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Emergence of irrationality: Magnetization plateaus in modulated Hubbard chains

D. C. Cabra,1 A. De Martino,2,* A. Honecker,3 P. Pujol,2 and P. Simon4,†

1Departamento de Fı´sica, Universidad Nacional de la Plata, C.C. 67, 1900 La Plata, Argentina
and Facultad de Ingenierı´a, Universidad Nacional de Lomas de Zamora, Cno. de Cintura y Juan XXIII,

1832 Lomas de Zamora, Argentina
2Laboratoire de Physique,‡ Groupe de Physique The´orique, ENS Lyon, 46 Alle´e d’Italie, 69364 Lyon Ce´dex 07, France

3Institut für Theoretische Physik, TU Braunschweig, Mendelssohnstraße 3, D-38106 Braunschweig, Germany
4International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy

~Received 24 August 2000; revised manuscript received 19 October 2000; published 30 January 2001!

Hubbard chains with periodically modulated coupling constants in a magnetic field exhibit gaps at zero
temperature in their magnetic and charge excitations in a variety of situations. In addition to fully gapped
situations~plateau in the magnetization curveandcharge gap!, we have shown@Phys. Lett. A268, 418~2000!#
that plateaus also appear in the presence of massless modes, leading to a plateau with a magnetizationm whose
value depends continuously on the fillingn. Here we detail and extend the arguments leading to such doping-
dependent magnetization plateaus. First we analyze the low-lying excitations using Abelian bosonization. We
compute the susceptibility and show that due to the constraint of fixedn, it vanishes at low temperatures~thus
leading to a magnetization plateau! even in the presence of one massless mode. Next we study correlation
functions and show that one component of the superconducting order parameter develops quasi-long-range
order on a doping-dependent magnetization plateau. We then use perturbation theory in the on-site repulsionU
to compute the width of these plateaus up to first order inU. Finally, we compute ground state phase diagrams
and correlation functions by Lanczos diagonalization of finite clusters, confirming the presence of doping-
dependent plateaus and their special properties.
DOI: 10.1103/PhysRevB.63.094406 PACS number~s!: 71.10.Fd, 71.10.Pm, 75.60.Ej
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I. INTRODUCTION

Strongly correlated electron systems in low dimensio
are presently a subject of intense research. In particular
magnetism of such systems has revealed very interes
properties and it is by now well established that spin cha
and spin ladders present plateaus in their magnetiza
curves. It has been shown theoretically that plateaus occu
general atrational fractions of the saturation magnetizatio
The position of these plateaus is subject to a quantiza
condition that involves the volume of a translationally inva
ant unit cell ~see, e.g., Refs. 1–7!. From the experimenta
side, different materials have been found which exhibit p
teaus. One example is a dimerized spin-1 chain,8 which ex-
hibits a plateau at half the saturation magnetization as
dicted in Ref. 3. A good candidate for a plateau at one th
of the saturation magnetization is Cu3Cl6(H2O)2
•2H8C4SO2,9 though it is not yet fully clear whether th
proposed frustrated trimer chain model is really appropr
or which parameters should be used.10

The most striking examples of plateaus have so far b
observed experimentally in the materials SrCu2(BO3)2 ~Ref.
11! and NH4CuCl3 ~Ref. 12! and again both constitute cha
lenges for theory. There is general agreement t
SrCu2(BO3)2 is a predominately two-dimensional materi
and how it should be modeled theoretically. Though so
progress has been made in understanding the origin of s
of the observed plateaus,13 it remains a difficult problem to
compute the complete magnetization process within
model. On the other hand, the high-temperature crystal st
ture of NH4CuCl3 suggests a one-dimensional model, b
nevertheless it remains unclear which model is appropr
theoretically for this compound.
0163-1829/2001/63~9!/094406~15!/$15.00 63 0944
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Materials with a ladder structure~see, e.g. Ref. 14! are
also good candidates for exhibiting magnetization platea
However, since the copper-oxide related materials
strongly coupled, plateaus with nonzero magnetization
predicted in a magnetic field range, which causes difficult
with the present experimental tools. A mechanism yield
plateaus at lower values of magnetic fields would theref
be very attractive. As we have shown in the case of mo
lated Hubbard chains,15 doping may actually provide such
mechanism since it allows a continuous variation of the p
teau magnetizationm with the filling n—extending in this
particular case also into the low-field region. Dopin
dependent magnetization plateaus have also recently
theoretically studied in a different system, namely an in
grable spin-S generalization of thet-J chain doped with (S
21/2) carriers,16 where, however, the appearance of platea
is restricted to large magnetization values. Another exam
of such a situation occurs in the one-dimensional Kondo
tice model,17 where unpaired spins behave ferromagnetica
giving rise to a spontaneous magnetization of a value c
trolled by doping.

