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Influence of the dipolar interaction on phase diagram, magnons, and magnetization
in quasi-one-dimensional antiferromagnets on a hexagonal lattice
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The role of the dipole-dipole interaction in quasi-one-dimensional antiferromagnets is investigated within a
Heisenberg model with nearest-neighbor exchange. We deal with systems in which the magnetic ions are
located on a hexagonal lattice, i.e., frustration is present when three-dimensional order sets in. We perform a
ground-state calculation for different ratios of dipolar energy to interchain-exchange energy and find several
commensurate and incommensurate phases. This is a consequence of the competing character of these two
interactions. For the commensurate phases the influence of fluctuations is studied by means of linear spin-wave
theory. It turns out that all commensurate phases are stable against fluctuations. The theoretical spin-wave
spectra are compared with experiments on CsMraBd RbMnBg. The results suggest that the most important
source of anisotropy in these Mn compounds is the dipole-dipole interaction. Furthermore the magnetic phase-
diagram for small dipolar energies is investigated. A spin-wave calculation allows one to calculate the influ-
ence of the fluctuations on physical properties like ground-state energy and magnetization. These results
compare favorably with measurements on CsMnBr
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[. INTRODUCTION metal, andX halogen. In these systems the carrier of the
magnetic moment, the B ions, are located on a hexagonal
The interest in unconventional magnetic systems has bedattice? leading to frustration effects when three-dimensional
renewed in the last few yeatsCompeting interactions as order sets in. We are mainly interested in the Mn com-
well as geometric frustration due to the underlying lattice carpounds; due to the fact that their spin val8e 5/2, spin-
lead to unconventional ground states, unique phase diagramsave theory should be a good approximation. Furthermore,
and novel critical phenomerfaThe fact that the ground as the orbital angular momentulmis zero apart from small
states in these systems are highly degenerate and becausea@lftivistic corrections and therefore the crystal-field anisot-
the low dimensionality the contributions of fluctuations toropy is only of the order of at most 20% of the dipolar
physical observables are enhanced. energy’ the DDI should be the most important source of
In real magnets the dipole-dipole inter-actiéRDIl) is  anisotropy.
always present in addition to the exchange interaction. Al- The role of the dipolar interaction in ferromagnetic spin
though the DDI is usually two to three orders of magnitudeschains, which are coupled antiferromagnetically has been
lower than the exchange interaction, it is nevertheless cruciaitudied quite welt®**For CsNiR;, for example, the dipolar
to study its implications in the physics of phase transitionsorigin of the unexpected collinear ground state was eluci-
Due to its anisotropic and long-range character the DDWated, the spin-wave dispersion calculated in a dipolar
changes the physics in the critical region qualitativelpd ~ Heisenberg model was successfully compared with the ex-
has also a drastic influence on ground states and excitatiqgmeriment and furthermore it was possible to determine a re-
spectr&® especially in low-dimensional systems. liable value of the strength of the interchain exchange
In this work we particularly study the influence of the interaction?
DDI on quasi-one-dimensional antiferromagnetic spin sys- The influence of the DDI on the properties of quasi-one-
tems on a hexagonal lattice. In these compounds the exdimensional antiferromagnetic spin chain systems on the
change interaction along single chaingintrachain- other hand, has not yet been studied very thoroughly. In-
interaction is several orders of magnitude larger than thestead, the DDI is often replaced by a single-ion anisotrdpy,
interaction between different chaifiimterchain-interaction  truncated after the first tedhor the coupling between spin
The intrachain as well as the interchain interaction are antichains is neglected entirely Therefore the effect of the DDI
ferromagnetic. The quasi-one-dimensionality appears due tis studied in a systematic way in this paper.
the fact that one has direct superexchange along the chains, The outline of the paper is as follows. In Sec. Il we intro-
whereas the interaction between chains is mediated by twduce the model, in Sec. Il we calculate the ground states for
nonmagnetic ions. the whole parameter region of the ratio of dipolar energy to
The quasi-one-dimensional systems, which have beemterchain exchange energy without magnetic field. These
studied most intensively in the context of Haldane’s ptfase,ground-state investigations are supplemented by a linear
solitonic excitationsand the effects of magnetic frustratfon spin-wave calculation in Sec. IV for the commensurate
are the ternary compoundsBX; (A alkaline, B transition  phases; in this section we also compare our findings with
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neutron scattering measurements of the spin-wave dispersion L H
in CsMnBr. In Sec. V we examine the magnetic phase dia- : ;
gram for low dipolar energies for fields both parallel and VA P\ L
perpendicular to the chain direction. Based on these ground e
states we perform a spin-wave calculation and investigate the A + N ONH
influence of fluctuations on the magnetization. We show that ;
guantum fluctuations in our dipolar model are responsible for T o R
the huge anisotropy of the magnetization found in experi- K
ments. In Appendix A the formulas for the spin-wave spectra
of the dipolar 120° structure with an applied field are given,
whereas the dipolar tensor is briefly discussed in Appendix
B.

FIG. 1. Upper half of the crystallographic Brillouin zone of the
hexagonal lattice. The wave vectors for the denoted points are given
1. MODEL in Appendix C.

The Hamiltonian of the dipolar antiferromagnet without

- 2 it
applied field reads whereV,= (1/3/2)a?c is the volume of the primitive cell of

the hexagonal latticésee Fig. 1'% Due to the quasi-one-
dimensionality of the systems(the ratio J'/J is
H==2 > (3 6 +A)S'S, (1) 1072 . .10°3) we consider only antiferromagnetic spin con-
1#1" ap figurations along the chain axis, i.e., we restggto 7. The
with spins S at hexagonal lattice sites. The first term  ground-state energy reads
describes the exchange interactidp which includes the

intrachain as well as the interchain interaction. In the follow-
. . . . E,=— M, S =~ SiMS- 5
ing we consider only nearest-neighbor exchange, i.e., 9 |§, SMurS % araeoa ©
‘ —J 1,1’ along the chains, with
N , it
J’ 1,I” within the basal plane. Jq+Aél Aéz Aég
For a hexagonal lattice, where the sites of the magnetic ions M — AL 3 a2 p23 ©)
are indexed by, =a(l + m/2,y/3/2-m,c/a-n) with |,m,n in- 4 gl q 32q 4 )
teger, the Fourier transform of the exchange energy is given Aq Ay Jgt Ay

b o
y where generallyA] =All for i#j and Ai*>=AZ*=0 for g,

Oy J3 =1r. The ground states are specified by those wave vectors
CosQy+2 005< —) cos( ) . which belong to the largest of the three eigenvalues of the

Jq=—2Jcosq,—2J’ 5
matrix M, given by

2%

2
Here and in the following we measure wave vectors in chain N=Jg+AY,
direction in units of 1¢, and wave vectors within the basal
planes in units of H. 1 1
The second term in Eq1) is the classical dipole-dipole No3=Jq+ E(Aél+ Aéz)iE\/(Aél— AP +AAP?. (7)
interaction

Oup 3 =X o (X=X g
B i

action becomes clear in Fig. 2. If we change the relative
strength of the two interactions one can see, that the wave

5. ) , , vector minimizing the ground state energy is situated at dif-
whereG=1/2(gug)“ in cgs units. This term is evaluated by farent points of the Brillouin zone.

. . , 7 . X i i
means of the Ewald summation technidfé] which allows Particularly note the linear slope of the dipolar tensor

the consideration of the long-range nature of the threegqmnonents at thil point of the Brillouin zone. For decreas-
dimensional DDI in terms of fast convergent sums. ing x' we obtain the following phases, where the actual
value of J has no influence on the results, as longJas
Ill. GROUND STATES >J' (gug)?/V, (the numerical values are valid for the lat-
®ie,c=326A, a=7.61A).

