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Ordered phase in the two-dimensional randomly coupled ferromagnet
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True ground states are evaluated ford [2Bing model with random near-neighbor interactions and ferro-
magnetic second-neighbor interactigttse randomly coupled ferromagheThe spin-glass stiffness exponent
is positive when the absolute value of the random interaction is weaker than the ferromagnetic interaction. This
result demonstrates that in this parameter domain the spin-glasslike ordering temperature is nonzero for these
systems, in strong contrast to thd Edwards-Anderson spin glass.
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l. INTRODUCTION criterig? that when the ratia is less than about 1, the RCF
systems show spin-glasslike ordering dtrdte temperature,

For more than two decades the intensive numerical worlkwhereas @ Edwards Anderson ISG’s are paramagnetic
on the spin-glaséSG) problem has been concentrated almostdown to T=0.> The finite-ordering temperature interpreta-
exclusively on the Edwards-Anderson Ising spin glass: Isingion was strongly questioned by Parist al® who criti-
spins on a regulathypepcubic lattice with random near- cized the initial work on the grounds that the results were
neighbor Gaussian or binomial interaction distributibihie  restricted to relatively small sample sizesOn the basis of
many possible alternative Ising systems with a randomnedglonte Carlo data obtained on rather larger samples, Parisi
ingredient have hardly been touched on and such results & al. suggested that the RCF systems are always paramag-
exist have been largely ignored. netic down toT =0, like the Edwards AndersditA) ISG'’s.

One such family of alternative systems was proposed byurther large sample Monte Carlo resditepwever, indi-
Lemke and Campbefi.it consists of a 8 square lattice of cated finite-temperature ordering.

L XL Ising spinso;=*1 with uniform ferromagnetic sec- Here we present data from ground-state configuration

ond near-neighbor interactions of strengthplus random evaluations which gives evidence that RCF systems indeed

near neighbor interaction; = =\ J; we will refer to it as  exhibit finite temperature SG-like ordering far less than

the RCF(randomly coupled ferromagnemodel® It is de-  about 1. This opens up intriguing possibilities for the testing

scribed by the following Hamiltonian: of fundamental properties of complex ordered systems at fi-
nite temperatures in ad2context.

H:_E ‘Jijo-ia-j_z JU’i(Tj. (1)
{0 (i, Il. ALGORITHM
For each realization of the randomness, theare drawn In the present work, ground-state configurations have
with the constraing; ;,J;j=0 to reduce fluctuations. been found for periodic boundary conditions, and for the

As the spins are coupled through the ferromagneticase where in one direction the boundary conditions are
second-near-neighbor interactions, the system can be partiwitched to antiperiodic. By comparing the ground-state en-
tioned into two interpenetrating sublattices in checkerboardergies of the different boundary conditions for each realiza-
like fashion. In the limit\ =0 the two sublattices order fer- tion conclusions on the ordering behavior can be obtained.
romagnetically and independently below the OnsageSimilar studies were performed for simaledimensional EA
temperaturel =2.27J. Because each sublattice can order upspin glasses in twd three! and fouf dimensions.
or down, there are four degenerate ground states. As was For readers not familiar with the calculation of spin-glass
pointed out in Ref. 2, for nonzeno the near-neighbor inter- ground states now a short introduction to the subject and a
actions can be considered in terms of effective random fielddescription of the algorithm used here are given. A detailed
exerted by each sublattice on the other, so that for finite overview can be found in Ref. 9.
and large enough the ferromagnetic sublattice ordering is  The concept ofrustration'® is important for understand-
expected to be broken up, as in thd eandom-field Ising ing the behavior oft J Ising spin glasses. The simplest ex-
(RFI) model? The ground state will consist of coexisting ample of a frustrated system is a triplet of spins where all
domains of each of the four types: up/up, up/down, down/uppairs are connected by antiferromagnetic bonds, see Fig. 1. A
and down/down. The question is: is the break-up accompabond is calledsatisfiedif it contributes with a negative value
nied by paramagnetic order down T6=0? to the total energy by choosing the values of its adjacent

