sinu lsinu r .
~8c!

The self-consistency equation for the order parameterD(r )
takes the form

D5
n0l

2 E
0

vD
dE tanhS E

2TD Im@sinu#eiw. ~9!

The above equations are written in the absence of an exte
magnetic field. To take account of the magnetic field, it
sufficient to substitute the superconducting phase gradien
the Usadel Eqs.~7! by its gauge invariant form 2mv5¹w
12eA, whereA is the vector potential andv denotes the
supercurrent velocity.

Physical properties of the system can be expressed
terms of the pairing angleu(r ,E). The single-particle den-
sity of statesn(r ,E) and the density of the superconductin
electronsn(r ) are given by

n5n0Re@cosu#, ~10!

n5
2ms

e2 E
0

`

dE tanhS E

2TD Im@sin2u#, ~11!

wherem ande are the electron’s mass and the absolute va
of its charge. The total number of single-particle states i
metal is the same in the superconducting and normal sta
which is expressed by the constraint

E
0

`

dE@n~r ,E!2n0#50. ~12!
8-2
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C. Simple example: The BCS case

The simplest illustration for the above technique is t
BCS case, when the order parameterD(r )5DBCS is spatially
constant. Its phase can be set equal to zero,w50. Then the
Usadel Eqs.~7! are trivially solved, and we can write th
answer in terms of the sine and the cosine of the pair
angle:

sinuBCS~E!5
iDBCS

AE22DBCS
2

, ~13a!

cosuBCS~E!5
E

AE22DBCS
2

. ~13b!

An infinitesimal termi0 should be added to the energyE to
take the retarded nature of the Green functionR̂ into account,
which yields

Im@sin2uBCS~E!#5
p

2
DBCSd~E2DBCS!. ~14!

The usual BCS relations are straightforwardly obtain
from Eqs.~9!, ~10!, and~11! ~for simplicity, we consider the
case of zero temperature!:

DBCS52vDexpS 2
2

n0l D , ~15!

nBCS~E!5H 0 if E,DBCS

n0

E

AE22DBCS
2

if E.DBCS,
~16!

nBCS5p
ms

e2
DBCS. ~17!

The critical temperature must be determined from Eq.~9!
with vanishingD(Tc); the result is

DBCS~0!5
p

g
Tc

BCS, ~18!

whereg'1.78 is Euler’s constant.

III. USADEL EQUATIONS FOR A THIN BILAYER

Let us consider a SN bilayer consisting of a normal me
(2dN,z,0) in contact~at z50) with a superconducto
(0,z,dS). We assume that the layers are thin~this assump-
tion will be discussed in Sec. IX! and can be regarded a
uniform, which allows us to set the order parameterD equal
to a constant in the superconductive layer~we choose its
phasew equal to zero!. At the same time, we suppose th
electron-electron interaction is absent in the normal lay
l50, henceD50, although the superconductive correl
tions (uÞ0) exist in the N layer due to the proximity effec
The Usadel Eqs.~7! take the form
09451
g

d

l

r:

DN

2

]2uN

]z2
1 iE sinuN50, ~19a!

DS

2

]2uS

]z2
1 iE sinuS1D cosuS50, ~19b!

whereuN and uS denote the pairing angleu at z,0 andz
.0, respectively.

The boundary conditions~8! reduce to

sN

]uN

]z
5sS

]uS

]z
5gintsin~uS2uN!. ~20!

Equations~19! can be integrated once, yielding

DN

4 S ]uN

]z D 2

2 iE cosuN5 f N , ~21a!

DS

4 S ]uS

]z D 2

2 iE cosuS1D sinuS5 f S . ~21b!

The functions f N(E) and f S(E) are determined from the
boundary condition]u/]z50 at the nontransparent oute
surfaces of the bilayer, which give

f N~E!52 iE cosuN~2dN ,E!,
~22!

f S~E!52 iE cosuS~dS ,E!1D sinuS~dS ,E!.

Let us denote uN(E)5uN(2dN ,E), uS(E)5uS(dS ,E).
Because of the uniformity of the layers, the functio
uN(z,E) anduS(z,E) are nearly spatially constant. Howeve
in order to determine them, we should take account of th
weak spatial dependence and make use of the boundary
ditions at the SN interface. Substituting

uN~z,E!5uN~E!1duN~z,E!,
~23!

uS~z,E!5uS~E!1duS~z,E!

into Eqs. ~21! and linearizing them with respect t
uduN(z,E)u, uduS(z,E)u!1, we find the solution. Finally,
boundary conditions at the SN interface lead to

2 i tNE sinuN~E!5 i tSE sinuS~E!1tSD cosuS~E!

5sin@uS~E!2uN~E!#, ~24!

where we have denoted tN52sNdN /DNgint , tS
52sSdS /DSgint . Using the definition of the interface resis
tance per channel~1!, we can represent these quantities a

tN52p
vNdN

vS
2

r int , tS52p
dS

vS
r int , ~25!

with vN and vS being the Fermi velocities in the N and
layers. The ratiotN /tS5vNdN /vSdS , which is independent
of interface properties, can also be interpreted as the rati
theglobal densities of states~per energy interval! in the two
layers considered,
8-3
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tN

tS
5

AdNn0N

AdSn0S
. ~26!

The latter interpretation will prove useful for further anal
sis.

Having solved the boundary conditions~24!, we can de-
termine all equilibrium properties of the system~because
knowledge ofuS , uN implies knowledge of the retarde
Green functionR̂).

A useful representation of the boundary conditions~24! is
obtained as follows. ExcludinguN(E) from Eq. ~24!, we
arrive at a single equation for the functionuS(E), which can
be written, in terms ofZ5exp(iuS), as a polynomial equation

iC6Z61C5Z51 iC4Z41C3Z31 iC2Z21C1Z1 iC050
~27!

with real coefficients

C652tNES tS

tN
D 2F11

D

EG2

,

C55@12~tNE!2#S tS

tN
D 2F11

D

EG2

21,

C452tNES tS

tN
D 2F3S D

ED 2

12
D

E
21G ,

C35222@12~tNE!2#S tS

tN
D 2F12S D

ED 2G , ~28!

