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Thermally activated avalanches in type-Il superconductors
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Using a simple cellular automata with stochastic rules, we show the possible emergence of thermally
activated avalanchegower law distributegin type-Il superconductors. Scaling relations between the expo-
nents characterizing these distributions and those obtained from field-driven experiments are derived and
proved through simulations. It is also shown that the conditions for the appearance of these avalanches are
independent of the pinning mechanism. The relevance of our simulations for recently reported experimental
results is also outlined.
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I. INTRODUCTION In this work we develop a simple scenario enabling an
account of the existence of these thermally activated ava-
Magnetic flux penetrates type-ll superconductors above ¥anches. This does not mean we claim the existence of SOC
certain critical fieldH, in the form of vortices. The interac- during the relaxation of the magnetization. SOC is well de-
tion of these vortices with the pinning centers produces dined only for a system in a marginal stationary state, which
magnetic-flux profile inside the superconductor with a slopdt is not the case for the vortex lattice in the presence of
proportional to the critical current density inside the samplethermal activation. What we are claiming is that, because of
j, defined as the maximum current density that the materigdhe complex interaction between vortices, the pinning centers
supports without dissipation, a situation that is accounted fofnd the temperature, many sizes of avalanches of moving
by the so-called Bean'’s critical state moddlhis picture, as Vortices may produce the relaxation of the critical state as
de Gennes notedis very similar to the case of sandpiles, previously determined in Ref. 24.
where a constant slope appears in the pile resulting from the The remainder of the paper is organized as follows. In the
competition between gravity and the friction between grainsneéxt section we describe the cellular automata used in our
In 1987, Baket al®* proposed a theory—now known as Ssimulations. In Sec. Il we present and discuss numerical
the self-organized criticality theorySOO—to explain the results. Then, Sec. IV is devoted to the study of the scaling
existence of self-similar structures in nature. Since thenfelations between our distributions and those usually ob-
SOC has been used to interpret the dynamics of many sizdained in field-driven experiments. In Sec. V we outlined
of avalanches in sandpil@searthquake$, evolution’ and ~ some conditions needed for the occurrence of many sizes of
other phenomena; see Ref. 8 for a general review. thermally activated avalanches and, finally, in Sec. VI con-
The occurrence of self-organized criticality was soon re-Clusions are given.
searched also in superconductors where field-driven experi-
ments have been desigiiet! and many numerical simula-
tions developed?!” unfortunately without conclusive
answers. While the use of “real” forces between vortices in mo-
Superconductors differ from most systems exhibitinglecular dynamics simulatiof&*®better resembles the experi-
SOC by the relevant role played by temperature. The temmental situation rather than simple cellular automata, they
perature causes relaxation of the critical state leading to are by far more time-consuming and it is an important draw-
nearly logarithmic magnetization decag(t)~In(t).®® Inthe  back of the method, especially when we are looking for criti-
early 1990’s many researchers tried to relate the role playedal exponents or when we introduce the effects of tempera-
by temperature to the existence of many sizes of avalanchegare on the system.
in relaxation experiments—2* However, in 1995 Bonabeau  Recently, to avoid these problems, Bassler and PacZuski
and Lederer % approximately solved the diffusion equation introduced a simple cellular automata to study the behavior
for the magnetic field inside a superconducting slab anaf the vortex lattice in type-Il superconductors. This cellular
demonstrated thdtvithin the usual accessible time scales in automata avoids part of the relevant physics of the vortex
the experimentisit is impossible to determine the existence lattice such as the variation of the pinning strength with the
of thermally activated avalanches by classical magnetic reincreasing field, the possible mismatch between the vortex
laxation measurements, i.e., by the study of the decay of thiattice and the pinning centers, the elasticity of the vortex
mean value of the magnetization in the santpf&: lattice, etc. However, it contains the interaction between vor-
In 1998 Aegertef® studied the magnetic relaxation of a tices and pinning centers, and the long-range order of the
single crystal of the HTSC compound Bi-2212, but insteadvortex interaction, first by introducing parametefsee be-
of the usually measured mean valuewt),'® he focused his  low), and then implicity assuming that each lattice cell con-
attention on the fluctuations during the decay of the magnetains more than one vortex. In addition, it is able to predict
tization and showed evidences of power-law-distributed therthe self-organization of the lattice in a critical state charac-
mally activated avalanches. terized by power-law-distributed avalancHeS and the irre-

1. MODEL
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versibility of magnetization. Then, aimed at describing the R A A IR AL b
influence of temperature on this critical state, we adopt this 1.0 § —o—L= 60 _
model with some modifications. e:gg%% —o—L =100

The cellular automata consists of a two-dimensional 2D
honeycomb lattice, where each site is characterized by the 0.8
number of vortices on itm(x), and by its pinning strength, ]
V(x), equal to 0 with probabilityp, and tog with probability o
1—p. The force acting on a vortex at siten the direction of 2 0.6
sitey is calculated as 2 ] .

