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Ordered phase in the two-dimensional randomly coupled ferromagnet
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True ground states are evaluated for a 2d Ising model with random near-neighbor interactions and ferro-
magnetic second-neighbor interactions~the randomly coupled ferromagnet!. The spin-glass stiffness exponent
is positive when the absolute value of the random interaction is weaker than the ferromagnetic interaction. This
result demonstrates that in this parameter domain the spin-glasslike ordering temperature is nonzero for these
systems, in strong contrast to the 2d Edwards-Anderson spin glass.
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I. INTRODUCTION

For more than two decades the intensive numerical w
on the spin-glass~SG! problem has been concentrated alm
exclusively on the Edwards-Anderson Ising spin glass: Is
spins on a regular~hyper!cubic lattice with random near
neighbor Gaussian or binomial interaction distributions.1 The
many possible alternative Ising systems with a randomn
ingredient have hardly been touched on and such result
exist have been largely ignored.

One such family of alternative systems was proposed
Lemke and Campbell.2 It consists of a 2d square lattice of
L3L Ising spinss i561 with uniform ferromagnetic sec
ond near-neighbor interactions of strengthJ, plus random
near neighbor interactionsJi j 56lJ; we will refer to it as
the RCF~randomly coupled ferromagnet! model.3 It is de-
scribed by the following Hamiltonian:

H52(
^ i , j &

Ji j s is j2(
@ i , j #

Js is j . ~1!

For each realization of the randomness, theJi j are drawn
with the constraintS^ i , j &Ji j 50 to reduce fluctuations.

As the spins are coupled through the ferromagne
second-near-neighbor interactions, the system can be p
tioned into two interpenetrating sublattices in checkerboa
like fashion. In the limitl50 the two sublattices order fer
romagnetically and independently below the Onsa
temperatureT52.27J. Because each sublattice can order
or down, there are four degenerate ground states. As
pointed out in Ref. 2, for nonzerol the near-neighbor inter
actions can be considered in terms of effective random fie
exerted by each sublattice on the other, so that for finitl
and large enoughL the ferromagnetic sublattice ordering
expected to be broken up, as in the 2d random-field Ising
~RFI! model.4 The ground state will consist of coexistin
domains of each of the four types: up/up, up/down, down/
and down/down. The question is: is the break-up accom
nied by paramagnetic order down toT50?

A number of Monte Carlo simulations were performe
and it was concluded on the basis of standard numer
0163-1829/2001/63~9!/094423~6!/$15.00 63 0944
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criteria2,3 that when the ratiol is less than about 1, the RC
systems show spin-glasslike ordering at afinite temperature,
whereas 2d Edwards Anderson ISG’s are paramagne
down to T50.5 The finite-ordering temperature interpret
tion was strongly questioned by Parisiet al.6 who criti-
cized the initial work2 on the grounds that the results we
restricted to relatively small sample sizesL. On the basis of
Monte Carlo data obtained on rather larger samples, Pa
et al. suggested that the RCF systems are always param
netic down toT50, like the Edwards Anderson~EA! ISG’s.
Further large sample Monte Carlo results,3 however, indi-
cated finite-temperature ordering.

Here we present data from ground-state configurat
evaluations which gives evidence that RCF systems ind
exhibit finite temperature SG-like ordering forl less than
about 1. This opens up intriguing possibilities for the testi
of fundamental properties of complex ordered systems a
nite temperatures in a 2d context.

II. ALGORITHM

In the present work, ground-state configurations ha
been found for periodic boundary conditions, and for t
case where in one direction the boundary conditions
switched to antiperiodic. By comparing the ground-state
ergies of the different boundary conditions for each reali
tion conclusions on the ordering behavior can be obtain
Similar studies were performed for simpled-dimensional EA
spin glasses in two,5 three,7 and four8 dimensions.

For readers not familiar with the calculation of spin-gla
ground states now a short introduction to the subject an
description of the algorithm used here are given. A detai
overview can be found in Ref. 9.

