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Thermally activated avalanches in type-II superconductors
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~Received 14 July 2000; published 25 January 2001!

Using a simple cellular automata with stochastic rules, we show the possible emergence of thermally
activated avalanches~power law distributed! in type-II superconductors. Scaling relations between the expo-
nents characterizing these distributions and those obtained from field-driven experiments are derived and
proved through simulations. It is also shown that the conditions for the appearance of these avalanches are
independent of the pinning mechanism. The relevance of our simulations for recently reported experimental
results is also outlined.
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I. INTRODUCTION

Magnetic flux penetrates type-II superconductors abov
certain critical fieldHc1 in the form of vortices. The interac
tion of these vortices with the pinning centers produce
magnetic-flux profile inside the superconductor with a slo
proportional to the critical current density inside the samp
j c , defined as the maximum current density that the mate
supports without dissipation, a situation that is accounted
by the so-called Bean’s critical state model.1 This picture, as
de Gennes noted,2 is very similar to the case of sandpile
where a constant slope appears in the pile resulting from
competition between gravity and the friction between grai

In 1987, Baket al.3,4 proposed a theory—now known a
the self-organized criticality theory~SOC!—to explain the
existence of self-similar structures in nature. Since th
SOC has been used to interpret the dynamics of many s
of avalanches in sandpiles,5 earthquakes,6 evolution,7 and
other phenomena; see Ref. 8 for a general review.

The occurrence of self-organized criticality was soon
searched also in superconductors where field-driven exp
ments have been designed9–11 and many numerical simula
tions developed,12–17 unfortunately without conclusive
answers.

Superconductors differ from most systems exhibiti
SOC by the relevant role played by temperature. The te
perature causes relaxation of the critical state leading
nearly logarithmic magnetization decay,m(t); ln(t).18 In the
early 1990’s many researchers tried to relate the role pla
by temperature to the existence of many sizes of avalan
in relaxation experiments.19–21 However, in 1995 Bonabea
and Lederer22,23 approximately solved the diffusion equatio
for the magnetic field inside a superconducting slab a
demonstrated that~within the usual accessible time scales
the experiments! it is impossible to determine the existen
of thermally activated avalanches by classical magnetic
laxation measurements, i.e., by the study of the decay of
mean value of the magnetization in the sample.18,21

In 1998 Aegerter24 studied the magnetic relaxation of
single crystal of the HTSC compound Bi-2212, but inste
of the usually measured mean value ofm(t),18 he focused his
attention on the fluctuations during the decay of the mag
tization and showed evidences of power-law-distributed th
mally activated avalanches.
0163-1829/2001/63~9!/094501~6!/$15.00 63 0945
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In this work we develop a simple scenario enabling
account of the existence of these thermally activated a
lanches. This does not mean we claim the existence of S
during the relaxation of the magnetization. SOC is well d
fined only for a system in a marginal stationary state, wh
it is not the case for the vortex lattice in the presence
thermal activation. What we are claiming is that, because
the complex interaction between vortices, the pinning cen
and the temperature, many sizes of avalanches of mo
vortices may produce the relaxation of the critical state
previously determined in Ref. 24.

The remainder of the paper is organized as follows. In
next section we describe the cellular automata used in
simulations. In Sec. III we present and discuss numer
results. Then, Sec. IV is devoted to the study of the sca
relations between our distributions and those usually
tained in field-driven experiments. In Sec. V we outlin
some conditions needed for the occurrence of many size
thermally activated avalanches and, finally, in Sec. VI co
clusions are given.

II. MODEL

While the use of ‘‘real’’ forces between vortices in mo
lecular dynamics simulations12,13better resembles the exper
mental situation rather than simple cellular automata, th
are by far more time-consuming and it is an important dra
back of the method, especially when we are looking for cr
cal exponents or when we introduce the effects of tempe
ture on the system.

Recently, to avoid these problems, Bassler and Paczus14

introduced a simple cellular automata to study the beha
of the vortex lattice in type-II superconductors. This cellu
automata avoids part of the relevant physics of the vor
lattice such as the variation of the pinning strength with
increasing field, the possible mismatch between the vo
lattice and the pinning centers, the elasticity of the vor
lattice, etc. However, it contains the interaction between v
tices and pinning centers, and the long-range order of
vortex interaction, first by introducing parameterr ~see be-
low!, and then implicity assuming that each lattice cell co
tains more than one vortex. In addition, it is able to pred
the self-organization of the lattice in a critical state char
terized by power-law-distributed avalanches14,15and the irre-
©2001 The American Physical Society01-1
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versibility of magnetization. Then, aimed at describing t
influence of temperature on this critical state, we adopt
model with some modifications.