044, N

L .
N\

‘?_2% 'y
A

Fyoy=—V(X)+V(y)+[m(x)—m(y)—1]
+rim(xy) +m(xz) —m(y)) —m(y2)], (1)

0.2- N %

wherex; andx, are the nearest neighborsyofother thary), | oo+ ]

while y; andy, are the nearest neighborsyofother thanx)

andr is a measure of their contribution on the total force of 0.0 e T

the vortexx (0<r<1). A vortex in sitex moves to its neigh- 10° 100 10*® 10° 10°

bor sitey if the force acting on it in that direction is greater t

than zero. If the force in more than one direction is greater

than zero, then one of them is chosen at randbrtf FIG. 1. Magnetic relaxation curves for systems of sizes60,
To introduce the effect of temperature, we assumed thatoo, and 200U(j)~j./j, U,/kT=10. The inset shows the data

sites where the forces are lower than zero still have a prolxoliapse of the curves.

ability of motion given by

whereH is the field, i.e., the number of vortices at the bor-
Py_y~exd —U(j)/kT], (2)  ders of the lattice.

wherek is the Boltzman’s constant aridis the temperature.
The current,j, was locally calculated using the gradient of

m(x), and U(j) represents different pinning barriers pro-  Figure 1 shows typical relaxation curves obtained for sys-
posed in the literatureU(j)=Uojc/j, U(j))=UoIn(ic/I),  tems of different sizes using a vortex glasslike potential
andU(j)=Uq(1-j/jc).* U(j)~ijc/j (Ref. 25 and the algorithm described above. In
An avalanche starts by randomly choosing a lattice siterig. 2 is represented the relaxation curve for a system with
and calculating Eq2). If itis smaller than a random number T—c_ At this temperature, the thermal activation is so high
the procedure is repeated, or else the vortex moves perturbhat vortices would be continually jumping from their pin-

ing its neighbors. Then, the direction of motion of the newning centers, which allows the avalanchelike behavior previ-
unstable vortices is calculated using Ef. At this point, all

the sites are updated in parallel until no more unstable sites T rrr——

Ill. NUMERICAL RESULTS

MR | MR |

persist. The avalanche size is defined as the number of top- 1 o e 1
plings corresponding to the thermal activation of one vortex, 1.0 o-soomm—s AQ%:Q:Q%\A\AA
while the avalanche duration is defined as the number of { —°—L= 60 o Aq*zk
updatings necessary to complete one avalanche. 0.84 —o—1. =100 % i

In all cases the procedure was repeated fot Monte %
Carlo Steps(MCS) were one MCS was defined by thé o 1 ——L =200 L.
calculation of Eq.(2), and lattices up td. =200 were used. 0.6 o u\ %
The initial configuration was obtained by slowly adding vor- g | 09 ™5 1 ”\n o% ]
tices to the systemiat T=0) until a critical slope was E L ©
reached* The boundaries “parallel to the net vortex mo- 0.44 o 06 ; 3] 7
tion” were assumed periodic, while the other two were fixed | 2 Ehbqh
to mimic the applied external field. All of the calculations =03 4
presented in the paper were done with the following set of 0.2+ ]
parameters:r(,p,q)=(0.1, 5, 0.2, but similar results were 1 0'010-5 10° , 10"
obtained using other valués. 0.0 /L

The magnetizatioM was calculated as the mean mag- PP
netic field inside the sample minus the extemal applied 10 10 1? 10 10
field,”" i.e.,

i=L FIG. 2. Magnetic relaxation curves for systems of sizes60,
M= E B(i)—H (3) 100, and 200U (j)~j./j, Uy /kT=0. The inset shows the collapse
i=0 of the curves.
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times, D;,(t), obtained using a classical Anderson-Kim po-
tential, U(j)=Uq(1—j/jc),%%?° for a system withL =200
and U,/kT=10; as before, other pinning potentials were
also used, resulting in a similar behavior. These distributions
were obtained using the avalanche sizes and tifdened
in Sec. I) obtained during all the relaxation processes.