The concept offrustration10 is important for understand
ing the behavior of6J Ising spin glasses. The simplest e
ample of a frustrated system is a triplet of spins where
pairs are connected by antiferromagnetic bonds, see Fig.
bond is calledsatisfiedif it contributes with a negative value
to the total energy by choosing the values of its adjac
spins properly. For the triangle, it is not possible to find
spin-configuration where all bonds are satisfied. In genera
©2001 The American Physical Society23-1



th
a
o

th
u
o-
n
a

a
e
te
n
v

m
e

em

a
st
ar
b-
em
o

th
ith

un
n-

a
ic
ib
is

u
g
e

-

he

ich

a
nts.

f the
s

n

ng
on-
fied
the
of

een

the

ins.
the
ial.
en-
ly-

ori-
on

its
f the

ac

. A
ites/
lines
a-

ight
ster
ns-
the
it is

s
n be

A. K. HARTMANN AND I. A. CAMPBELL PHYSICAL REVIEW B 63 094423
system is frustrated if closed loops of bonds exists, where
product of these bond values is negative. For square
cubic systems, the smallest closed loops consist of f
bonds. They are called~elementary! plaquettes.

As we will see later, the presence of frustration makes
calculation of exact ground states of such systems comp
tionally hard. Only for the special case of the tw
dimensional system with periodic boundary conditions in
more than one direction and without external field
polynomial-time algorithm is known.11 In general, only
methods with exponential running times are known, one s
the problem isNP hard.12 Now for the general case thre
basic methods are briefly reviewed and the largest sys
sizes which can be treated are given for three-dimensio
systems, the standard spin-glass model, where data are a
able for comparison.

The simplest method works by enumerating all 2N pos-
sible states and has obviously an exponential running ti
Even a system size of 43 is too large. The basic idea of th
so-calledBranch-and-Boundalgorithm13 is to exclude the
parts of the state space, where no low-lying states can
found, so that the complete low-energy landscape of syst
of size 43 can be calculated.14

A more sophisticated method calledBranch-and-Cut15,16

works by rewriting the quadratic energy function as a line
function with an additional set of inequalities which mu
hold for the feasible solutions. Since not all inequalities
knowna priori, the method iteratively solves the linear pro
lem, looks for inequalities which are violated, and adds th
to the set until the solution is found. Since the number
inequalities grows exponentially with the system size,
same holds for the computation time of the algorithm. W
Branch-and-Cut anyway, small systems up to 83 are feasible.

The method used here is able to calculate true gro
states7 up to size 143. For two-dimensional systems, as co
sidered in this paper, sizes up to 502 can be treated. The
method is based on a special genetic algorithm17,18 and on
cluster-exact approximation.19 CEA is an optimization
method designed specially for spin glasses. Its basic ide
to transform the spin glass in a way that graph-theoret
methods can be applied, which work only for systems exh
iting no frustrations. Next a description of the genetic CEA
given.

Genetic algorithms are inspired by the evolution of pop
lations in biology. An optimal solution is found by treatin
many instances of the problem in parallel, keeping only b
ter instances and replacing bad ones by new ones~survival of

FIG. 1. The simplest frustrated system: a triple of spins, e
pair of spins connected by antiferromagnetic bonds~dashed lines!.
It is not possible to satisfy all bonds.
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the fittest!. The genetic algorithm starts with an initial popu
lation of Mi randomly initialized spin configurations~5 in-
dividuals!, which are linearly arranged using an array. T
last one is also a neighbor of the first one. Thenno3Mi
times two neighbors from the population are taken~called
parents! and two configurations calledoffspringare created.
For that purpose, thetriadic crossoveris used which turned
out to be very efficient for spin glasses: a mask is used wh
is a third randomly chosen~usually distant! member of the
population with a fraction of 0.1 of its spins reversed. In
first step, the offspring are created as copies of the pare
Then those spins are selected, where the orientations o
first parent and the mask agree.20 The values of these spin
are swapped between the two offspring. Then amutation
with a rate ofpm is applied to each offspring, i.e., a fractio
pm of the spins is reversed.

Next for both offspring the energy is reduced by applyi
CEA: The method constructs iteratively and randomly a n
frustrated cluster of spins. Spins adjacent to many unsatis
bonds are more likely to be added to the cluster. During
construction of the cluster, a local gauge-transformation
the spin variables is applied so that all interactions betw
cluster spins become ferromagnetic.

Figure 2 shows an example of how the construction of
cluster works using a small spin-glass system. For 2d6J
spin glasses each cluster contains typically 70% of all sp
The noncluster spins act like local magnetic fields on
cluster spins, so the ground state of the cluster is not triv
Since the cluster has only ferromagnetic interactions, an
ergetic minimum state for its spins can be calculated in po
nomial time by using graph theoretical methods:21,22 an
equivalent network is constructed,23 the maximum flow24,25

is calculated and the spins of the cluster are set to their
entations leading to a minimum in energy. This minimizati
step is performednmin times for each offspring.