The cellular automata consists of a two-dimensional
honeycomb lattice, where each site is characterized by
number of vortices on it,m(x), and by its pinning strength
V(x), equal to 0 with probabilityp, and toq with probability
12p. The force acting on a vortex at sitex in the direction of
site y is calculated as

Fx→y52V~x!1V~y!1@m~x!2m~y!21#

1r @m~x1!1m~x2!2m~y1!2m~y2!#, ~1!

wherex1 andx2 are the nearest neighbors ofx ~other thany),
while y1 andy2 are the nearest neighbors ofy ~other thanx)
andr is a measure of their contribution on the total force
the vortexx (0,r ,1). A vortex in sitex moves to its neigh-
bor sitey if the force acting on it in that direction is greate
than zero. If the force in more than one direction is grea
than zero, then one of them is chosen at random.14–16

To introduce the effect of temperature, we assumed
sites where the forces are lower than zero still have a p
ability of motion given by

Px→y;exp@2U~ j !/kT#, ~2!

wherek is the Boltzman’s constant andT is the temperature
The current,j, was locally calculated using the gradient
m(x), and U( j ) represents different pinning barriers pr
posed in the literature:U( j )5Uoj c / j , U( j )5Uoln(jc /j),
andU( j )5Uo(12 j / j c).

25

An avalanche starts by randomly choosing a lattice s
and calculating Eq.~2!. If it is smaller than a random numbe
the procedure is repeated, or else the vortex moves per
ing its neighbors. Then, the direction of motion of the ne
unstable vortices is calculated using Eq.~1!. At this point, all
the sites are updated in parallel until no more unstable s
persist. The avalanche size is defined as the number of
plings corresponding to the thermal activation of one vort
while the avalanche duration is defined as the numbe
updatings necessary to complete one avalanche.

In all cases the procedure was repeated for 104 Monte
Carlo Steps~MCS! were one MCS was defined by theL2

calculation of Eq.~2!, and lattices up toL5200 were used.
The initial configuration was obtained by slowly adding vo
tices to the system~at T50) until a critical slope was
reached.14 The boundaries ‘‘parallel to the net vortex m
tion’’ were assumed periodic, while the other two were fix
to mimic the applied external field. All of the calculation
presented in the paper were done with the following se
parameters: (r ,p,q)5(0.1, 5, 0.1! , but similar results were
obtained using other values.14

The magnetizationM was calculated as the mean ma
netic field inside the sample minus the external appl
field,17 i.e.,

M5(
i 50

i 5L

B~ i !2H, ~3!
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whereH is the field, i.e., the number of vortices at the bo
ders of the lattice.

III. NUMERICAL RESULTS

Figure 1 shows typical relaxation curves obtained for s
tems of different sizes using a vortex glasslike poten
U( j ); j c / j ~Ref. 25! and the algorithm described above.
Fig. 2 is represented the relaxation curve for a system w
T;`. At this temperature, the thermal activation is so hi
that vortices would be continually jumping from their pin
ning centers, which allows the avalanchelike behavior pre

FIG. 1. Magnetic relaxation curves for systems of sizesL560,
100, and 200.U( j ); j c / j , Uo /kT510. The inset shows the dat
collapse of the curves.

FIG. 2. Magnetic relaxation curves for systems of sizesL560,
100, and 200.U( j ); j c / j , Uo /kT50. The inset shows the collaps
of the curves.
1-2
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THERMALLY ACTIVATED AVALANCHES IN TYPE-I I . . . PHYSICAL REVIEW B 63 094501
ously explained to be disregarded~see Sec. V for a more
careful discussion of this point!, eliminating the calculation
of Eq. ~1! after a thermal jump.

In both figures ~see also the inset! three regimes are
present: a plateau, then a logarithmic relaxation, and fin
another plateau due to finite-size effects. Only the time sc
for these regimes are different, but this is irrelevant from
experimental point of view. So, as already noted before,22,23

our results suggest that it is not possible to decide about
existence of thermally activated vortex avalanches fr
‘‘simple thermodynamic magnetic’’ relaxation measur
ments. Other pinning potentials as well as differentUo/kT
relations were used25 and no fundamental differences wit
the previous results were obtained.