As Figs. 3 and 4 clearly show, many sizes of avalanches
emerge. Itdoes notmean the system is critical; instead, it is

relaxing from a critical state to its corresponding thermody-
namic equilibrium. What we are showing is that this relax-
ation could proceed by means of many sizes of avalanches in
accordance with recent experimental restflitddowever,
somehow more surprisingly, we will show in the next section
that the exponents characterizing these distributions are re-
lated through simple scaling relations to the exponents de-

rived in the context of the SOC for systems in a critical
s statel415

FIG. 3. Avalanche size distribution fot.=200, U(j)~(1 Considering thaDin(s) follows a power law,

—ijlj.), andU,/kT=10.

ously explained to be disregardésee Sec. V for a more Dini(s)~s™ ™, (4)

careful discussion of this pointeliminating the calculation

of Eq. (1) after a thermal jump. . . .
Inq both figures(see aJIso Fzhe insetthree regimes are the estimated exponent from F|g._3 was=2.70+0.1 (dif-

present: a plateau, then a logarithmic relaxation, and finallje"€nt from ther=1.63 obtained in Refs. 14 and 15 for a

another plateau due to finite-size effects. Only the time scale4eld-driven experimentand, assumin@®;n(t) ~t™ " for the

for these regimes are different, but this is irrelevant from arintegrated distribution of avalanche times, we obtained from

experimental point of view. So, as already noted beféré, Fig. 4, 7,=4.0=0.2.

our results suggest that it is not possible to decide about the It is worth mentioning here that the exponentwas also

existence of thermally activated vortex avalanches fronexperimentally determined in Ref. 24 and reportedgs

“simple thermodynamic magnetic” relaxation measure-=2.0, lower than our value. This divergence can be ex-

ments. Other pinning potentials as well as differed@/kT  plained since Figs. 3 and 4 represent the distribution of ava-

relations were uséd and no fundamental differences with lanches obtained for all relaxation processes, i.e., starting at

the previous results were obtained. the critical state and finishing at equilibrium, a situation im-
Figures 3 and 4 represent the integratdte meaning of possible to account for in real experimental situations.

this name will be clarified belowdistribution of avalanche We obtained different estimates feg and 7, if, instead

sizes,Dj,(s), and the integrated distribution of avalanche of the previous distributions, we used distributions of ava-

10

& AL

g

-

FIG. 4. Avalanche time distribution fot =200, U(j)~(1

—ilio), andU, /kT=10.

lanche sizes and times obtained during the incomplete relax-
ation of the critical state. In fact, Fig. 5 represents five ava-
lanche size distributions?(s), obtained for different time
intervals of the relaxation curve, from the upper to the lower
curve, t=1-10, t=11-100, t=101-1000, t=1001
—10000, andt=10001-100000 MCS, which superposi-
tion corresponds to the full relaxation of the systesme Fig.

1). The straight line represents the integrated distribution of
avalanche sized);,(t), obtained in Fig. 3,7=2.7. Then,
from the figure we can conclude that different exponents can
be predicted depending on the range of times measured. For
short enough times, the exponent is lower than that associ-
ated withD;,;, while for long times a peaked distribution is
obtained with only very small avalanches.

Another source for discrepancies between our numerical
estimates and experimental situations comes from the change
of regimes of relaxation. In fact, there is retpriori justifi-
cation to assume that many sizes of avalanches will dominate
the relaxation process within all the rangesjoand T, a
situation that was thoroughly analyzed in Refs. 22 and 23
and is discussed in a different context in Sec. V.
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N From the definitions o8., t., and Eq.(9) it is straight-
10°F forward to show thas,~ £Y771 and t,~ £Y?2. Moreover,
“F since for a finite-size system at the critical stgteL, our
10 : first scaling relation takes the form
103 { D g1
r —=—, (10
10-5 I_ z (o)
@ o : As already discussed above, the integrated distributions of
o 3 avalanche sizes and times, calculated in Se®l};(s) and
10.9; Dint(t) result, since the system is relaxing from avalanches
2 obtained for values of current densities ranging frpnto j.
10" 4 These distributions are different from those obtained in typi-
. cal field-driven experiments or simulations, since the last are
107 F obtained “in principle” for a fixed value of current density
F jc» Which, indeed, determines the criticality of the system.
10"°° ol Then, it is natural to assume that,(s) andD;(t) are
10° 100 100 100 10" 10 related to the distributions obtained just at the critical state,
s D(s) andD(t), by the following formulas:

