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Localized modes in two-dimensional square anisotropic antiferromagnets with a hole
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A theory of localized modes in two-dimensional square anisotropic ferromagnets with a hole is extended to
the antiferromagnetic case. Here a path-integral method based on {Be @®Uerent state representation is
employed. Detailed numerical calculations are madesfidee modes, and their eigenfrequency is determined
as a function of nonlinearity parameter and various anisotropic exchange interactions and uniaxial anisotropies.
Particular attention is paid to interplaying between the intrinsic nonlinearity and extrinsic hole doping. It turns
out that the former stabilizes the magnetic localized mode generated by thedatiéze versy and it takes
a vortex shape in the neighborhood of a doped hole. In contrast to the ferromagnetic case, the mobile nonlinear
self-localized mode is unlikely to exist.
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I. INTRODUCTION
H= 2 J(n,m)[7(S;Sy+S,Sp) +SiSh]

Recently, we developed a path-integral formulation in (om
SU(2) coherent-state representation of self-localized modes 22 22
for two-dimensional(2D) Heisenberg ferromagnet contain- -D En: (Sh) +§ (Sm)?|s @
ing a fixed magnetic holeFor s-like modes, expressions for
the energy eigenvalues and profile functions of the localizegyhere SY (a=x,y,2) is the a component of thenth site
modes were obtained in terms of Green’s functions. By usingpin operator situated on the lattice vectorn.e + nye,
analytical and numerical methods, both effects were studiediith an unit vectore; in the direction of thej axis. The
in detail to obtain stationary, immobile localized modes andi(n,m)(>0), n(>0) andD(>0) are exchange interaction
mobile ones. constant between neighboring siteandm, a constant char-

In this paper we study a 2D Heisenberg antiferromagnegcterizing the anisotropy of the exchange interaction and the
bearing a fixed magnetic hole, in the same spirit as that in theniaxial crystal-field anisotropy parameter, respectively. The
previous paper for the ferromagnet. Our particular concerisymbolX ., indicates the sum over nearest-neighbor pairs.
here is whether or not there exists any situations for théAssuming that the lattice is bipartite and divided iWtand
properties of intrinsic localized modes that are different fromB sublattices, the S(2) coherent statefu,) and|v) are
the case of the ferromagnets. This paper is organized as foflefined by using the N state|0) as
lows. In the next section, a brief account is given on the

SU(2) coherent-state path-integral formalism for antiferro- | ny = (1+ | n|?) ~Sexp S, )| 0)n,

magnet. By employing the stationary phase approximation a

pair of nonlinear equations are derived. In Sec. Ill, the out- for ne A sublattice, (2
line of studying the nonlinear eigenvalue problem with mag-

non Green'’s functions is described. Numerical illustrations vy = (14| vl 2) ~SexXp vS) |0,

are made for ars-like self-localized mode in Sec. IV. Their
eigenfrequencies and spin profiles are analyzed as a function
of nonlinearity parameter for various anisotropic exchange

interactions and uniaxial anisotropies. The last section, Segnere thew,’s and,,’s are complex magnon field variables

V, is devoted to concluding remarks on the results obtainegssociated with thé\ and B sublattices, respectively. The

in this paper. diagonal coherent-state representations of the spin operator
S, are given by

for me B sublattice, 3)

II. SU(2) COHERENT-STATE PATH-INTEGRAL " L
FORMULATION AND STATIONARY PHASE (ol S |ty =25—"— (palSy [ o) =2 —,
APPROXIMATION 1+ |yl 1+ |