AjP=-G

) The competing quality of the exchange and dipolar inter-
oo

[xi—x/ Ixi—x/

i 1
In this section we calculate the classical ground states dice of CsMnBg,
the system as a function of the ratio of the dipolar energy to

the interchain exchange interaction A. Ferromagnetic phase
2 k' >k;=200.50. In the region where the dipolar energy
,_ (Qus) i i i .
K= ’ (4) is large compared to the interchain exchange, the minimum
V,J' of the ground-state energy is reached at Ahpoint of the
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Q
]
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0.0 (&, 2 ) L
1) ‘/g’
1/k% 1/k;
1.0 /K‘3 1/K:l /K’CsMnBr;;
2.0 FIG. 4. Dependence of the ordering wave vector in the IC Il
A H r A L phase on the value of'.

FIG. 2. Exchange interactiofsolid line) and dipolar tensor for
some directions in the Brillouin zone. Long-dashég’, dotted:
AZ?, and dot-dashedhi?. To see the behavior of the dipolar tensor
more clearly, we set/a=+/2/3. The numerical values of the dipo-
lar tensor are given in units @/V, and the values for the exchange C. Collinear phase
constants are set th=1 andJ’=0.2. A;*>=A}*=0 for g,= 7.

5). This is due to an increase I fromAto L WhereasAgﬁ
decreases.

ky>k'>k3=17.25. Spins within basal planes are ori-
o ) ) . ented ferromagnetically in chains, that are aligned antiferro-
Brillouin zone, i.e., atq;=(0,047). This means that spins magnetically to one anothésee Fig. 6 Because of the six-
W|th|n basal planes are ordered fe_rromagnetlcally, but stilkyq symmetry, there are six such ground states resulting
antiferromagnetically along the chains. from rotation of the ferromagnetic chains. This means that

The ground state energy is given by the minimum of the ground state energy is reached at the
pointsL, L' and the ones rotated by 60° in the Brillouin

Ey= NS 2J-63'+ E(AélJFASZ) _ (8)  zone. Note that the continuous degeneracy is lifted.
27 ! The ground state energy for the domain drawn in Fig. 6
reads

Note that the dipolar componendg andAZ? have the same

value. This means that the ground-state energy is the same E,=—NS(2J+21 + ALY, (9)
for spin configurations where all spins are rotated within the g a2

basal plane and spins in adjacent planes are oriented antif
romagnetically[see also Goldstone mode in the spin-wav
spectrum, Eq(18)].

% or a domain where the ferromagnetic chains are rotated by
€60° around the axis the ground state energy is given by

1
B. Incommensurate phase | Eg=— NSZ(2J+ 23— ZNSZ(Aé;—l- 3A§§— 2\/§Aé:),

k1> k' >K,=200.12. The ground state is an incommen- (10
surate phase in this parameter region. The wave vector )
moves continuously fromg;, to the wave vectorg,  With qs=(m,7/\3,7). These two ground state energies are
=(0 277/\/5 7) (see Fig. 3, Fig. 4, and thick solid line in the same, which can be shown by exact relations for the

Fig. 5 or any other path rotated by 60dashed lines in Fig. dipolar tensor components. The third domain is described by
the wave vectong=(,— 7//3,7).

0,22 7
0, % 7) 4

on 2y
3V

;= (

(0,0, ) '
200.12 , 200.50
K

FIG. 3. Wave vector which minimizes the ground state energy FIG. 5. Paths of the wave vector that minimize the ground-state
in the incommensurate phase | as a functionbf energy in the Brillouin zone of the hexagonal latticg € 7).
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120° ICII Collinear ~ ICI Ferromagnetic The phase diagram for the whole parameter regior’of
is shown in Fig. 6. In summary, we find three commensurate
XK TR FEaY and two incommensurate phases as functior ‘of
AT WAV S GRS
IV. MAGNON SPECTRA
X ALV BV _
, To see whether fluctuations destroy the ground states
| ] [ >’“ found in the previous section we perform a spin-wave calcu-
J I o lation. To that end we write the Hamiltonidf) in terms of
0 K3 Ky K creation and annihilation operators employing the Holstein-

Primakoff transformatiof?
FIG. 6. Spin configurations within the basal plane for different

ratios of dipolar to interchain interactior’. Only for k'=0 the

-t
120° structure is established. For infinitesimalthe phase IC Il is S’ =v2sfay,
favored. The spin configurations of the incommensurate phases are ~
not sketched. S =2s49'f,,
Note that if we didn’t consider the IC | phase, the transi- $=s-a/a (12

tion from the ferromagnetic to the collinear phase would
appear ak’ =200.31, i.e., exactly betweer{ and«}. How- ~ With
ever, the ground state energy of the incommensurate phase

betweenk; and «; is lower than both the one for the ferro- f /1_ a8 13
magnetic as well as the one for the collinear phase. = 2S

and ST =S'+i9Y. The tilde denotes the fact that these op-
erators have to be utilized in the rotated frame, where the
k3>«k'>0. In this incommensurate phase the wave veciocal z axis is aligned in the spin direction of the classical
tor moves fron, to gz = (27/3,27//3,7). The incommen-  ground state. The Fermi commutation relations for the opera-
surability for low dipolar energy appears because of the finitdors (12) are satisfied if the creation and annihilation opera-
slope of the dipolar tensor ag (Ref. 11) and the parabolic tors a and a’ obey Bose commutation relations. For low
behavior of the exchange energy. temperatures an expansion up to bilinear terms can be used,
The expansion of the largest eigenvalue of &j.around leading to linear spin-wave theory. The Hamiltonian then is
(27/3,27/\/3,7) leads to the following ground-state en- diagonalized with a Bogoliubov transformation or the meth-

D. Incommensurate phase I

ergy: ods of Greens functions leading to the spin-wave frequencies
of the system. The investigation described above is restricted

o o to the commensurate phases, because the infinite primitive
Eg(?—qx,ﬁ—qy,w) cell of the incommensurate phases resists such an analysis.

A. Ferromagnetic phase

3
~-N& 2J+3J'—ZJ’(q§+q§)

The magnon spectrum of the ferromagnetic phase is cal-
culated in the crystallographic Brillouin zonsee Figs. 7

2
. (9uB) (0'0464]#0.00361)2/)). (11) and 8 The transformation to the local coordinate system

V, reads
One can see that without dipolar ener@ye., k' =0) the SlxzaSZ
lowest ground state energy is reached f@=qs =
=(2m/3,2m/3,7). However, for any infinitesimal dipolar v
energy the system is driven to an incommensurate ordering S=aS,
wave vector. The 120° phase established for vanishing dipo- ~
lar energy is reached asymptoticalsee Fig. 4. S=9, (14

where

E. 120° structure

x'=0. This ground state is characterized by a three- iy i 1 | e plane 1(n=0 mod 2,
sublattice spin configuration in each basal plane, i.e., by the o=€"=€""= —1 leplane 2(n=1 mod 2
wave vectorgs (H') and the correspondent rotated ones. (15)

We state that for all four phases, in which the DDI is
nonzero the coupling of the spin space to the real space irmediates between the two different sublattices. After insert-
duced by the DDI forces the spins to align within the latticeing Egs.(12), (14), and (15) into the Hamiltonian(1) we
basal planes. Thus, the DDI leads to an in-plane anisotropyabtain in linear spin-wave theory
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FIG. 7. Magnons of the ferromagnetic phase in the magnetic FIG. 8. Magnons in the collinear phase fer=10"2 and «’
Brillouin zone. Top: in chain direction, bottom: perpendicular to it =10?. Top: Spectrum in the chain direction. Down: Spectrum in the
(k=10"2,k'=1C%). H direction. Note the energy gap in these spectra.

