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Localized modes in two-dimensional square anisotropic antiferromagnets with a hole
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A theory of localized modes in two-dimensional square anisotropic ferromagnets with a hole is extended to
the antiferromagnetic case. Here a path-integral method based on the SU~2! coherent state representation is
employed. Detailed numerical calculations are made fors-like modes, and their eigenfrequency is determined
as a function of nonlinearity parameter and various anisotropic exchange interactions and uniaxial anisotropies.
Particular attention is paid to interplaying between the intrinsic nonlinearity and extrinsic hole doping. It turns
out that the former stabilizes the magnetic localized mode generated by the latter~or vice versa!, and it takes
a vortex shape in the neighborhood of a doped hole. In contrast to the ferromagnetic case, the mobile nonlinear
self-localized mode is unlikely to exist.
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I. INTRODUCTION

Recently, we developed a path-integral formulation
SU~2! coherent-state representation of self-localized mo
for two-dimensional~2D! Heisenberg ferromagnet contain
ing a fixed magnetic hole.1 For s-like modes, expressions fo
the energy eigenvalues and profile functions of the locali
modes were obtained in terms of Green’s functions. By us
analytical and numerical methods, both effects were stud
in detail to obtain stationary, immobile localized modes a
mobile ones.

In this paper we study a 2D Heisenberg antiferromag
bearing a fixed magnetic hole, in the same spirit as that in
previous paper for the ferromagnet. Our particular conc
here is whether or not there exists any situations for
properties of intrinsic localized modes that are different fro
the case of the ferromagnets. This paper is organized as
lows. In the next section, a brief account is given on
SU~2! coherent-state path-integral formalism for antiferr
magnet. By employing the stationary phase approximatio
pair of nonlinear equations are derived. In Sec. III, the o
line of studying the nonlinear eigenvalue problem with ma
non Green’s functions is described. Numerical illustratio
are made for ans-like self-localized mode in Sec. IV. Thei
eigenfrequencies and spin profiles are analyzed as a fun
of nonlinearity parameter for various anisotropic exchan
interactions and uniaxial anisotropies. The last section, S
V, is devoted to concluding remarks on the results obtai
in this paper.

II. SU„2… COHERENT-STATE PATH-INTEGRAL
FORMULATION AND STATIONARY PHASE

APPROXIMATION

We consider a Heisenberg antiferromagnet on a
square lattice with the lattice constanta51. The Hamil-
tonian can be written in the form
0163-1829/2001/63~9!/094407~8!/$15.00 63 0944
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H5 (
^nm&

J~n,m!@h~Sn
1Sm

21Sn
2Sm

1!1Sn
zSm

z #

2DF(
n

~Sn
z!21(

m
~Sm

z !2G , ~1!

where Sn
a (a5x,y,z) is the a component of thenth site

spin operator situated on the lattice vectorn5nxex1nyey
with an unit vectorej in the direction of thej axis. The
J(n,m)(.0), h(.0) andD(.0) are exchange interactio
constant between neighboring sitesn andm, a constant char-
acterizing the anisotropy of the exchange interaction and
uniaxial crystal-field anisotropy parameter, respectively. T
symbol(^nm& indicates the sum over nearest-neighbor pa
Assuming that the lattice is bipartite and divided intoA and
B sublattices, the SU~2! coherent statesumn& and unm& are
defined by using the Ne´el stateu0& as

umn&5~11umnu2!2Sexp~mnSn
2!u0&n ,

for nPA sublattice, ~2!

unm&5~11unmu2!2Sexp~nmSm
1!u0&m ,

for mPB sublattice, ~3!

where themn’s andnm’s are complex magnon field variable
associated with theA and B sublattices, respectively. Th
diagonal coherent-state representations of the spin ope
Sn are given by

^mnuSn
1umn&52S

mn

11umnu2
, ^mnuSn

2umn&52S
mn*

11umnu2
,

^mnuSn
zumn&5S

12umnu2

11umnu2
, ~4!
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^nmuSm
1unm&52S

nm*

11unmu2
,

^nmuSm
2unm&52S

nm

11unmu2
, ^nmuSm

z unm&52S
12unmu2

11unmu2
.

