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Influence of the dipolar interaction on phase diagram, magnons, and magnetization
in quasi-one-dimensional antiferromagnets on a hexagonal lattice
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The role of the dipole-dipole interaction in quasi-one-dimensional antiferromagnets is investigated within a
Heisenberg model with nearest-neighbor exchange. We deal with systems in which the magnetic ions are
located on a hexagonal lattice, i.e., frustration is present when three-dimensional order sets in. We perform a
ground-state calculation for different ratios of dipolar energy to interchain-exchange energy and find several
commensurate and incommensurate phases. This is a consequence of the competing character of these two
interactions. For the commensurate phases the influence of fluctuations is studied by means of linear spin-wave
theory. It turns out that all commensurate phases are stable against fluctuations. The theoretical spin-wave
spectra are compared with experiments on CsMnBr3 and RbMnBr3. The results suggest that the most important
source of anisotropy in these Mn compounds is the dipole-dipole interaction. Furthermore the magnetic phase-
diagram for small dipolar energies is investigated. A spin-wave calculation allows one to calculate the influ-
ence of the fluctuations on physical properties like ground-state energy and magnetization. These results
compare favorably with measurements on CsMnBr3.
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I. INTRODUCTION

The interest in unconventional magnetic systems has b
renewed in the last few years.1 Competing interactions a
well as geometric frustration due to the underlying lattice c
lead to unconventional ground states, unique phase diagr
and novel critical phenomena.2 The fact that the ground
states in these systems are highly degenerate and becau
the low dimensionality the contributions of fluctuations
physical observables are enhanced.

In real magnets the dipole-dipole inter-action~DDI! is
always present in addition to the exchange interaction.
though the DDI is usually two to three orders of magnitud
lower than the exchange interaction, it is nevertheless cru
to study its implications in the physics of phase transitio
Due to its anisotropic and long-range character the D
changes the physics in the critical region qualitatively3 and
has also a drastic influence on ground states and excita
spectra4,5 especially in low-dimensional systems.

In this work we particularly study the influence of th
DDI on quasi-one-dimensional antiferromagnetic spin s
tems on a hexagonal lattice. In these compounds the
change interaction along single chains~intrachain-
interaction! is several orders of magnitude larger than t
interaction between different chains~interchain-interaction!.
The intrachain as well as the interchain interaction are a
ferromagnetic. The quasi-one-dimensionality appears du
the fact that one has direct superexchange along the ch
whereas the interaction between chains is mediated by
nonmagnetic ions.

The quasi-one-dimensional systems, which have b
studied most intensively in the context of Haldane’s phas6

solitonic excitations7 and the effects of magnetic frustration8

are the ternary compoundsABX3 (A alkaline, B transition
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metal, andX halogen!. In these systems the carrier of th
magnetic moment, the B ions, are located on a hexago
lattice,8 leading to frustration effects when three-dimension
order sets in. We are mainly interested in the Mn co
pounds; due to the fact that their spin valueS55/2, spin-
wave theory should be a good approximation. Furthermo
as the orbital angular momentumL is zero apart from smal
relativistic corrections and therefore the crystal-field anis
ropy is only of the order of at most 20% of the dipol
energy,9 the DDI should be the most important source
anisotropy.

The role of the dipolar interaction in ferromagnetic sp
chains, which are coupled antiferromagnetically has b
studied quite well.10,4,11For CsNiF3, for example, the dipolar
origin of the unexpected collinear ground state was elu
dated, the spin-wave dispersion calculated in a dipo
Heisenberg model was successfully compared with the
periment and furthermore it was possible to determine a
liable value of the strength of the interchain exchan
interaction.12

The influence of the DDI on the properties of quasi-on
dimensional antiferromagnetic spin chain systems on
other hand, has not yet been studied very thoroughly.
stead, the DDI is often replaced by a single-ion anisotrop13

truncated after the first term14 or the coupling between spin
chains is neglected entirely.15 Therefore the effect of the DD
is studied in a systematic way in this paper.

The outline of the paper is as follows. In Sec. II we intr
duce the model, in Sec. III we calculate the ground states
the whole parameter region of the ratio of dipolar energy
interchain exchange energy without magnetic field. Th
ground-state investigations are supplemented by a lin
spin-wave calculation in Sec. IV for the commensura
phases; in this section we also compare our findings w
©2001 The American Physical Society25-1
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M. HUMMEL, F. SCHWABL, AND C. PICH PHYSICAL REVIEW B63 094425
neutron scattering measurements of the spin-wave dispe
in CsMnBr3. In Sec. V we examine the magnetic phase d
gram for low dipolar energies for fields both parallel a
perpendicular to the chain direction. Based on these gro
states we perform a spin-wave calculation and investigate
influence of fluctuations on the magnetization. We show t
quantum fluctuations in our dipolar model are responsible
the huge anisotropy of the magnetization found in exp
ments. In Appendix A the formulas for the spin-wave spec
of the dipolar 120° structure with an applied field are give
whereas the dipolar tensor is briefly discussed in Appen
B.

II. MODEL

The Hamiltonian of the dipolar antiferromagnet witho
applied field reads

H52 (
lÞ l 8

(
ab

~Jll 8d
ab1All 8

ab
!Sl

aSl 8
b , ~1!

with spins Sl at hexagonal lattice sitesxl . The first term
describes the exchange interactionJll 8 which includes the
intrachain as well as the interchain interaction. In the follo
ing we consider only nearest-neighbor exchange, i.e.,

Jll 85H 2J l,l 8 along the chains,

2J8 l ,l 8 within the basal plane.

For a hexagonal lattice, where the sites of the magnetic
are indexed byxl5a( l 1m/2,A3/2•m,c/a•n) with l ,m,n in-
teger, the Fourier transform of the exchange energy is gi
by

Jq522J cosqz22J8Fcosqx12 cosS qx

2 D cosSA3

2
qyD G .

~2!

Here and in the following we measure wave vectors in ch
direction in units of 1/c, and wave vectors within the bas
planes in units of 1/a.

The second term in Eq.~1! is the classical dipole-dipole
interaction

All 8
ab

52GS dab

uxl2xl 8u
3

2
3~xl2xl 8!a~xl2xl 8!b

uxl2xl 8u
5 D , ~3!

whereG51/2(gmB)2 in cgs units. This term is evaluated b
means of the Ewald summation technique,16,17 which allows
the consideration of the long-range nature of the thr
dimensional DDI in terms of fast convergent sums.

III. GROUND STATES

In this section we calculate the classical ground state
the system as a function of the ratio of the dipolar energy
the interchain exchange interaction

k85
~gmB!2

VzJ8
, ~4!
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ion
-

nd
he
t
r

i-
a
,
ix

-

ns

n

n

-

of
o

whereVz5(A3/2)a2c is the volume of the primitive cell of
the hexagonal lattice~see Fig. 1!.18 Due to the quasi-one
dimensionality of the systems~the ratio J8/J is
1022. . .1023) we consider only antiferromagnetic spin co
figurations along the chain axis, i.e., we restrictqz to p. The
ground-state energy reads

Eg52 (
lÞ l 8

SlMll 8Sl 852(
q

SqMqS2q ~5!

with

Mq5S Jq1Aq
11 Aq

12 Aq
13

Aq
21 Jq1Aq

22 Aq
23

Aq
31 Aq

32 Jq1Aq
33
D , ~6!

where generallyAq
i j 5Aq

j i for iÞ j and Aq
135Aq

2350 for qz

5p. The ground states are specified by those wave vec
which belong to the largest of the three eigenvalues of
matrix Mq given by

l15Jq1Aq
33,

l2,35Jq1
1

2
~Aq

111Aq
22!6

1

2
A~Aq

112Aq
22!214~Aq

12!2. ~7!

The competing quality of the exchange and dipolar int
action becomes clear in Fig. 2. If we change the relat
strength of the two interactions one can see, that the w
vector minimizing the ground state energy is situated at
ferent points of the Brillouin zone.

Particularly note the linear slope of the dipolar tens
components at theH point of the Brillouin zone. For decreas
ing k8 we obtain the following phases, where the actu
value of J has no influence on the results, as long asJ
@J8,(gmB)2/Vz ~the numerical values are valid for the la
tice of CsMnBr3,19 i.e., c53.26 Å, a57.61 Å!.

A. Ferromagnetic phase

k8.k185200.50. In the region where the dipolar ener
is large compared to the interchain exchange, the minim
of the ground-state energy is reached at theA point of the

FIG. 1. Upper half of the crystallographic Brillouin zone of th
hexagonal lattice. The wave vectors for the denoted points are g
in Appendix C.
5-2
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INFLUENCE OF THE DIPOLAR INTERACTION ON . . . PHYSICAL REVIEW B63 094425
Brillouin zone, i.e., atq15(0,0,p). This means that spin
within basal planes are ordered ferromagnetically, but s
antiferromagnetically along the chains.