: 1 ot where
H= E@—; Aqaqaqt > By(aga—qtagad q) +Cqaqd—q- a

Q=Ai+AL g —Bi—BZ,  +8CCqiq, (19

a+a, a+a,
+Cyagal q_q, + DgaiRq+a, T Df 2 q,3 (16) and
with ng(Ag— Bg_Aé+q1+ Bé+q1)2
Eg=—NS(Jq,+ Aéi), +16{Cq(AqtBg) ~Cqrq,(Aqiq, T Bara)}

><{Cq-%—ql(Aq_Bq)_Cq(Aq+ql_Bq-%—ql)}' (20)

Here we changed to the magnetic Brillouin zone and there-
fore obtain two magnon branches.

The rotational invariance of the spins around the chain
axis leads to a Goldstone mode in the spectrum. The spec-

— 11 22 33
Aq=25(Jq + AT = S(Jq.q +AZ )~ S(Jg+AD),

By=S(Jq+AY) — S(Jq+q1+A§2+ql),

Cq=iSAZ o e
q ' trum gets unstable fok<«; at infinitesimal values ofy,
23 along theA-L direction indicating the transition to the IC |
Dq=—ISAy". (17 phase.
This quadratic Hamiltonian is diagonalized by the equations _
of motion for proper Greens functiofldeading to the exci- B. Collinear phase
tation spectrum The collinear phase of Sec. lll is also stable against fluc-
tuations. The spectrum can be calculated in analogy to the
12)_ /L . spectrum for the ferromagnetic phase; one just has to replace
Es 7 (1=, 18 e ordering wave vectay; by q,=(0,27//3,7). There is
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no longer a Goldstone mode present due to the discrete de 500.0
generacy of the ground state. This is manifested in the dif-
ference of the dipolar tensor componeAfs andAZ.

C. 120° structure —_—

N
We argued in Sec. lll that the 120° structure is unstable &
for infinitesimal dipolar energy due to a linear slope of the —

dipolar tensor at the ordering wave vector. However, to gaingy 2000%F— 2 __4——1———1
insight in the fluctuations we performed a spin-wave calcu- X
lation based on a commensurate 120°-structure, where th s
: o X 100.0 - .
spins are located within the basal planes of the laffides., Jrad =
we started with the following transformation: ,/’
0.0 L2
S'=S"sin(gox) + S cogdoxy), (0,0, 7) (4,0, 7)
S/ =S coqqox) — Sf sin(doX)), FIG. 9. Excitation energies of the 120° structure perpendicular
to the chain direction. The dots are the experimental values taken
SZ:'SY_ (21 from Ref. 24. The dashed and the full lines are the theoretical re-
sults, where the dashed branches cannot be seen in this scattering
Here geometry. The full lines are the visible branches.
4c/3a [+m/2
T A7 m The spin-wave gaps aj=0 amount toE, ;=198 GHz,
doX1 =72 0 Jal v3/2m =3 |1+ *tn7 Eo2=295 GHz, andEg ;=410 GHz for CsMnBj, which
1 c/a-n compares favorably with the experimental valéé&' Note

(22)  that this calculation has no free parameter to fit, since the

mediates between the six sublattices. Inserting this transfofliPolar energy is determined by the lattice constants.

mation in the Hamiltoniar(1) and truncating after the har- !N Fig. 10 we plotted the spin wave energies in the same

monic terms, we get a Hamiltonian with 19 different biqua_dwectlon as in Fig. 9 but without dipolar energy. Note that

dratic terms (see Appendix A This Hamiltonian is We have three zeros in the excitation energy in this case

diagona”zed by the equation of motion of proper GreenéNhiCh is at variance with the measurements. Note also that

functions leading to a 1212 matrix; the eigenvalues of that the dipolar gagEq. (24)] which is not present without dipo-

matrix give the energies of the spin waves. It turns out thatar energy is larger than the gap already present without di-

the spin-wave spectrum is stable for weak dipolar energiegl0lar energy.

from which we conclude that this commensurate ground We also calculated the spin-wave gaps for RoMyBie-

state is a good approximation. glecting crystal distortions we also obtain good agreement
The spin-wave frequencies resulting for the dipolar 120°With the experiment” Thus, we do not need any single-ion

structure for CsMnBy are shown in Fig. 9, where we used anisotropy to explain these results.

J=215 GHz and)’ =0.41 GHz respectivel§? This leads to

«'=0.774, i.e., this substance is deep in the IC Il region of 300.0

the phase diagram in Fig. 6. In the experiment one observe —

the 120° structure; this might be caused by crystal distortions -~

or small additional anisotropies not considered in this paper .

such as the spin-orbit coupling. 2000 //
Including the DDI, of the three Goldstone modes only one &

survives reflecting the remaining rotational symmetry aroundcmD

the chain axis. The gaps g&=0 are given by —c-. s

53]

9 1 100.0 /// e ——
7/ -— it VY
Eo1=2S\4J+(Ag—A%) St E(Agg— Azg)s e N

(23 &

9 1
— R T 11 A11 a1 I1_ 533 4
Eo o= 28\/4J+ 53+ 5 (2A0 A Azg,) VAT, ~ Agy: (0,0,m) (%,0,7)
24
24 FIG. 10. Excitation energies of the 120° structure without dipo-
lar energy. The dashed branches are the ones corresponding to the
dashed ones in Fig. 9.

Eo3=2S\/4J+ (A;;—A;go) NCRIE (Aéé—A%ﬁo). (25)
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V. MAGNETIC PHASE DIAGRAM FOR LOW v TTT
DIPOLAR ENERGY :>_.
. . " Ho
In the last section we have shown, that the 120° structure ' '
has a stable spectrum for low dipolar energies. In this section 1920° Spin-flop  paramagnetic

we illuminate the influence of a magnetic field on the ground
state, the magnon spectrum and the magnetization in this FIG. 11. Phase diagram of the 120° structure with applied field

phase, i.e., we investigate the Hamiltonian in the chain direction.
3 ; S cos¢ 0 —sing
=— ap af)qa — Y
H ; aﬁzzl (Jq0*"+Aq )SqSEq h\/NSS , (26) S| = 0 1 0
S sing 0 cosp

whereh=gugHy. We distinguish fields along the chain di- ~ -

rection(z) and perpendicular to that directiog)( i.e., fields Sf cogqox) + S sin(dox)

applied within the basal plane. For both cases, we determine =X Rz

the classical ground state by energy minimization and calcu- x| Scoddox) = §sin(gox) | . (30)
late the magnon spectrum based on this ground state. sy

Note that these spin variables obey Bose commutation rela-

tions and yield to the correct classical ground stateSpr
Numerical minimization of the classical ground-state en-_g —g and$,=S, i.e., for the case without fluctuations.

ergy under consideration of exchange energy, dipolar energynserting these operators and E&) into Eq.(26) leads to a
and a magnetic field applied in chain direction shows thaiygmiltonian that has the same structure as the one without
spins on basal-plane lattice sites are arranged on three Sug’pplied field[see Eq.(A1)] and can be diagonalized in the

lattices, i.e., neighboring spins within basal planes show &;me way. The spectrum obtained by this calculation is
phase shift of 120°. However, the applied field forces theshown for a special direction in Fig. 12.

spins to tilt in field direction by an angle. The ground-state In comparison to the field-free case the field lifts the de-
energy reads generacy of all modes. This cannot be seen in the figure

above, because the difference of the gaps is too small. The
Eg= —NSZ(JqOJrAéi)—NSZ sin2¢[Jq0+Aéz—(Jo+A(3,3)]. gaps for the second and third-lowest modes &g g

27 =197.27 GHz and,-,=198.04 GHz respectively, i.e., the

magnetic field does not changg very much[compare re-
Here ¢ is the angle between the basal plane and the spinsults from Eq.(23)], only at the Brillouin-zone boundary is
which is the same for all three sublattices. This phase is thﬂ']e difference of the Spin-Wave frequencies |arge_ However,
well-known umbrella phase. Minimization of the ground one Goldstone mode is still present since rotational invari-

state energy in Eq(27) leads to the relation between the gnce around the chain axis is uneffected.
applied fieldH, and the tilting anglep

A. Field in chain direction

B. Field within the basal plane

gugHo (28 1. Ground states

11 337"
ZS[Jqo+Aqo_(‘]0+A0 )] First of all we state, that the direction of the applied field

within the basal plane is arbitrary for the structure of the
Equation(28) reduces to the 120° phase found in the previ-

ous section for vanishing fields. For infinitesimal field the
spins partially align in field direction; as already stressed,
spins on different sublattices enclose the same angle with the
applied field. The value of the angle increases with increas-
ing field. At a critical field

sinp=

3000

2000

E, [GHz]

H =izs[3 +AN—(Jo+ASD] (29
¢ gug o' Mg Y070 1000 |-

the system undergoes a phase transition to the paramagnetic

phase. The phase diagram is schematically shown in Fig. 11.