We consider a Heisenberg antiferromagnet on a 2D 1— 2
square lattice with the lattice constaat=1. The Hamil- <Mn|srz1|/1’n>:sﬂ’ (4)
tonian can be written in the form 1+ | unl?
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7| ”s v d| Jac aL 0 dfacL)| L€ 0 q
_ , —| == =0, ——|—|——= and c.c.
(vinl Sl v 1+ |vgl? dt dpn)  Okn dt vy IVm
(10)
Ym :I-_|Vm|2 .. . . . .
(YISl vm) =25———=, (¥m|Sh|Vm) = —S——. Combining Eq.(7) with Eq. (10) gives a pair of equations:
l+|Vm|2 1+|Vm|2
According to path-integral theoR” the transition amplitude Cdpn (I+]|u®? HAIH|A)
of the system from the initial stafé\;) at the timet; to the T 25 PR
final state|A;) at the timet; is given by the functional- Kn
integral representation for the matrix element of the evolu-
tion operator expfiHt/4),*3 L dvy (L4 |vg®)? A(AH]A)
—ih— = andc.c. (11
dt 2S v
A¢lexd —iH (ts—t)/A]|A; =JDA exp(iS/h), (5)
(Ao (= t)/A A (A)exi ) Inserting Eq.(8) into Eq.(11), we obtain nonlinear differen-
with tial difference equations satisfied by thg's andv,,’'s,
tf i
S= |, £dt 6) i pn=Kptn+ S92 I(n,mM) v =Valpen,vm),  (12)
where the Lagrangiad is defined by
s du,  du} hoh =Kok S J(nm)un=Valvm ), (13
_ * _ :
c—g PR it = i )
where
S dv, vy
— * 1 —_—— i — —
PRl . (AIHIA). K=2S3(25-1)D, (14)

(7 in which z(=4) is the number of nearest neighbors seen by
Here the functional integration involving the symbB(A) a given spin. Here all the nonlinearity terms are incorporated

in EqQ. (5) means a sum over all paths moving forward in iNto the factorsVy(un, vm) =V andVy(vi, pn) = V2. Their
time t. An explicit expression fof A|H|A) in Eq. (7) is  €xPlicit expressions are given by
given by

1 V=82 I(nm) ——— [ p(phvm |val*vi)
(AH|A)==8"2 J(n,m) 5 - m T+|wg> 70" "
(nm (1+|/-l’n| )(1+|Vm| ) | |2
Ml
><27](:"’*n7}m+#;’1c V;)_(l_|lfvn|2)(1_|7/m|2) +2Mn|Vm|2]+ZS~Inam)D* l+n|,u, |r12, (15
n
2 2
DS? 2 1_|Mn|2 1_|Vm|2) 1
- PR PR 1
I V7 o B N S P V,=SY, J(n,m)W[n(M?iVﬁ#Mnmnlz)
+
O S P e S 1 " ; 2
m(L [l W (1 |vg]?)? +2V;*n|ﬂn|2]+zsln,m)D*|V”‘|—Vm, (16)
1+|Vm|2
€S)
- with
In obtaining the above result, we have made use of the rela-
tion
D* — 2(25-1) b an
Z\ 2 z 2 2D|)\I|2 B zSJ )
NS = (NS oz MTHn
(14 N[5 ) This is a modified version of the nonlinear Sctlirger

equatior?, in which intrinsic nonlinearity of the spin system
As a first-order approximation to the exact path-integral for-has been included to all orders. Corrections to the saddle-
malism described above, we employ the saddle-point appoint approximation by considering quantum fluctuations
proximation to Eq.(5), i.e., 5S=0. Then, we arrive at the around the stationary point would be required, because this
Lagrangian equations approximation works better fdg>1.
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[ll. OUTLINE OF STUDYING NONLINEAR EIGENVALUE convenience, we divide our procedure of studying the non-
PROBLEMS linear eigenvalue problems into three steps as given below.

(i) Pure nonlinear systemWe first consider a pure 2D

uare antiferromagnet with nearest-neighbor coupling con-

stantJ(n,m)=J for all nandm. Then, substituting Eq$18)

and (19) to Egs.(12) and(13) leads to

We study nonlinear eigenvalue problems associated Witg
Egs. (12) and (13). This amounts to seeking solutions to q
these equations in the form

fin=al X0~ 1) =~ ()X 1) 1y K-E, .1 \
noe V25 ’ — fmE g 2 Linte)+n-e)l=5 th(£.0),
y (20
Vm=| Vmlexp —iot)= —(m)exp(i wt). (19 — =