C252tNES tS

tN
D 2F3S D

ED 2

22
D

E
21G ,

C15@12~tNE!2#S tS

tN
D 2F12

D

EG2

21,

C052tNES tS

tN
D 2F12

D

EG2

.

During further analysis, the choice between the bound
conditions in the forms~24! and ~27! will be a matter of
convenience.

A. Critical temperature

The critical temperature of the bilayerTc is defined from
the condition of vanishing of the order parameterD. Near
Tc , the superconducting correlations are very small,uuu!1;
nevertheless, the self-consistency Eq.~9! has a nonzero so
lution DÞ0.

Linearizing the boundary conditions~24! with respect to
uN anduS , we readily find the solution:

uS~E!5 i
D

E S 12
tN

tS1tN2 i tStNED . ~29!
09451
ry

Substituting this into the self-consistency Eq.~9! and simpli-
fying both its sides byD, we obtain an equation determinin
Tc , which can be cast into the form

ln
Tc

BCS

Tc
5

tN

tS1tN
FcS 1

2
1

tS1tN

2pTctStN
D2cS 1

2D
2 lnA11S tS1tN

tStNvD
D 2G , ~30!

where c(x) denotes the digamma function. A similar fo
mula @except the logarithmic term in the right-hand sid
~r.h.s.!# was obtained by McMillan8–10 ~see also Ref. 11!.
The logarithmic term in the r.h.s. takes account of the fini
ness of the Debye energyvD ; it becomes important only in
the limit of a perfect interface~the Cooper limit!, i.e., when
tStNvD /(tS1tN)!1. Equation~30! can be solved numeri
cally over the entire range ofr int ~see Sec. III B!; the ana-
lytical solution can be found in limiting cases~see Sec. V!.

B. Numerical results

The solution of Eq.~27! can be found numerically. To this
end, we solve the system of two nonlinear equations for
functions ReZ(E) and ImZ(E), using the modified Newton
method with normalization.

The solution depends on the bilayer’s parameters:
thicknesses of the layers, characteristics of materials con
tuting the bilayer, and the quality of the SN interface. Th
dependence enters Eqs.~27! and ~28! via tN and tS . For
numerical calculations, we assume the characteristics of
bilayer to be the same as in the experiment by Kasum
et al.2 The superconductive layer is made of tantalum,dS
55 nm, and the normal layer is made of gold,dN
5100 nm. Approximate experimental values of the cond
tivities are12 sS50.01 mV21 cm21 and sN
51 mV21 cm21. In order to calculate the Fermi chara
teristics of tantalum and gold, we use the values of the Fe
energy EF(Ta)511 eV, EF(Au)55.5 eV, and the free
electrons model.13

Once the parameters have been specified, the solutio
Eq. ~27! depends only on the interface resistancer int . Hav-
ing found the functionZ(E) @which is equivalent to finding
uS(E)], we start from the case of zero temperature,T50,
and study the dependence of the order parameterD and of
the superconducting electrons’ density in the S layernS @Eqs.
~9! and~11!# on r int . The results are plotted in Fig. 1, wher
we also show the dependence of the critical temperatureTc ,
determined from Eq.~30!, on r int .

The suppression ofD, nS , and Tc , in comparison to
their BCS values in the S layer, is a natural consequenc
proximity to the normal metal. At the same time, there is
possibility of BCS-like behavior, which implies the BCS re
lations between the suppressed quantities and the co
dence of the three curves plotted in Fig. 1. However,
curves split, and the difference between them is largest
relatively small values ofr int . Figure 2 presents the rang
80,r int,150 on a larger scale.
8-4
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Figure 3 shows the temperature dependence of the o
parameterD and of the superconducting electrons’ density
the S layernS . Although the smallerr int the further it is
from the BCS limit~corresponding tor int→`), we observe
that at r int590 the curves are closer to the BCS behav
than atr int5110. An explanation of this feature is given
Sec. V.

Finally, the energy dependence of the single-particle d
sity of states in the S and N layersnS,N(E) is plotted in Fig.
4. The density of states in the bilayer is qualitatively diffe
ent from the BCS result~16!. In particular, there is a minigap
Eg in the density of states at energies much smaller t
DBCS, and even much smaller thenD in the bilayer. In the
next section, we find this minigap analytically in the tw
limiting cases of small and large interface resistancer int .
Another feature which can be seen from Fig. 4 is that
order parameterD plays the role of a characteristic energ
scale of the system only in the limit of larger int ~see the case
r int52000). Otherwise, no peculiarity in the DOS is o
served atE5D. Some other aspects of the DOS behav
will be discussed in Secs. IV, V.

IV. MINIGAP IN THE DENSITY OF STATES

In principle, the energy dependence of the single-part
density of states is different in the S and N layers. At t
same time, the gap in the DOS is a property of the bilaye
a whole; the gap is spatially independent because there
localization in the system and each electronic state exte
over the whole bilayer.

The presence of the gap thus implies that the density
states vanishes in both layers, when the energy is below
gap:

Re@cosuS#5Re@cosuN#50, ~31!

FIG. 1. Dependence of the order parameter in the S layerD, of
the superconducting electrons’ density in the S layernS , and of the
bilayer’s critical temperatureTc on the interface resistance pe
channelr int at zero temperature. All the quantities are normaliz
by the corresponding BCS values. The discrepancy between
curves implies a violation of the BCS relations betweenD, nS ,
andTc .
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leading touS5p/21 iqS , uN5p/21 iqN , with realqS and
qN . In this case, Eqs.~24! can be written as

tanhqN5
sinhqS1tNE

coshqS
, ~32a!

FIG. 2. Zoomed part of Fig. 1. In the shown range of relative
small resistancer int , the BCS relations betweenD, nS , andTc are
severely violated. The upper and lower graphs differ only in
scaling of the ordinate axis~normal and logarithmic, respectively!.