The starting point for the spin-wave calculation are the 0
proper spin variables defined in Ed.2), which lead to fluc- T Af2
tuations. These variables are found by performing a rotation
of the spin variables given in Eq21) by the anglee in FIG. 12. Spin-wave frequencies in the chain direction in the
chain direction umbrella phase for CsMnBffor a magnetic field of 6.5 T.
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/Ho interaction along the chair(§or infinitesimal fields the spins
along the chains are aligned antiferromagnetigallyhere-
f fore, the ground-state energy can be written in terms of three
: angles only
c Eq 1
NS (12)" —4A5zp)[coga—B) +coda—y)
d/ / A\ e 9
. y 2 .
, \ l s +cogB—y)]+(—4I+2A55y)
a b
X[cog2a)+2 cogB+y)]

FIG. 13. General six-sublattice structure of the ground state. The
direction of every spin can be described by two independent angles,
the spin length is fixed. The different sublattices are denated +{2A(1);e[coi 2B)+cog2vy)+2coga+pB)
and the field is applied within the basal planedirection.

+2coga+y)]+6A%,

ground state. This is due to the fact, that the 120° ground

state is rotationally invariant without applied field. In the —2h/S(sina+sing+siny). (31
following we will apply the field in they direction. To find

the ground state we have to minimize the classical groundiereéNg=N/6, h=gugH, anda,,y refer to the angles of
state energy. This is done within a general six-sublattice sydhe spins to thec axis (see Fig. 14 _ _

tem, where one has three independent sublattices in each of To find the minimum of Eq(31) we differentiateE, with

two adjacent basal planésee Fig. 13 respect to the three angles. This Ie_ads to three equations for

The ground-state spin configuration of the whole magneﬁhe angles in dgpendence on the field. These equations can-
is built up by repetition of this basis. To describe the spatial©ot be solved in closed form; however, we can compute
direction of the spins, we need to know two angles for everghesezangles to lowest order ihlo/(8JS), J'/J and
spin (spherical coordinatgsas the spin length is fixed. We (9ug)/J":
formulate the ground state energy in the magnetic BZ and h h
obtain the ground state by numerical minimization of the sina=——, sine=————
ground state energy. 8JS 8J32-2)

First, we find that the spins stayithin basal planes for
realistic strengths of the dipolar energy for all values of the
applied field. The dipolar energy leading to an easy-plane
anisotropy in the field-free case is therefore strong enough to 212 . ) .
keep the spins within the basal plane even in the presence $fith z=h?/hc. The critical field to lowest order is
a competing applied field. With this knowledge the ground

1
C0So= > (32

state can be parametrized by six different angles, which give h2— 481)'S? 33
the direction of any spin within the basal plane. Secondly, ¢ 1 . " '
the angles of each two adjacent spins along the chain direc- 1+ J(Ao,ab_Ao,ae

tion (e.g., spins on sublatticesandd in Fig. 13 add up to

180° if one measures the angles with respect toxtdeec-  Here, we have introduced the notatién-3(8—1y) and e
tion. This is due to the strong antiferromagnetic exchange:%(lm_y)_
The qualitative behavior is as follows: As we apply an
H, infinitesimal field, one spind) aligns virtually perpendicu-
,T\ lar to the applied field, whereas the other two enclose an
angle of 120° and 240° with the first spin, respectively (120°
structure. As the field increasesx remains almost un-

g e~ changed, whereas the other two angbeand y chan il
a h , vy ge unti
UL 9 e y they coincide at a critical fielt, for z=1, i.e.,6=0. Above
’ A I_’ this field strength
y=5 (34)
T / \ i N and the reorientation of the spins is like at an ordinary two-

sublattice spin-flop phase. However, the angleand 8 do
FIG. 14. Notation of the angles on the three independent sublatrot add up to 180° as in a simple spin-flop phase. To the
tices in a specific basal plane. lowest order the angles are given by
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N ' _ 1 | eplane 1 mod 2,
iz | ] g=explidx)=) | e plane 2 mod 2, (36
- and
o} :
S 3 0 | e sublattice 1,
S 2
%0 2?77 ‘ 1 h:ﬁsimq4xl)= —1 |esublattice 2, (37
g 1 | e sublattice 3,

whereq;=(0,0,7) andq,=(47/3,0,0). Usingg and h al-

0 o , lows us to automatically depict the sublattices which are pa-
H rametrized byw, B, andy.
H [T] ¢ The spin variables in Fourier space are given by
L . _ ra 4 &z _RhC
FIG. 15. The angles minimizing the classical ground state en aséfql c(sq7q0+ Sq+qo) bs(x1

ergy for CsMnBg. The critical field isH.=6.35T.
X X
+ d(Sq_2q4+ Sq+2q4)

_ h 3 1 ~ = ~ =
sina= HS( 1=+ ﬁ(A(l);dJr ZAé;b)) +f(Sq+20,~ Sg-29,) ~ &(Sq-q, ™ Sg+,)
Sq: bs(zl_d(Sé*ZQ4+S(Z]+ZQ4)+aS§|*ql !
h 3 1 ~ =
inp= gos| 1= 3y + o5 (Abhat Abbe~ Alko) |- o8+ B
39 e(B g, Fhrg) 1B 20, )
These are the dipolar generalization of the results of ~SZ]
Chubukov?® In Fig. 15 we have plotted the numerical re- (38)
sults.
|yvhere

At H,4#~154 T the paramagnetic phase is reached fo
both a field in chain direction as well as perpendicular. 1

In Fig. 16 the schematic phase diagram for the 120° struc- a= = (cosa+ cosB+cosy),
ture with a field applied within the basal plane is shown. 3
Note that the dipolar energy in real materials is strong .
enough to keep the spins within the basal planes despite the _ . : .
fact that the applied field is competing. Also note, that the b= §(sma+smﬁ+smy),
in-plane dipolar 120° structure is only realized for vanishing
fields. 1

c= g(cosﬁJr COSy—2 COSa),

2. Magnon spectra

The magnon spectrum for the four phases of the previous
section can be calculated within the crystallographic Bril-
louin zone. We will start from a general ground-state that can
be parametrized by three angles, develop a spin-wave theory