A number of Monte Carlo simulations were performed, spins properly. For the triangle, it is not possible to find a
and it was concluded on the basis of standard numericapin-configuration where all bonds are satisfied. In general, a
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FIG. 1. The simplest frustrated system: a triple of spins, each o O o 38( Thmmmmmmmes '

pair of spins connected by antiferromagnetic bofuisshed lines FIG. 2. Example of the cluster-exact approximation method. A
It is not possible to satisfy all bonds. part of a spin glass is shown. The circles represent lattice sites/
%pins. Straight lines represent ferromagnetic bonds the jagged lines
tiferromagnetic interactions. The left half shows the initial situa-
n. The construction starts with the spin at the center. The right

system is frustrated if closed loops of bonds exists, where th
. . a
product of these bond values is negative. For square anﬁg
cubic systems, the smallest closed loops consist of fouﬁalf displays the final stage. The spins which belong to the cluster
bonds. The_y are callegtlementary plaquettes . carry a plus or minus sign which indicates how each spin is trans-

As we will see later, the presence of frustration makes th@yrmed, so that only ferromagnetic interactions remain inside the
calculation of exact ground states of such systems computjyster. All other spins cannot be added to the cluster because it is
tionally hard. Only for the special case of the two- not possible to multiply them by-1 to make all adjacent bonds
dimensional system with periodic boundary conditions in Nopositive. Please note that many other combinations of spins can be
more than one direction and without external field aysed to build a cluster without frustration.
polynomial-time algorithm is knowh' In general, only
methods with exponential running times are known, one saythe fittesj. The genetic algorithm starts with an initial popu-
the problem isNP hard?> Now for the general case three lation of M; randomly initialized spin configuratiors= in-
basic methods are briefly reviewed and the largest systemividualg, which are linearly arranged using an array. The
sizes which can be treated are given for three-dimensiondast one is also a neighbor of the first one. The M;
systems, the standard spin-glass model, where data are avaimes two neighbors from the population are takealled
able for comparison. parentg and two configurations calledffspringare created.

The simplest method works by enumerating dfl @os-  For that purpose, theiadic crossoveris used which turned
sible states and has obviously an exponential running timeout to be very efficient for spin glasses: a mask is used which
Even a system size of*4s too large. The basic idea of the is a third randomly chosefusually distant member of the
so-called Branch-and-Boundalgorithni® is to exclude the population with a fraction of 0.1 of its spins reversed. In a
parts of the state space, where no low-lying states can biirst step, the offspring are created as copies of the parents.
found, so that the complete low-energy landscape of systemBhen those spins are selected, where the orientations of the
of size £ can be calculatetf first parent and the mask agréeThe values of these spins

A more sophisticated method call@&anch-and-Cuf*®  are swapped between the two offspring. Thematation
works by rewriting the quadratic energy function as a linearwith a rate ofp,, is applied to each offspring, i.e., a fraction
function with an additional set of inequalities which must p,, of the spins is reversed.
hold for the feasible solutions. Since not all inequalities are Next for both offspring the energy is reduced by applying
knowna priori, the method iteratively solves the linear prob- CEA: The method constructs iteratively and randomly a non-
lem, looks for inequalities which are violated, and adds thenfrustrated cluster of spins. Spins adjacent to many unsatisfied
to the set until the solution is found. Since the number ofbonds are more likely to be added to the cluster. During the
inequalities grows exponentially with the system size, theconstruction of the cluster, a local gauge-transformation of
same holds for the computation time of the algorithm. Withthe spin variables is applied so that all interactions between
Branch-and-Cut anyway, small systems up tmge feasible. cluster spins become ferromagnetic.

The method used here is able to calculate true ground Figure 2 shows an example of how the construction of the
stated up to size 14. For two-dimensional systems, as con- cluster works using a small spin-glass system. Fdr:2
sidered in this paper, sizes up to?56an be treated. The spin glasses each cluster contains typically 70% of all spins.
method is based on a special genetic algoriththand on  The noncluster spins act like local magnetic fields on the
cluster-exact approximatio CEA is an optimization cluster spins, so the ground state of the cluster is not trivial.
method designed specially for spin glasses. Its basic idea Since the cluster has only ferromagnetic interactions, an en-
to transform the spin glass in a way that graph-theoreticatrgetic minimum state for its spins can be calculated in poly-
methods can be applied, which work only for systems exhibnomial time by using graph theoretical methdd$? an
iting no frustrations. Next a description of the genetic CEA isequivalent network is constructédthe maximum flov*2°
given. is calculated and the spins of the cluster are set to their ori-