The ground state energy is given by

Eg52NS2S 2J26J81
1

2
~Aq1

111Aq1

22! D . ~8!

Note that the dipolar componentsAq1

11 andAq1

22 have the same

value. This means that the ground-state energy is the s
for spin configurations where all spins are rotated within
basal plane and spins in adjacent planes are oriented an
romagnetically@see also Goldstone mode in the spin-wa
spectrum, Eq.~18!#.

B. Incommensurate phase I

k18.k8.k285200.12. The ground state is an incomme
surate phase in this parameter region. The wave ve
moves continuously fromq1 to the wave vectorq2

5(0,2p/A3,p) ~see Fig. 3, Fig. 4, and thick solid line i
Fig. 5! or any other path rotated by 60°~dashed lines in Fig.

FIG. 2. Exchange interaction~solid line! and dipolar tensor for
some directions in the Brillouin zone. Long-dashed:Aq

11, dotted:
Aq

22, and dot-dashed:Aq
12. To see the behavior of the dipolar tens

more clearly, we setc/a5A2/3. The numerical values of the dipo
lar tensor are given in units ofG/Vz and the values for the exchang
constants are set toJ51 andJ850.2. Aq

135Aq
2350 for qz5p.

FIG. 3. Wave vector which minimizes the ground state ene
in the incommensurate phase I as a function ofk8.
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ll

me
e
er-

-
or

5!. This is due to an increase inJq from A to L whereasAq
ab

decreases.

C. Collinear phase

k28.k8.k38517.25. Spins within basal planes are o
ented ferromagnetically in chains, that are aligned antifer
magnetically to one another~see Fig. 6!. Because of the six-
fold symmetry, there are six such ground states resul
from rotation of the ferromagnetic chains. This means t
the minimum of the ground state energy is reached at
points L, L8 and the ones rotated by 60° in the Brillou
zone. Note that the continuous degeneracy is lifted.

The ground state energy for the domain drawn in Fig
reads

Eg52NS2~2J12J81Aq2

11!. ~9!

For a domain where the ferromagnetic chains are rotated
60° around thez axis the ground state energy is given by

Eg52NS2~2J12J8!2
1

4
NS2~Aq5

1113Aq5

2222A3Aq5

12!,

~10!

with q55(p,p/A3,p). These two ground state energies a
the same, which can be shown by exact relations for
dipolar tensor components. The third domain is described
the wave vectorq65(p,2p/A3,p).

y

FIG. 4. Dependence of the ordering wave vector in the IC
phase on the value ofk8.

FIG. 5. Paths of the wave vector that minimize the ground-s
energy in the Brillouin zone of the hexagonal lattice (qz5p).
5-3
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M. HUMMEL, F. SCHWABL, AND C. PICH PHYSICAL REVIEW B63 094425
Note that if we didn’t consider the IC I phase, the tran
tion from the ferromagnetic to the collinear phase wou
appear atk85200.31, i.e., exactly betweenk18 andk28 . How-
ever, the ground state energy of the incommensurate p
betweenk18 andk28 is lower than both the one for the ferro
magnetic as well as the one for the collinear phase.

D. Incommensurate phase II

k38.k8.0. In this incommensurate phase the wave v
tor moves fromq2 to q35(2p/3,2p/A3,p). The incommen-
surability for low dipolar energy appears because of the fin
slope of the dipolar tensor atq3 ~Ref. 11! and the parabolic
behavior of the exchange energy.

The expansion of the largest eigenvalue of Eq.~7! around
(2p/3,2p/A3,p) leads to the following ground-state en
ergy:

EgS 2p

3
2qx ,

2p

A3
2qy ,p D

'2NS2S 2J13J82
3

4
J8~qx

21qy
2!

1
~gmB!2

Vz
~0.0464qx10.0036qy

2! D . ~11!

One can see that without dipolar energy~i.e., k850) the
lowest ground state energy is reached forq5q3

5(2p/3,2p/A3,p). However, for any infinitesimal dipola
energy the system is driven to an incommensurate orde
wave vector. The 120° phase established for vanishing d
lar energy is reached asymptotically~see Fig. 4!.

E. 120° structure

k850. This ground state is characterized by a thr
sublattice spin configuration in each basal plane, i.e., by
wave vectorq3 (H8) and the correspondent rotated ones.

We state that for all four phases, in which the DDI
nonzero the coupling of the spin space to the real space
duced by the DDI forces the spins to align within the latti
basal planes. Thus, the DDI leads to an in-plane anisotro

FIG. 6. Spin configurations within the basal plane for differe
ratios of dipolar to interchain interactionk8. Only for k850 the
120° structure is established. For infinitesimalk8 the phase IC II is
favored. The spin configurations of the incommensurate phase
not sketched.
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The phase diagram for the whole parameter region ofk8
is shown in Fig. 6. In summary, we find three commensur
and two incommensurate phases as function ofk8.

IV. MAGNON SPECTRA

To see whether fluctuations destroy the ground sta
found in the previous section we perform a spin-wave cal
lation. To that end we write the Hamiltonian~1! in terms of
creation and annihilation operators employing the Holste
Primakoff transformation20

S̃l
15A2S flal ,

S̃l
25A2Sal

†f l ,

S̃l
z5S2al

†al ~12!

with

f l5A12
al

†al

2S
~13!

and S65Sx6 iSy. The tilde denotes the fact that these o
erators have to be utilized in the rotated frame, where
local z axis is aligned in the spin direction of the classic
ground state. The Fermi commutation relations for the ope
tors ~12! are satisfied if the creation and annihilation ope
tors a and a† obey Bose commutation relations. For lo
temperatures an expansion up to bilinear terms can be u
leading to linear spin-wave theory. The Hamiltonian then
diagonalized with a Bogoliubov transformation or the me
ods of Greens functions leading to the spin-wave frequen
of the system. The investigation described above is restric
to the commensurate phases, because the infinite prim
cell of the incommensurate phases resists such an analy

A. Ferromagnetic phase

The magnon spectrum of the ferromagnetic phase is
culated in the crystallographic Brillouin zone~see Figs. 7
and 8! The transformation to the local coordinate syste
reads

Sl
x5s l S̃l

z ,

Sl
y5s l S̃l

x ,

Sl
z5S̃l

y , ~14!

where

s l5eiq1xl5einp5H 1 l Pplane 1~n50 mod 2!,

21 l Pplane 2~n51 mod 2!
~15!

mediates between the two different sublattices. After ins
ing Eqs. ~12!, ~14!, and ~15! into the Hamiltonian~1! we
obtain in linear spin-wave theory

t

re
5-4
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INFLUENCE OF THE DIPOLAR INTERACTION ON . . . PHYSICAL REVIEW B63 094425
H5Eg1(
q

H Aqaq
†aq1

1

2
Bq~aqaÀq1aq

†a2q
† !1Cqaqa2q2q1

1Cq* aq
†a2q2q1

† 1Dqaq
†aq1q1

1Dq* aq1q1

† aqJ ~16!

with

Eg52NS2~Jq1
1Aq1

11!,

Aq52S~Jq1
1Aq1

11!2S~Jq1q1
1Aq1q1

22 !2S~Jq1Aq
33!,

Bq5S~Jq1Aq
33!2S~Jq1q1

1Aq1q1

22 !,

Cq5 iSAq
23,

Dq52 iSAq
23. ~17!

This quadratic Hamiltonian is diagonalized by the equatio
of motion for proper Greens functions21 leading to the exci-
tation spectrum

Eq
(1,2)5A1

2
~V16V2!, ~18!

FIG. 7. Magnons of the ferromagnetic phase in the magn
Brillouin zone. Top: in chain direction, bottom: perpendicular to
(k51022,k85103).
09442
s

where

V15Aq
21Aq1q1

2 2Bq
22Bq1q1

2 18CqCq1q1
~19!

and

V2
25~Aq

22Bq
22Aq1q1

2 1Bq1q1

2 !2

116$Cq~Aq1Bq!2Cq1q1
~Aq1q1

1Bq1q1
!%

3$Cq1q1
~Aq2Bq!2Cq~Aq1q1

2Bq1q1
!%. ~20!

Here we changed to the magnetic Brillouin zone and the
fore obtain two magnon branches.

The rotational invariance of the spins around the ch
axis leads to a Goldstone mode in the spectrum. The s
trum gets unstable fork,k18 at infinitesimal values ofqy

along theA-L direction indicating the transition to the IC
phase.