FIG. 3. Temperature dependence ofD and nS at r int590 and
110. The temperature is normalized by the critical valueTc , which
depends onr int ; D and nS are normalized by their zero
temperature values. For comparison, the same dependence is
plotted for the BCS case.

he
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coshqN52
tS

tN
coshqS1

tSD

tNE
sinhqS . ~32b!

Assuming that sinhqS@tNE at small energies, from Eqs.~32!
we obtainqN5qS , and, finally,

cosuS5cosuN5
E

AE22Eg
2

, ~33!

with Eg5tSD/(tS1tN). This is a BCS-like result@cf. Eq.
~13b!#, although the order parameterDBCS is substituted by
the minigapEg . The assumption is readily checked, and
obtain

Eg5
tS

tN1tS
D if

tStND

tS1tN
!1. ~34!

Now we proceed to the opposite limit of large interfa
resistance. Assuming sinhqS!tNE and sinhqS!1, we solve
Eqs.~32! and finally obtain

cosuS5
E

tSDAE221/tN
2

2 i
E

D
, ~35a!

FIG. 4. Energy dependence of the single-particle DOS, norm
ized by the normal-metal DOS,n(E)/n0, in the S and N layers a
r int580, 110, 150, and 2000. The energyE is normalized by the
order parameterD, which is different in all the four cases.@To
avoid confusion, we note that actual~in absolute units! relation
between the minigaps in the DOS does not correspond to wh
seen from the figure.# The figure demonstrates drastic difference
the DOS in the bilayer from the BCS case@Eq. ~16!#.
09451
cosuN5
E

AE221/tN
2

. ~35b!

The assumption is readily checked, and the result is

Eg5
1

tN
, if

tStND

tS1tN
@1. ~36!

Equations~34! and~36! imply that Eg is a nonmonotonic
function of the interface resistance: with increase ofr int , it
first increases at smallr int @Eq. ~34!# and then decreases a
large r int @Eq. ~36!#. Therefore,Eg reaches its maximum a
some intermediate value ofr int , corresponding to
tStND/(tS1tN);1, hencer int;140. Numerical results for
Eg are shown in Fig. 5.

At first sight, vanishing of the minigapEg in the limit of
an opaque interface seems to contradict the general tend
to the BCS behavior. However, this contradiction is mo
apparent than real. Actually, the DOS curve for the S la
does approach the BCS result~16! in this limit, showing the
standard peculiarity atE'DBCS. At the same time, below
DBCS, the DOS curve sharply drops to very small valu
~which are still finite in contrast to the BCS case!, and turns
to zero only atE5Eg . Simultaneously, the DOS in the N
layer approaches the~constant! normal-metal value. The ten
dency to such behavior is illustrated by Fig. 4, the caser int
52000.

The results~33! and ~35! are valid not only below the
minigap but also right above it~in which case the real part
of uS anduN differ from p/2), providing a comparison be
tween the DOS in the S and N layers. Equation~33! demon-
strates the equality of the DOS in the two layers at relativ
small r int ~see Fig. 4, the caser int580). Proceeding to the
limit of an opaque interface, we should note that the appro
mation which led to Eqs.~35! fails in a narrow vicinity ofEg
@this fact does not affect the result for the minigap~36! itself,
but the incorrect divergence of the DOS atE5Eg disap-

l-

is
f

FIG. 5. Minigap in the single-particle density of statesEg versus
r int . The minigap is normalized by the BCS gap valueDBCS. Eg is
a nonmonotonic function ofr int , reaching its maximum atr int

5160. The inset showsEg(r int) on a wider~logarithmic! scale over
r int .
8-6
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pears#. Equations~35! demonstrate that outside this regio
at energies right above the minigap, the DOS in the N la
exceeds the DOS in the S layer by the large factortSD ~see
Fig. 4, the caser int52000).

Finally, we note that the results of the present section
similar to those obtained by McMillan8,9 ~see also Ref. 11!.

V. ANDERSON LIMIT

In the limit of relatively low interface resistance~the
Anderson limit!, the theory describing the bilayer can b
developed analytically. The condition defining this limit
tSD, tND!1.

First of all, we need to determineu(E) @or Z(E)] solving
Eq. ~24! @or Eq. ~27!# over the entire range of energiesE.

In the regionE.D, the solution of Eq.~27! can be writ-
ten asZ511dZ, with udZu!1. Keeping terms up to the
second order indZ, we obtain

dZ52
D~12 i tNE!

ES tS1tN

tS
2 i tNED . ~37!

This result is general in the sense that it is valid for arbitr
values ofr int .

At E,D, the same calculation as for the minigap leads
the result

sinuS5sinuN5
iEg

AE22Eg
2

, ~38!

with the minigapEg given by Eq.~34!. @To avoid confusion,
we note that under the less strict limitations fortSD, tND
used in Eq.~34!, the BCS-like results~33! and~38! are valid
only up to energies of the order ofEg .#

Now Im@sinuS# is readily calculated, and in the case
zero temperature,T50, the self-consistency Eq.~9! can be
solved, yielding

D

DBCS
5S tS1tN

tS
D FDBCS

2vD
A11S tStNvD

tS1tN
D 2G tN /tS

. ~39!

The relation between the order parameterD and the minigap
Eg is given by Eq.~34!, which immediately yields

Eg

DBCS
5FDBCS

2vD
A11S tStNvD

tS1tN
D 2G tN /tS

. ~40!

In the limit of a perfect interface~the Cooper limit!, which is
defined by the conditiontStNvD /(tS1tN)!1, Eq.~40! re-
produces classical Cooper’s result14 generalized to the cas
of different Fermi parameters in the S and N layers:15

Eg~r int→0!52vDexpS 2
2

^n0l& D , ~41!

with the effective interaction parameter

^n0l&5
tS

tS1tN
n0Sl. ~42!
09451
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This parameter can be considered as a result of avera
with the weighting factorst, which are proportional to the
global normal-metal DOS per unit interval of energy,t
}Adn0 ~note that the interaction parameter is zero in the
layer!.