Genetic algorithms are inspired by the evolution of popu-entations leading to a minimum in energy. This minimization
lations in biology. An optimal solution is found by treating step is performea,,;, times for each offspring.
many instances of the problem in parallel, keeping only bet- Afterwards each offspring is compared with one of its
ter instances and replacing bad ones by new ¢awival of  parents. The pairs are chosen in the way that the sum of the
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TABLE I. Simulation parameterd. = system size M;=initial TABLE II. Breakup lengthL,, for different values of the inter-
size of populationn,=average number of offsprings per configu- action strength\.
ration, ni,=nhumber of CEA minimization steps per offspring,,

=mutation rate, anthg=number of independent runs per realiza- N Ly
tion.
0.5 45
L M; No Mpin Pm Ng 0.7 10
0.9 8
5 8 1 1 0.05 5 1.1 5
10 16 1 2 0.05 5
14 16 2 2 0.05 5
20 32 8 2 0.05 5 for the values of lambda considered here are presented in
28 128 16 2 0.05 5 Table Il. With the wisdom of hindsight, it can be seen that
40 512 16 2 0.05 5 the measurements donéitf for A =0.5 were mainly in the
56 1024 16 2 0.05 5 regimeL <L, while for A=0.7, the larger samples were well

in the regimeL>L,,.

A “typical” ground state forA =0.7 andL =56 is shown
phenotypic differences between them is minimal. The phein Fig. 3. All four possible types of domains occur. Because
notypic difference is defined here as the number of spingf the discrete structure of the interaction, usually the ground
where the two Configurations differ. Each parent is replace@tate is degenerate. But in contrast to the EA Spin g|asses
if its energy is not lower(i.e., not better than the corre- \ith only +J near-neighbor interactions, where a complex
sponding offspring. After this whole step is dongxXM;  ground-state landscape exists, the structure of the degeneracy
times, the population is halved: from each pair of neighborsis trivial for A<1: the whole system may be flipped, some-
the configuration which has the higher energy is eliminatediimes it is possible to flip both sublattices independently, and
If more than four individuals remain the process is Contin'usua”y some small clusters occur which can take two orien-
ued; otherwise it is stopped and the best individual is takemgtions.
as a result of the calculation. But for studying whether the model exhibits long range
_ The representation in the appendix summarizes the algayrder or not, it is sufficient to concentrate on the ground-state
rithm. energiesEp ,E5p for periodic and antiperiodic boundary

The Whole algorithm iS perfOI’meﬂR timeS and a.” con- conditions. The energy differencés= EP_ EAP give infor-
figurations which exhibit the lowest energy are Stored, reSUItmation about whether a System exhibits some kind of stiff-
ing in ny statistical independent ground state configurationspess against perturbations of the boundary, i.e., about the
The running time of the algorithm with suitable parameterSpresence of order/\ is called the stiffness energyFor
chosen(see Table )l grows exponentially with the system samples with the same set of interactions, the stiffness can be
size. On an 80 Mhz PowerPC processor, a typlcal40  analyzed in terms of the size dependence of the averape
instance takes 3 (15 h for L =56). and of the widthW=\/o2(A) of the distributionP(A). For
N=0.7, the distribution is presented in Fig. 4. In Fig. 5, the

Ill. RESULTS
SO0 ¢4 ¢.066.4.¢6.649.¢.60 0K
In this work, ground states of the RCF are studied for 22222220222232222222:g:::;::::::fgz %
values ofA=0.5, 0.7, 0.9, and 1.1 and system sizes up to DI I I I IIICIICIIIN
L=56 (\=0.7, and some realizations for 0.9espectively D IO I
. . . C 000000000000 * 40000000000
L=40 (\=0.5,1.1). Usually 1000 different realizations were DI I I I IO I I
treated, each submitted to periodijgcbc and antiperiodic PO ICIICIHICIICIIIIIIICHIICHNK
(apbo boundary conditions in one direction and always pbc ST et e et a0 T0000
. . . . . . L] LI I IS
in the other direction. The apbc are realized by inverting one DI I I IS SN
line of bonds in the system with pbc. Because of the enor- I R ICHICRIK
mous computational effort, for the largest system sizes only SR Zgzgﬁ:::::gf’3222222222222222222220 R ket
. . . . . . . <) K> < < <
realizations withh =0.7 were considered with large statistics s IS I R I I IO
(and about 100 realizations with=56)\=0.9). gggggggggg:;:;:;:;:;ZgZgZgggggggo%gggggzgggggggggggg
The periodic ground states give a direct measurement of 0606260626060 ® 6244442006000, 2606262606206
_ . . 000 <& 000 < 00000'0.0.0000000000 ooooo 0000000000000
the T=0 break up length_,, at each value of, which is IR AT
. L 000 OO0 0000000‘0’0‘0.0‘0‘0000000000000000000000000000
defined as follows: for small enoudhand finite value of, OO0 OO O OO O 8 #0050 00.0.0.00.0.0:0.0
. . QO QOO0 6 &.¢6.6866646000000000 0000
the ground states will always be such that there is a full DI OIS I I
i 1 1 i 1 f i - <00 CO € 00406660966 O,0,0,.0,.0.0
ferromagnetic ordering within each sublattice. With increas 202020&020:02020}:02020:0:0:0:00 0