B. Collinear phase

The collinear phase of Sec. III is also stable against fl
tuations. The spectrum can be calculated in analogy to
spectrum for the ferromagnetic phase; one just has to rep
the ordering wave vectorq1 by q25(0,2p/A3,p). There is

ic FIG. 8. Magnons in the collinear phase fork51022 and k8
5102. Top: Spectrum in the chain direction. Down: Spectrum in t
H direction. Note the energy gap in these spectra.
5-5
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M. HUMMEL, F. SCHWABL, AND C. PICH PHYSICAL REVIEW B63 094425
no longer a Goldstone mode present due to the discrete
generacy of the ground state. This is manifested in the
ference of the dipolar tensor componentsAq2

11 andAq2

22 .

C. 120° structure

We argued in Sec. III that the 120° structure is unsta
for infinitesimal dipolar energy due to a linear slope of t
dipolar tensor at the ordering wave vector. However, to g
insight in the fluctuations we performed a spin-wave cal
lation based on a commensurate 120°-structure, where
spins are located within the basal planes of the lattice,22 i.e.,
we started with the following transformation:

Sl
x5S̃l

x sin~q0xl !1S̃l
z cos~q0xl !,

Sl
y5S̃l

x cos~q0xl !2S̃l
z sin~q0xl !,

Sl
z5S̃l

y . ~21!

Here

q0xl5
p

c S 4c/3a

0

1
D aS l 1m/2

A3/2•m

c/a•n
D 5

4p

3 S l 1
m

2 D1np

~22!

mediates between the six sublattices. Inserting this trans
mation in the Hamiltonian~1! and truncating after the har
monic terms, we get a Hamiltonian with 19 different biqu
dratic terms ~see Appendix A!. This Hamiltonian is
diagonalized by the equation of motion of proper Gree
functions leading to a 12312 matrix; the eigenvalues of tha
matrix give the energies of the spin waves. It turns out t
the spin-wave spectrum is stable for weak dipolar energ
from which we conclude that this commensurate grou
state is a good approximation.

The spin-wave frequencies resulting for the dipolar 12
structure for CsMnBr3 are shown in Fig. 9, where we use
J5215 GHz andJ850.41 GHz respectively.23 This leads to
k850.774, i.e., this substance is deep in the IC II region
the phase diagram in Fig. 6. In the experiment one obse
the 120° structure; this might be caused by crystal distorti
or small additional anisotropies not considered in this pa
such as the spin-orbit coupling.

Including the DDI, of the three Goldstone modes only o
survives reflecting the remaining rotational symmetry arou
the chain axis. The gaps atq50 are given by

E0,152SA4J1~Aq0

112A2q0

33 !A9

2
J81

1

2
~Aq0

112A3q0

11 !,

~23!

E0,252SA4J1
9

2
J81

1

2
~2Aq0

112A0
112A2q0

11 !AAq0

112Aq0

33,

~24!

E0,352SA4J1~Aq0

112A2q0

11 !A9J81~Aq0

112A3q0

11 !. ~25!
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The spin-wave gaps atq50 amount toE0,15198 GHz,
E0,25295 GHz, andE0,35410 GHz for CsMnBr3, which
compares favorably with the experimental values.23,24 Note
that this calculation has no free parameter to fit, since
dipolar energy is determined by the lattice constants.

In Fig. 10 we plotted the spin wave energies in the sa
direction as in Fig. 9 but without dipolar energy. Note th
we have three zeros in the excitation energy in this c
which is at variance with the measurements. Note also
the dipolar gap@Eq. ~24!# which is not present without dipo
lar energy is larger than the gap already present without
polar energy.

We also calculated the spin-wave gaps for RbMnBr3; ne-
glecting crystal distortions we also obtain good agreem
with the experiment.25 Thus, we do not need any single-io
anisotropy to explain these results.

FIG. 9. Excitation energies of the 120° structure perpendicu
to the chain direction. The dots are the experimental values ta
from Ref. 24. The dashed and the full lines are the theoretical
sults, where the dashed branches cannot be seen in this scat
geometry. The full lines are the visible branches.

FIG. 10. Excitation energies of the 120° structure without dip
lar energy. The dashed branches are the ones corresponding
dashed ones in Fig. 9.
5-6
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INFLUENCE OF THE DIPOLAR INTERACTION ON . . . PHYSICAL REVIEW B63 094425
V. MAGNETIC PHASE DIAGRAM FOR LOW
DIPOLAR ENERGY

In the last section we have shown, that the 120° struc
has a stable spectrum for low dipolar energies. In this sec
we illuminate the influence of a magnetic field on the grou
state, the magnon spectrum and the magnetization in
phase, i.e., we investigate the Hamiltonian

H52(
q

(
a,b51

3

~Jqd
ab1Aq

ab!Sq
aSÀq

b 2hANS0
z,y , ~26!

whereh5gmBH0. We distinguish fields along the chain d
rection~z! and perpendicular to that direction (y), i.e., fields
applied within the basal plane. For both cases, we determ
the classical ground state by energy minimization and ca
late the magnon spectrum based on this ground state.

A. Field in chain direction

Numerical minimization of the classical ground-state e
ergy under consideration of exchange energy, dipolar ene
and a magnetic field applied in chain direction shows t
spins on basal-plane lattice sites are arranged on three
lattices, i.e., neighboring spins within basal planes show
phase shift of 120°. However, the applied field forces
spins to tilt in field direction by an anglew. The ground-state
energy reads

Eg52NS2~Jq0
1Aq0

11!2NS2 sin2w@Jq0
1Aq0

112~J01A0
33!#.

~27!

Here w is the angle between the basal plane and the sp
which is the same for all three sublattices. This phase is
well-known umbrella phase. Minimization of the groun
state energy in Eq.~27! leads to the relation between th
applied fieldH0 and the tilting anglew

sinw5
gmBH0

2S@Jq0
1Aq0

112~J01A0
33!#

. ~28!

Equation~28! reduces to the 120° phase found in the pre
ous section for vanishing fields. For infinitesimal field t
spins partially align in field direction; as already stress
spins on different sublattices enclose the same angle with
applied field. The value of the angle increases with incre
ing field. At a critical field

Hc5
1

gmB
2S@Jq0

1Aq0

112~J01A0
33!# ~29!

the system undergoes a phase transition to the paramag
phase. The phase diagram is schematically shown in Fig

The starting point for the spin-wave calculation are t
proper spin variables defined in Eq.~12!, which lead to fluc-
tuations. These variables are found by performing a rota
of the spin variables given in Eq.~21! by the anglew in
chain direction
09442
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S Sl
x

Sl
y

Sl
z
D 5S cosw 0 2sinw

0 1 0

sinw 0 cosw
D

3S S̃l
z cos~q0xl !1S̃l

x sin~q0xl !

S̃l
x cos~q0xl !2S̃l

z sin~q0xl !

S̃l
y

D . ~30!

Note that these spin variables obey Bose commutation r
tions and yield to the correct classical ground state forS̃x

5S̃y50 and S̃z5S, i.e., for the case without fluctuations
Inserting these operators and Eq.~12! into Eq.~26! leads to a
Hamiltonian that has the same structure as the one with
applied field@see Eq.~A1!# and can be diagonalized in th
same way. The spectrum obtained by this calculation
shown for a special direction in Fig. 12.

In comparison to the field-free case the field lifts the d
generacy of all modes. This cannot be seen in the fig
above, because the difference of the gaps is too small.
gaps for the second and third-lowest modes areEq50
5197.27 GHz andEq505198.04 GHz respectively, i.e., th
magnetic field does not changeE0 very much@compare re-
sults from Eq.~23!#, only at the Brillouin-zone boundary is
the difference of the spin-wave frequencies large. Howev
one Goldstone mode is still present since rotational inv
ance around the chain axis is uneffected.

B. Field within the basal plane

1. Ground states

First of all we state, that the direction of the applied fie
within the basal plane is arbitrary for the structure of t

FIG. 11. Phase diagram of the 120° structure with applied fi
in the chain direction.

FIG. 12. Spin-wave frequencies in the chain direction in t
umbrella phase for CsMnBr3 for a magnetic field of 6.5 T.
5-7
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M. HUMMEL, F. SCHWABL, AND C. PICH PHYSICAL REVIEW B63 094425
ground state. This is due to the fact, that the 120° gro
state is rotationally invariant without applied field. In th
following we will apply the field in they direction. To find
the ground state we have to minimize the classical gro
state energy. This is done within a general six-sublattice s
tem, where one has three independent sublattices in eac
two adjacent basal planes~see Fig. 13!.