1
d= g(sinﬂ+ siny—2 sina),

and insert the angles found by minimization of the ground- e= (sinB—sinvy),
state energy. 243
First, we introduce
i
f=——=(cosB—cosy) (39
m 2\/§ B Y
H, are some abbreviations for the angular variables. For vanish-
{ | | ing field Egs.(39) reduce to
0 Hc Hpara 1
FIG. 16. Magnetic phase diagram of CsMgBor a field ap- a=b=d=f=0, c=- 7 &5 (40)
plied within the basal planes. The 120° phase is realized only for _ _ _ _
vanishing field. All spins lie in planes perpendicular to the chaini.€., the spin variables already given in Eg1).
direction, i.e., within thex-y planes. AtH. a phase transition oc- Inserting Eq.(38) in the Hamiltonian of Eq(26), truncat-
curs from a three-sublattice to a two-sublattice phase. ing after the harmonic terms and diagonalizing the resulting
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3000 where B=1/kgT. For a field in the chain direction the
Hamiltonian is given in Eq(Al) and leads to
F|=E +i2 EV— A~ Ay q.—Agiq—A
w 2007 == 12 (Eq a Ma-dy Tatag Md-2qg
q
==
<) gD
- ~Aqragy—Aq-3q,) tke T2 In(1—e #Fa),  (43)
000 | q
whereq runs over the magnetic Brillouin zonE{ are the
six branches of the magnon spectrum for the case of a field
. applied in chain direction, and, is given in Eq.(A2). For
r the Hamiltonian of Eq(A3) (i.e., a field applied within the
Af2 basal planesone gets
FIG. 17. Spin-wave frequencies in chain direction in the two- 1 _
s>uglattice phase for CsMnBrfor a magnetic fieldHy;=6.5 T FL:Eg+ B 2 (Et(ql)_Aq_Aqfqo_Aqmo_Aquq‘,
c-
Hamiltonian leads to the spin-wave frequendisse Fig. 1Y —A —Ag_g) T kT, |n(1_ef,8E§,”) (44)
. . . . q+20q, q—dq B .
(in Appendix A2 we give the expressions for the two- q

sublattice case explicitly

The dipolar energy leads to a lifting of the Goldstone
mode present for the field-free case. This is in contrast to th . )
spectrum obtained for a field appliénl the chain direction, Planes andi, is given in Eq.(AS). L .
where a Goldstone mode still remains. Here the magnetic ngerally, the_free energy has three contributions: the f'rSF
field forces the spins to align partially in field direction, ON€ IS the classical ground-state energy, the second one is

whereas the dipolar energy fixes the spins within the basaque to quantum fluctuations, V\_/hereas the third one is the
planes; a free rotation of the ground-state configuratiorFont”b“t'on of thermal quctugtlons. To calculgte the free
around the field direction is therefore impossible in contrasEN€rgY We replace the sums in E¢43), (44) by integrals

to a field applied in chain direction. This is the physical over the Brillouin zone. Then_ we hav_e {0 integrate over the
explanation for the gap in the excitation spectrum field-dependent spectra for different field strength. Differen-

In the rest of the Brillouin zone the spectra for an appliedtiating theS(_a frge energies with respect to the .field leads to
field parallel and perpendicular to the chain direction arethe magnetization. 'For the magnetization we find the same
basically the same, i.e., the dipolar energy only changes th&ucture with classical, quantum, and thermal contributions.
structure of the excitation spectra near the center of the Bril- _| "€ intégration over the spectrum and the differentiation

louin zone. However, we will see that these differencesWith respect to the applied field are done numerically. For

aroundq=0 are crucial for the dependence of the magneti-Ne anglésx, B, and y, which cannot be given analytically,

zation on the field direction we use the numerically calculated values from the energy
' minimization of Eq.(31), see Fig. 15.

TheE{) are again the six branches of the magnon spectrum,
Qut now the ones gained for an applied field within the basal

VI. FIELD DEPENDENT MAGNETIZATION AND
COMPARISON WITH THE EXPERIMENT

1. Classical contributions

The classical contributions to the magnetization are cal-

We now turn to the field dependence of the magnetizatiorzylated via the classical ground-state energies. This yields
of a dipolar, hexagonal antiferromagnet taking into account

fluctuations. We will again distinguish between fields ap- M|/Ngug=Ssine, (45)
plied in the chain direction and fields applied within the
basal plane. 1
ML/Ng,uB=§S(sina+sin,8+siny) (46)
A. Theory

for the field parallel 4) and perpendicularN,) to the

. The magnetization can be found from the free endfgy chain direction, respectivelyM| can be calculated analyti-

via cally [sing is given in Eq.(28)], whereasM, has to be
9F calculated numerically as the equations following from Eq.
Mz—m. (41) (31 do not have analytic solutions for the tilting angles

0 a,B,y.

The free energy is related to the partition functidand the The classical results, which are plotted in Fig. 18, show

HamiltonianH by not only an anisotropy for fieldsl,<H., but also for fields
Ho>H,;. The latter cannot be seen very clearly in Fig. 18 as
F=—-kTInZ and Z=Spexg—p8H), (420  the difference of the values of the magnetization for fields
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FIG. 18. Classical results for the magnetization for CsMnBr
(J=213 GHzJ)'=0.50 GH2. Full line: field in chain direction,
dashed line: field within the basal plane.

FIG. 19. Magnetization in CsMnBr The full line is calculated
under consideration of quantum fluctuations, the dashed line is the
classical result.

Ho>H, is proportional to the dipolar energy. However, the vyhich are coupled antiferromagneticglly on a.hexagonal lat-
magnetization for fields parallel to the chain direction is al-tice. These authors claim, that the discontinuities show, that
ways larger than for fields perpendicular to the chain direcihe system is in some kind of intermediate phase in the tran-
tion, a fact that can also be seen in experim@hihis an- sition regions, which consists of a mixture of the two adja-
isotropy is of dipolar origin since it is energetically more cent phases. Therefore they perform a Maxwell construction
favorable for two spins to align ferromagnetically along theirin the free energy and get a plateau in the magnetiztion.
connecting line than perpendicular to it, which means in our However, there is no significance for such a plateau in
case, that the spins can be tiltedthe chain direction more any of the experiments on hexagonal anﬂferromag-’rfe?&_
easily. However, there are two discrepancies between thioreover, the motivation to perform a Maxwell construction
classical results and the measurements, namely, the absolifethe free energy in the regions of the phase transitions is
values are different and the experimental anisotropy foundlOt obvious to us. In Sec. VI B we will show that the method
for Hy>H. is much bigger than the one resulting from Eqs.Of calculating the magnetization as the derivative of the free
(45), (46).2" In the following we will show that mainly quan- €Nergy seems questionable at phase transitions.
tum fluctuations account for this large effect. ,
3. Thermal fluctuations
Let us now discuss the influence of the third term in Egs.

With the term quantum contributions we address the c0n£43)’ (44). These terms lead to contributions to the free en-

tributions also present &i=0, which are given by the de- ergy due to thermal fluctuationg &0). To estimate the ef-

rivative of the second term in Eq&43), (44). These contri- fect of thermal flugtuatlons one would have to compare the
. . . temperature at which the measurements were made with the
butions were evaluated numerically for the two field

directions. One main result of these calculations is, that
guantum fluctuations reduce the absolute value of the classi-
cal magnetization by up to 30%. -~

Field in chain direction For a field in chain direction s
guantum fluctuations reduce the magnetization in the whole
spin-flop phase. In Fig. 19 we plotted the magnetization for
field strengths which can be reached in the experiment for
the parameters of CsMnBrThe dashed line in Fig. 19 is
equivalent to the full line in Fig. 18.

Field perpendicular to the chain directionFor fields
within the basal plane we obtain the curves plotted in Fig. -
20. Our method leads to an unphysical discontinuity of the -~
magnetization at the transition from the three-sublattice to ,
the two-sublattice phase. Moreover, at the phase transition to 00 20 4.0 6.0 8.0
the paramagnetic phase we not only find a discontinuity in Field [T]
the magnetization but we also get absolute values of the
magnetization which are larger than the saturation magneti- F|G. 20. Magnetization in CsMnBr The full line is under con-
zation. Exactly the same results were theoretically found byideration of quantum fluctuations, the dashed line is the classical
Rastelli et al?® for the case of ferromagnetic spin chains result.

2. Quantum contributions

1500.0 T T T

1000.0

M, [cgs/mole]
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one corresponding to the anisotropy. However, we perin the behavior of the magnetizationcluding fluctuations.
formed a numerical calculation of the integrals, which showdn particular, we study the magnetization at the phase transi-
that thermal contributions are not important at temperatureon from the intermediate to the spin-flop phase and at
at which the experiments are performed. For CsMnBr higher fields from the spin-flop phase to the paramagnetic
which has a Ndetemperature offy=8.3 K2° one gets for phase.