Afterwards each offspring is compared with one of
parents. The pairs are chosen in the way that the sum o

h

FIG. 2. Example of the cluster-exact approximation method
part of a spin glass is shown. The circles represent lattice s
spins. Straight lines represent ferromagnetic bonds the jagged
antiferromagnetic interactions. The left half shows the initial situ
tion. The construction starts with the spin at the center. The r
half displays the final stage. The spins which belong to the clu
carry a plus or minus sign which indicates how each spin is tra
formed, so that only ferromagnetic interactions remain inside
cluster. All other spins cannot be added to the cluster because
not possible to multiply them by61 to make all adjacent bond
positive. Please note that many other combinations of spins ca
used to build a cluster without frustration.
3-2
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ORDERED PHASE IN THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 63 094423
phenotypic differences between them is minimal. The p
notypic difference is defined here as the number of sp
where the two configurations differ. Each parent is repla
if its energy is not lower~i.e., not better! than the corre-
sponding offspring. After this whole step is doneno3Mi
times, the population is halved: from each pair of neighbo
the configuration which has the higher energy is eliminat
If more than four individuals remain the process is cont
ued; otherwise it is stopped and the best individual is ta
as a result of the calculation.

The representation in the appendix summarizes the a
rithm.

The whole algorithm is performednR times and all con-
figurations which exhibit the lowest energy are stored, res
ing in ng statistical independent ground state configuratio
The running time of the algorithm with suitable paramet
chosen~see Table I! grows exponentially with the system
size. On an 80 Mhz PowerPC processor, a typicalL540
instance takes 3 h~15 h for L556!.

III. RESULTS

In this work, ground states of the RCF are studied
values ofl50.5, 0.7, 0.9, and 1.1 and system sizes up
L556 ~l50.7, and some realizations for 0.9!, respectively
L540 (l50.5,1.1). Usually 1000 different realizations we
treated, each submitted to periodic~pbc! and antiperiodic
~apbc! boundary conditions in one direction and always p
in the other direction. The apbc are realized by inverting o
line of bonds in the system with pbc. Because of the en
mous computational effort, for the largest system sizes o
realizations withl50.7 were considered with large statisti
~and about 100 realizations withL556,l50.9!.

The periodic ground states give a direct measuremen
the T50 break up lengthLb at each value ofl, which is
defined as follows: for small enoughL and finite value ofl,
the ground states will always be such that there is a
ferromagnetic ordering within each sublattice. With incre
ing L, more and more samples will be found with grou
states having at least one of the sublattices incompletely
romagnetic. The break up lengthLb is defined26 as the value
of L above which more than half the samples do not have
ferromagnetic order in each sublattice. The breakup leng

TABLE I. Simulation parameters:L5system size,Mi5 initial
size of population,no5average number of offsprings per config
ration, nmin5number of CEA minimization steps per offspring,pm

5mutation rate, andnR5number of independent runs per realiz
tion.

L Mi no mmin pm nR

5 8 1 1 0.05 5
10 16 1 2 0.05 5
14 16 2 2 0.05 5
20 32 8 2 0.05 5
28 128 16 2 0.05 5
40 512 16 2 0.05 5
56 1024 16 2 0.05 5
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for the values of lambda considered here are presente
Table II. With the wisdom of hindsight, it can be seen th
the measurements done in2,3,6 for l50.5 were mainly in the
regimeL,Lb while for l50.7, the larger samples were we
in the regimeL.Lb .

A ‘‘typical’’ ground state forl50.7 andL556 is shown
in Fig. 3. All four possible types of domains occur. Becau
of the discrete structure of the interaction, usually the grou
state is degenerate. But in contrast to the EA spin glas
with only 6J near-neighbor interactions, where a compl
ground-state landscape exists, the structure of the degene
is trivial for l<1: the whole system may be flipped, som
times it is possible to flip both sublattices independently, a
usually some small clusters occur which can take two ori
tations.

But for studying whether the model exhibits long ran
order or not, it is sufficient to concentrate on the ground-st
energiesEP ,EAP for periodic and antiperiodic boundar
conditions. The energy differencesD5EP2EAP give infor-
mation about whether a system exhibits some kind of st
ness against perturbations of the boundary, i.e., about
presence of order.n is called thestiffness energy. For
samples with the same set of interactions, the stiffness ca
analyzed in terms of the size dependence of the average^n&
and of the widthW[As2(n) of the distributionP(n). For
l50.7, the distribution is presented in Fig. 4. In Fig. 5, t

FIG. 3. Typical ground state of one RCF realization (L556) for
l50.70 with periodic boundary conditions in all directions. Tw
different symbols~white/black square!, ~unfilled/filled diamond! are
used to represent the orientations on the different sublattices.