At the same time, we would like to emphasize that t
Anderson limit does not reduce to the Cooper limit wi
small corrections. On the contrary, due to the relationD
!vD , the Cooper limit’s condition isnot satisfied over the
most part of the Anderson limit’s validity range; therefor
the minigapEg and the quantities calculated below diffe
drastically from the Cooper limit expressions.

Now we proceed to calculate the density of the superc
ducting electrons in the S layernS . On this way, we imme-
diately encounter the problem that the above solution~38! of
Eq. ~24! at E,D is not accurate enough for our purpose.
fact, as we will see below, the principal contribution to t
integral~11! determiningnS comes from a narrow region o
energies nearEg . At the same time, Eq.~38! yields
Im@sin2uS#50 and hence no contribution at all fromE,D.
We thus have to calculate a correction to Eq.~38!. Assuming
this correction to be small, we linearize Eq.~24! and obtain

sinuS5
iEg

AE22Eg
2

1X~E!, ~43!

with

X~E!5
tNEg

S 11
tS

tN
D F12S Eg

E D 2G2 , ~44!

which is valid for all E,D except for a narrow vicinity of
Eg .

The accurate consideration of the minigap’s vicinity
possible due to the fact thatuZu!1 in this region. We define
a dimensionless quantitye as

E

Eg
511

~tSD!2/3

2S 11
tS

tN
D 4/3e, ~45!

and consider the regionuE2Egu!Eg . The function
Im@sin2uS#, which determinesnS , has a peak ate;1. An
analysis of the coefficients~28! shows that only the terms
that contain zeroth, first, and third order inZ should be re-
tained in Eq.~27!. Then, after rescaling

Z5
~tSD!1/3

S 11
tS

tN
D 2/3Y, ~46!

we obtain a cubic equation for the functionY(e):

4Y32eY1 i 50, ~47!

which can be solved analytically.
The density of the superconducting electronsnS at zero

temperature is now readily calculated:
8-7



-
p
.

on

s

lity
it
ce
s

o
it

e
d

u

e
on

lid

lso
he

on
e
-

ed
the

be

d

o

ua-
y
f

n

ch
rge

t in

YA. V. FOMINOV AND M. V. FEIGEL’MAN PHYSICAL REVIEW B 63 094518
nS

nS
BCS

5
Eg

DBCSH 11
11~tSD!5/6

2pS 11
tS

tN
D 4/31

2tSD

pS 11
tS

tN
D 2

3F tN

tS
12 ln

11
tS

tN

tSD
G J , ~48!

with Eg given by Eq.~40!. The first term in the curly brack
ets is the principal one; the two other terms become com
rable to unity only near the upper limit of applicability of Eq
~48!.

The critical temperature of the bilayerTc is determined by
Eq. ~30!. In the Anderson limit, (tS1tN)/tStN@Tc , and,
with the use of the asymptotic form of the digamma functi
c(x); ln x at x@1, we obtain

Tc

Tc
BCS

5
Eg

DBCS
, ~49!

with Eg given by Eq.~40!. Interestingly, this result explain
a discrepancy in the formulas forTc of a thin bilayer that
were found by Cooper14 and McMillan.8 This discrepancy is
discussed in the classical paper by McMillan.8,9 We conclude
that both cited results are correct, but their applicabi
ranges are different, although within the Anderson lim
Cooper’s result corresponds to a perfect interfa
tStNvD /(tS1tN)!1, whereas McMillan’s formula applie
in the casetStNvD /(tS1tN)@1.

Now we can discuss the general structure of the the
describing the bilayer in the Anderson limit. In the lim
r int→0, our results for the pairing angleu ~which is constant
over the entire bilayer,u[uS5uN) yield expressions which
can be obtained from the BCS ones@Eqs. ~13! and ~14!# if
we substitute the BCS order parameterDBCS by the bilayer’s
minigapEg . At r int.0, corrections to this simple result ar
small while the Anderson limit’s conditions are satisfie
Therefore, we obtain a BCS-type theory withEg substituting
DBCS in all formulas.

The results of this section immediately explain the n
merical results in the limit of relatively smallr int , shown in
Fig. 2. As we have found, the Anderson limit implies th
following relations between the quantities under discussi

Eg5
p

g
Tc , ~50!

nS5p
msS

e2
Eg , ~51!

which substitute Eqs.~18! and~17!. For the Ta/Au bilayer to
which the numerical results refer, the Anderson limit is va
at r int,80 ~we see that the values ofr int can be large al-
though they arerelatively small!. Therefore, approaching
09451
a-
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:

r int580, the curvesnS /nS
BCS andTc /Tc

BCS tend to coincide,
and D/DBCS exceeds them by the large factor (11tN /tS)
'15.

The temperature dependence ofD andnS , shown in Fig.
3, is quite different atr int590 andr int5110; atr int590, the
curves are much closer to the BCS behavior. This is a
explained by approaching the Anderson limit, where t
curves coincide with the BCS ones.

The DOS in the S and N layers coincide in the Anders
limit @Eqs. ~33! and ~38!#, showing the standard BCS-lik
peculiarity atE5Eg . The tendency to such behavior is illus
trated by the DOS curve forr int580 in Fig. 4.

VI. PARALLEL CRITICAL FIELD

We proceed to calculate the critical magnetic fieldHc
directed along the plane of the bilayer. As it was mention
in Sec. II B, in the presence of an external magnetic field,
superconducting phase gradient in the Usadel Eqs.~7! must
be substituted by its gauge invariant form, which can
expressed via the supercurrent velocityv. The spatial distri-
bution of v in the bilayer can be found as follows.

Let us direct thex axis along the magnetic fieldH. The
supercurrentsj52env are directed along the bilayer an
perpendicularly toH, i.e., j5„0,j (z),0… and v5„0,v(z),0….
NearHc , the magnetic field inside the bilayer is uniform, s
the vector potential can be chosen asA5(0,2zH,0). The
supercurrent velocity distribution is determined by the eq
tion ¹3v5eH/m. Another essential point is the continuit
of v at the SN interface, which follows from the continuity o
the superconducting phasew @see the boundary conditio
~8c!#. The result is

v~z!5v02
eH

m
z, ~52!

wherev0 is the supercurrent velocity at the interface, whi
must be determined from the condition that the total cha
transfer across the bilayer’s cross section is zero:

E
2dN

dS
j ~z!dz50, ~53!

leading to

v05S eH

2mD nSdS
22nNdN

2

nSdS1nNdN
. ~54!