T=1.8 K, a typical temperature where measurements in the As already stressed, we will calculate the magnetization

ordered phase are performed not only via the free energy but also via the mean value of
the spin on the field direction. This can be done using the
Fin(T=1.8 K)/Fp=<10"". Greens function techniqufé.The magnetization in the spin-

. . fl h is, for i i
Thermal fluctuations therefore cannot be responsible for theOp phase is, for instance, given by

large anisotropies in the field-dependent magnetization, com-
pare Ref. 30. M=gug>, (S}

B. Results for a topological similar dipolar system . 1
| , _ _ =NgugSsiny| 1- g 2 (ajag) |, (47
For hexagonal antiferromagnets without dipolar energy it q
v_vas.shqwn_by Zhltom|rsky_ and Zalizny#lithat the magne- wherey is the classical tilt angle of the spins with respect to
tization is different depending on whether one calculates th?ne magnetic field and the direction is the field direction.

derivative of the free energy or the mean value of the SPPrhe mean valuéa*aq> is calculated via the spectral theorem
projection on the magnetic field. However, these authors q

were able to show, that the two results are the same up to the i

first order in the ratia)’/J in these systems. Santiat al* (ajag)= —J do[G(w+i8)—Gi(w—i8)n(w),
. . 2

also called attention to this fact. However, they analyzed the 49)

magnetization by means of a Monte Carlo simulation.

In the following we study the phase diagram and the reiwhere Gl=<<aq;a£>> is given as the eigenvector of the
sulting magnetization for the two-dimensional dipolar anti-equations of motions fa&; and three other Greens functions
ferromagnet on a square lattice with Iongitudinal field. Theand can be calculated Straight forwaqé_:(ﬂ-/a)(l,l) me-
reason to investigate this system is that its phase diagram hasates between the two sublattices of the system. To get the
the same topology as the one of the hexagonal antiferromagnagnetization one has to evaluate an integration over a
net, i.e., it has phases which can, depending on the magn@reens function in Eq47). We stress again that in principle
tude of the field, classically be described by one or two inthe same proceeding is possible in the hexagonal antiferro-
dependent angles with respect to the applied field. The phasfiagnet; however, in those systems the three-dimensional in-
which is parametrized by two angles is called the intermeditegrals can no longer be evaluated numerically with sensible
ate phase, whereas the phase where one angle suffices is tt®uracy due to computational time problems, as one has
spin-flop phasé’ At a critical field strength the system un- welve equations of motions and therefore very complicated
dergoes the same kind of phase transition as the hexagongtegrals.
antiferromagnet, namely two angles coincide. For high fields The free energy for the two-dimensional antiferromagnet
we find a transition to a paramagnetic phase in both systemsgs given by

However, in the two-dimensional system we are able to
calculate the magnetization not only by using the free energy
but also by directly calculating the mean value of the spin F=E4— 4 Crng(Aq“LAqwo_ Egl)_Eéz))' (49
projection on the field. In principle, this is also possible for Y
the dipolar, hexagonal antiferromagnet, but fails due to thavhereE, is the classical ground state energ;’ ,E??) are
complicated Hamiltonian of EA3). Due to the six sublat- the magnon energies of the two branches, Apds the co-
tices one would have to calculate six Greens functions out ogfficient of the diagonal term in the Hamiltonian before the
the twelve equations of motiorise., theeigenvector®f the  diagonalization.
equations of motionand integrate them over the first BZ, = Numerical resultsin Fig. 21 we plotted numerical results
which is a numerically hopeless task. Note that we only haaf the magnetization. The evaluation of the magnetization
to calculate theeigenvaluesof the matrix describing the using the derivative of the free energy leads to discontinui-
equation of motion to find the magnon energé]é? , which ties at all phase transitions. At the phase transition from the
are needed to calculate the free energy. All in all this meanspin-flop to the paramagnetic pha$eg. 21) the magnetiza-
that we are numerically able to calculate the free energytion for fields lower than the transition field is again larger
whereas the direct calculation of the magnetization is nuthan the saturation magnetization. These results are qualita-
merically not feasible in the case of the dipolar, hexagonatively the same as the ones found in the previous section for
antiferromagnet. hexagonal antiferromagnets and the ones found by Rastelli

Let us now return to the magnetization in the two- et al®®
dimensional dipolar antiferromagnet. First of all we note that However, here we calculated the magnetization also as
the classical magnetization curve was studied by one of ththe mean value of the spin projection on the figldl line in
authors(compare Ref. 3R In the following we are interested Fig. 21); in this calculation one does not get a discontinuity
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FIG. 21. Magnetization at the phase transition from the spinflop g|g. 22. Longitudinal and transverse magnetization for
to the paramagnetic phase. Dashed line: results from the free e®sMnBr, compared with the experimefRef. 27. Dashed: classi-
ergy, full line: results from the spectral theorem. In the paramagcal theory, solid: quantum mechanical theory with fluctuations,
netic phase one getS identical curves. The magnetic field is given iboints: experiment_ The upper curves be|0ng to a field in chain
direction, the lower ones to a field perpendicular to the chain direc-
tion.
in the magnetization. Moreover, also the absolute value of
the magnetization is always lower than the saturation magmodels one uses. Therefore, we deterndiheut of the criti-
netization. The calculation using the spectral theorem thereca| field in Eq.(33). In this case the critical field is to lowest
fore seems to give more reasonable results than the one usiggder independent on the additional kind of anisotropy in the
the free energy. However, for decreasing fields in the spinHeisenberg model.
flop phase, the two curves in Fig. 21 converge. This qualita- |n this paper we have made use of the parameter set
tive behavior is again gained at all phase transitions.

Our conclusion from all that is that the magnetization cal- J=213 GHz=0.88 me\=10.21 K, J'=0.50 GHz
culated using the free energy is not a good approximation at (50
phase transitions but approaches the more reasonable results. . i
calculated by means of the spectral theorem for fields that atéhich leads to a critical field off;=6.4 T.
not too close to phase transitions. Comparing E4® and In Fig. 22 one sees that we get good agreement of our
(49) shows again that the calculation of the magnetizatioff’€0ry With the experiment for a field applied in the chain
via the free energy just requires us to evaliggenvaluesf direction. The absolute value (_)f the magneuzathn isa blt_ too
the equations of motions, whereas calculating the magnetiz42"9€- We will come to that point later on. For a field applied
tion using Eq(47) requires us to determine tisigenvectors perpend|pular to the chain d!rectlon we find gooq agreement

namely, the full Greens functions of the system and is therefOr low fields whereas the influence of fluctuations at the
fore much more complicated. However, the latter calculatiorP@Se transition is underestimated. The curve which is cal-
also yields meaningful results at phase transitions where Iatgd under consideration of fluctgatlons converges to the
classical one aH~H,.. In the previous section we have

units of gug -

the first one fails in these regions. Sl g
shown that the results for the magnetization calculated using
c e ' ith iment the free energy are questionable near phase transitions.
- ~omparison with experimen However, for fieldsH>H_. we get very good agreement