According to path-integral theory,2,3 the transition amplitude
of the system from the initial stateuL i& at the timet i to the
final state uL f& at the time t f is given by the functional-
integral representation for the matrix element of the evo
tion operator exp(2iHt/\),4,3

^L f uexp@2 iH ~ t f2t i !/\#uL i&5E D~L!exp~ iS/\!, ~5!

with

S5E
t i

t fLdt, ~6!

where the LagrangianL is defined by

L5(
n

S

11umnu2 S mn* i\
dmn

dt
2mni\

dmn*

dt D
1(

m

S

11unmu2 S nm* i\
dnm

dt
2nmi\

dnm*

dt D 2^LuHuL&.

~7!

Here the functional integration involving the symbolD(L)
in Eq. ~5! means a sum over all paths moving forward
time t. An explicit expression for̂ LuHuL& in Eq. ~7! is
given by

^LuHuL&52S2 (
^nm&

J~n,m!
1

~11umnu2!~11unmu2!

32h~mnnm1mn* nm* !2~12umnu2!~12unmu2!

2DS2F(
n

S 12umnu2

11umnu2
D 2

1(
m

S 12unmu2

11unmu2
D 2G

22DSF(
n

umnu2

~11umnu2!2
1(

m

unmu2

~11unmu2!2G .

~8!

In obtaining the above result, we have made use of the r
tion

^l l u~Sl
z!2ul l&2^l l uSl

zul l&
25

2Dul l u2

~11ul l u2!2
, l l5mn ,nm .

~9!

As a first-order approximation to the exact path-integral f
malism described above, we employ the saddle-point
proximation to Eq.~5!, i.e., dS50. Then, we arrive at the
Lagrangian equations
09440
-

a-

-
p-

d

dt S ]L
]ṁn

D 2
]L
]mn

50, 2
d

dt S ]L
]ṅm

D 2
]L
]nm

50 and c.c.

~10!

Combining Eq.~7! with Eq. ~10! gives a pair of equations:

i\
dmn

dt
5

~11umnu2!2

2S

]^LuHuL&

]mn*
,

2 i\
dnm*

dt
5

~11unmu2!2

2S

]^LuHuL&
]nm

and c.c. ~11!

Inserting Eq.~8! into Eq. ~11!, we obtain nonlinear differen-
tial difference equations satisfied by themn’s andnm’s,

i\ṁn5Kmn1Sh(
m

J~n,m!nm* 2V1~mn ,nm!, ~12!

i\ṅm* 5Knm* 1Sh(
m

J~n,m!mn2V2~nm ,mn!, ~13!

where

K5zSJ1~2S21!D, ~14!

in which z(54) is the number of nearest neighbors seen
a given spin. Here all the nonlinearity terms are incorpora
into the factorsV1(mn ,nm)[V1 andV2(nm ,mn)[V2. Their
explicit expressions are given by

V15S(
m

J~n,m!
1

11unmu2
@h~mn

2nm1unmu2nm* !

12mnunmu2#1zSJ~n,m!D*
umnu2mn

11umnu2
, ~15!

V25S(
n

J~n,m!
1

11umnu2
@h~mn* nm* 1mnumnu2!

12nm* umnu2#1zSJ~n,m!D*
unmu2nm

11unmu2
, ~16!

with

D* 5
2~2S21!

zSJ
D. ~17!

This is a modified version of the nonlinear Schro¨dinger
equation,5 in which intrinsic nonlinearity of the spin system
has been included to all orders. Corrections to the sad
point approximation by considering quantum fluctuatio
around the stationary point would be required, because
approximation works better forS@1.
7-2
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III. OUTLINE OF STUDYING NONLINEAR EIGENVALUE
PROBLEMS

We study nonlinear eigenvalue problems associated w
Eqs. ~12! and ~13!. This amounts to seeking solutions
these equations in the form

mn5umnuexp~2 ivt ![
A

A2S
j~n!exp~2 ivt !, ~18!

nm5unmuexp~2 ivt ![
A

A2S
z~m!exp~ ivt !. ~19!