Here we detail and extend our previous study15 of the
effect of a magnetic field and a periodic modulatio
(p-merization! of the hopping amplitude or the on-site e
ergy on adoped one-band Hubbard chain whose Ham
tonian is given by

H52(
x,a

t~x!~cx11,a
† cx,a1H.c.!1U (

x51

L

cx,↑
† cx,↑cx,↓

† cx,↓

1(
x,a

m~x!cx,a
† cx,a2

h

2 (
x51

L

~cx,↑
† cx,↑2cx,↓

† cx,↓!.

~1.1!
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Herecx,a
† andcx,a are electron creation and annihilation o

erators at sitex, a5↑,↓ the two spin orientations, andh the
external magnetic field. The hopping amplitudet(x) and the
chemical potentialm(x) are taken as periodic in the variab
x with periodp.

The one-dimensional Hubbard model with dimerized co
pling constants (p52) is realized in a number of real com
pounds like the organic~super!conductors18 and the ferro-
electric perovskites.19 While some materials in the forme
class come at quarter filling, one frequently also finds re
izations of the half-filled Hubbard model. In this case, t
model, Eq.~1.1!, is in the same universality class as a mod
lated spin-1/2 Heisenberg chain. Realizations of the la
exist also at periodsp.2: Some examples of trimerize
chains (p53) have been studied in Refs. 20,21, and 9.

A technical motivation for resorting to the one
dimensional Hubbard model is that the uniform chain is
actly solvable by Bethe Ansatz~BA! for arbitrary values of
the on-site repulsionU, filling, and magnetic field.22 The
exact solution can then be used to construct a low ene
bosonized effective field theory,23–25 which can in turn be
used to study perturbations of this model~see, e.g. Ref. 26!.
Here we first review some aspects of the bosonization
scription of the Hubbard chain27,28 and extend it for the cas
of a finite magnetic fieldhÞ0.

Focusing on the case of constant chemical poten
m(x)5m, we have shown in Ref. 15 that magnetization p
teaus can appear for the model, Eq.~1.1!, if the density of
particlesn and magnetizationm29 satisfy

p

2
~n6m!PZ. ~1.2!

These conditions are commensurability conditions for the
electronsn↑5(n1m)/2 and down electronsn↓5(n2m)/2,
respectively. More precisely, if both conditions are simul
neously satisfied, the system has both charge and spin g
On the other hand, if only one of these conditions is fulfille
the filling has to be kept fixed in order to have a magneti
tion plateau. A simple explanation of the conditions, E
~1.2!, can be given15 in the noninteracting limit (U50).
Then, the Hamiltonian Eq.~1.1! can be easily diagonalize
and is found to havep bands«l(k) ~see Sec. III for more
details!. The magnetic field breaks the symmetry betwe
up- and down-spin electrons by shifting their chemical p
tentials by opposite amounts. It is then possible that
chemical potential~say for the up electrons! lies in one of the
p21 band gaps while the other~for the down electrons! is in
the middle of a band. This situation leads to a dopin
dependent plateau, if one imposes the constraint of fixed
ing n ~and only in this case!. Then the magnetization can b
increased only by moving an electron from the down-s
band into the up-spin band, which requires a finite energy
equivalently a finite change of magnetic field, leading to
plateau. However, since the filling of the down-spin ele
trons remains adjustable, one obtains a doping-depen
value of the magnetization at the plateau.

Finally, we have also shown15 that a charge gap opens
the combinationpnPZ of the two conditions Eq.~1.2! is
09440
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satisfied. The latter case generalizes the well known cha
gap at half filling (n51) as well as the charge gap at quar
filling in the dimerized Hubbard chain (n51/2, p52).30–33

The plan of this paper is as follows: In Sec. II A w
briefly review the bosonization approach for the Hubba
chain for arbitrary filling and on-site Coulomb repulsionU in
the presence of an external magnetic field~our conventions
are summarized in Appendix A and details on the boson
tion approach in Appendix B!.23,25 In Sec. II B we then use
this bosonization scheme to study the effect of a modula
of the hopping amplitudes and the on-site energym(x) and
find the conditions under which a plateau is present. T
appearance of plateaus for irrational values of the magn
zation and superconducting correlations are analyzed
Secs. II C and II D, respectively. In Sec. III we study th
limit of small U perturbatively and show that the doping
dependent plateaus are also present there. Then we stud
ground state phase diagram~Sec. IV A! and correlation func-
tions ~Sec. IV B! numerically on finite size systems b
means of Lanczos diagonalization. Finally, we summar
our results in Sec. V, discuss some experimental sett
where the features presented in this paper could be obse
and point out open routes for further research.