2S K+E 1 A
V2s M)+ 5 X [Emte)+Em—e)]=5—Us(L,E),
Here the quantitieso and &(n) [£(m)] are the eigenfre- K I=xy K
guency of the stationary nonlinear modes to be studied and (22)
the envelope functions fok (B) sublattice which is assumed where
to be time independent. The quanthyis the reduced ampli-
tude of the nonlinear modes. We are principally concerned=_ fiw ~ E ra K 4S3(2S-1)D Y.
here with subtle interplaying of the intrinsic nonlinearity in — 2SJ  2SJ’ - 2SJ 2SJ B '
magnons and the extrinsic disorder due to hole doping. For (22
|
&(n)® 2{(n+¢)%E(n) + n¢(n+e)[ &)+ {(n+e)?]
U(0)= 2 (D* >+ : — :
=%y 1+NE(N) 1+N{(n+g)
2{(n—e)%E(n)+ -e 2+ ¢(n—e)?
N {(n—g)°é(n)+ nd(n—e)[£(N)°+{(n—g)°] ’ 23
1+\{(n—g)?
m)e  2&m+e)2Z(m)+ pé(m+e)[L(m)’+E(m+e)?
wieoH=S (D* Z(m) - &( 1)L (m) + né( ,)[52( )"+ &( )71
i=xy 1+N{(m) 1+Né(m+eg)
2&(m—g)2¢(m)+ -6 2+ ¢(m—eg)?
N &( 1) “C(m)+ pé(m—e)[{(m)°+ &(m—e)7] . (24
1+NE(m—g)?

|
The parametek defined by (b) for n==xg,

A=A%2S, (25 2+D*+E 1
————l(Fe)+ 5 2 dxete)+i(ze—g)
characterizes the nonlinearity of the spin system. =Xy
(||)_ Linear impurity r_nodesAs a prellmlnary_ step for =W,({(*8),8), (27)
studying stationary nonlinear modes in a 2D antiferromagnet
containing a hole, we consider a system containing an impu-
rity spin located at the origin. As shown in Fig. 1, there exist
two kinds of coupling constants; between an impurity at
the origin and its nearest-neighbor sites ahdmong host
spin sites. When nonlinear effects are discarded, this system

leads to the following equations, corresponding to E}6) O hole
and(21) for pure case; % A-sublattice
(a) for n=0,

@ B-sublattice
2+D*—E

E 1
O+ 5 2 [L(+8)+L(~8)]=Wi(£(0).0),

(26) FIG. 1. Antiferromagnetic system with a hole fixed at the origin.

7
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where 1 — d
—(2+D*—-E) Z cosh —
(2+D*)AJ (.= n =%y ﬁnj (39)
Wi (£(0),8)= "5 £(0) o~ i\ 1 _ |
i > cosh—| =(2+D*+E)
AJ =Xy il ¢
+o3 2 [Le)+i-e)l, (28  and
1 1 J
Wal£(+ Ay +AJ 0 - 7](2+D*) ;Z cosl‘(m>
= —_— X —_— ~ =X,
1 1 . 17
with 2 2 exF{ —(;_nj>
AJ=3-0", (30) By such a procedure, Eq&20) and(21) are replaced by
N A A N~
(c) for other cases, (Lo—L")E(n)= Z—U[f(n)]. (41)
o n
Ef(nH 1 2 [{(n+e)+¢(n—e)]=0, (3D We observe that the effects of the hole and intrinsic non-
n 2 iy linearity on magnon excitations are incorporated into the fac-

o tors L' and (\/27) &(n)], respectively. In studying solu-
K+E 1 tions to Eq.(41), we first pay particular attention to the case,
Tg(m)Jr 5 ].g«y [&(m+e)+&(m—g)]=0. 32  jn which the energy eigenvalug appears outside the linear

’ spin-wave bandE(SW) caused by hole existence. For this
It is understood that we eventually take the liMdit—~0 or ~ purpose, we introduce ax2 magnon Green’s-function ma-
AJ—J to get the magnetic system with the hole. Then, Eqgstrix g(n) associated with linear magnon of the system de-

(28) and (29) take the form fined by
(2+D*) 1 <~ |A(m) 0 }
W((0).0)=—— €0+ 5 2 [L(e)+4(~e)) Lom=| o sl (42)
(33)

In the component representation @qn)(:tgl) is written
as

1 1
WZ(g(ieJ)ig)zﬂg(ieJ)+§§(o) (34) ikexqi(qxnx+qyny)]