Here the quantitiesv and j(n) @z(m)# are the eigenfre-
quency of the stationary nonlinear modes to be studied
the envelope functions forA ~B! sublattice which is assume
to be time independent. The quantityA is the reduced ampli-
tude of the nonlinear modes. We are principally concern
here with subtle interplaying of the intrinsic nonlinearity
magnons and the extrinsic disorder due to hole doping.
n
p
is
t

te

09440
th
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convenience, we divide our procedure of studying the n
linear eigenvalue problems into three steps as given belo

~i! Pure nonlinear system.We first consider a pure 2D
square antiferromagnet with nearest-neighbor coupling c
stantJ(n,m)5J for all n andm. Then, substituting Eqs.~18!
and ~19! to Eqs.~12! and ~13! leads to

K̄2Ē

h
j~n!1

1

2 (
j 5x,y

@z~n1ej !1z~n2ej !#5
l

2h
U1~j,z!,

~20!

K̄1Ē

h
z~m!1

1

2 (
j 5x,y

@j~m1ej !1j~m2ej !#5
l

2h
U2~z,j!,

~21!

where

Ē5
\v

2SJ
5

E

2SJ
, K̄5

K

2SJ
5

4SJ1~2S21!D

2SJ
521D* ,

~22!
U1~j,z!5 (
j 5x,y

S D*
j~n!3

11lj~n!2
1

2z~n1ej !
2j~n!1hz~n1ej !@j~n!21z~n1ej !

2#

11lz~n1ej !
2

1
2z~n2ej !

2j~n!1hz~n2ej !@j~n!21z~n2ej !
2#

11lz~n2ej !
2 D , ~23!

U2~z,j!5 (
j 5x,y

S D*
z~m!3

11lz~m!2
1

2j~m1ej !
2z~m!1hj~m1ej !@z~m!21j~m1ej !

2#

11lj~m1ej !
2

1
2j~m2ej !

2z~m!1hj~m2ej !@z~m!21j~m2ej !
2#

11lj~m2ej !
2 D . ~24!
in.
The parameterl defined by

l[A 2/2S, ~25!

characterizes the nonlinearity of the spin system.
~ii ! Linear impurity modes.As a preliminary step for

studying stationary nonlinear modes in a 2D antiferromag
containing a hole, we consider a system containing an im
rity spin located at the origin. As shown in Fig. 1, there ex
two kinds of coupling constants;J8 between an impurity a
the origin and its nearest-neighbor sites andJ among host
spin sites. When nonlinear effects are discarded, this sys
leads to the following equations, corresponding to Eqs.~20!
and ~21! for pure case;

~a! for n50,

21D* 2Ē

h
j~0!1

1

2 (
j 5x,y

@z~1ej !1z~2ej !#5W1„j~0!,z…,

~26!
et
u-
t

m

~b! for n56ej ,

21D* 1Ē

h
z~6ej !1

1

2 (
j 5x,y

j~6ej1ej8!1j~6ej2ej8!

5W2„z~6ej !,j…, ~27!

FIG. 1. Antiferromagnetic system with a hole fixed at the orig
7-3



qs

e

on-
ac-
-
e,
r
is
-
e-

te

MARI KUBOTA, KAZUKO KAWASAKI, AND SHOZO TAKENO PHYSICAL REVIEW B 63 094407
where

W1„j~0!,z…5
~21D* !DJ

hJ
j~0!

1
DJ

2J (
j 5x,y

@z~ej !1z~2ej !#, ~28!

W2„z~6ej !,j…5
DJ

2hJ
z~6ej !1

DJ

2J
j~0!, ~29!

with

DJ5J2J8, ~30!