Figures 3 and 4 represent the integrated~the meaning of
this name will be clarified below! distribution of avalanche
sizes,Dint(s), and the integrated distribution of avalanc

FIG. 3. Avalanche size distribution forL5200, U( j );(1
2 j / j c), andUo /kT510.

FIG. 4. Avalanche time distribution forL5200, U( j );(1
2 j / j c), andUo /kT510.
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times,Dint(t), obtained using a classical Anderson-Kim p
tential, U( j )5Uo(12 j / j c),

26,25 for a system withL5200
and Uo /kT510; as before, other pinning potentials we
also used, resulting in a similar behavior. These distributi
were obtained using the avalanche sizes and times~defined
in Sec. II! obtained during all the relaxation processes.

As Figs. 3 and 4 clearly show, many sizes of avalanc
emerge. Itdoes notmean the system is critical; instead, it
relaxing from a critical state to its corresponding thermod
namic equilibrium. What we are showing is that this rela
ation could proceed by means of many sizes of avalanche
accordance with recent experimental results.24 However,
somehow more surprisingly, we will show in the next secti
that the exponents characterizing these distributions are
lated through simple scaling relations to the exponents
rived in the context of the SOC for systems in a critic
state.14,15

Considering thatDint(s) follows a power law,

Dint~s!;s2tn, ~4!

the estimated exponent from Fig. 3 wastn52.7060.1 ~dif-
ferent from thet51.63 obtained in Refs. 14 and 15 for
field-driven experiment! and, assumingDint(t);t2t tn for the
integrated distribution of avalanche times, we obtained fr
Fig. 4, t tn54.060.2.

It is worth mentioning here that the exponenttn was also
experimentally determined in Ref. 24 and reported astn

52.0, lower than our value. This divergence can be
plained since Figs. 3 and 4 represent the distribution of a
lanches obtained for all relaxation processes, i.e., startin
the critical state and finishing at equilibrium, a situation im
possible to account for in real experimental situations.

We obtained different estimates fortn andt tn if, instead
of the previous distributions, we used distributions of av
lanche sizes and times obtained during the incomplete re
ation of the critical state. In fact, Fig. 5 represents five a
lanche size distributions,P(s), obtained for different time
intervals of the relaxation curve, from the upper to the low
curve, t51210, t5112100, t510121000, t51001
210 000, andt510 0012100 000 MCS, which superposi
tion corresponds to the full relaxation of the system~see Fig.
1!. The straight line represents the integrated distribution
avalanche sizes,Dint(t), obtained in Fig. 3,t52.7. Then,
from the figure we can conclude that different exponents
be predicted depending on the range of times measured
short enough times, the exponent is lower than that ass
ated withDint , while for long times a peaked distribution i
obtained with only very small avalanches.

Another source for discrepancies between our numer
estimates and experimental situations comes from the cha
of regimes of relaxation. In fact, there is nota priori justifi-
cation to assume that many sizes of avalanches will domin
the relaxation process within all the ranges ofj and T, a
situation that was thoroughly analyzed in Refs. 22 and
and is discussed in a different context in Sec. V.
1-3
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IV. SCALING RELATIONS

Instead of first presenting the derivation of our scali
relations, we prefer to start with a short review of som
important scaling concepts of the theory of self-organiz
criticality.

Following the ideas of Baket al.3,4,8, those systems tha
behave as predicted by SOC show a distribution of avalan
sizes and times that follow power laws, i.e.,

P~s!;s2t ~5!

and

P~ t !;t2t t, ~6!

respectively. For systems not exactly in the critical sta
these expressions transform into

P~s!;s2t f ~s/sc! ~7!

and

P~ t !;t2t t f ~ t/tc!, ~8!

where sc and tc reflect the departure of the system fro
criticality, sc;( j c2 j )21/s1 and tc;( j c2 j )21/s2, wheres1
and s2 are new critical exponents and where the funct
f (x) has the following properties:f (x)→constant if x
→0 and f (x)→0 if x→` in order to recover the ‘‘critical
picture’’ when j ; j c .

In finite-size systemssc andtc also reflect the effect of the
sample dimensions through two new critical exponentsD
andz. In fact, analogous to the theory of critical phenome
sc;LD and tc;Lz. Furthermore, the coherence lengthj di-
verges at the critical state as

j;~ j c2 j !2n. ~9!