II. BOSONIZATION APPROACH

A. Field theory description of the Hubbard chain in a
magnetic field

In this section, we summarize the analysis of the Hubb
model in a magnetic field using Abelian bosonization. F
further details see Ref. 25. The lattice Hamiltonian is t
standard one, i.e., Eq.~1.1!, with constantt(x)5t, m(x)
5m:

H52t(
x,a

~cx11,a
† cx,a1H.c.!1U(

x
cx,↑

† cx,↑cx,↓
† cx,↓

1m(
x

~cx,↑
† cx,↑1cx,↓

† cx,↓!2
h

2 (
x

~cx,↑
† cx,↑2cx,↓

† cx,↓!.

~2.1!

This model was already solved exactly by BA in 1968,22 but
it took until 1990 for the correlation functions to be com
puted by combining BA results with conformal field theo
~CFT! techniques.23 Spin-charge separation is a well know
feature of the Hubbard chain at zero magnetic field. Intere
ingly, it is no longer spin and charge degrees of freedom t
are separated if an external magnetic field is switched o23

Nevertheless it has been shown that in the presence
magnetic field, the spectrum of low energy excitations can
described by a semidirect product of two CFT’s with cent
chargesc51.23 This in turn implies that the model is still in
the universality class of the Tomonaga-Luttinger~TL! liquid
and therefore allows for a bosonization treatment.

In order to proceed, we write the fermion operator as

cx,a→ca~x!;eikF,axcL,a~x!1e2 ikF,axcR,a~x!1 . . .
~2.2!
6-2
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5eikF,axe2 iA4pfL,a(x)1e2 ikF,axeiA4pfR,a(x)1 . . . ,
~2.3!

wherekF,a are the Fermi momenta for up- and down-sp
electrons andfR,L,a are the chiral components of tw
bosonic fields, introduced as usual in order to bosonize
spin-up and -down chiral fermion operatorscR,L,a . ~Our
conventions are settled in Appendix A.! The dots stand for
higher order terms, some of which are written explicitly
Appendix B. They take into account the corrections aris
from the curvature of the dispersion relation due to the C
lomb interaction. For nonzero Hubbard repulsionU and
magnetic fieldh, the low energy effective Hamiltonian cor
responding to Eq.~2.1!, written in terms of the bosonic field
f↑ and f↓ , has a complicated form mixing up and dow
degrees of freedom. The crucial step to obtain a simp
bosonized Hamiltonian is to consider the Hamiltonian o
generalized~two component! TL model and identify the ex-
citations of the latter with the exact BA ones for the mod
Eq. ~2.1!, providing in this way anonperturbativebosonic
nt

i
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representation of the low energy sector of the full Ham
tonian Eq.~2.1!. This program has been carried out in Re
25 and we just quote here the final result. The fixed po
~i.e., neglecting all irrelevant terms! bosonized Hamiltonian
reads

H5E dxFuc

2
]xFW

tAc]xFW 1
us

2
]xFW

tAs]xFW G , ~2.4!

whereFW t5(fR,↑ ,fL,↑ ,fR,↓ ,fL,↓). The matricesAc,s have
the following form:

Ac,s5S ac,s1bc,s ac,s2bc,s cc,s1dc,s cc,s2dc,s

ac,s2bc,s ac,s1bc,s cc,s2dc,s cc,s1dc,s

cc,s1dc,s cc,s2dc,s ec,s1 f c,s ec,s2 f c,s

cc,s2dc,s cc,s1dc,s ec,s2 f c,s ec,s1 f c,s

D ,

~2.5!

where
H ac5~Zcc
21!2 bc5~Zcc2Zsc!

2 cc5Zcc
21~Zcc

211Zcs
21!

dc5Zsc~Zcc2Zsc! ec5~Zcc
211Zcs

21!2 f c5Zcs
2 ~2.6!

H as5~Zsc
21!2 bs5~Zcs2Zss!

2 cs5Zsc
21~Zss

211Zsc
21!

ds5Zss~Zcs2Zss! es5~Zss
211Zsc

21!2 f s5Zss
2 . ~2.7!
n

ther

-

ave
In these expressionsZi j ~respectively,Zi j
21), i , j 5c,s, are

the entries of the dressed charge matrixZ ~respectively, its
inverseZ21) taken at the Fermi points

Z5S Zcc Zcs

Zsc ZssD . ~2.8!