~c! for other cases,

K̄2Ē

h
j~n!1

1

2 (
j 5x,y

@z~n1ej !1z~n2ej !#50, ~31!

K̄1Ē

h
z~m!1

1

2 (
j 5x,y

@j~m1ej !1j~m2ej !#50. ~32!

It is understood that we eventually take the limitJ8→0 or
DJ→J to get the magnetic system with the hole. Then, E
~28! and ~29! take the form

W1„j~0!,z…5
~21D* !

h
j~0!1

1

2 (
j 5x,y

@z~ej !1z~2ej !#,

~33!

W2„z~6ej !,j…5
1

2h
z~6ej !1

1

2
j~0!. ~34!

~iii ! Nonlinear impurity modes.Our objective of obtaining
stationary nonlinear modes for the present system can
achieved by introducing two linear operatorsL0 andL8,

L̂0ĵ[«ĵ~n!2
1

2 (
j 5x,y

@ ĵ~n1ej !1 ĵ~n2ej !#, ~35!

and

L̂8ĵ~n![Ŵ~j,z!, ~36!

where

«5
A~21D* !22Ē2

h
, ~37!

ĵ~n!5F j~n!

z~n!
G and Ŵ~j,z!5F W1„j~0!,z…

W2„z~6ej !,j…
G . ~38!

Namely, L̂0 is the operator for pure lattice andL̂8 is the
perturbations term due to the existence of a hole. Their
plicit expressions are written as
09440
.

be

x-

L̂0 5F 1

h
~21D* 2Ē! (

j 5x,y
coshS ]

]nj
D

(
j 5x,y

coshS ]

]nj
D 1

h
~21D* 1Ē!

G , ~39!

and

L̂85F 1

h
~21D* !

1

h (
j 5x,y

coshS ]

]nj
D

1

2

1

2
expS 6

]

]nj
D G . ~40!

By such a procedure, Eqs.~20! and ~21! are replaced by

~ L̂02L̂8!ĵ~n!5
l

2h
Û @ ĵ~n!#. ~41!

We observe that the effects of the hole and intrinsic n
linearity on magnon excitations are incorporated into the f
tors L8 and (l/2h)Û@ ĵ(n)#, respectively. In studying solu
tions to Eq.~41!, we first pay particular attention to the cas
in which the energy eigenvalueE appears outside the linea
spin-wave bandE( lsw) caused by hole existence. For th
purpose, we introduce a 232 magnon Green’s-function ma
trix ĝ(n) associated with linear magnon of the system d
fined by

L̂0ĝ~n!5FD~n! 0

0 D~n!
G . ~42!

In the component representation ofĝ(n)(5L̂0
21) is written

as

gik~nx ,ny ;E!5
1

N (
qx

(
qy

bikexp@ i ~qxnx1qyny!#

Ē~ lsw!2~q!2Ē2 ,

i ,k51,2, ~43!

with

b11521D* 1Ē, b22521D* 2Ē,

b125b2152h (
j 5x,y

cos~qj !. ~44!

The reduced eigenvalue is given by

Ē( lsw)2~q!5~21D* !22h2S (
j 5x,y

cos~qj ! D 2

. ~45!

The spin-wave bottomĒ0
( lsw) is given by

Ē0
( lsw)25~21D* !224h2. ~46!

After lengthy, though straightforward, calculations, concre
expressions forgik(nx ,ny ;E) can be written in terms of the
Bessel functions of imaginary arguments

I n~ t !5
i 2n

2pE
2p

p

exp@ inj1t cosj#dj, ~47!
7-4
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as

g~nx ,ny!5
1

hE0

`

dt e2«tI nx
~ t !I ny

~ t !. ~48!

In what follows, the implementation of the method as giv
above is presented for case~ii ! and case~iii ! in succession.