FIG. 5. Avalanche size distribution fdr=200, U(j)~j./j, o .
U,/kT=10. From the upper to the lower curve=1—10, t=11 Dint(s)~ j s "f(s/s¢)d] (11)
—100, t=101-1000, t=1001-10 000 andt= 10001~ 100 000 ¢
MCS. The straight line represents a power law with exponent 2.7.and

0
IV. SCALING RELATIONS Dint(t)wf_ s (t/t ) dj, (12)

Instead of first presenting the derivation of our scaling le
relations, we prefer to start with a short review of somewhich immediately explain the meaning of the label “inte-
important scaling concepts of the theory of self-organizedgrated” used for these distributions.
criticality. Then substituting the definitions sf andt, in Egs.(11)
Following the ideas of Balet al>*8 those systems that and (12) and after a simple change of variables, we obtain
behave as predicted by SOC show a distribution of avalanchihe following expressions for the integrated distributions of
sizes and times that follow power laws, i.e., avalanche sizes and times:

P(s)~s™ 7 5 —j Yo

© © D(9)=5 71 [ g t0ax (19
and 0
P(H)~t 7, ©)

respectively. For systems not exactly in the critical state,
these expressions transform into

_ i 1o
D, (t) =5~ +72 J I x (dx, (14)
0

which prove that for large enoughboth integrals are con-

T stants, and there is not a cutoff length in the integrated dis-
P(s)~s77T(s/sc) @ tributions, a result already obtained in our simulatigsse
and Figs. 3 and 4
Also from Egs. (13) and (14) and the definitions of
P(t)~t" " (t/tc), (8)  Dipy(s) andD;(t) we can immediately obtain the following

where s, andt, reflect the departure of the system from Scaling relations:
criticality, sg~(jo—j) Yt andt.~(j.—j) *’2, whereo,

and o, are new critical exponents and where the function T T oL, (15

f(x) has the following propertiesf(x)—constantif x _

—0 andf(x)—0 if x—o in order to recover the “critical Tin = T 02 (16)

picture” whenj~j.. which in combination with Eq(10) leads to

In finite-size systems; andt, also reflect the effect of the

sample dimensions through two new critical exponeDts E: ™7 17)

andz. In fact, analogous to the theory of critical phenomena Z T Tt

s.~LP andt.~ L2 Furthermore, the coherence lengtli-

verges at the critical state as In this way expressioltl7) establishes a connection be-

tween the exponents obtained in field-driven experiments or

E~(j—]) " 9 simulations, 7, 7;,D,z, and those from thermally activated
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avalanches,, . In fact, the results obtained in our simu- p(1—]ljo)~ Yo
lations and those obtained in Refs. 14 and 15 hold the pre- te=—75 — . (21
vious relation. JPGVuoH = pojx
However, some points deserve further discussion. The
power-law divergence of., t., and¢ are strictly valid close Now, to determine the regime of applicability of our

to the critical statej.. Far away from this state these diver- model, we must verify under which conditions the inequality
gencies no longer exactly hold; however, considering thdc<ti holds.

good results obtained in the check of our calculations and From the experimental point of view, the relevant ava-
scaling law(17), we believe that this last assumption is not lanches to be detected measuring the fluctuations in the mag-
relevant for the solution of the model. Also, scaling l6l7) ~ Netization decaf are those starting at the border of the

was obtained assuming the complete relaxation of the sy§ample, since they are the ones that produce changes in
tem, so it is difficult to be proved in real experiments. Moreover, the avalanches starting at the border of the sample

are also those with longer duration times since they have a

larger area for spreadiigemember that the critical state in a

type-Il superconductor is symmetric with respect to the cen-
Our previous picture assumes that a thermally activateter of the sample Then, we may assume in E(1) thatx

vortex jump would affect its neighborhood, generating an=0 and obtain the following inequality:

instability that leads to a cascade of vortex jumps related to

V. APPLICABILITY

the vortex distribution into the sample. n(1—jljo) Yoz 0 - 22
However, the existence of a characteristic time for ther- 3, —— <teexgd U(j)/KT], 22
J(I)g/ZVMoH

mally activated phenomena,,=t,exdU(j)/kT] is well
k_nown, rep'reser]ting the time a vorte>§ spends at a pinninghich can be written as
site before jumping due to thermal activatioh.