These matrix elements are solutions of a set of coupled i
gral equations obtained from the BA23 and depend on the
couplingU, the chemical potentialm, and the magnetic field
h. In turn they can be related to physical thermodynam
quantities.23

Substituting for the bosonic fields

S fc

fsD 5
1

det ZS Zss Zss2Zcs

Zsc Zsc2ZccD S f↑
f↓D , ~2.9!

and for their dual fields

S uc

usD 5S Zcc2Zsc Zsc

Zss2Zcs 2ZssD S u↑
u↓D , ~2.10!

the Hamiltonian takes the form
e-

c

(
i 5c,s

ui

2 E dx@~]xf i !
21~]xu i !

2#, ~2.11!

wheref5fR1fL andu5fR2fL .
At zero magnetic field, the matrixZ reduces to

Z~h50!5S j 0

j/2 1/A2D , ~2.12!

with j5j(m,U). In this case we recover the well know
expressions for the charge and spin fields

fc5
1

j
~f↑1f↓!, fs5

1

A2
~f↑2f↓!, ~2.13!

where the compactification radius of the spin field~i.e., the
parameter which indicates the period offs , fs5fs

12pRs , Rs51/A2p)34 is fixed by the SU~2! symmetry of
the spin sector. The radius for the charge field, on the o
hand, depends on the chemical potentialm and the Coulomb
coupling U. Furthermore, forh50 the charge and spin de
grees of freedom are completely decoupled.

It should be noted that formÞ0, the fields arising in the
diagonalized form of the bosonic Hamiltonian Eq.~2.11! are
no longer the charge and spin fields even though they h
6-3
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been labeledc and s. For example, the charge field is i
general given byf↑1f↓5Zccfc2Zcsfs .

For generic values of the parameters of the model
~2.1!, we can now write down for example the bosoniz
expression for the charge density operator

r~x!5c↑
†c↑~x!1c↓

†c↓~x!

5
1

Ap
]x~Zccfc2Zcsfs!

1ar sin@k1x2Ap~Zccfc2Zcsfs!#

3cos@k2x2Ap~~Zcc22Zsc!fc2~Zcs22Zss!fs!#

1br sin~2k1x2A4p~Zccfc2Zcsfs!!, ~2.14!

where ar ,br are nonuniversal constants, whose numeri
values are known only in special cases. Details on how s
expressions are obtained are given in Appendix B. Formu
of the type Eq.~2.14! are our fundamental bosonizatio
rules.

B. Space dependent modulations

In the present subsection we study two different pertur
tions of the Hubbard chain Eq.~2.1!, which consist of space
dependent modulations of certain parameters. In partic
we shall consider a space dependent modulation of the
ping amplitudet(x) and of the on-site energym(x).

1. Modulated hopping amplitude

In this case, the Hamiltonian reads as in Eq.~1.1! with
m(x)5const andt(x)5t if xÞ lp andt( lp)5t85t1d, with
p,l integers andp fixed. This is equivalent to the uniform
Hubbard Hamiltonian Eq.~2.1! perturbed by the term

Hpert52d (
x85 lp,a

~cx8,a
† cx811,a1H.c.!. ~2.15!

At half filling and for largeU, a standard second order pe
turbative computation in 1/U shows that the effective Hamil
tonian is given by

H̃5(
x

4t2~x!

U
SW x•SW x11 , ~2.16!

thus leading to thep-merized Heisenberg chain studied
Ref. 6. It was predicted there that magnetization plate
occur when the conditionp/2(12m)PZ is satisfied.29 We
now use Abelian bosonization techniques to analyze
more general case of the model Eq.~1.1! in the small d
~weakp-merization! limit.

Using the bosonization dictionary given in Appendix
we find the expression for the continuum limit of the latti
perturbation Eq.~2.15!
09440
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Opert5l1 sin@k1/21pk1x2Ap~Zccfc2Zcsfs!#

3cos@k2/21pk2x2Ap~~Zcc22Zsc!fc

2~Zcs22Zss!fs!#1l2 sin@k112pk1x

2A4p~Zccfc2Zcsfs!#, ~2.17!

where l1 ,l2}d and the Fermi momenta arek15kF,↑
1kF,↓5pn, k25kF,↑2kF,↓5pm, where n is the filling
andm is the magnetization. The presence of a factorp in the
oscillating part will play an important role in the following

The operator

l3 cos@k212pk2x22Ap~~Zcc22Zsc!fc

2~Zcs22Zss!fs!#, ~2.18!

with l3}d2 is radiatively generated from the first term in E
~2.17! and must therefore be included as well.

In the case of zero magnetic field the dressed charge
trix is given by Eq.~2.12! and we have then a neat separati
between charge and spin fields. The most relevant pertu
tion takes the form

Opert5l1 sinFpn

2
1pnpx2ApjfcGcos@A2pfs#

1l2 sin@pn12pnpx2A4pjfc#. ~2.19!