IV. NUMERICAL CALCULATIONS

A. Linear defect modes

In terms of thegik(n)’s, Eq. ~26! and Eq.~27! are rewrit-
ten as

j~n!5(
l

$g11~n2 l!W1„j~0!,z…

1g12~n2 l!W2„z~6ej !,j…%, ~49!

z~m!5(
l

$g21~m2 l!W1„j~0!,z…

1g22~m2 l!W2„z~6ej !,j…%. ~50!

SinceW1„j( l),z… andW2„z( l),j… are nonvanishing only for
l50 and6ej , respectively@see Eqs.~33! and ~34!#, substi-
tuting (0,0) forn and (1,0) form into Eqs.~49! and~50!, we
obtain simultaneous equations forj(0,0) andz(1,0) as fol-
lows:

j~0,0!5g11~0,0!W1„j~0,0!,z…14g12~1,0!W2„z~1,0!,j…,

~51!

z~1,0!5g21~1,0!W1„j~0,0!,z…1@g22~0,0!12g22~1,1!

1g22~2,0!#W2„z~1,0!,j…. ~52!

In derivation these Eqs.~51! and ~52! we use the symmetry
respect to the origin for ans-like mode. The energyĒ( l inear)

of localized linear spin-wave modes with the hole is obtain
from following equation though« dependence ofgik(n) @see
Eq. ~48!#,

S 12
21D*

h
g11~0,0!22g12~1,0! D

3S 122g12~1,0!2
1

2h
@g22~0,0!12g22~1,1!

1g22~2,0!# D2S 2g11~0,0!1
2

h
g12~1,0! D

3S 21D*

h
g12~1,0!1

1

2
@g22~0,0!12g22~1,1!

1g22~2,0!# D50, ~53!

where we used Eqs.~33! and~34!. Its h dependence is plot
ted forD* 50.3 in Fig. 2. We note the difference ofĒ( l inear)

from the bottom of the magnon bandĒ0
( lsw) increases with
09440
d

decreasingh, i.e., the system tends to the Ising type. Th
tendency is seen regardless ofD* value.

B. Nonlinear defect modes

To seeks-like nonlinear localized modes in the 2D ant
ferromagnet containing a hole, we introduce another 232
magnon Green’s functionĜ(n;m), which satisfies the fol-
lowing equation:

~ L̂02L̂8!Ĝ~n;m!5FD~m! 0

0 D~m!
G . ~54!

Referring to Eqs.~20! and ~21! with U15U250, Ĝ(n;m)
can be written as

Ĝ~n;m!5L̂0
211L̂0

21L̂8Ĝ~n;m!

5L̂0
211(

l
L̂0

21Ŵ„Ĝ~ l;m!…, ~55!

where we used Eq.~36!. Explicit expressions for the matrix
elements ofŴ„Ĝ( l;m)… are written down.

W11„Ĝ~0;m!…5~21D* !G11~0;m!1
h

2 (
j 5x,y

@G21~ej ;m!

1G21~2ej ;m!#, ~56!

W12„Ĝ~0;m!…5~21D* !G12~0;m!1
h

2 (
j 5x,y

@G22„ej ;m!

1G22~2ej ;m!], ~57!

W21„Ĝ~6ej ;m!…5
h

2
G11~0;m!1

1

2
G21~6ej ;m!, ~58!

FIG. 2. h dependence of the energy eigenvalueĒ( l inear) for
linear localized mode with the hole effect. This eigenvalue is lyi

below spin-wave bottomĒ0
( lsw) without hole effect withD* 50.3.
7-5
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W22„Ĝ~6ej ;m!…5
h

2
G12~0;m!1

1

2
G22~6ej ;m!, ~59!

Wik„Ĝ~ l;m!…50 for u lu.1 i ,k51,2. ~60!

By using ĝ(n), Ĝ(n;m) in Eq. ~55! is re-expressed in the
form

Ĝ~n;m!5ĝ~n2m!1(
l

ĝ~n2 l!Ŵ„Ĝ~ l;m!…. ~61!