FIG. 5. Avalanche size distribution forL5200, U( j ); j c / j ,
Uo /kT510. From the upper to the lower curve:t51210, t511
2100, t510121000, t51001210 000 andt510 0012100 000
MCS. The straight line represents a power law with exponent 2
09450
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From the definitions ofsc , tc , and Eq.~9! it is straight-
forward to show thatsc;j1/ns1 and tc;j1/ns2. Moreover,
since for a finite-size system at the critical statej5L, our
first scaling relation takes the form

D

z
5

s1

s2
. ~10!

As already discussed above, the integrated distribution
avalanche sizes and times, calculated in Sec. II,Dint(s) and
Dint(t) result, since the system is relaxing from avalanch
obtained for values of current densities ranging fromj c to j.
These distributions are different from those obtained in ty
cal field-driven experiments or simulations, since the last
obtained ‘‘in principle’’ for a fixed value of current densit
j c , which, indeed, determines the criticality of the system

Then, it is natural to assume thatDint(s) andDint(t) are
related to the distributions obtained just at the critical sta
D(s) andD(t), by the following formulas:

Dint~s!;E
j c

0

s2t f ~s/sc!d j ~11!

and

Dint~ t !;E
j c

0

s2t t f ~ t/tc!d j , ~12!

which immediately explain the meaning of the label ‘‘int
grated’’ used for these distributions.

Then substituting the definitions ofsc and tc in Eqs.~11!
and ~12! and after a simple change of variables, we obt
the following expressions for the integrated distributions
avalanche sizes and times:

Dint~s!5s2t1s1E
0

s(2 j c)1/s1

s1xs121f ~x!dx, ~13!

Dint~ t !5s2t t1s2E
0

s(2 j c)1/s2

s2xs221f ~x!dx, ~14!

which prove that for large enoughs both integrals are con
stants, and there is not a cutoff length in the integrated
tributions, a result already obtained in our simulations~see
Figs. 3 and 4!.

Also from Eqs. ~13! and ~14! and the definitions of
Dint(s) andDint(t) we can immediately obtain the following
scaling relations:

tn5t1s1 , ~15!

t tn5t t1s2 , ~16!

which in combination with Eq.~10! leads to

D

z
5

tn2t

t tn2t t
. ~17!

In this way expression~17! establishes a connection be
tween the exponents obtained in field-driven experiments
simulations,t,t t ,D,z, and those from thermally activate

.

1-4
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THERMALLY ACTIVATED AVALANCHES IN TYPE-I I . . . PHYSICAL REVIEW B 63 094501
avalanchestn ,t tn . In fact, the results obtained in our simu
lations and those obtained in Refs. 14 and 15 hold the
vious relation.

However, some points deserve further discussion.
power-law divergence ofsc , tc , andj are strictly valid close
to the critical state,j c . Far away from this state these dive
gencies no longer exactly hold; however, considering
good results obtained in the check of our calculations
scaling law~17!, we believe that this last assumption is n
relevant for the solution of the model. Also, scaling law~17!
was obtained assuming the complete relaxation of the
tem, so it is difficult to be proved in real experiments.

V. APPLICABILITY

Our previous picture assumes that a thermally activa
vortex jump would affect its neighborhood, generating
instability that leads to a cascade of vortex jumps related
the vortex distribution into the sample.

However, the existence of a characteristic time for th
mally activated phenomenat th5to exp@U(j)/kT# is well
known, representing the time a vortex spends at a pinn
site before jumping due to thermal activation.25

This means that our model will be valid if these av
lanches occur within times lower thant th , i.e., the ava-
lanches should develop fast enough to be mutually indep
dent. This resembles the idea developed by Vespign
et al.27 in the context of sandpile and forest fire mode
They showed through simulations and mean-field consid
ations that one necessary condition for the occurrence
SOC, at least in these models, is the separation of time sc
between the external excitation and the response of the
tem.

Then, as mentioned above, the maximum time that
avalanche persists istc5tco(12 j / j c)

21/s2, wheretco is the
time a vortex spends moving from one site to another, an
course depends on the local current and flux density in
system. Considering that the vortices are separated by a
tancea, the time they spend traveling this distance is

tco5
a

v
, ~18!

wherev depends on the Lorentz force acting on the vor
v5 j Fo /h, anda5(Fo /B)1/2, which immediately gives the
following dependence oftco with j andB:

tco5
h

jA~FoB!
. ~19!