TABLE II. Breakup lengthLb for different values of the inter-
action strengthl.

l Lb

0.5 45
0.7 10
0.9 8
1.1 5
3-3
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behavior of the average stiffness energy as a function ofL is
shown for all four values ofl. For system sizes larger tha
the breakup length ofl>0.7, the stiffness energy decrease
indicating that no ferromagnetic long-range order is pres
in the system. Forl50.5, the breakup length is very larg
so the asymptotic behavior is not visible, but the results
included for completeness. A better result for small values
l can be obtained from direct evaluation of the magneti
tion, see Fig. 6 and Fig. 7. We determine a threshold va
lTH for each system size fromm(lTH)50.9. The value of
0.9 is somewhat arbitrary, so the results give just a ro
impression of what happens. It is not possible to use m
smaller thresholds, because the magnetization remains
for small systems sizes even for strong spin-glass interac
Via a fit lTH(L)5l`1eL2 f we obtainl`50.27(8). There-
fore, there is strong evidence that also forl50.5, no ferro-
magnetic order is present. For much smaller values ol,
nothing can be concluded from our data. Furthermore,
smaller values ofl it remains possible that the ground stat
of the RCF model do not exhibit ferromagnetic ordering

FIG. 4. Distribution of stiffness energiesn at l50.7 for differ-
ent system sizesL514, 28, and 56.

FIG. 5. The mean stiffness energy^n& as a function ofL for
l50.5, 0.7, 0.9, and 1.1.
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any finite value of the relative coupling constantl.
Now we turn to the question whether some kind of sp

glass order is present in the system. This can be investig
by analyzing the dependence of the variances2(D) of the
stiffness-energy distributions on the system size, the resu
shown in Fig. 8. For small system sizes, the variance gro
for all values of the coupling constantl. In order to exclude
finite-size effects, only systems larger than the break
lengthLb(l) should be taken into account. Please note t
for L556, l50.9, only results for few realizations of th
disorder were available due to the huge computational eff
AboveLb, there is a good linear size dependence of logW(L)
against logL, with uSG50.59(8), 0.29~1!, 0.09~5!, and
20.16~2!, respectively, forl50.5, 0.7, 0.9, and 1.1. The
values where obtained forl50.7, 0.9, and 1.1 from fits us
ing only system sizesL.Lb and are represented by straig
lines in the figure. Forl50.5, also smaller system size
were included, so the results foruSG is only included for
completeness.

FIG. 6. Average magnetizationm as a function of the strengthl
of the spin-glass couplings for different systems sizes 5<L<56.

FIG. 7. Threshold valuelTH as a function of the system sizeL.
The threshold value is determined fromm(lTH)50.9. The solid
line shows a fit to a functionlTH(L)5l`1eL2 f , resulting inl`

50.27(8), f 50.53(10).
3-4



.
e
.

u
lik
m
-

k,

th
e
re

tu
om

l
s

ic
a
u
c

u

t
no

izes.
e
be
r

cal-
vior
the

ues
the
n in
cal
the
nce
ra-

t
ize

or

o be

re-

that
ere

uld
d-

for
2
te
in

za-
orm
ro-
ng
r of

ent

l-
nd

der-
m-
G

s-
ura

s
.

en
,
n
ng
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The values ofuSG againstl are shown in the inset of Fig
8. The result forl50.5 is not very reliable, because th
largest system size is of the order of the breakup length
the log-log plot, the datapoints forl50.5 exhibit a negative
curvature, thus the asymptotic value ofuSG may be smaller
than 0.59. For the other systems, the breakup length is q
small, so the results give good evidence for spin-glass
ordering in the large size limit, with a nonzero ordering te
perature. Please note that forl51.1, a change in the behav
ior is visible aroundL514 which is three timesLb . That
means especially forl50.7, whereLb'10, the resultQSG
.0 is very reliable. This is the main result of this wor
while the specific values obtained foruSG may be only rough
guesses.