Inserting Eqs.~56!–~60! into Eq. ~61! leads to the explicit
expression for the Green’s functionG(n;m) ~see Appendix!.
Corresponding to Eqs.~49! and~50! in the linear defect, the
envelope functions of nonlinear self-localized mode are
tained as

FIG. 3. ~a! The energy eigenvalueĒ(l) of an s-like self-
localized mode as a function of nonlinearity parameterl for vari-
ous anisotropic exchange interaction parameters withD* 50.3. ~b!
Illustration of energy reduction under two effects, i.e., intrinsic no
linearity and extrinsic hole doping in a case ofh50.1. A solid line

is Ē(l) and a dashed line is theĒ(pure)(l).
09440
-

j~n!5
l

2h (
m

G11~n;m!U1„j~m!,z~m!…

1G12~n;m!U2„z~m!,j~m!…, ~62!

z~n!5
l

2h (
m

G21~n;m!U1„j~m!,z~m!…

1G22~n;m!U2„z~m!,j~m!…. ~63!

Since the profile functionsj(n) and z(n) are scaled by the
amplitude A/A2S @see Eqs.~18! and ~19!# let us regard
z(6ej ) as unity. This normalization condition can be writte
as

z~6ej !5
l

2h (
m

$G21~ej ,m!U1~j,z!1G22~ej ,m!U2~z,j!%

51. ~64!

By using Eq.~64!, Eqs.~62! and ~63! are replaced to

j~n!5

(
m

G11~n,m!U1~j,z!1G12~n,m!U2~z,j!

(
m

G21~6ej ;m!U1~j,z!1G22~6ej ;m!U2~j,z!

,

~65!

-

FIG. 4. The projection of spin profile of ans-like self-localized

modeSn on axy plane.~a! h50.6 with Ē51.54 andl50.612;~b!

h50.8 with Ē51.45 andl50.219.
7-6
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z~n!5

(
m

G21~n,m!U1~j,z!1G22~n,m!U2~z,j!

(
m

G21~6ej ;m!U1~j,z!1G22~6ej ;m!U2~j,z!

.

~66!

Insertion of above formal solutions forj(n) and z(n) with
z(ex)51 into Eq.~64! yields a relationship between« andl
in an implicit form. The numerical calculation was carrie
out under the same procedure as that in the previous pa1

In Fig. 3~a!, the energy eigenvalueĒ of the self-localized
s-like nonlinear modes is plotted against tol for various
values ofh for D* 50.3. Increase of the nonlinear parame
l leads to the lowering ofĒ. In Fig. 3~b!, it is illustrated for
h50.6 how the eigenvalueE decreases under two effect
i.e., intrinsic nonlinearity and the the extrinsic spatially inh
mogeneous due to the hole existence. For referenceĒ(pure) is
also shown, which is the energy eigenvalue for the pure s
tem without hole but including nonlinear effect.

Since the diagonal coherent-state representation of
operatorSn is given in terms of the profile functionsj(n)
andz(m) @see Eqs.~4!, ~18!, and~19!#, the projections ofSn

on the 2D square lattice plane, denotedSn
' , can be evaluated

In Fig. 4 the obtained results are drawn for two cases~a! h
50.6 and~b! h50.8 with given values ofl andE andD*
50.3. In the case ofh50.6, Sn

' appear to be large in th
magnitude around a hole siten50 and its direction is indi-
cated by arrows. This is so-called localized magnetic vor
This implies that the spins in the neighborhood of a h
undergo a large excursion, whereas the spin deviation of
rest is very small. This localized magnetic vortex seems to
peculiarity in 2D nonlinear spin system associated with
hole. As the system shifts to Heisenberg type, the spin d
ated region spreads out surrounding the hole but the ma
tudes ofSn

' become smaller than the former case as show
Fig. 4~b!.