This means that our model will be valid if these ava- -
lanches occur within times lower that,, i.e., the ava- J_—
lanches should develop fast enough to be mutually indepen- I (1=jljg)Yez
dent. This resembles the idea developed by Vespignani ) ) )
etal?” in the context of sandpile and forest fire models.Where J.*f(goﬂ/\/ﬁ)tp- Assuming, for exampleU(j)
They showed through simulations and mean-field consider=YolN(jc/j),” the previous inequality takes the form
ations that one necessary condition for the occurrence of

<exg U(j)/kT], (23

SOC, at least in these models, is the separation of time scales jrjet oy
between the external excitation and the response of the sys- " (1—=jlje)”772<1, (24)
tem. ¢
Then, as mentioned above, the maximum time that amnda=U,/KT.
avalanche persists tg=tc,(1—j/jc) 72, wheret,, is the It is then straightforward to demonstrate that E84)

time a vortex spends moving from one site to another, and ofiolds under the following conditions: i&>1, j must be
course depends on the local current and flux density in thenuch lower thanj, (j<j.). In the opposite casg* <]
system. Considering that the vortices are separated by a disej_.. Similar expressions can be derived for the Anderson-

tancea, the time they spend traveling this distance is Kim potentials and from potentials derived from the collec-
tive pinning theory?®
t _a (18) These conditions are consequences of the competition be-
oy’ tween the increase of, whenj—0 and the divergence of

. whenj—0 andj—j., see Eq(21), and can be interpreted
wherev depends on the Lllozrentz' force acting on the vortexXy, e following way. Close td, the avalanche durations are
v=]®,/7, anda=(P,/B)"*, which immediately gives the ery high because the avalanche sizes become huge, so one
following dependence of;, with j andB: always needs to be far frofp, a situation often accounted
for in high-temperature superconductdtsto assure that
ta, <<ty . Particularly forU,<kT, when thermally activated
jumps become frequent,f, small), high enough currentsj (
>j*) are also necessary to assure rapid vortex motion dur-
ing the avalanche, and hence short avalanche time durations.
From the experimental point of view these conditions should
be taken with some caution. For example, sifjgalecays
with temperaturé?® for U,<kT, the range of current densi-
ties where thermally activated avalanches could appear is

B(X) = poH — ftojX, (20) still narrowe.r*the}n fchat suggested by a simple inspectipn of
the formulaj* <j<j., so we strongly recommend looking
where H is the external field. Then, substituting Eq49)  for these avalanches at low temperatures and in very disor-
and(20) in the definition oft., we obtain dered systems whetg,>kT.

(19

n
tep=———.
JV(®,B)

In the critical stateB varies along the sample. This varia-
tion is, even in the presence of thermal activation, very well
accounted for by the Bean mode® This means that, for a
fully penetrated sample,
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In light of these results it is useful to come back to the VI. CONCLUSIONS
experiment of Aegerté? He found one critical exponent | lusi develoned a simol . lai
characterizing the avalanche size distribution during the re- n conclusion, we developed a simpie scenario to explain
laxation of the magnetization and found that this exponen{ecently reported thermally activated avalanches power law

was independent of the temperature of the system. Neither gflstrlbuted for type-Il superconductors. We proved that the

these results contradicts our model. Even when his critic ?xponents associated with these distributions depend on the
- T ime interval of the measurement. We also proved that the
exponent was 2.0 and ouf,=2.7, Fig 5 indicates that small - N .
: : : . . exponents characterizing a distribution of thermally activated
exponents are associated with short relaxation times in our . . X .