The ground-state spin configuration of the whole mag
is built up by repetition of this basis. To describe the spa
direction of the spins, we need to know two angles for ev
spin ~spherical coordinates!, as the spin length is fixed. W
formulate the ground state energy in the magnetic BZ
obtain the ground state by numerical minimization of t
ground state energy.

First, we find that the spins staywithin basal planes for
realistic strengths of the dipolar energy for all values of
applied field. The dipolar energy leading to an easy-pla
anisotropy in the field-free case is therefore strong enoug
keep the spins within the basal plane even in the presenc
a competing applied field. With this knowledge the grou
state can be parametrized by six different angles, which g
the direction of any spin within the basal plane. Second
the angles of each two adjacent spins along the chain d
tion ~e.g., spins on sublatticesa andd in Fig. 13! add up to
180° if one measures the angles with respect to thex direc-
tion. This is due to the strong antiferromagnetic exchan

FIG. 13. General six-sublattice structure of the ground state.
direction of every spin can be described by two independent an
the spin length is fixed. The different sublattices are denoteda2 f
and the field is applied within the basal plane (y direction!.

FIG. 14. Notation of the angles on the three independent sub
tices in a specific basal plane.
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interaction along the chains~for infinitesimal fields the spins
along the chains are aligned antiferromagnetically!. There-
fore, the ground-state energy can be written in terms of th
angles only

Eg

NgS2
5~12J824A0,ab

11 !@cos~a2b!1cos~a2g!

1cos~b2g!#1~24J12A0,ad
11 !

3@cos~2a!12 cos~b1g!#

1$2A0,ae
11 @cos~2b!1cos~2g!12 cos~a1b!

12 cos~a1g!#16A0,aa
11 %

22h/S~sina1sinb1sing!. ~31!

HereNg5N/6, h5gmBH0 anda,b,g refer to the angles of
the spins to thex axis ~see Fig. 14!.

To find the minimum of Eq.~31! we differentiateEg with
respect to the three angles. This leads to three equation
the angles in dependence on the field. These equations
not be solved in closed form; however, we can comp
these angles to lowest order inH0 /(8JS), J8/J and
(gmB)2/J8:

sina5
h

8JS
, sine5

h

8JS~22z!
,

cosd5
1

22z
~32!

with z5h2/hc
2 . The critical field to lowest order is

hc
25

48JJ8S2

11
1

3J8
~A0,ab

11 2A0,ae
11 !

. ~33!

Here, we have introduced the notationd5 1
2 (b2g) and e

5 1
2 (b1g).
The qualitative behavior is as follows: As we apply a

infinitesimal field, one spin (a) aligns virtually perpendicu-
lar to the applied field, whereas the other two enclose
angle of 120° and 240° with the first spin, respectively (12
structure!. As the field increasesa remains almost un-
changed, whereas the other two anglesb andg change until
they coincide at a critical fieldHc for z51, i.e.,d50. Above
this field strength

g5b ~34!

and the reorientation of the spins is like at an ordinary tw
sublattice spin-flop phase. However, the anglesa andb do
not add up to 180° as in a simple spin-flop phase. To
lowest order the angles are given by

e
s,

t-
5-8
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INFLUENCE OF THE DIPOLAR INTERACTION ON . . . PHYSICAL REVIEW B63 094425
sina5
h

8JSS 12
3J8

J
1

1

2J
~A0,ad

11 12A0,ab
11 ! D

sinb5
h

8JSS 12
3J8

2J
1

1

2J
~A0,ad

11 1A0,ae
11 2A0,ab

11 ! D .

~35!

These are the dipolar generalization of the results
Chubukov.26 In Fig. 15 we have plotted the numerical r
sults.

At Hpara'154 T the paramagnetic phase is reached
both a field in chain direction as well as perpendicular.

In Fig. 16 the schematic phase diagram for the 120° str
ture with a field applied within the basal plane is show
Note that the dipolar energy in real materials is stro
enough to keep the spins within the basal planes despite
fact that the applied field is competing. Also note, that
in-plane dipolar 120° structure is only realized for vanishi
fields.

2. Magnon spectra

The magnon spectrum for the four phases of the previ
section can be calculated within the crystallographic B
louin zone. We will start from a general ground-state that c
be parametrized by three angles, develop a spin-wave th
and insert the angles found by minimization of the groun
state energy.

First, we introduce

FIG. 15. The angles minimizing the classical ground state
ergy for CsMnBr3. The critical field isHc56.35T.

FIG. 16. Magnetic phase diagram of CsMnBr3 for a field ap-
plied within the basal planes. The 120° phase is realized only
vanishing field. All spins lie in planes perpendicular to the ch
direction, i.e., within thex-y planes. AtHc a phase transition oc
curs from a three-sublattice to a two-sublattice phase.
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g5exp~ iq1xl !5H 1 l Pplane 1 mod 2,

21 l Pplane 2 mod 2,
~36!

and

h5
2

A3
sin~q4xl !5H 0 l Psublattice 1,

21 l Psublattice 2,

1 l Psublattice 3,

~37!

whereq15(0,0,p) and q45(4p/3,0,0). Usingg and h al-
lows us to automatically depict the sublattices which are
rametrized bya, b, andg.

The spin variables in Fourier space are given by

Sq51
aS̃q2q1

z 2c~S̃q2q0

z 1S̃q1q0

z !2bS̃q
x

1d~S̃q22q4

x 1S̃q12q4

x !

1 f ~S̃q12q4

z 2S̃q22q4

z !2e~S̃q2q0

x 2S̃q1q0

x !

bS̃q
z2d~S̃q22q4

z 1S̃q12q4

z !1aS̃q2q1

x

2c~S̃q2q0

x 1S̃q1q0

x !

1e~S̃q2q0

z 2S̃q1q0

z !1 f ~S̃q12q4

x 2S̃q22q4

x !

S̃q
y

2 ,

~38!

where

a5
1

3
~cosa1cosb1cosg!,

b5
1

3
~sina1sinb1sing!,

c5
1

6
~cosb1cosg22 cosa!,

d5
1

6
~sinb1sing22 sina!,

e5
i

2A3
~sinb2sing!,

f 5
i

2A3
~cosb2cosg! ~39!

are some abbreviations for the angular variables. For van
ing field Eqs.~39! reduce to

a5b5d5 f 50, c52
1

2
, e5

i

2
, ~40!

i.e., the spin variables already given in Eq.~21!.
Inserting Eq.~38! in the Hamiltonian of Eq.~26!, truncat-

ing after the harmonic terms and diagonalizing the result

-

r
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M. HUMMEL, F. SCHWABL, AND C. PICH PHYSICAL REVIEW B63 094425
Hamiltonian leads to the spin-wave frequencies~see Fig. 17!
~in Appendix A 2 we give the expressions for the tw
sublattice case explicitly!.

The dipolar energy leads to a lifting of the Goldsto
mode present for the field-free case. This is in contrast to
spectrum obtained for a field appliedin the chain direction,
where a Goldstone mode still remains. Here the magn
field forces the spins to align partially in field directio
whereas the dipolar energy fixes the spins within the ba
planes; a free rotation of the ground-state configurat
around the field direction is therefore impossible in contr
to a field applied in chain direction. This is the physic
explanation for the gap in the excitation spectrum.

In the rest of the Brillouin zone the spectra for an appl
field parallel and perpendicular to the chain direction
basically the same, i.e., the dipolar energy only changes
structure of the excitation spectra near the center of the B
louin zone. However, we will see that these differenc
aroundq50 are crucial for the dependence of the magn
zation on the field direction.

VI. FIELD DEPENDENT MAGNETIZATION AND
COMPARISON WITH THE EXPERIMENT

We now turn to the field dependence of the magnetiza
of a dipolar, hexagonal antiferromagnet taking into acco
fluctuations. We will again distinguish between fields a
plied in the chain direction and fields applied within th
basal plane.

A. Theory

The magnetization can be found from the free energF
via

M52
]F

]H0
. ~41!

The free energy is related to the partition functionZ and the
HamiltonianH by

F52kT ln Z and Z5Sp exp~2bH !, ~42!