ing L, more and more samples will be found with ground
states having at least one of the sublattices incompletely fer- F|G. 3. Typical ground state of one RCF realizatiar«56) for
romagnetic. The break up length is defined® as the value  \=0.70 with periodic boundary conditions in all directions. Two
of L above which more than half the samples do not have fulbiifferent symbolgwhite/black squane (unfilled/ffilled diamond are
ferromagnetic order in each sublattice. The breakup lengthgsed to represent the orientations on the different sublattices.
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FIG. 6. Average magnetizatian as a function of the strength

FIG. 4. Distribution of stiffness energies at \ = 0.7 for differ- of the spin-glass couplings for different systems sizes 556.

ent system sizek =14, 28, and 56.

any finite value of the relative coupling constant
Now we turn to the question whether some kind of spin-
glass order is present in the system. This can be investigated
y analyzing the dependence of the varianc¢A) of the

behavior of the average stiffness energy as a functidnief
shown for all four values ok. For system sizes larger than
the breakup length af=0.7, the stiffness energy decreases,

indicating that no ferromagnetic long-range order is presen tiffness-energy distributions on the system size, the result is

in the system. Fok =0.5, the breakup length is very large - - ;
. Lo o ' shown in Fig. 8. For small system sizes, the variance grows
so the asymptotic behavior is not visible, but the results arT g y g

) or all values of the coupling constant In order to exclude
included for completeness. A better result for small values o Ping

\ can be obtained from direct evaluation of the magnetiza inite-size effects, only systems larger than the breakup
tion, see Fig. 6 and Fig. 7. We determine a threshold ValuTength L,(N\) should be taken into account. Please note that

N h svst e f "o 1=0.9. Th | f for L=56, ,=0.9, only results for few realizations of the
4 for each system size from(Ay,,)=0.9. The value o disorder were available due to the huge computational effort.

0.9 is somewhat arbitrary, so the results give just a roug bovel,, there is a good linear size dependence ol
impression of what happens. It is not possible to use muc gainst bl’og_ with fsg=0.598), 0.291), 0.095), and
, sg— V. y . ) . y

smaller thresholds, because the magnetization remains Iarg_O 162), respectively, fon=0.5, 0.7, 0.9, and 1.1. The

for small systems sizes even for strong spin-glass interaction, . - ) i
Via afitAry(L) =\, +eL ' we obtaink,,= 0.27(8). There- values where obtained for=0.7, 0.9, and 1.1 from fits us

| ! ) ek .
fore, there is strong evidence that also %ot 0.5, no ferro- ing only system sizek>L, and are represented by straight

; : lines in the figure. Foix=0.5, also smaller system sizes
magnetic order is present. For much smaller values\,of . : .
, were included, so the results faksg is only included for
nothing can be concluded from our data. Furthermore, fo{:om leteness
smaller values ok it remains possible that the ground states P '

of the RCF model do not exhibit ferromagnetic ordering for

0.9
25 T T
o= 5 5 0.8
20 o T
o A=05
0.7
15 e o A=0.7 -
¢ 2=0.9 E
g 10 b e Ax=1.1 | 06 |
= o g
11
5r- - = == 05
== o o
- ==
0 B - - - - ﬁ I T 04 1 1 1 1 1
o 10 20 30 40 50 60
-5 1 L L
0 20 40 60 . .
L FIG. 7. Threshold valua 1, as a function of the system site
The threshold value is determined from(\;4)=0.9. The solid
FIG. 5. The mean stiffness energg) as a function ofL for line shows a fit to a functiont(L)=\.+eL™', resulting in\..
A=0.5,0.7, 0.9, and 1.1. =0.278), f=0.53(10).
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1000 . be stressed again that far=0.7, 0.9, and 1.1, the largest
1 ' ' system sizes are well beyond the breakup length, so no
sl =T | changes are to be expected when treating larger system sizes.
g - This holds even foh =0.7, where the maximum system size
“of - . is five times larger than the breakup length, which should be
= sufficient. ForA<0.5, especially if one likes to test whether
I 100 b 08 s N 1 15 - i the model exhibits ferromagnetic ordering, ground-states cal-
% = culations of larger systems are needed to study the behavior

© =05 in more detail. Unfortunately, these studies are beyond the
power of current computers and algorithms.