E(lSW)Z(q) _ E2

1 b
gik(anny;E): N E 2
(iii) Nonlinear impurity modeur objective of obtaining Y
stationary nonlinear modes for the present system can be i,k=1,2, (43
achieved by introducing two linear operatdrg andL’,

with
N 1 - - _ r= _ r=
Log=sk(n -5 3 [En+e)+En-g)l, (39 bu=2+D7+E,  bp=2+D"-E,
=Xy
and bio=by=— ﬂj;x:y cogq;). (44)
L Em)=W(g,0), (36)  The reduced eigenvalue is given by
2
where E(W2(g)=(2+D*)?~ n2<j§y cos(q,—)) . (45
N 2_pE2
e= L*)E (37)  The spin-wave bottonE{" is given by
7
EJW?=(2+D*)2—472. (46)
%(n):[f(n) and \7V(§ §)={ Wi1(£(0).0) } (38) After lengthy, though straightforward, calculations, concrete
Z(n) ’ Wo(L(*¢),é)] expressions fogj(ny,ny;E) can be written in terms of the

R R Bessel functions of imaginary arguments
Namely, L, is the operator for pure lattice and’ is the h
perturbations term due to the existence of a hole. Their ex- (t)= '_f
plicit expressions are written as n 2

ks

exginé+tcosé|dé, (47)
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as

g(n n)=£fwdte‘£tl (1, (1) (48
x 1y 7)o ny nt

In what follows, the implementation of the method as given
above is presented for cage) and casdiii ) in succession.
IV. NUMERICAL CALCULATIONS

A. Linear defect modes

In terms of theg;(n)’s, Eq. (26) and Eq.(27) are rewrit-
ten as

§<n>=2I {g12(n— W, (£(0),0)

+01AN—HW5({(*g), 8}, (49
£(m)= 2% {gz1(m—HW1(£(0),2)
+ 02 M—HW,({(£g),8)}. (50

SinceW,(&(1),£) andW,(£(1),£) are nonvanishing only for
=0 and * ¢, respectivelyfsee Eqs(33) and(34)], substi-
tuting (0,0) forn and (1,0) form into Eqgs.(49) and(50), we
obtain simultaneous equations f6¢0,0) and{(1,0) as fol-
lows:

£(0,0=911(0,0W,(£(0,0),0) + 491/ 1,0 W>(£(1,0),6),
(51)
£(1,00=921(1,0W1(£(0,0),0)+[922(0,0) +295(1,1)
+0222,0]W2(£(1,0), ). (52

In derivation these Eqg51) and(52) we use the symmetry
respect to the origin for aslike mode. The energg(/"ean

of localized linear spin-wave modes with the hole is obtained

from following equation thougl dependence d;(n) [see
Eq. (48)],

( 2+D
1_

n

*

911(0,0)—2912(1,0))

X

1
1-209:5(1,0— 5[922(0,0) +2925(1,1)

2
+ 922(270)]) - ( 29;1(0,0+ 7—7912(1,0))

*

2+D
7

1

X 911,00+ 5[922(0'0)““2922(1,1)

+922(210)]) =0, (53)

where we used Eq$33) and(34). Its » dependen@ is plot-
ted forD* =0.3 in Fig. 2. We note the difference Bf'"¢2")
from the bottom of the magnon barig)*") increases with

PHYSICAL REVIEW B 63 094407

. i e Ef™(spin wave bottom) |
18
E(linear)
14t
D'=0.3
] !
o 05 1
n

FIG. 2. 5 dependence of the energy eigenvalE&"ea" for
linear localized mode with the hole effect. This eigenvalue is lying

below spin-wave bottonE{*" without hole effect withD* =0.3.

decreasingy, i.e., the system tends to the Ising type. This
tendency is seen regardless»f value.