FIG. 17. Spin-wave frequencies in chain direction in the tw
sublattice phase for CsMnBr3 for a magnetic fieldH056.5 T
.Hc .
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where b51/kBT. For a field in the chain direction the
Hamiltonian is given in Eq.~A1! and leads to

F i5Eg1
1

12 (
q

~Eq
( i )2Aq2Aq2q0

2Aq1q0
2Aq22q0

2Aq12q0
2Aq23q0

!1kBT(
q

ln~12e2bEq
( i )

!, ~43!

whereq runs over the magnetic Brillouin zone,Eq
( i ) are the

six branches of the magnon spectrum for the case of a fi
applied in chain direction, andAq is given in Eq.~A2!. For
the Hamiltonian of Eq.~A3! ~i.e., a field applied within the
basal planes! one gets

F'5Eg1
1

12 (
q

~Eq
( i )2Aq2Aq2q0

2Aq1q0
2Aq22q4

2Aq12q4
2Aq2q1

!1kBT(
q

ln~12e2bEq
( i )

!. ~44!

TheEq
( i ) are again the six branches of the magnon spectr

but now the ones gained for an applied field within the ba
planes andAq is given in Eq.~A5!.

Generally, the free energy has three contributions: the
one is the classical ground-state energy, the second on
due to quantum fluctuations, whereas the third one is
contribution of thermal fluctuations. To calculate the fr
energy we replace the sums in Eqs.~43!, ~44! by integrals
over the Brillouin zone. Then we have to integrate over
field-dependent spectra for different field strength. Differe
tiating these free energies with respect to the field lead
the magnetization. For the magnetization we find the sa
structure with classical, quantum, and thermal contributio

The integration over the spectrum and the differentiat
with respect to the applied field are done numerically. F
the anglesa,b, andg, which cannot be given analytically
we use the numerically calculated values from the ene
minimization of Eq.~31!, see Fig. 15.

1. Classical contributions

The classical contributions to the magnetization are c
culated via the classical ground-state energies. This yield

M i /NgmB5Ssinw, ~45!

M' /NgmB5
1

3
S~sina1sinb1sing! ~46!

for the field parallel (M i) and perpendicular (M') to the
chain direction, respectively.M i can be calculated analyti
cally @sinw is given in Eq. ~28!#, whereasM' has to be
calculated numerically as the equations following from E
~31! do not have analytic solutions for the tilting angle
a,b,g.

The classical results, which are plotted in Fig. 18, sh
not only an anisotropy for fieldsH0,Hc , but also for fields
H0.Hc . The latter cannot be seen very clearly in Fig. 18
the difference of the values of the magnetization for fie

-
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INFLUENCE OF THE DIPOLAR INTERACTION ON . . . PHYSICAL REVIEW B63 094425
H0.Hc is proportional to the dipolar energy. However, t
magnetization for fields parallel to the chain direction is
ways larger than for fields perpendicular to the chain dir
tion, a fact that can also be seen in experiments.27 This an-
isotropy is of dipolar origin since it is energetically mo
favorable for two spins to align ferromagnetically along th
connecting line than perpendicular to it, which means in
case, that the spins can be tiltedin the chain direction more
easily. However, there are two discrepancies between
classical results and the measurements, namely, the abs
values are different and the experimental anisotropy fo
for H0.Hc is much bigger than the one resulting from Eq
~45!, ~46!.27 In the following we will show that mainly quan
tum fluctuations account for this large effect.

2. Quantum contributions

With the term quantum contributions we address the c
tributions also present atT50, which are given by the de
rivative of the second term in Eqs.~43!, ~44!. These contri-
butions were evaluated numerically for the two fie
directions. One main result of these calculations is, t
quantum fluctuations reduce the absolute value of the cla
cal magnetization by up to 30%.

Field in chain direction. For a field in chain direction
quantum fluctuations reduce the magnetization in the wh
spin-flop phase. In Fig. 19 we plotted the magnetization
field strengths which can be reached in the experiment
the parameters of CsMnBr3. The dashed line in Fig. 19 i
equivalent to the full line in Fig. 18.

Field perpendicular to the chain direction. For fields
within the basal plane we obtain the curves plotted in F
20. Our method leads to an unphysical discontinuity of
magnetization at the transition from the three-sublattice
the two-sublattice phase. Moreover, at the phase transitio
the paramagnetic phase we not only find a discontinuity
the magnetization but we also get absolute values of
magnetization which are larger than the saturation magn
zation. Exactly the same results were theoretically found
Rastelli et al.28 for the case of ferromagnetic spin chai

FIG. 18. Classical results for the magnetization for CsMnB3

(J5213 GHz,J850.50 GHz!. Full line: field in chain direction,
dashed line: field within the basal plane.
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which are coupled antiferromagnetically on a hexagonal
tice. These authors claim, that the discontinuities show,
the system is in some kind of intermediate phase in the tr
sition regions, which consists of a mixture of the two ad
cent phases. Therefore they perform a Maxwell construc
in the free energy and get a plateau in the magnetization28

However, there is no significance for such a plateau
any of the experiments on hexagonal antiferromagnets.27,29

Moreover, the motivation to perform a Maxwell constructio
in the free energy in the regions of the phase transition
not obvious to us. In Sec. VI B we will show that the meth
of calculating the magnetization as the derivative of the f
energy seems questionable at phase transitions.

3. Thermal fluctuations

Let us now discuss the influence of the third term in E
~43!, ~44!. These terms lead to contributions to the free e
ergy due to thermal fluctuations (T.0). To estimate the ef-
fect of thermal fluctuations one would have to compare
temperature at which the measurements were made with

FIG. 19. Magnetization in CsMnBr3. The full line is calculated
under consideration of quantum fluctuations, the dashed line is
classical result.

FIG. 20. Magnetization in CsMnBr3. The full line is under con-
sideration of quantum fluctuations, the dashed line is the class
result.
5-11
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M. HUMMEL, F. SCHWABL, AND C. PICH PHYSICAL REVIEW B63 094425
one corresponding to the anisotropy. However, we p
formed a numerical calculation of the integrals, which sho
that thermal contributions are not important at temperatu
at which the experiments are performed. For CsMnB3,
which has a Nee´l temperature ofTN58.3 K,23 one gets for
T51.8 K, a typical temperature where measurements in
ordered phase are performed

F th~T51.8 K!/F0&1024.

Thermal fluctuations therefore cannot be responsible for
large anisotropies in the field-dependent magnetization, c
pare Ref. 30.

B. Results for a topological similar dipolar system

For hexagonal antiferromagnets without dipolar energ
was shown by Zhitomirsky and Zaliznyak31 that the magne-
tization is different depending on whether one calculates
derivative of the free energy or the mean value of the s
projection on the magnetic field. However, these auth
were able to show, that the two results are the same up to
first order in the ratioJ8/J in these systems. Santiniet al.14

also called attention to this fact. However, they analyzed
magnetization by means of a Monte Carlo simulation.

In the following we study the phase diagram and the
sulting magnetization for the two-dimensional dipolar an
ferromagnet on a square lattice with longitudinal field. T
reason to investigate this system is that its phase diagram
the same topology as the one of the hexagonal antiferrom
net, i.e., it has phases which can, depending on the ma
tude of the field, classically be described by one or two
dependent angles with respect to the applied field. The ph
which is parametrized by two angles is called the interme
ate phase, whereas the phase where one angle suffices
spin-flop phase.32 At a critical field strength the system un
dergoes the same kind of phase transition as the hexag
antiferromagnet, namely two angles coincide. For high fie
we find a transition to a paramagnetic phase in both syste

However, in the two-dimensional system we are able
calculate the magnetization not only by using the free ene
but also by directly calculating the mean value of the s
projection on the field. In principle, this is also possible f
the dipolar, hexagonal antiferromagnet, but fails due to
complicated Hamiltonian of Eq.~A3!. Due to the six sublat-
tices one would have to calculate six Greens functions ou
the twelve equations of motions~i.e., theeigenvectorsof the
equations of motion! and integrate them over the first BZ
which is a numerically hopeless task. Note that we only h
to calculate theeigenvaluesof the matrix describing the
equation of motion to find the magnon energiesEq

( i ) , which
are needed to calculate the free energy. All in all this me
that we are numerically able to calculate the free ener
whereas the direct calculation of the magnetization is
merically not feasible in the case of the dipolar, hexago
antiferromagnet.

Let us now return to the magnetization in the tw
dimensional dipolar antiferromagnet. First of all we note th
the classical magnetization curve was studied by one of
authors~compare Ref. 32!. In the following we are interested
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in the behavior of the magnetizationincluding fluctuations.
In particular, we study the magnetization at the phase tra
tion from the intermediate to the spin-flop phase and
higher fields from the spin-flop phase to the paramagn
phase.