The density of the superconducting electrons is constan
each layer (nS andnN).

NearHc , the superconducting correlations are small,uuu
!1, and the Usadel Eq.~7a! for the paring angleu(z,E) can
be linearized:

DN

2

]2uN

]z2
1~ iE22m2DNv2!uN50, ~55a!

DS

2

]2uS

]z2
1~ iE22m2DSv2!uS1uDu50. ~55b!
8-8
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At the same time, the second Usadel Eq.~7b! is trivial: its lhs
is proportional to

¹„~sin2u!v…5sin 2u~¹u!v1~sin2u!¹v, ~56!

where both terms vanish due to the fact that¹u is directed
along thez axis whereasv is parallel to they axis.

The pairing angleu is almost spatially constant in eac
layer; this allows us to average each of Eqs.~55! over the
thickness of the corresponding layer, obtaining

]uN

]z
uz505

2dN

DN
~EN2 iE !uN , ~57a!

]uS

]z
uz505

2dS

DS
@~ iE2ES!uS1uDu#, ~57b!

where

EN52m2DN^v2~z!&N ,
~58!

ES52m2DS^v
2~z!&S

areH-dependent energies. Using Eqs.~52! and ~54!, we ex-
press them viaHc and the densities of the superconducti
electrons:

ES5
DSe2Hc

2

6 FdS
213dN

2
nN

2 ~dS1dN!2

~nSdS1nNdN!2G , ~59!

and EN is obtained by the interchange of all the S and
indices.

Substituting Eq.~57! into the boundary conditions~20!
~which should be linearized!, we find

uN5tSuDu/$tSES1tNEN1tStNESEN2tStNE2

2 iE@tS1tN1tStN~ES1EN!#%, ~60a!

uS5~11tNEN2 i tNE!uN . ~60b!

The order parameterD cancels out from the self-consistenc
Eq. ~9!. However, the resulting equation alone does not s
fice for determiningHc(T) because it containsES andEN ,
which are functions ofnN /nS . Therefore, to obtain a close
system, we must consider the self-consistency equation
gether with the equation determining the rationN /nS ; the
latter equation is obtained from Eq.~11!. The resulting sys-
tem of two nonlinear equations for the quantitiesHc and
nN /nS is

ln
2vD

DBCS
5E

0

vD
dE tanhS E

2TD Im uS

uDu
, ~61a!

nN

nS
5

sNE
0

`

dE tanhS E

2T D Im uN
2

sSE
0

`

dE tanhS E

2TD Im uS
2

, ~61b!

with uN anduS given by Eqs.~60!. The first equation of the
system, Eq.~61a!, can be written via the digamma function
09451
f-

o-

thus taking exactly the same form as Eq.~79! below ~which
determines the perpendicular upper critical field! if we de-
noteES5ES11/tS , EN5EN11/tN .

In the limit r int→`, Eqs.~61! lead to the BCS result. In
this case, the layers uncouple, the density of the super
ducting electrons in the N layer vanishes,nN /nS→0, and
Eq. ~61a! finally yields

ln
Tc

BCS

T
5cS 1

2
1

DS@eHc
BCSdS#2

12pT D 2cS 1

2D , ~62!

which determines the parallel critical fieldHc
BCS(T) of a thin

superconducting film. Another immediate consequence
Eqs.~61! is the critical temperature of the bilayerTc , which
can be found from the conditionHc(Tc)50: in this case,
Eqs.~61! reproduce Eq.~30!.

The system of Eqs.~61! can be solved numerically a
arbitrary values of the temperatureT and the interface resis
tancer int ; the results forHc are presented in Figs. 6 and

A remarkable feature of the functionHc(r int) at zero tem-
perature ~Fig. 6! is the steep behavior ofHc at r int
5120–123. This feature is due to rearrangement of the
percurrents inside the bilayer, which occurs in the followi
way. The supercurrent velocity changes across the thickn
of the bilayer according to the simple linear law~52!. This
supercurrent distribution may be characterized by the p
tion of the stationary pointz0, where the supercurrent veloc
ity is zero:v(z0)50, hencez05mv0 /eH. At large values of

FIG. 6. Parallel critical fieldHc , normalized by the BCS value
versusr int at zero temperature. The upper and lower graphs di
only in the scaling of the ordinate axis~normal and logarithmic,
respectively!. The nature of the steep behavior ofHc at r int

5120–123, which is best seen from the lower graph, is explai
in the text. The inset showsHc(r int) on a wider scale overr int .
8-9
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the interface resistancer int , the density of the superconduc
ing electrons in the N layer is very small,nN /nS!1, and the
supercurrents circulate only in the S part of the system;
case corresponds to

z05
dS

2
. ~63!

Then, while decreasingr int , a shift in z0 occurs. Now the
supercurrents in the S layer are not compensated~in the
sense of the charge transfer!; therefore, they must be com
pensated by the supercurrents in the N layer, which are
hanced due to significant increase innN . This situation cor-
responds to the beginning of the drop inHc . The ratio of the
superconducting electrons’ densities grows rapidly,
proaching the Anderson limit valuenN /nS5sN /sS ~see Sec.
VI A below!; simultaneously,z0 tends to

z05
sSdS

22sNdN
2

2~sSdS1sNdN!
, ~64!

and the steep drop inHc finishes. For the bilayer to which
the numerical results refer,dS!dN andsS!sN , so Eq.~64!
yields z0'2dN/2.

This scenario is illustrated by Fig. 8, which has been
tained numerically.

The analytical solution of Eqs.~61! at zero temperature in
the Anderson limit is presented below.