Although the zero-temperature stiffness exponent values
give no direct information on the ordering temperatures, the
present results are consistent with the conclusions drawn in
Refs. 2 and 3, where Monte Carlo estimates of the critical
10 100 temperatures were made using the finite-size scaling of the

L spin glass susceptibility and the form of the time dependence
of the autocorrelation function relaxation. Ordering tempera-
a function of the system siZze=10 for A=0.5, 0.7, 0.9, and 1.1. tures .Were estimated to be close to 2.0 Xor 0.5 and 0.7,
The solid lines are fits to algebraic functions of the foorfi(L) dropping to zero nga)&=l. Rather remarkably, .th§:0
=gL%e. The inset shows the values of the exponent for differentCrOSSOVer as a function efatL, appears to have I'tt!e effec.t
values of\. The value forx=0.5 is included for completeness, ©N the behavior of the SG susceptibility as a function of size
since system sizes smaller than the breakup length have been it the temperature region close fB;. However, for
cluded into the estimate. For the same reason, the corresponding fit0.5, Parisiet al® observed weakly nonmonotonic behavior

FIG. 8. Widtho?(A) of the distribution of stiffness energies as

is not shown. of the Binder parameter with for sizes that we now know
to be in the region of the crossover.
The values ofds against\ are shown in the inset of Fig. Since the existence of a spin-glasslike phase seems to be

8. The result forn=0.5 is not very reliable, because the likely, at least for intermediate values &f it would be in-
largest system size is of the order of the breakup length. listructive to carry out further careful Monte Carlo measure-
the log-log plot, the datapoints foar=0.5 exhibit a negative ments for sample sizes well in the regirme- L, and over a
curvature, thus the asymptotic value @fs may be smaller range of\ values. Is the physics of thedRCF above, at,
than 0.59. For the other systems, the breakup length is qui@nd below the ordering temperature strictly analogous to that
small, so the results give good evidence for spin-glasslikef the standard Edwards Anderson ISG at dimensions where
ordering in the large size limit, with a nonzero ordering tem-there is finite-temperature ordering? To what extent could
perature. Please note that for=1.1, a change in the behav- the RCF enlighten us concerning problems which in the Ed-
ior is visible aroundL=14 which is three time4,. That wards Anderson ISG context have remained conflictual for
means especially fox =0.7, whereL,~ 10, the resul®gg;  more than twenty years? The fact that the RCF lives od a 2
>0 is very reliable. This is the main result of this work, lattice rather than in a higher dimension should facilitate
while the specific values obtained fégs may be only rough ~ understanding of the fundamental physics of ordering in
guesses. complex systems.

Thus, it seems indeed not necessary to carry out further Finally, there may even be possible experimental realiza-
calculations with larger systems to prove the fact, that ther&ions of systems where quasi-two-dimensional magnets form
are values of the coupling constant giving rise to an ordereghort-range clusters with local ferromagnetic or antiferro-
spin-glass phase in the RCF. The limiting valug above = magnetic order, with random frustrated interactions linking
which 65 is negative is very close to 1.8, would corre- these clusters together. Examples of promising behavior of
spond to the highest value at which the ordering temperaturélis sort are Fe compounds with halogéhsyhere it might
is nonzero, in good agreement with the initial estimate fromPe interesting to look at the data again in view of the present
the Monte Carlo work. results.
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APPENDIX: GENETIC CLUSTER-EXACT
APPROXIMATION

algorithm genetic CEA{J;;},M;,No,Pm,Nmin)
begin
createM; configurations randomly
while (M;>4) do
begin
fori=1to ngxXM; do
begin
select two neighbors
create two offspring using triadic crossover
do mutations with rat@,,

PHYSICAL REVIEW B 63094423

for both offspringdo
begin
for j=1 to n,,, do
begin
construct unfrustrated cluster of spins
construct equivalent network
calculate maximum flow
construct minimum cut
set new orientations of cluster spins
end
if offspring is not worse than related parent
then
replace parent with offspring
end
end
half population;M; = M;/2
end
return one configuration with lowest energy
end
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