In Fig. 22 we have plotted the results from Sec. VI B andfor the ratio of the magnetization for a field in chain direc-
the experimental data on CsMngr Note that no additional tion to the magnetization for a field within the basal plane.
free parameter enters in the results of Fig. 22 as the dipolaks this ratio is almost independent of the exact parameter set
anisotropy is fixed by the magnetic moment and the latticeone uses for the exchange interaction we conclude that this
structure. The intrachain-interactidris determined by com- result shows the effect of fluctuations in tbgolar Hamil-
paring dispersion relations with measurements of magnon®nian. The dipolar interaction therefore is not only respon-
along the chain direction in the one-dimensional short-rangsible for the kind of anisotropies in all ground states but also
regime® The advantage of this method is that for tempera-gives rise to the anisotropy in the field-dependent magneti-
tures above the three-dimensional ordering temperafure zation. This reflects the fact that the dispersion relations are
>Ty the intrachain-interaction is the only relevant interac-qualitatively different for the two field directions if one con-
tion and can therefore be fixed accurately. The interchainsiders the additional dipolar interaction in the exchange
interactiond’ can be determined by comparing spin waves inHamiltonian of Eq.(1). One finds a remaining Goldstone
the three-dimensionally ordered phase measured perpendicoode for a field in the chain direction whereas no Goldstone
lar to the chain axis with theoretical results. However, onemode is present for fields applied within the basal plésee

gets different parameters in dependence on the kind of spiecs. V A, and V B.
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The occurrence of a large anisotropy in the magnetization Based on these ground states we performed a spin-wave
for fields H>H_. can even be explained in a pure one-calculation by means of a Holstein-Primakoff transforma-
dimensional model® but without qualitative agreement. The tion. We calculated the magnons in all of the above men-
absolute values of the magnetizations are too large compardibned phases; we found qualitatively different magnon spec-
to experiments. This is in part due to a certain experimentatra for the same field strength depending on the direction of
uncertainty as the measurements have to be calibrated whéime applied field. Whereas the excitation spectrum for the
measuring absolute values. Therefore different experimentaimbrella phase is gapless, the excitation spectrum for the
groups get slightly different absolute values for the magnethree- and two-sublattice phase is gaped. This is due to the
tizations, but almost identical values for the anisotropy of thedifferent symmetry of the ground states.
magnetization foH >H,.2"3*30n the other hand, one gets  The field-dependent magnetization including fluctuations
virtually the exact agreement of the magnetization for was studied in a next step and we compared our findings
>H, if one uses a slightly larger value for the intrachainwith experiments. Calculating the magnetization via the free
interaction, namely)=222 GHz. This is a difference in the energy leads to unphysical discontinuities for fields applied
intrachain interaction of 4% to the value we used for thewithin the basal plane at the phase transitions from the three
calculationd Eq. (50)] and which was gained by a pure one- sublattice to the two sublattice and from the two sublattice to
dimensional model. the paramagnetic phase. Studying a system where one can

calculate the magnetization not only via the free energy but
VIl. SUMMARY also via the mean value of the spin projection shows that the
results obtained by using the free energy are questionable at

We investigated a dipolar Heisenberg model as a modejhase transitions, but converge to the results using the mean
for hexagonal antiferromagnets. We found three commensuzajue away from phase transitions. We found that the big
rate and two incommensurate phases for different values gfnisotropy in the magnetization for a field parallel and per-
the ratio of dipolar to interchain interaction in the field free pendicular to the chain direction present for high fields is due
case. We showed via linear spin-wave theory that all of thesgy quantum fluctuations rather than thermal fluctuations and

commensurate phases are stable against fluctuations and th@ind excellent agreement between our dipolar theory and
the incommensurate phase IC Il can be approximated by the experiment.

120° structure for weak dipolar energies.
The spin-wave frequencies of our theoretical model are in ACKNOWLEDGMENTS
good agreement with neutron scattering experiments on

CsMnBrz and RbMnBg, which shows that the dipolar en-  This work was supported by the BMBF under Contract
ergy is the most important source of anisotropy in these MmNo. 03-SC5-TUM 0 and the DFG under Contract No. Schw
compounds. 348/10-1.

The ground states for fields along and perpendicular to the
chain direction were studied for low dipolar energies. For a _
field along the chain axis it turns out that an umbrella phase APPENDIX A: SIX-SUBLATTICE CONFIGURATION

is the ground-state configuration for nonvanishing fields; for |n the body of the paper we displayed our results by plot-
high fields a paramagnetic phase is established. Applying ing spin-wave spectra for different phases, see Figs. 12, 17.
field within the basal plane shows the following. First, the|n this appendix we give the longish formulas for the calcu-

dipolar energy leading to an in-plane anisotropy in the field4ation of these spin-waves in the harmonic approximation.
free case is strong enough to keep the spins within the basal

plane for all field strengths. Secondly, a three-sublattice
ground state configuration is established for low field
strength. Two out of the three angles coincide as the field For a field along the chain direction the ground state is an
reaches a critical fieltH. and the reorientation of the spins umbrella phase as shown in Sec. V A. The transformation for
appears in the same way as in an ordinary two-sublatticthe spin components is given E@®1). After inserting this
spin-flop phase despite the fact that the two remaining spingansformation in Eq(26) and truncating after the harmonic
enclose slightly different angles with the field direction. terms, the Hamiltonian reads

1. Field along the chain direction

H=E,+> {A.ala +EBaa JrEB*aTaJr +Cqa,a +C*ala’ +Dga.a +D*ala’
o 20 | AaPay a@q-q a@q@-g+2q, " ©q8q8-g+2q, T PqBq@-q-29,7 Pq8q

2 2 a7a"—q - —q—2qp
T * T T * 4T * o T4T
+Eq48q9+2q,T Eq g+ 29,8 Fe@q@q-29,7 Fq - 29,8 Gg@q@-g+q,1 Gq 8g@- g+ q, T Hq@q8 - q-q,
*atat T * ot T * ot
+H3 ag@-q-q, I a@qq+q, T 15 aq+qoaq+anqaq,qcﬁ—\]q 83-q,8q| - (A1)

The ground-state energy is given in Eg7). The coefficients in the HamiltoniafA1) are given by
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—ES' 20giq —2)g o +AR A A2 a2 1 2Jqiq +2J
4 55IN¢(2Jq+6,7 2dq-0,F Aoy ™ Ag-a, T Agta ™ Aamay) T 3 (2dqr a0 T 294,

11 11 22 22
+Aq+qo+Aq*qO+Aq+qo+Aq*qO)’

1 1
— H 11 11 22 22 _ = 11 11 22 22
By=7 SSIPe(2Jq: g)+ 23q-q,+ Al g+ A oy T At gt Aneg9) ~ 7523+ 09T 2Jg-a0+ Al g AT g T AT 0T AT )

S .S
+S00¢(Jg+Ag) —i5 SiPe(AT g — Al g) +i5 (Ag 4o~ Agiqy):

S S S 1 1 1
T 11 _pa22 \_ S 11 _ p22 Soall _p22 T 12 _ Ticai 12 Tiaopal2
Cq=gSIPe(Aqt 4, A q,) = 7 SINP(Aq- o, = A ) + g (Aatay = Ag-ag) T 71SSIP @A ¢ — 51SSINGAL 4 + ZISAZ )

S
11 22
4+ Q+qo)+§(A —A

S S
Dq:§ SInZQD(Aclﬁrqo_AcZ]iqo)_ZS'”‘P(All ~AZ q+ap” Aatay)

1 1
ZisSin2¢A12 =

* a+dy 2

1
iSsingA;: ¢~ 71SAY

q+qy +dp?

S S 1 1
— H 11 22 11 22 H H 12 H 12
Eqe=—3 Sife(AG: 4, Adt q,) g (Aqta, ™ Agra) T ZISSIn2<pAq+qO+ 21587 qy

S S 1 1
_ 2 11 a22 D A1l a2 N o 12 Tioal2
Fo=— g SIPe(Aql ;= A q,) + g (Agtay = Ag-a,) ~ 71SSIP@AGL 4~ 71SAY g (A2)
S . S S .S
Gq=—5sing cos<pAé3,qO+ Ecos<pAé§qo—| Ssing cos<pA§3,q0+| ECOS‘PASSL% ,

H =—§sin cospAl® —§cos AB +i§sin cospAZ®
q= ~ SIN@ COSPAGLq, $Aa+ag eEe

S
i 23
5 5 +i=CcospA

atdy ' 2 a+do

I =§sin cospAl®  + §cos AL 4 §sin CospAZ®  +i §cos A2
q 2 () ® gq+dg 2 [ q+dg 2 ® ® gq+dg 2 [ q+dg’
S S S S
i 13 _° 13 i 23 P 23
Jq= > Sine COSQDAq_qO 5 COSqDAq_qO i 5 Sine cos<pAq_qO+ i 5 COSqDAq_qO ,

where sinp is given in Eq.(28). The case of vanishing field is contained in these formulaspfe®.