Thus, it seems indeed not necessary to carry out fur
calculations with larger systems to prove the fact, that th
are values of the coupling constant giving rise to an orde
spin-glass phase in the RCF. The limiting valuelc above
which uSG is negative is very close to 1.0;lc would corre-
spond to the highest value at which the ordering tempera
is nonzero, in good agreement with the initial estimate fr
the Monte Carlo work.2

IV. CONCLUSION

We have calculated ground states of the random
coupled ferromagnet for different values of the spin-gla
coupling constantl and with periodic as well as antiperiod
boundary conditions. By using the genetic cluster-exact
proximation algorithm, we were able to treat system sizes
to N556356. The breakup length was calculated for ea
value ofl. From the calculation of theT50 stiffness energy,
it could be concluded that belowlc'1, the RCF exhibits an
ordered spin-glasslike phase at finite temperature. It sho

FIG. 8. Widths2(n) of the distribution of stiffness energies a
a function of the system sizeL>10 for l50.5, 0.7, 0.9, and 1.1
The solid lines are fits to algebraic functions of the forms2(L)
5gLuSG. The inset shows the values of the exponent for differ
values ofl. The value forl50.5 is included for completeness
since system sizes smaller than the breakup length have bee
cluded into the estimate. For the same reason, the correspondi
is not shown.
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be stressed again that forl50.7, 0.9, and 1.1, the larges
system sizes are well beyond the breakup length, so
changes are to be expected when treating larger system s
This holds even forl50.7, where the maximum system siz
is five times larger than the breakup length, which should
sufficient. Forl<0.5, especially if one likes to test whethe
the model exhibits ferromagnetic ordering, ground-states
culations of larger systems are needed to study the beha
in more detail. Unfortunately, these studies are beyond
power of current computers and algorithms.

Although the zero-temperature stiffness exponent val
give no direct information on the ordering temperatures,
present results are consistent with the conclusions draw
Refs. 2 and 3, where Monte Carlo estimates of the criti
temperatures were made using the finite-size scaling of
spin glass susceptibility and the form of the time depende
of the autocorrelation function relaxation. Ordering tempe
tures were estimated to be close to 2.0 forl50.5 and 0.7,
dropping to zero nearl51. Rather remarkably, theT50
crossover as a function ofL at Lb appears to have little effec
on the behavior of the SG susceptibility as a function of s
in the temperature region close toTg

3. However, for l
50.5, Parisiet al.6 observed weakly nonmonotonic behavi
of the Binder parameter withL for sizes that we now know
to be in the region of the crossover.

Since the existence of a spin-glasslike phase seems t
likely, at least for intermediate values ofl, it would be in-
structive to carry out further careful Monte Carlo measu
ments for sample sizes well in the regimeL.Lb and over a
range ofl values. Is the physics of the 2d RCF above, at,
and below the ordering temperature strictly analogous to
of the standard Edwards Anderson ISG at dimensions wh
there is finite-temperature ordering? To what extent co
the RCF enlighten us concerning problems which in the E
wards Anderson ISG context have remained conflictual
more than twenty years? The fact that the RCF lives on ad
lattice rather than in a higher dimension should facilita
understanding of the fundamental physics of ordering
complex systems.

Finally, there may even be possible experimental reali
tions of systems where quasi-two-dimensional magnets f
short-range clusters with local ferromagnetic or antifer
magnetic order, with random frustrated interactions linki
these clusters together. Examples of promising behavio
this sort are Fe compounds with halogens,27 where it might
be interesting to look at the data again in view of the pres
results.
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APPENDIX: GENETIC CLUSTER-EXACT
APPROXIMATION

algorithm genetic CEA($Ji j %,Mi ,no ,pm ,nmin)
begin

createMi configurations randomly
while (Mi.4) do
begin

for i 51 to n03Mi do
begin

select two neighbors
create two offspring using triadic crossover
do mutations with ratepm
e

r

s.

09442
.
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for both offspringdo
begin

for j 51 to nmin do
begin

construct unfrustrated cluster of spins
construct equivalent network
calculate maximum flow
construct minimum cut
set new orientations of cluster spins

end
if offspring is not worse than related parent
then

replace parent with offspring
end

end
half population;Mi5Mi /2

end
return one configuration with lowest energy

end
.
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26E. T. Seppa¨lä, V. Petäjä, and M. J. Alava, Phys. Rev. E58, 5217

~1998!.
27J. Vetel, M. Yahiaoui, D. Bertrand, A. R. Fert, J. P. Redoules, a

J. Ferre, J. Phys. Colloq.8, 49, 1067 ~1988!, D. Bertrand, F.
Bensamka, A. R. Fert, J. Gelard, J. P. Redoules, and S. Legr
J. Phys. C17, 1725~1984!.
3-6