A. H c at zero temperature in the Anderson limit

In the zero-temperature Anderson limit~defined by the
conditionstSES , tNEN!1), the ratio of the superconduc
ing electrons’ densities~61b! becomes independent of th
magnetic field,nN /nS5sN /sS , and the self-consistency Eq
~61a! yields

FIG. 7. Temperature dependence of the parallel critical fieldHc

at r int5121.2. The experimental value ofHc(0), analyzed with the
use of the results shown in Fig. 6, suggests that this value ofr int

corresponds to the experiment by Kasumovet al. ~Ref. 2!. The
critical field is normalized by its zero-temperature value, and
temperature is normalized by the correspondingTc . For compari-
son, the same dependence is plotted for the BCS case.
09451
is

n-

-

-

tSES1tNEN

tS1tN
5

DBCS

2 FDBCS

2vD
A11S tStNvD

tS1tN
D 2G

tN

tS
~65!

which determinesHc . This result can be compared to th
BCS case, which corresponds to the limitr int→`. In this
case, the density of the superconducting electrons in th
layer vanishes,nN /nS→0, and the self-consistency equatio
yields

ES
BCS5

DBCS

2
, ~66!

whereES
BCS is given by Eq.~59! with nN50. Finally,

Hc
BCS5

A3F0

pjBCSdS
, jBCS5A DS

DBCS
, ~67!

whereF05p/e is the flux quantum, andjBCS is the corre-
lation length in the dirty limit.

Remarking that the rhs of Eq.~65! is identical toEg/2
with the minigapEg given by Eq.~40!, we see that Eq.~65!,
determining the parallel critical field of the bilayer in th
Anderson limit, is obtained from the BCS Eq.~66! if we
substitute the order parameterDBCS by the minigapEg ~in
accordance with the results of Sec. V! and theH-dependent
energyES

BCS by the corresponding averaged quantity (tSES

1tNEN)/(tS1tN).
The explicit result for the parallel critical field of the b

layer, obtained from Eq.~65!, can be cast into a BCS-like
form:

Hc5
A3F0

pjdeff
. ~68!

The bilayer’s correlation lengthj is the characteristic spac
scale on which the order parameter~or the pairing angleu,
or the Green function! varies in the absence of the magne

e

FIG. 8. Position of the stationary pointz0 of the supercurrent
distribution versusr int at zero temperature. The coordinatez0 is
normalized by the S layer thicknessdS . The fast shift inz0 from the
center of the S layer at larger int to ~nearly! the center of the N layer
at smallr int corresponds to the steep drop inHc , shown in Fig. 6.
8-10
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field. In the Anderson limit~under discussion!, the explicit
formula for j is a natural generalization of the BCS expre
sion@see Eq.~67!# which implies thatDS must be substituted
by the averaged diffusion constant^D& and DBCS must be
substituted~in accordance with the results of Sec. V! by the
bilayer’s characteristic energy scale, the minigapEg @Eq.
~40!#:

j5A^D&
Eg

, ^D&5
tSDS1tNDN

tS1tN
. ~69!

The effective thickness of the bilayer in Eq.~68! is

deff5@~sSdS1sNdN!~sSdS
31sNdN

3 !

13sSsNdSdN~dS1dN!2#1/2/~sSdS1sNdN!.

~70!

In the case of equal conductivities,sS5sN , the effective
thickness is simply the geometrical one:deff5dS1dN . This
case corresponds to a uniform density of the superconduc
electrons,nS5nN , which implies a continuous distributio
of the supercurrents, centered at the middle of the bila
@this can be also seen from Eq.~64! which yieldsz05(dS
1dN)/2 in the casesS5sN]. However, in a more subtle
situation when the conductivities are different, the density
the supercurrent experiences a jump at the SN interface;
nontrivial supercurrent distribution results in the nonequi
lence ofdeff to the geometrical thickness of the bilayer.

VII. PERPENDICULAR UPPER CRITICAL FIELD

Now we turn to calculating the upper critical fieldHc2
perpendicular to the plane of the bilayer.

As in the case of the parallel critical field, we start wi
discussing the supercurrent distribution, which is now
function of the sample boundaries in thexy-plane, perpen-
dicular to the magnetic fieldH ~the magnetic field is directed
along thez axis!. The infinite bilayer under consideration ca
be thought of as a disk of a large radius; let us assumx
50, y50 at the axis of the disk. Then the supercurre
distribution is axially symmetric, and, with the gauge chos
asA5@Hr #/2, the superconducting phase must be const
w50, which yields a simple result for the supercurrent v
locity: v5eA/m.

Near Hc2, the superconducting correlations are sm
uuu!1, and the Usadel equations can be linearized:

2
D

2
~2 i¹12eA!2u1 iEu1D50, ~71a!

A¹u50. ~71b!

The second of these equations is trivially satisfied beca
u(r ) is axially symmetric.

Thus, the Usadel equations reduce to the single Eq.~71a!
for the pairing angleu(r ,E). Introducing the cylindrical co-
ordinatesr↔(z,r) and denotingP̂52 i¹r12eA(r), we re-
write this equation as
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DN

2

]2uN

]z2
2

DN

2
P̂2uN1 iEuN50, ~72a!

DS

2

]2uS

]z2
2

DS

2
P̂2uS1 iEuS1D50. ~72b!

We cannot solve these equations straightforwardly beca
near the upper critical field, the order parameterD(r) is a
nontrivial unknown function of the in-plane coordinater
~while thez dependence is absent due to the small thickn
of the bilayer!. In this situation, we employ the following
approach.

Averaging each of Eqs.~72! over the thickness of the
corresponding layer, we obtain

]uN

]z
uz505

2dN

DN
S DN

2
P̂2uN2 iEuND , ~73a!

]uS

]z
uz505

2dS

DS
S 2

DS

2
P̂2uS1 iEuS1D D . ~73b!

The averaged pairing angles entering the rhs of Eqs.~73! are

uN~r,E!5
1

dN
E

2dN

0

dzuN~z,r,E!, ~74a!

uS~r,E!5
1

dS
E

0

dS
dzuS~z,r,E!. ~74b!