In the critical stateB varies along the sample. This varia
tion is, even in the presence of thermal activation, very w
accounted for by the Bean model.1,28 This means that, for a
fully penetrated sample,

B~x!5moH2mojx, ~20!

where H is the external field. Then, substituting Eqs.~19!
and ~20! in the definition oftc , we obtain
09450
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tc5
h~12 j / j c!

21/s2

j Fo
1/2AmoH2mojx

. ~21!

Now, to determine the regime of applicability of ou
model, we must verify under which conditions the inequal
tc!t th holds.

From the experimental point of view, the relevant av
lanches to be detected measuring the fluctuations in the m
netization decay24 are those starting at the border of th
sample, since they are the ones that produce changesm.
Moreover, the avalanches starting at the border of the sam
are also those with longer duration times since they hav
larger area for spreading~remember that the critical state in
type-II superconductor is symmetric with respect to the c
ter of the sample!. Then, we may assume in Eq.~21! that x
50 and obtain the following inequality:

h~12 j / j c!
21/s2

j Fo
1/2AmoH

!toexp@U~ j !/kT#, ~22!

which can be written as

j *

j

1

~12 j / j c!
1/s2

!exp@U~ j !/kT#, ~23!

where j * 5(Foh/AH)to . Assuming, for example,U( j )
5Uoln(jc /j),25 the previous inequality takes the form

j * j a21

j c
a

~12 j / j c!
21/s2!1, ~24!

anda5Uo /kT.
It is then straightforward to demonstrate that Eq.~24!

holds under the following conditions: ifa@1, j must be
much lower thanj c ( j ! j c). In the opposite casej * ! j
! j c . Similar expressions can be derived for the Anders
Kim potentials and from potentials derived from the colle
tive pinning theory.25

These conditions are consequences of the competition
tween the increase oft th when j→0 and the divergence oftc
when j→0 and j→ j c , see Eq.~21!, and can be interpreted
in the following way. Close toj c the avalanche durations ar
very high because the avalanche sizes become huge, so
always needs to be far fromj c , a situation often accounte
for in high-temperature superconductors,18 to assure that
tav!t th . Particularly forUo!kT, when thermally activated
jumps become frequent (t th small!, high enough currents (j
@ j * ) are also necessary to assure rapid vortex motion d
ing the avalanche, and hence short avalanche time durat
From the experimental point of view these conditions sho
be taken with some caution. For example, sincej c decays
with temperature,25 for Uo!kT, the range of current densi
ties where thermally activated avalanches could appea
still narrower than that suggested by a simple inspection
the formula j * ! j ! j c , so we strongly recommend lookin
for these avalanches at low temperatures and in very di
dered systems whereUo@kT.
1-5
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In light of these results it is useful to come back to t
experiment of Aegerter.24 He found one critical exponen
characterizing the avalanche size distribution during the
laxation of the magnetization and found that this expon
was independent of the temperature of the system. Neithe
these results contradicts our model. Even when his crit
exponent was 2.0 and ourtn52.7, Fig 5 indicates that sma
exponents are associated with short relaxation times in
model. This suggests that, if in the experiment of Ref. 24
time window had been shifted to larger times, an expon
closer to our exponent would have been observed. This d
not mean, of course, that such a shift can be trivially p
formed in practice.

In addition, he found during the relaxation one initial r
gime where avalanches are not power law distributed. W
he explained that this was due to a transient period the
tem takes to reach the SOC, our results suggest a diffe
explanation. During this period the system is still too close
the critical statej ; j c , and power-law avalanches are not y
developed since the thermally activated avalanches ove
each other. This explanation is consistent with the long ti
period associated with this transient period, and with the
pendence of this time on the temperature. Experiment
Aegerter found that longer times are associated with hig
temperatures and in fact, in our model higher temperatu
imply the necessity of lower values of the relationj / j c to
find power-law-distributed avalanches, and this means lon
transient periods.
n

J
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VI. CONCLUSIONS

In conclusion, we developed a simple scenario to expl
recently reported thermally activated avalanches power
distributed for type-II superconductors. We proved that
exponents associated with these distributions depend on
time interval of the measurement. We also proved that
exponents characterizing a distribution of thermally activa
avalanches obtained during the whole relaxation experim
~i.e., from the critical to the equilibrium states! are related to
those obtained in field-driven experiments by scaling re
tions, a situation also supported by our simulations. The c
ditions for the appearance of these avalanches were
cussed, and it was also proved that, in a rou
approximation, they do not depend on the pinning mec
nism in the sample. All our theoretical predictions are co
sistent with known experimental results.
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