As already stressed, we will calculate the magnetizat
not only via the free energy but also via the mean value
the spin on the field direction. This can be done using
Greens function technique.21 The magnetization in the spin
flop phase is, for instance, given by

M5gmB( ^Sl
z&

5NgmBSsingS 12
1

S (
q

^aq
†aq& D , ~47!

whereg is the classical tilt angle of the spins with respect
the magnetic field and thez direction is the field direction.
The mean valuêaq

†aq& is calculated via the spectral theore

^aq
†aq&5

i

2pE dv@G1~v1 id!2G1~v2 id!#n~v!,

~48!

where G15^^aq ;aq
†&& is given as the eigenvector of th

equations of motions forG1 and three other Greens function
and can be calculated straight forward.q05(p/a)(1,1) me-
diates between the two sublattices of the system. To get
magnetization one has to evaluate an integration ove
Greens function in Eq.~47!. We stress again that in principl
the same proceeding is possible in the hexagonal antife
magnet; however, in those systems the three-dimensiona
tegrals can no longer be evaluated numerically with sens
accuracy due to computational time problems, as one
twelve equations of motions and therefore very complica
integrals.

The free energy for the two-dimensional antiferromag
is given by

F5Eg2
1

4 (
cryst BZ

~Aq1Aq1q0
2Eq

(1)2Eq
(2)!, ~49!

whereEg is the classical ground state energy,Eq
(1) ,Eq

(2) are
the magnon energies of the two branches, andAq is the co-
efficient of the diagonal term in the Hamiltonian before t
diagonalization.

Numerical results. In Fig. 21 we plotted numerical result
of the magnetization. The evaluation of the magnetizat
using the derivative of the free energy leads to discontin
ties at all phase transitions. At the phase transition from
spin-flop to the paramagnetic phase~Fig. 21! the magnetiza-
tion for fields lower than the transition field is again larg
than the saturation magnetization. These results are qua
tively the same as the ones found in the previous section
hexagonal antiferromagnets and the ones found by Ras
et al.28

However, here we calculated the magnetization also
the mean value of the spin projection on the field~full line in
Fig. 21!; in this calculation one does not get a discontinu
5-12
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INFLUENCE OF THE DIPOLAR INTERACTION ON . . . PHYSICAL REVIEW B63 094425
in the magnetization. Moreover, also the absolute value
the magnetization is always lower than the saturation m
netization. The calculation using the spectral theorem th
fore seems to give more reasonable results than the one u
the free energy. However, for decreasing fields in the sp
flop phase, the two curves in Fig. 21 converge. This qual
tive behavior is again gained at all phase transitions.

Our conclusion from all that is that the magnetization c
culated using the free energy is not a good approximatio
phase transitions but approaches the more reasonable re
calculated by means of the spectral theorem for fields that
not too close to phase transitions. Comparing Eqs.~47! and
~49! shows again that the calculation of the magnetizat
via the free energy just requires us to evaluateeigenvaluesof
the equations of motions, whereas calculating the magne
tion using Eq.~47! requires us to determine theeigenvectors,
namely, the full Greens functions of the system and is the
fore much more complicated. However, the latter calculat
also yields meaningful results at phase transitions whe
the first one fails in these regions.

C. Comparison with experiment

In Fig. 22 we have plotted the results from Sec. VI B a
the experimental data on CsMnBr3.27 Note that no additiona
free parameter enters in the results of Fig. 22 as the dip
anisotropy is fixed by the magnetic moment and the lat
structure. The intrachain-interactionJ is determined by com-
paring dispersion relations with measurements of magn
along the chain direction in the one-dimensional short-ra
regime.33 The advantage of this method is that for tempe
tures above the three-dimensional ordering temperaturT
.TN the intrachain-interaction is the only relevant intera
tion and can therefore be fixed accurately. The intercha
interactionJ8 can be determined by comparing spin waves
the three-dimensionally ordered phase measured perpen
lar to the chain axis with theoretical results. However, o
gets different parameters in dependence on the kind of

FIG. 21. Magnetization at the phase transition from the spin fl
to the paramagnetic phase. Dashed line: results from the free
ergy, full line: results from the spectral theorem. In the param
netic phase one gets identical curves. The magnetic field is give
units of gmB .
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models one uses. Therefore, we determineJ8 out of the criti-
cal field in Eq.~33!. In this case the critical field is to lowes
order independent on the additional kind of anisotropy in
Heisenberg model.

In this paper we have made use of the parameter set

J5213 GHz50.88 meV510.21 K, J850.50 GHz
~50!

which leads to a critical field ofHc56.4 T.
In Fig. 22 one sees that we get good agreement of

theory with the experiment for a field applied in the cha
direction. The absolute value of the magnetization is a bit
large. We will come to that point later on. For a field appli
perpendicular to the chain direction we find good agreem
for low fields whereas the influence of fluctuations at t
phase transition is underestimated. The curve which is
culated under consideration of fluctuations converges to
classical one atH'Hc . In the previous section we hav
shown that the results for the magnetization calculated us
the free energy are questionable near phase transitions.

However, for fieldsH.Hc we get very good agreemen
for the ratio of the magnetization for a field in chain direc
tion to the magnetization for a field within the basal plan
As this ratio is almost independent of the exact parameter
one uses for the exchange interaction we conclude that
result shows the effect of fluctuations in thedipolar Hamil-
tonian. The dipolar interaction therefore is not only respo
sible for the kind of anisotropies in all ground states but a
gives rise to the anisotropy in the field-dependent magn
zation. This reflects the fact that the dispersion relations
qualitatively different for the two field directions if one con
siders the additional dipolar interaction in the exchan
Hamiltonian of Eq.~1!. One finds a remaining Goldston
mode for a field in the chain direction whereas no Goldsto
mode is present for fields applied within the basal plane~see
Secs. V A, and V B!.

p
n-
-
in

FIG. 22. Longitudinal and transverse magnetization
CsMnBr3 compared with the experiment~Ref. 27!. Dashed: classi-
cal theory, solid: quantum mechanical theory with fluctuatio
points: experiment. The upper curves belong to a field in ch
direction, the lower ones to a field perpendicular to the chain dir
tion.
5-13
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The occurrence of a large anisotropy in the magnetiza
for fields H.Hc can even be explained in a pure on
dimensional model,36 but without qualitative agreement. Th
absolute values of the magnetizations are too large comp
to experiments. This is in part due to a certain experime
uncertainty as the measurements have to be calibrated w
measuring absolute values. Therefore different experime
groups get slightly different absolute values for the mag
tizations, but almost identical values for the anisotropy of
magnetization forH.Hc .27,34,35On the other hand, one ge
virtually the exact agreement of the magnetization forH
.Hc if one uses a slightly larger value for the intracha
interaction, namely,J5222 GHz. This is a difference in th
intrachain interaction of 4% to the value we used for t
calculations@Eq. ~50!# and which was gained by a pure on
dimensional model.

VII. SUMMARY

We investigated a dipolar Heisenberg model as a mo
for hexagonal antiferromagnets. We found three commen
rate and two incommensurate phases for different value
the ratio of dipolar to interchain interaction in the field fre
case. We showed via linear spin-wave theory that all of th
commensurate phases are stable against fluctuations an
the incommensurate phase IC II can be approximated b
120° structure for weak dipolar energies.

The spin-wave frequencies of our theoretical model are
good agreement with neutron scattering experiments
CsMnBr3 and RbMnBr3, which shows that the dipolar en
ergy is the most important source of anisotropy in these
compounds.

The ground states for fields along and perpendicular to
chain direction were studied for low dipolar energies. Fo
field along the chain axis it turns out that an umbrella ph
is the ground-state configuration for nonvanishing fields;
high fields a paramagnetic phase is established. Applyin
field within the basal plane shows the following. First, t
dipolar energy leading to an in-plane anisotropy in the fie
free case is strong enough to keep the spins within the b
plane for all field strengths. Secondly, a three-sublat
ground state configuration is established for low fie
strength. Two out of the three angles coincide as the fi
reaches a critical fieldHc and the reorientation of the spin
appears in the same way as in an ordinary two-sublat
spin-flop phase despite the fact that the two remaining s
enclose slightly different angles with the field direction.
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Based on these ground states we performed a spin-w
calculation by means of a Holstein-Primakoff transform
tion. We calculated the magnons in all of the above m
tioned phases; we found qualitatively different magnon sp
tra for the same field strength depending on the direction
the applied field. Whereas the excitation spectrum for
umbrella phase is gapless, the excitation spectrum for
three- and two-sublattice phase is gaped. This is due to
different symmetry of the ground states.