Substituting Eqs.~73! into the boundary conditions~20!
~which should be linearized!, we obtain a system of two
differential equations for the functionu(r,E):

tNS DN

2
P̂2uN2 iEuND5tSS 2

DS

2
P̂2uS1 iEuS1D D

5uS2uN . ~75!

From the vicinity of the superconductive transition it fo
lows that the pairing angleu depends on the order paramet
D linearly:

uN~r,E!5
D~r!

aN~E!
, ~76a!

uS~r,E!5
D~r!

aS~E!
, ~76b!

where the functionsaN(E) andaS(E) are spatially indepen-
dent. Then Eqs.~75! can be rewritten as

DN

2
P̂2D~r!5F iE1

1

tN
S aN~E!

aS~E!
21D GD~r!, ~77a!

DS

2
P̂2D~r!5F iE1

1

tS
S aS~E!

aN~E!
21D1aS~E!GD~r!.

~77b!
8-11
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We see that the order parameter must be an eigenfunc
of the differential operatorP̂2. Moreover, in order to obtain
the largest value ofHc2, we should choose the eigenfunctio
corresponding to the lowest eigenvalue~in complete analogy
with Refs. 16 and 17!. The solution of the emerging eigen
value problem is readily found thanks to its formal equiv
lence to the problem of determining the Landau levels o
two-dimensional particle with the ‘‘mass’’ 1/D and the
charge22e in the uniform magnetic fieldH directed along
the third dimension. The lowest Landau level isDeH; the
function aS(E) is straightforwardly determined,

aS~E!5DSeH2 iE1
tN~DNeH2 iE !

tS@11tN~DNeH2 iE !#
, ~78!

and we substituteuS(r,E) into the self-consistency Eq.~9!.
The order parameterD(r) cancels out, and the resultin
equation, which determinesHc2(T), can be cast into the
form

ln
Tc

BCS

T
52

tN

tS1tN
lnA11S tS1tN

tStNvD
D 2

2cS 1

2D
1

1

2 F11
ES2EN

A~ES2EN!214/tStN
GcS 1

2
1

1

4pT

3FES1EN1A~ES2EN!21
4

tStN
G D

1
1

2 F12
ES2EN

A~ES2EN!214/tStN
GcS 1

2
1

1

4pT

3FES1EN2A~ES2EN!21
4

tStN
G D , ~79!

where

ES5DSeHc21
1

tS
,

~80!

EN5DNeHc21
1

tN

areH-dependent energies. The logarithmic term in the rhs
Eq. ~79! takes account of the finiteness of the Debye ene
vD ; it becomes important only in the limit of a perfect in
terface ~the Cooper limit!, i.e., when tStNvD /(tS1tN)
!1.

In the limit r int→`, Eq. ~79! yields the classical result o
Maki18 and de Gennes19 for the BCS case,

ln
Tc

BCS

T
5cS 1

2
1

DSeHc2
BCS

2pT D 2cS 1

2D , ~81!

which is valid for bulk superconductors and superconduc
layers of arbitrary thickness~when the magnetic field is di
rected perpendicularly to them!. Another immediate conse
quence of Eq.~79! is the critical temperature of the bilaye
09451
on

-
a

f
y

e

Tc , which can be found from the conditionHc2(Tc)50: in
this case, Eq.~79! reproduces Eq.~30!.

Equation~79! can be solved numerically at arbitrary va
ues of the temperatureT and the interface resistancer int ; the
results forHc2 are presented in Figs. 9 and 10.

The analytical solution of Eq.~79! at zero temperature in
the Anderson limit is presented below.

A. H c2 at zero temperature in the Anderson limit

In the zero-temperature Anderson limit~defined by the
conditionsDSeHc2!1/tS , DNeHc2!1/tN), Eq. ~79! yields

Hc2

Hc2
BCS

5
~tS1tN!DS

tSDS1tNDN
FDBCS

2vD
A11S tStNvD

tS1tN
D 2G tN/tS

,

~82!

where the zero-temperature BCS value of the upper crit
field, as follows from Eq.~81!, is

Hc2
BCS5

DBCS

2eDS
5

F0

2pjBCS
2

. ~83!

It is instructive to rewrite the perpendicular upper critic
field of the bilayer~82! in the standard BCS-like form

Hc25
F0

2pj2
, ~84!

FIG. 9. Perpendicular upper critical fieldHc2, normalized by its
BCS value, versusr int at zero temperature. The upper and low
graphs differ only in the scaling of the ordinate axis~normal and
logarithmic, respectively!. The inset showsHc2(r int) on a wider
scale overr int .
8-12
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wherej is the bilayer’s correlation length given by Eq.~69!
@the physical interpretation of this result forj precedes Eq.
~69!#.

VIII. SNS, NSN, SNINS, NSISN, AND SUPERLATTICES

Our results forD, nS , Tc , Eg , n(E), andHc2 ~i.e., all
the results exceptHc) can be directly applied to more com
plicated structures such as SNS and NSN trilayers, SN
and NSISN systems, and SN superlattices.

Let us consider, for example, a symmetric SNS trilay
consisting of two identical S layers of thicknessdS separated
by a N layer of thickness 2dN . The SN interfaces can hav
arbitrary~but equal! resistances. As before, thez axis is per-
pendicular to the plane of the structure. This trilayer can
imagined as composed of two identical bilayers perfec
joined together along the N sides. Indeed, the pairing angu
has zeroz derivative on the outer surfaces of the bilaye
thus producing the correct~symmetric in thez direction! so-
lution for u in the resulting trilayer. Consequently, the sym
metric SNS trilayer has exactly the same physical proper
@D, nS , Tc , Eg , n(E), andHc2] as the SN bilayer con-
sidered in the present paper. The only point where the ab
reasoning fails is the calculation of the parallel critical fie
Hc . In this case, the combination of the supercurrent dis
butions in the two bilayers does not yield the correct dis
bution in the resulting SNS trilayer, which implies that th
Usadel equations for the two systems are different.