V. CONCLUDING REMARKS

In this paper, we have developed a theory of nonlin
self-localized modes in 2D square anisotropic Heisenb
antiferromagnets containing a fixed magnetic hole in
same spirit as that in previous ferromagnetic paper. Since
present system is composed of two interpenetrating sub
tice A andB, the uniaxial anisotropy energyD is indispens-
able for the formation of localized mode. The result obtain
in this paper is summarized as follows. In contrast with
case of the ferromagnet where both of immobile and mo
nonlinear modes are shown to exist, we could not found
trace of moving modes. In the case of immobile nonline
modes, the appearance of vortexlike modes around a
with energy lying below the linear spin-wave energy band
found. It turns out that the intrinsic nonlinearity tends
stabilize the magnetic localized mode generated by the
trinsic hole doping in the sense that lowering of the energE
is enhanced by increasing nonlinearity parameterl. Physi-
cally, the appearance of the stationary localized mode du
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hole doping and the nonlinearity implies local destruction
the antiferromagnetic state.

APPENDIX: DERIVATION OF GREEN’S FUNCTION
FOR GENERAL SITES

Inserting Eqs.~56!–~60! to Eq. ~61!, the elements of
Green’s functionsGik(n;m) are written as follows:

~i! for nx1ny5even,

G11~n;m!5g11~n2m!1@D~n!1Ēg11~n!#G11~0;m!

1
1

2
g11~n! (

j 5x,y
@G21~ej ;m!1G21~2ej ;m!#

1
1

2h (
j 5x,y

@g12~n2ej !G21~ej ;m!

1g12~n1ej !G21~2ej ;m!#, ~A1!

G12~n;m!5g12~n2m!1@D~n!1Ēg11~n!#G12~0;m!

1
1

2
g11~n! (

j 5x,y
@G22~ej ;m!1G22~2ej ;m!#

1
1

2h (
j 5x,y

@g12~n2ej !G22~ej ;m!

1g12~n1ej !G22~2ej ;m!#, ~A2!

G21~n;m!5g21~n2m!, ~A3!

G22~n;m!5g22~n2m!, ~A4!

~ii ! for nx1ny5odd,

G11~n;m!5g11~n2m!, ~A5!

G12~n;m!5g12~n2m!, ~A6!

G21~n;m!5g21~n2m!1Ēg21~n!G11~0;m!

1
1

2
g21~n! (

j 5x,y
@G21~ej ;m!1G21~2ej ;m!#

1
1

2h (
j 5x,y

@g22~n2ej !G21~ej ;m!

1g22~n1ej !G21~2ej ;m!#, ~A7!

G22~n;m!5g22~n2m!1Ēg21~n!G12~0;m!

1
1

2
g21~n! (

j 5x,y
@G22~ej ;m!1G22~2ej ;m!#

1
1

2h (
j 5x,y

@g22~n2ej !G22~ej ;m!

1g22~n1ej !G22~2ej ;m!#. ~A8!
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Thus we obtain a set of equations respect to following ten kinds of magnon Green’s function:

S G11~0,0;m! G12~0,0;m!

G21~1,0;m! G21~0,1;m! G21~21,0;m! G21~0,21;m!

G22~1,0;m! G22~0,1;m! G22~21,0;m! G22~0,21;m!
D . ~A9!

By usingĝ(n) and Eq.~61! incorporating with solutions for the above ten Green’s functions, we can finally evaluateGik(n;m)
for general sites.
h

-

,

1M. Kubota, K. Kawasaki, and S. Takeno, Phys. Rev. B60, 12 810
~1999!.

2H. Kuratsuji and T. Suzuki, J. Math. Phys.21, 472 ~1980!.
3R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Pat

Integrals ~McGraw-Hill, New York, 1965!.
4J. R. Klauder and B. S. Skagerstam,Coherent States. Applica
09440
tions in Physics and Mathematical Physics~World Scientific,
Singapore, 1985!.

5R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris,Soli-
tons and Nonlinear Wave Equations~Academic Press, London
1982!.
7-8