The field-dependent magnetization including fluctuatio
was studied in a next step and we compared our findi
with experiments. Calculating the magnetization via the f
energy leads to unphysical discontinuities for fields appl
within the basal plane at the phase transitions from the th
sublattice to the two sublattice and from the two sublattice
the paramagnetic phase. Studying a system where one
calculate the magnetization not only via the free energy
also via the mean value of the spin projection shows that
results obtained by using the free energy are questionab
phase transitions, but converge to the results using the m
value away from phase transitions. We found that the
anisotropy in the magnetization for a field parallel and p
pendicular to the chain direction present for high fields is d
to quantum fluctuations rather than thermal fluctuations
found excellent agreement between our dipolar theory
the experiment.
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APPENDIX A: SIX-SUBLATTICE CONFIGURATION

In the body of the paper we displayed our results by pl
ting spin-wave spectra for different phases, see Figs. 12,
In this appendix we give the longish formulas for the calc
lation of these spin-waves in the harmonic approximation

1. Field along the chain direction

For a field along the chain direction the ground state is
umbrella phase as shown in Sec. V A. The transformation
the spin components is given Eq.~21!. After inserting this
transformation in Eq.~26! and truncating after the harmoni
terms, the Hamiltonian reads
H5Eg1(
q

H Aqaq
†aq1

1

2
Bqaqa2q1

1

2
Bq* aq

†a2q
† 1Cqaqa2q12q0

1Cq* aq
†a2q12q0

† 1Dqaqa2q22q0
1Dq* aq

†a2q22q0

†

1Eqaq
†aq12q0

1Eq* aq12q0

† aq1Fqaq
†aq22q0

1Fq* aq22q0

† aq1Gqaqa2q1q0
1Gq* aq

†a2q1q0

† 1Hqaqa2q2q0

1Hq* aq
†a2q2q0

† 1I qaq
†aq1q0

1I q* aq1q0

† aq1Jqaq
†aq2q0

1Jq* aq2q0

† aqJ . ~A1!

The ground-state energy is given in Eq.~27!. The coefficients in the Hamiltonian~A1! are given by
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Aq52S~Jq0
1Aq0

11!2Scos2w~Jq1Aq
33!2

1

4
Ssin2w~2Jq1q0

12Jq2q0
1Aq1q0

11 1Aq2q0

11 1Aq1q0

22 1Aq2q0

22 !

2
1

4
Ssinw~2Jq1q0

22Jq2q0
1Aq1q0

11 2Aq2q0

11 1Aq1q0

22 2Aq2q0

22 !2
1

4
S~2Jq1q0

12Jq2q0

1Aq1q0

11 1Aq2q0

11 1Aq1q0

22 1Aq2q0

22 !,

Bq5
1

4
Ssin2w~2Jq1q0

12Jq2q0
1Aq1q0

11 1Aq2q0

11 1Aq1q0

22 1Aq2q0

22 !2
1

4
S~2Jq1q0

12Jq2q0
1Aq1q0

11 1Aq2q0

11 1Aq1q0

22 1Aq2q0

22 !

1Scos2w~Jq1Aq
33!2 i

S

2
sin2w~Aq2q0

12 2Aq1q0

12 !1 i
S

2
~Aq2q0

12 2Aq1q0

12 !,

Cq5
S

8
sin2w~Aq2q0

11 2Aq2q0

22 !2
S

4
sinw~Aq2q0

11 2Aq2q0

22 !1
S

8
~Aq2q0

11 2Aq2q0

22 !1
1

4
iSsin2wAq2q0

12 2
1

2
iS sinwAq2q0

12 1
1

4
iSAq2q0

12

Dq5
S

8
sin2w~Aq1q0

11 2Aq1q0

22 !2
S

4
sinw~Aq1q0

11 2Aq1q0

22 !1
S

8
~Aq1q0

11 2Aq1q0

22 !

1
1

4
iS sin2wAq1q0

12 2
1

2
iS sinwAq1q0

12 2
1

4
iSAq1q0

12 ,

Eq52
S

8
sin2w~Aq1q0

11 2Aq1q0

22 !1
S

8
~Aq1q0

11 2Aq1q0

22 !1
1

4
iS sin2wAq1q0

12 1
1

4
iSAq1q0

12 ,

Fq52
S

8
sin2w~Aq2q0

11 2Aq2q0

22 !1
S

8
~Aq2q0

11 2Aq2q0

22 !2
1

4
iS sin2wAq1q0

12 2
1

4
iSAq1q0

12 , ~A2!

Gq52
S

2
sinw coswAq2q0

13 1
S

2
coswAq2q0

13 2 i
S

2
sinw coswAq2q0

23 1 i
S

2
coswAq2q0

23 ,

Hq52
S

2
sinw coswAq1q0

13 2
S

2
coswAq1q0

13 1 i
S

2
sinw coswAq1q0

23 1 i
S

2
coswAq1q0

23

I q5
S

2
sinw coswAq1q0

13 1
S

2
coswAq1q0

13 1 i
S

2
sinw coswAq1q0

23 1 i
S

2
coswAq1q0

23 ,

Jq5
S

2
sinw coswAq2q0

13 2
S

2
coswAq2q0

13 2 i
S

2
sinw coswAq2q0

23 1 i
S

2
coswAq2q0

23 ,

where sinw is given in Eq.~28!. The case of vanishing field is contained in these formulas forw50.

2. Field perpendicular to the chain direction

To calculate the magnon spectrum for a field applied within basal lattice planes, we have to insert Eq.~38! into the
Hamiltonian of Eq.~26!. In the following we give the expressions for fieldsH.Hc explicitly, where the ground state can b
parametrized by two anglesa and b5g. This impliese5 f 50 in Eq. ~39!. For the general case of three sublattices
formulas are more complicated. The quadratic Hamiltonian reads
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H5Eg1(
q

Aqaq
†aq1

1

2
Bqaqa2q1

1

2
Bq* aq

†aÀq
† 1Cqaqa2q12q4

1Cq* aq
†a2q12q4

† 1Dqaq
†aq22q4

1Dq* aqaq22q4

† 1Eqaqa2q22q4

1Eq* aq
†a2q22q4

† 1Fqaq
†aq12q4

1Fq* aqaq12q4

† 1Gq~aq
†aq1q1

1aqa2q2q1
!1Gq* ~aqaq1q1

† 1aq
†a2q2q1

† !

1Hq~aq
†aq1q0

1aqa2q2q0
!1Hq* ~aqaq1q0

† 1aq
†a2q2q0

† !1I q~aq
†aq2q0

1aqa2q1q0
!1I q* ~aqaq2q0

† 1aq
†a2q1q0

† !. ~A3!

The ground state energy in the crystallographic Brillouin zone which is equivalent to formula~31! ~where the energy is given
in the magnetic Brillouin zone! reads

Eg52NS2@a2~Jq1
1Aq1

11!12c2~Jq0
1Aq0

11!22 f 2~J2q4
1A2q4

11 !1b2~J01A0
22!12d2~J2q4

1A2q4

22 !22e2~Jq0
1Aq0

22!#2hNSb,

~A4!

with h5gmBH0. The coefficients in Eq.~A3! are given by

Aq /S5$@2~J01A0
22!2~Jq1Aq

11!#b21@2~Jq1
1Aq1

11!2~Jq1q1
1Aq1q1

22 !#a2

1@4~Jq0
1Aq0

11!2~Jq1q0
1Jq2q0

1Aq1q0

22 1Aq2q0

22 !#c21@4~J2q4
1A2q4

22 !2~Jq12q4
1Jq22q4

1Aq12q4

11 1Aq22q4

11 !d2#%

2~Jq1Aq
33!1gmBH0 /Sb,

Bq /S52$~Jq1Aq
11!b21~Jq1q1

1Aq1q1

22 !a21~Jq1q0
1Jq2q0

1Aq1q0

22 1Aq2q0

22 !c21~Jq12q4
1Jq22q4

1Aq12q4

11 1Aq22q4

11 !d2%

1~Jq1Aq
33!22iAq

13b,

Cq /S5
1

2
$~Jq1Aq

111Jq22q4
1Aq22q4

11 !bd1~Jq1q0
1Aq1q0

22 1Jq1q1
1Aq1q1

22 !ac2~Jq12q4
1Aq12q4

11 !d22~Jq2q0
1Aq2q0

22 !c2%

1 iAq22q4

13 d,

Dq /S5
1

2
$@22~J01A0

221J2q4
1A2q4

22 !1~Jq1Aq
111Jq22q4

1Aq22q4

11 !#bd

1@22~Jq1
1Aq1

111Jq0
1Aq0

11!1~Jq1q0
1Aq1q0

22 1Jq1q1
1Aq1q1

22 !#ac

1@2~Jq0
1Aq0

11!2~Jq2q0
1Aq2q0

22 !#c21~2~J2q4
1A2q4

22 !2~Jq12q4
1Aq12q4

11 !#d2%1 iAq22q4

13 d2
1

2
gmBH0 /Sd,

Eq5C2q ,

Fq5D2q ,

Gq /S5Aq
12ab1~Aq12q4

12 1Aq22q4

12 !cd1 iAq1q1

23 a,

Hq /S52Aq
12bc1Aq12q4

12 cd2Aq22q4

12 ad2 iAq1q0

23 c,

I q5H2q . ~A5!
th
e
lv

av
1

n-
to

hic
ar
Here we used the abbreviations defined in Eqs.~39!. The
diagonalization of the Hamiltonians~A1!, ~A3! can be per-
formed in an analogous way: the equation of motion for
Greens function̂ ^aq ;aq