B. Nonlinear defect modes

To seeks-like nonlinear localized modes in the 2D anti-
ferromagnet containing a hole, we introduce anoth&r22

magnon Green’s functio®(n;m), which satisfies the fol-
lowing equation:

A(m)
0

o
A(m)|

Referring to Eqs(20) and (21) with ¢;=1,=0, G(n;m)
can be written as

(Eo—£'>é(n;m>=[ (54)

G(nym)=Ly*+ Ly ' G(n;m)
=Lot+ 2 Lo "WG(m), (55

where we used Ed36). Explicit expressions for the matrix
elements ofV(G(I;m)) are written down.

WaiG(0m)=(2+D*)Gu(Om) + 5 3 [Gas(erim)

+Goi(—¢g;m)], (56)

WG (0;m) = (2+D*)G A 0;m) + 5 3 [Cadaim)
+ G~ M), (57)

n 1
Wo(G( £ 1m) = 2 Gay(0m) + 5 Gl £ ), (58

094407-5
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18 ¢ : ; ; 5
i} n=04 EA)
(@n=06 0
-5
-5 0 5
5
b n=08 0
27 E&lsw)
. 5
hole effects with the ™| E®ue)) -5 0 5
181 nonlinearity |
) ‘ FIG. 4. The projection of spin profile of aslike self-localized
hofofjifﬁggry“hogl:ﬁr) modesS; on axy plane.(a) 7=0.6 with E=1.54 and\ =0.612;(b)
7=0.8 withE=1.45 and\=0.219.
1
1.6 %% nonlinear effects with hole doping - A
M £ =5 2 Gu(mm(E(m),{m)
n=0.6
' ' ' +G (N m)U(L(m), E(m)), (62)
0 0.5 1 15 2
(b) A
) — . A
FI_G. 3. (@ The energy e|genval_ucE()\_) of an slike sel_f- Z(n)=— 2 Goy(M: MU (E(M), £(M))
localized mode as a function of nonlinearity parametdor vari- 2n ‘=
ous anisotropic exchange interaction parameters Witk 0.3. (b)
lllustration of energy reduction under two effects, i.e., intrinsic non- + Gy MUy (L (M), &E(m)). (63
linearity and extrinsic hole doping in a casef0.1. A solid line
is E(\) and a dashed line is tHE*'"9()). Since the profile functiong(n) and (n) are scaled by the

amplitude A/ \/2S [see Eqs.(18) and (19)] let us regard

- 7 1 {(*¢) as unity. This normalization condition can be written
W22(G(iej;m)):§Glz(0;m)+ EGzz(ieij), (59 as

(] — P ole— A
Wi G(Em)=0 for [Il>1 k=12 (60 (=)= 5= 3 (Goil@ MI(E.D) + Cor & M, 6))

By using g(n), G(n;m) in Eq. (55) is re-expressed in the

form =1 (64)
R R R L By using Eq.(64), Egs.(62) and(63) are replaced to
G(nm)=g(n—m)+ 2, g(n-HW(G(;m).  (61)

Inserting Eqs.(56)—(60) into Eq. (61) leads to the explicit % Gr(N,M)U(€,0) + Gian,mUs( L, €)

expression for the Green’s functi@yn;m) (see Appendix &(n)= ,

Corresponding to Eq$49) and(50) in the linear defect, the - i -

envelope functions of nonlinear self-localized mode are ob- % o€ iMUL(E, O+ Cool =8 ML (£.0)

tained as (65)
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hole doping and the nonlinearity implies local destruction of

% Gaa(N,mUs(€,8) + Goa(n,m)Us(L,§) the antiferromagnetic state.
{(n)= .
Gor( 6 MU (£,0)+ Gl + 6 MUs(£, APPENDIX: DERIVATION OF GREEN'S FUNCTION
2, Gail* & mL(£,0) + G + &MUl £,0) ey oy

(66)

Inserting Egs.(56)—(60) to Eq. (61), the elements of

Insertion of above formal solutions fa@i(n) and ¢(n) with ~ Green’s functionss;(n;m) are written as follows:

{(e) =1 into Eq.(64) yields a relationship betweenand\ (i) for n+ny=even,
in an implicit form. The numerical calculation was carried

out under the same procedure as that in the previous paper. G1y(n;m)=g1y(N—m)+[A(n)+Eg14(n)]G14(0;m)