Evidently, the above reasoning, based on the form
equivalence of the outer-surface boundary condition for
bilayer to the symmetry-caused condition in the middle
the SNS trilayer, also holds for symmetric NSN trilayers~N
layers of thicknessdN , S layer of thickness 2dS , identical
SN interfaces! and SN superlattices~N layers of thickness

FIG. 10. Temperature dependence of the perpendicular u
critical field Hc2 at r int580, 110, 125, and in the BCS case. In ea
case, the critical field is normalized by its zero-temperature va
and the temperature is normalized by the correspondingTc . Ac-
cording to the results of Sec. V, the curves in the BCS and And
son (r int580) limits coincide. At intermediate values ofr int , the
curves can lie both above (r int5110) and below (r int5125) the
BCS curve.
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2dN , S layers of thickness 2dS , identical SN interfaces!.
Moreover, the same applies to systems composed of
bilayers in nonideal contact with each other: SNINS an
NSISN ~where I stands for an arbitrary potential barrie!,
because the presence of a potential barrier does not vio
the applicability of the symmetry argument. Thus, all t
results obtained for the bilayer~exceptHc) are also valid for
these structures.

IX. DISCUSSION

An essential property of the bilayer used throughout
paper is its small thickness. Now we shall argue that
bilayer studied in the experiment by Kasumovet al.2 ~and to
which our numerical results refer! can be considered thin
The Usadel Eqs.~19! imply that the characteristic space sca
of the bilayer’s properties variation isADN,S /E0 for the N
and S layers, respectively. However, the correct determ
tion of the characteristic energy scaleE0 is a nontrivial prob-
lem. Our results suggest thatE0 is always smaller than the
order parameterD: in the BCS limit (r int→`), E0 ap-
proachesD, whereas in the opposite~Anderson! limit, E0 is
determined by the minigapEg @see Eq.~34!#. For the follow-
ing discussion, it is convenient to write the condition of t
small thickness of the bilayer as

dN,S!AD

E0
ADBCS

D
ADN,S

DBCS
. ~85!

The individual layers’ thicknesses aredN5100 nm anddS
55 nm. The third multiplier~the BCS correlation length! in
the rhs of the condition~85! equals 194 and 16 nm for the N
and S layers, respectively. At the same time, each of the
two multipliers in the rhs of the condition~85! exceeds unity.
We can thus conclude that the bilayer can indeed be con
ered thin.

Now we turn to a possible experimental application of o
results. Our results provide a method for determiningr int , a
very important parameter of the bilayer which is not direc
measurable. By analyzing the experimental2,12 values Tc
50.4 K and Hc50.1 T, we getr int'111 andr int'121,
respectively. Within the experimental accuracy of the bila
er’s parameters, the two estimates forr int should be consid-
ered close. Interestingly, the valuer int'121 extracted from
the measured value ofHc corresponds to the extremely na
row region of the steep drop inHc(r int) ~see Fig. 6!.

Finally, we wish to remark on a peculiarity of real sy
tems which can be relevant when one compares our find
with an experiment. The point is that during the fabricati
of a bilayer, the interface between S and N materials can
be made ideally uniform. In other words, the local interfa
resistance possesses spatial fluctuations. At the same tim
we have shown, the bilayer’s properties are highly sensi
to the interface quality, which could lead to complicated b
havior not reducing to the simple averaging of the interfa
resistance embodied inr int . One possibility could be a
percolation-like proximity effect. We leave the study of in
homogeneity effects for further investigation.
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8-13



he

or
th

;

e

e
he
nt
h
-
-
r

,
e
ta

a

,

is-
y.

y
e-

s
e-
te
e
t

SN
es.

98-

YA. V. FOMINOV AND M. V. FEIGEL’MAN PHYSICAL REVIEW B 63 094518
X. CONCLUSIONS

We have studied, both analytically and numerically, t
proximity effect in a thin SN bilayer in the dirty limit. The
layers were supposed to be thin enough to ensure unif
properties of each layer across its thickness. The streng
the proximity effect is governed byr int , the resistance of the
SN interface per channel.

The quantities calculated wereD, the order parameter
nS , the density of the superconducting electrons in the
layer;Tc , the critical temperature;Eg andn(E), the minigap
in the density of states and the DOS itself;Hc andHc2, the
critical magnetic field parallel to the bilayer and the upp
critical field perpendicular to the bilayer.

These quantities were calculated numerically over the
tire range ofr int . For this purpose, the characteristics of t
bilayer were assumed to be the same as in the experime
Kasumov et al.2 that originally stimulated our researc
~Ta/Au bilayer,dS /dN51/20). In the limit of an opaque in
terface,D, nS , Tc , Hc , andHc2 approach their BCS val
ues. At the same time,Eg does not coincide with the orde
parameterD, andEg→0 whenr int→`, although in general
the energy dependence of the DOS in the S and N lay
nS(E) and nN(E), approaches the BCS and normal-me
results, respectively.

The minigapEg demonstrates nonmonotonic behavior
a function of r int . Analytical results for the two limiting
t,
.

t,

n

l-

r

is
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cases of small and larger int show that in the Anderson limit
Eg increases with increasingr int , whereas in the limit of an
opaque interface,Eg tends to zero. Thus,Eg reaches its
maximum in the region of intermediater int .

The most interesting case of relatively low interface res
tance~the Anderson limit! has been considered analyticall
The simple BCS relations betweenD, nS , Tc , Hc , and
Hc2 are substituted by similar ones withEg standing instead
of D. The relation between the minigapEg and the order
parameterD in this limit is expressed by Eq.~34!, implying
that in the case wheretS,tN , the BCS relations are strongl
violated~by more than the order of magnitude for the abov
mentioned Ta/Au bilayer!. The DOS in the S and N layer
coincide, showing BCS-like behavior with the standard p
culiarity at E5Eg . It should be emphasized that absolu
values ofr int corresponding to the Anderson limit can b
large; for the Ta/Au bilayer this limit is already valid a
r int,80.

All the results~exceptHc) obtained for the bilayer also
apply to more complicated structures such as SNS and N
trilayers, SNINS and NSISN systems, and SN superlattic
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