†&& with the Hamiltonians generat
eleven other Greens functions leading to a system of twe
equations for the twelve Greens functions. The spin-w
frequencies are given by the eigenvalues of the resulting
312 matrix.
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APPENDIX B: DIPOLAR ENERGY

In the body of the paper we gave formulas which co
tained Fourier transforms of the dipolar tensor. We have
distinguish between dipolar tensors in the crystallograp
BZ and in the magnetic BZ. The formulas for the dipol
tensor in the crystallographic BZ are summed up in.4 Here,
we give the formulas for the magnetic BZ.
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When we performed ground-state calculations for a g
eral six-sublattice model, we had a basis with six spins
replicated this cell to build up the lattice~see Figs. 13, 23!.
To find the classical ground state energy of this structure,
parametrize one of the six sublattices with vectorsh and the
basis cell with vectorsra to r f .

Here sublatticeA is parametrized in a coordinate syste
which is rotated by 30° to the crystallographic one

h15a~A3,0,0!, h25
a

2
~A3,1,0!, h35c~0,0,2!

~B1!

and the vectors describing the basis are given by

ra5~0,0,0!, rb5
a

2
~A3,21,0!, r c5

a

2
~A3,1,0!,

rd5c~0,0,1!, re5
a

2 SA3,21,2
c

aD , r f5
a

2 SA3,1,2
c

aD .

~B2!

Here c is the distance of neighboring lattice sites along
chain direction anda the one within basal planes. To includ
the full three-dimensional dipolar energy, we need the c
tribution of the dipolar energy from the interaction of subla
tice a with sublatticesa– f , the interaction of sublatticeb
with all other sublattices and so on. This means, that we h
to calculate Fourier transforms with respect to a linear co
bination of two basis vectors. The dipolar tensor splits up
two contributions on the direct lattice and one for the indir
lattice ~Ewald-summation technique16,17! and finally reads

FIG. 23. Parametrization of the lattice.
-
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Aq,ab
ab a3

G
5

¦

22pdab( 8
l

eiq[xl2(ra2rb)]

3w1/2S p

a3
2/3

uxl2~ra2rb!u2D
14p2a3

22/3( 8
l

eiq[xl2(ra2rb)]

3@xl2~ra2rb!#a@xl2~ra2rb!#b

3w3
2F p

a3
2/3

uxl2~ra2rb!u2G
2a3

2/3(
G

~q1G!a~q1G!b

3eiG[xl2(ra2rb)]w0S a3
2/3

4p
uq1Gu2D ,

~B3!

wherea353A3a2c is the volume of the primitive cell of the
magnetic sublattice. The components of the dipolar tenso
the magnetic BZ are connected to the ones in the crysta
graphic BZ. Here we give some of these exact relations:

2~Aq1

112Aq0

11!5A0,ab
11 2A0,ae

11 ,

2~A0
222A2q4

22 !5A0,ab
11 1A0,ae

11 ,

2~A0
2212A2q4

22 !5A0,ad
11 1A0,aa

11 ,

2~Aq1

1112Aq0

11!5A0,aa
11 2A0,ad

11 . ~B4!

APPENDIX C: POINTS IN THE BRILLOUIN ZONE

In this appendix we compile the different wave vecto
used in the body of the paper. Below each wave vector
points in the Brillouin zone are given, compare Fig. 1.

q50 q15(0,0,p)

q05S 4p

3
,0,p D

G H A

q25S 0,
2p

A3
,p D q35S 2p

3
,
2p

A3
,p D q45S 4p

3
,0,0D

L H8 K

q55S p,
p

A3
,p D q65S p,2

p

A3
,p D q75S 0,

2p

A3
,0D

L8 L9 M
1A. Skjeltorp and D. Sherrington,Dynamical Properties of Uncon
ventional Magnetic Systems~Kluwer Academic, Dordrecht,
1998!.

2H. Diep, Magnetic Systems with Competing Interactions~World
Scientific, Singapore, 1994!.
3E. Frey and F. Schwabl, Adv. Phys.43, 577 ~1994!.
4C. Pich and F. Schwabl, Z. Phys. B: Condens. Matter104, 165

~1997!.
5C. Pich and F. Schwabl, Phys. Rev. B47, 7957~1993!.
6F. Haldane, Phys. Rev. Lett.50, 1153~1983!.
5-17



hy

h,

pn

te

uc

in

ys.

M. HUMMEL, F. SCHWABL, AND C. PICH PHYSICAL REVIEW B63 094425
7M. Steiner and H. Mikeska, Adv. Phys.40, 191 ~1991!.
8M. Collins and O. Petrenko, Can. J. Phys.75, 605 ~1997!.
9G. McPherson, T. Kistenmacher, and G. Stucky, J. Chem. P

52, 815 ~1970!.
10C. Pich and F. Schwabl, Phys. Rev. B55, 3351~1997!.
11H. Shiba and N. Suzuki, J. Phys. Soc. Jpn.51, 3488~1982!.
12M. Baehr, M. Winkelmann, P. Vorderwisch, M. Steinr, C. Pic

and F. Schwabl, Phys. Rev. B54, 12 932~1996!.
13H. Kadowaki, K. Hirakawa, and K. Ubukoshi, J. Phys. Soc. J

52, 1799~1983!.
14P. Santini, G. Fa´th, Z. Doman´ski, and P. Erdo¨s, Phys. Rev. B56,

5373 ~1997!.
15R. Dietz, L. Walker, F. Hsu, and W. Haemmerle, Solid Sta

Commun.15, 1799~1974!.
16P. Ewald, Ann. Phys.~Leipzig! 64, 253 ~1921!.
17L. Bonsall and A. Maradudin, Phys. Rev. B15, 1959~1977!.
18M. Hummel, C. Pich, and F. Schwabl, J. Appl. Phys.85, 5088

~1999!.
19J. Goodyear and D. Kennedy, Acta Crystallogr., Sect. B: Str

Crystallogr. Cryst. Chem.28, 1640~1972!.
20T. Holstein and H. Primakoff, Phys. Rev.58, 1098~1940!.
21K. Elk and W. Gasser,Die Methode der Greenschen Funktion

der Festko¨rperphysik~Akademie Verlag, Berlin, 1979!.
09442
s.

.

t.

22J. Oyedele and M. Collins, Can. J. Phys.56, 1482~1978!.
23U. Falk, A. Furrer, H. Gu¨del, and J. Kjems, Phys. Rev. B35,

4888 ~1987!.
24B. Gaulin, M. Collins, and W. Buyers, J. Appl. Phys.61, 3409

~1987!.
25L. Heller, M. Collins, Y. Young, and B. Collier, Phys. Rev. B49,

1104 ~1994!.
26A. Chubukov, J. Phys. C21, L441 ~1988!.
27S. Abarzhi, A. Bazhan, L. Prozorova, and I. Zaliznayak, J. Ph

C 4, 3307~1992!.
28E. Rastelli and A. Tassi, Phys. Rev. B49, 9679~1994!.
29A. Abanov and O. Petrenko, Phys. Rev. B50, 6271~1994!.
30P. Santini, Z. Doman´ski, J. Dong, and P. Erdo¨s, Phys. Rev. B54,

6327 ~1996!.
31M. Zhitomirsky and I. Zaliznyak, Phys. Rev. B53, 3428~1996!.
32C. Pich and F. Schwabl, J. Magn. Magn. Mater.148, 30 ~1995!.
33M. Collins and B. Gaulin, J. Appl. Phys.55, 1869~1984!.
34B. Kotyuzhanskii and D. Nikiforov, J. Phys.: Condens. Matter3,

385 ~1991!.
35T. Goto, T. Inami, and Y. Ajiro, J. Phys. Soc. Jpn.59, 2328

~1990!.
36M. Hummel, C. Pich, and F. Schwabl, cond-mat/9703218~unpub-

lished!.
5-18