In Fig. 3a), the energy eigenvalug of the self-localized

1
s-like nonlinear modes is plotted against Xofor various +§gll(n) > [Goi(g ;M) + Gy —g;m)]
j=xy

values ofy for D* =0.3. Increase of the nonlinear parameter
\ leads to the lowering oE. In Fig. 3b), it is illustrated for

7»=0.6 how the eigenvalu€ decreases under two effects, t5 > [91An—€)Gy(e ;m)

i.e., intrinsic nonlinearity and the the extrinsic spatially inho- 7 i=xy

mogeneous due to the hole existence. For referBft&® is +012An+€)Gyu(—g:m], (A1)

also shown, which is the energy eigenvalue for the pure sys-

tem without hole but including nonlinear effect. —

Since the diagonal coherent-state representation of spin G12M M =g1(n—mM)+[A(N)+EQ1;(n) ]G 0;m)

operatorS, is given in terms of the profile functiong(n) 1

andZ(m) [see Eqgs(4), (18), and(19)], the projections o8, + 5911(”)‘2 [Goxg;m)+ Gyl —€;m)]

on the 2D square lattice plane, deno&d can be evaluated. =Xy

In Fig. 4 the obtained results are drawn for two casesy 1

=0.6 and(b) »=0.8 with given values of andE andD* t5 > [91dn—€)Gyxe ;M)

=0.3. In the case ofy=0.6, S. appear to be large in the 7 i=xy

magnitude around a hole site=0 and its direction is indi- +012n+€)Gyy —&;m)], (A2)

cated by arrows. This is so-called localized magnetic vortex.

This implies that the spins in the neighborhood of a hole Gyi(n;m)=gy(n—m), (A3)

undergo a large excursion, whereas the spin deviation of the

rest is very small. This localized magnetic vortex seems to be Goy(N;m)=gy(N—m), (A4)

peculiarity in 2D nonlinear spin system associated with a.. _

hole. As the system shifts to Heisenberg type, the spin devai(-") for n+ny=odd,

ated region spreads out surrounding the hole but the magni-

tudes ofS; become smaller than the former case as shown in Gu(nm)=gu(n—m), (AS)

Fig. 4b) Gulnim) =gudn-—m), (A6)
V- CONCLUDING REMARKS G21(N;mM) =go1(N—m) +Egyy(n) G14(0;m)

In this paper, we have developed a theory of nonlinear

self_—localized modes in. 2_D square anisotropic Heisgnberg +E921(n)_2 [Goi(€ ;M) + Gy — € ;m)]

antiferromagnets containing a fixed magnetic hole in the 2 i=xy

same spirit as that in previous ferromagnetic paper. Since the 1

present system is composed of two interpenetrating sublat- el A .

tice A andB, the uniaxial anisotropy enerdy is indispens- - 27 'Ey [924n—8) Gan(&:m)

able for the formation of localized mode. The result obtained

in this paper is summarized as follows. In contrast with the +02An+8)Cou(—g:m)], (A7)

case of the ferromagnet where both of immobile and mobile

nonlinear modes are shown to exist, we could not found any G_.(n:m) = g,,(n—m) + Eg,;(n) G(0:m)

trace of moving modes. In the case of immobile nonlinear

modes, the appearance of vortexlike modes around a hole 1

with energy lying below the linear spin-wave energy band is + 5921(n)j§y [Gao€ ;M) + G — ;M) ]

found. It turns out that the intrinsic nonlinearity tends to '

stabilize the magnetic localized mode generated by the ex- 1

trinsic hole doping in the sense that lowering of the endtgy T 27 J.ZEXY [922(n—€) G2z M)

is enhanced by increasing nonlinearity paramatePhysi- '

cally, the appearance of the stationary localized mode due to +02AN+€)Go—g:m)]. (A8)
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Thus we obtain a set of equations respect to following ten kinds of magnon Green’s function:
G11(0,00m) G15(0,0;m)

Gy1(1,00m) G,1(0,1;m) Gypy(—1,00m) Gyqy(0,—1;m)
Go(1,00m)  Gpx(0,1m) Gy(—1,00m) Gy (0,—1;m)

(A9)

By using@(n) and Eq.(61) incorporating with solutions for the above ten Green'’s functions, we can finally evaydig m)
for general sites.
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