. e . avalanches obtained during the whole relaxation experiment
model. This suggests that, if in the experiment of Ref. 24 th i.e., from the critical to the equilibrium stabteare related to
time window had been shifted to larger times, an exponen .o;sle obtained in field driveg experiments by scaling rela
closer to our exponent would have been observed. This doe€s o P . y 9

. L ions, a situation also supported by our simulations. The con-
not mean, of course, that such a shift can be trivially per-,... .
i ) ditions for the appearance of these avalanches were dis-
formed in practice. . .
" : . - cussed, and it was also proved that, in a rough
In addition, he found during the relaxation one initial re- aobroximation. thev do not depend on the pinning mecha.
gime where avalanches are not power law distributed. While PP ' y P P g

he explained that this was due to a transient period the sysn-.Ism in the sample. All our theoretical predictions are con-

tem takes to reach the SOC, our results suggest a diﬁ‘erers1{Stent with known experimental results.
explanation. During this period the system is still too close to
the critical statg ~j., and power-law avalanches are not yet
developed since the thermally activated avalanches overlap
each other. This explanation is consistent with the long time We are very grateful to A. Vaquez for many interesting
period associated with this transient period, and with the dediscussions and suggestions. We acknowledge also useful
pendence of this time on the temperature. Experimentallgomments from M. Paczuski, K. Bassler, D. Doguez, E.
Aegerter found that longer times are associated with highe®squiguil, O. Sotolongo, and C. Roguez. E.A. acknowl-
temperatures and in fact, in our model higher temperaturesdges partial financial support from the World Laboratory
imply the necessity of lower values of the relatipfj. to ~ Center for Pan-American collaboration in Science and Tech-
find power-law-distributed avalanches, and this means longerology, the Texas Center for Superconductivity, and the De-

ACKNOWLEDGMENTS

transient periods. partment of Physics, University of Houston.

*Present address: ICA1, University of Stuttgart. 15R. Cruz, R. Mulet, and E. Altshuler, Physica2¥5, 15 (2000.

1C. P. Bean, Rev. Mod. Phy86, 31 (1964). 18G. Mohler and D. Stroud, cond-mat/99051@Bpublishedl

P. G. de GennesSuperconductivity of Metals and AlloyBen-  1"R. Mulet and E. Altshuler, Physica 281, 317 (1997).
jamin, New York, 1966 18y, Yeshurun, A. P. Malozemoff, and A. Shaulov, Rev. Mod.

3p. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. LB, 381 Phys.68, 911 (1996.

, (1987. _ 19y, M. Vinokur, M. V. Feigelman, and V. B. Geshkenbein, Phys.
P(- Bag';, C. Tang, and K. Wiesenfeld, Phys. Rev.38 364 Rev. Lett.67, 915(1991); H. G. Schnack and R. Griessehid.

1988.

68, 2706(1992; V. M. Vinokur and M. V. Feigelmanibid. 68,
2707(1992.

20C. Tang, Physica A94, 315(1993.

217 Wang and D. Shi, Phys. Rev. 48, 16 176(1993.

5G. A. Held, D. H. Solina, D. T. Keane, W. J. Haag, P. M. Horn,
and G. Grinstein, Phys. Rev. Le@5, 1120(1990.

6J. M. Carlson and J. S. Langer, Phys. Rev. L&2.2632(1989.

7p. Bak and K. Sneppen, Phys. Rev. L&, 4083(1993. 2

8p. Bak,How Nature WorkgSpringer-Verlag, New York, 1996 235 Eonageau anj i tegerer, EEysf I;eﬁzs§594lg:95.

9S. Field, J. Witt, and F. Nori, Phys. Rev. Lefd, 1206(1995. - Bonabeau and P. Lederer, Physic@38, 365 (1996.

24
1°E. R. Nowak, O. W. Taylor, L. Liu, H. M. Jaeger, and T. J. C. M. Aegerter, Phys. Rev. B8, 1438(1998.

Selinger, Phys. Rev. B5, 11 702(1997) 25G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin,
'D. K. Behnia, C. Capan, D. Mailly, and B. Etienne, Phys. Rev. B and V. M. Vinokur, Rev. Mod. Phys56, 1125(1994.

61, R3815(2000. P. W. Anderson and Y. B. Kim, Rev. Mod. Phy&5, 39 (1964).
120, Pla and F. Nori, Phys. Rev. Le87, 919(1991). 2'A. Vespignani and S. Zapperi, Phys. Rev5SE 6345(1998.
13R. A. Richardson, O. Pla, and F. Nori, Phys. Rev. L&®. 1268 Y. Abulafia, A. Shaulov, Y. Wolfus, R. Prozorov, L. Burlachkov,

(1994). Y. Yeshurun, D. Majer, E. Zeldov, H. Wuhl, V. B. Geshkenbein,
K. E. Bassler and M. Paczuski, Phys. Rev. L8tt, 3761(1998. and V. M. Vinokur, Phys. Rev. LetZ7, 1596(1996.

094501-6