2. Field perpendicular to the chain direction

To calculate the magnon spectrum for a field applied within basal lattice planes, we have to ins€8)Eqgto the
Hamiltonian of Eq.(26). In the following we give the expressions for fields>H explicitly, where the ground state can be

parametrized by two angles and 8= . This impliese=f=0 in Eq. (39). For the general case of three sublattices the
formulas are more complicated. The quadratic Hamiltonian reads
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1 1
_ T - Tp*atat * T4t t * T
H—Eg+§ Aqaqaq+ quaqa,qu 2Bq aqa gt anqa,q+2q4+ Cq aqa,q+2q4+ anqaq,2q4+ anqaq,2q4+ Eqaqa,q,2q4

x otat t * t t * t tat
+ Eq aqa,q,2q4+ anqaq+2q4+ Fq aqaq+2q4+ Gq(aqaq+ql+ aqa,q,ql) + Gq (aqathJr aqa,q,ql)

t * t 1 t * t 1
+ Hq(aqaq+qo+ aqa_q_qo) +Hg (aqaq+qo+ aqa_q_qo) +1 q(aqaq_qur aqa_q+q0) +1q (aqaq_q0+ aqa_q+q0). (A3)

The ground state energy in the crystallographic Brillouin zone which is equivalent to fofBilavhere the energy is given
in the magnetic Brillouin zonereads

Eg=— NS a’(Jq, + Aq)) +2¢%(Jq,+ Aq) = 2F2(Jaq, + Azg ) + 0% (Jo+ AGD) +2d%(Jpq, + AZ; ) — 267(Jg, + AZ)]—hNSh
(A4)

with h=gugHg. The coefficients in Eq(A3) are given by
Aq/S={[2(3o+AT) — (Jq+ AgH 10>+ [2(Jq, +AG) — (Jgi g+ AGE g 1%

11 22 22 2 22 11 11 2
+[4(3g, T Ag) ~ (Jar gyt Jg-apt Adigp+ A g 167+ [4(J2q, + AZ5) — (Jg 20, 20, T Agi 2g, T Ag-2q,)d°1}
—(Jg+ A +gugHo/Sh,

Bq/S=—{(Jg+ AHD?+ (Jq1 g, + AJL q)8%+ (s gy gy T Adgy T Adcgg) € (Jq 20, Jg—20, 7 Ads-29, T Ag2q,) 8%}
+(Jg+ A —2iALD,
1
— 11 11 22 22 11 2 22 2
Cq/S=5{(Iq+ Ag+Jq-2q,+ A2, 00+ (Jgi gyt Al gy T Jgrq, +Agt )86~ (Jge20, T Aghaq,) 87— (Jg—g, T Ag 4 )C7)
N
+TiAGZ 29,0
D /S—1 —2(Jg+AZ2 4 3y + A2 )+ (I + AL +Al bd
q _E{[ (Jot Ag™+J2q, T Azg,) + (Jgt Ag+Jg-29, T A= 2g,)]
11 11 22 22
+[=2(J3q, A H gy Ag) T (Jgigp T AGE g, T Ja+a, T AGHg) 1aC
_ 1
+[2(3gy+ AG) — gy T A2 ) 167+ (2(J2q, + Ad2 ) — (Jqi 2, T Ag 29,107 HIAGS 5q,d— >9ueHo/Sd
Eq=C_q.
Fqe=D_q,
_pal2 12 12 i a 23
Gq/S=Ag"ab+ (Agioq, T Ag-2q,)CATIAG g A
— 12 12 12 i A 23
Ho/S=—Ag et Ayl oq,cd—AgZ,q,ad—iAg, ¢,

lg=H_q. (A5)

Here we used the abbreviations defined in Eg®). The APPENDIX B: DIPOLAR ENERGY

diagonalization of the Hamiltonian@\1), (A3) can be per-
formed in an analogous way: the equation of motion for the In the body of the paper we gave formulas which con-

Greens functior((aq;a;» with the Hamiltonians generate tained Fourier transforms of the dipolar tensor. We have to
eleven other Greens functions leading to a system of twelvdistinguish between dipolar tensors in the crystallographic
equations for the twelve Greens functions. The spin-wavé3Z and in the magnetic BZ. The formulas for the dipolar

frequencies are given by the eigenvalues of the resulting 1&nsor in the crystallographic BZ are summed uf Hiere,
X 12 matrix. we give the formulas for the magnetic BZ.
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Y T ( - 277'5&,82 ' lalx—(ra=rp)]
[
® L J )

m 2
X @172 X1 = (ra=rp)]|
as

+4,n.2a3—2/32 " elalx—(ra=rp)]

a
. . Agﬁbé’: X[XI_(ra_rb)]a[xl_(ra_rb)]ﬁ
¢ o
X @3 —=[x = (ra—rp)|?
° ° ° 2 a§/3 ?
FIG. 23. Parametrization of the lattice.
—af"X (4+G)u(a+C)y

When we performed ground-state calculations for a gen- 2/3

eral six-sublattice model, we had a basis with six spins and k x /e~ g ai|q+ G|?],
replicated this cell to build up the lattidsee Figs. 13, 23 4

To find the classical ground state energy of this structure, we (B3)
parametrize one of the six sublattices with vectormsnd the ~ whereas=3+3a’c is the volume of the primitive cell of the

basis cell with vectors, to r. magnetic sublattice. The components of the dipolar tensor in
Here sublatticeA is parametrized in a coordinate system, the magnetic BZ are connected to the ones in the crystallo-
which is rotated by 30° to the crystallographic one graphic BZ. Here we give some of these exact relations:
2(Agy = Agy) =Abab~ Adge:
a
hi=a(y3,00, h,=5(V3,10, h3=c(0,0,2 2(A%~ AZ,) = Al Abhe,
(B1)

2R+ 2AZ )= Atk o+ ALk,

and the vectors describing the basis are given by (ALt oAM= ALl _ AlL (B4)
qq qg/ ~ "Y0aa O,ad "

a a .
r.=(0,0,0), rb=§(\/§,—1,0), rc=§(\/§,1,0), APPENDIX C: POINTS IN THE BRILLOUIN ZONE
In this appendix we compile the different wave vectors
used in the body of the paper. Below each wave vector the

points in the Brillouin zone are given, compare Fig. 1.
a Cc a c
ry=c(0,0,1), rezi( @,—1,25), rf:E( @,1,25).

q=0 0:=(0,0,m)
(B2 4
Jo= ?10177
Here c is the distance of neighboring lattice sites along the H A

chain direction ané the one within basal planes. To include
the full three-dimensional dipolar energy, we need the con- 2 27 2w 41
tribution of the dipolar energy from the interaction of sublat- d>=| 0;—=, Qs3= 3 —= | = ?'0'0
tice a with sublatticesa—f, the interaction of sublatticé V3 \/§

with all other sublattices and so on. This means, that we have L H' K

to calculate Fourier transforms with respect to a linear com- ( o ) ( T ) ( 2 )
bination of two basis vectors. The dipolar tensor splits up ings=| 7, —, J¢=| 7 ——=,7| gq;=|0—=,0
two contributions on the direct lattice and one for the indirect \/§ \/5 \/5
lattice (Ewald-summation techniqte!) and finally reads L’ L" M
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