The marginal operator associated withl3 contains only the
spin field, its dimension~fixed by the SU~2! symmetry! is 2,
and it is marginally irrelevant. A term like this is alread
present in the original model and is also marginally irr
evant. Hence, ford small enough, this term can be absorb
in the original marginally irrelevant perturbation term with
out changing its relevance character.

The l2 term affects only the charge degrees of freed
and its dimension runs from 1, forU→` to 2, for U50,
being then always relevant for the cases of interest. We
therefore conclude that the charge field is massive when
this operator is commensurate, which in turn happens if
conditionpnPZ is satisfied.

If this happens, we can integrate out the massive cha
degrees of freedom which leaves us with an effective the
for the spin degrees of freedom. This effective theory
massless except when the operator associated withl1 be-
comes also commensurate, i.e., if the conditionpn/2PZ is
satisfied. In that case, we have also a spin gap in the sys

These considerations are easily generalized to the cas
nonzero magnetization as long as the conditionpnPZ is
satisfied. In this case, thel2 term in Eq. ~2.17! is always
commensurate. Since it contains only the proper charge fi
f↑1f↓ , a charge gap opens for all values ofm at these
commensurate values of the filling. The conditionpnPZ is
also satisfied when the two conditions Eq.~1.2! are simulta-
neously satisfied. In this case, also thel1 term in Eq.~2.19!
becomes commensurate, thus leading also to a spin gap

In particular for p52,3, we predict the following fully
gapped situations:
6-4
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p52: Half filling (n51): gap for the charge, and platea
for m50. Quarter filling (n51/2) ~and alson53/2): gap for
the charge,30–33 and plateau form561/2.

p53: n51, n51/3, andn55/3: gap for the charge, an
plateau form561/3. n52/3 andn54/3: gap for the charge
and plateau form562/3, 0.

The final case where only one of the conditions Eq.~1.2!
holds is more complicated since then the charge and
degrees of freedom can no longer be separated. We ther
postpone discussion of this case.

2. Modulated on-site energy

Now we consider the Hubbard chain Eq.~1.1! with a uni-
form hopping amplitudet(x)5t but a periodic modulation o
the chemical potentialm(x)5m if xÞ lp and m( lp)5m
1dm, with p,l integers,p fixed. This is equivalent to the
uniform chain Eq.~2.1! plus an on-site energy term tha
reads

Hpert8 5dm (
x85 lp,a

cx,a
† cx,a . ~2.20!

The casep52, h50 has been studied in detail in Ref. 35
In the continuum limit the perturbing operator Eq.~2.20!

becomes

Opert8 5l1 sin@pk1x2Ap~Zccfc2Zcsfs!#

3cos@pk2x2Ap~~Zcc22Zsc!fc2~Zcs22Zss!fs!#

1l2 sin~2pk1x2A4p~Zccfc2Zcsfs!!, ~2.21!

which radiatively generates a term of the form

l3 cos@2pk2x22Ap~~Zcc22Zsc!fc2~Zcs22Zss!fs!#.

~2.22!

The only difference with respect to the previous case, E
~2.17! and ~2.18!, is a phase in each of the sines or cosin
which however plays a role only at half filling and zero ma
netic field~see also Ref. 35!. Apart from this particular case
the conclusions remain the same as in the previous case

C. Partial gap: irrational plateaus

We have shown in the previous subsection that, wh
both commensurability conditions Eq.~1.2! are satisfied, the
spectrum of the model Eq.~1.1! is fully gapped. It is not yet
understood what happens if only one of these condition
satisfied. In this case, apparently one degree of freedom
mains massless. We will show that the system neverthe
exhibits a gap for magnetic excitations~i.e., excitations
changing the value of the magnetization!, provided the total
charge~i.e., the fillingn) remains fixed.

For the sake of simplicity we will restrict ourselves to th
dimerized chain (p52) in this subsection although the arg
ment can be generalized easily top.2. Suppose that

p

2
~n2m!5n2m52n↓PZ, ~2.23!
09440
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but thatn1m is not an integer, i.e., the commensurabili
condition is fulfilled only for down electrons. Assume fir
that there is no interaction between up and down electr
(U50). Then we are led to analyze the excitation spectr
of the following Hamiltonian in a system of lengthL:

H5E
0

L

dx
v↑
2

@~]xf↑!21~]xu↑!2#1
v↓
2

@~]xf↓!21~]xu↓!2#

1l cos~2Apf↓!, ~2.24!

with total magnetization

M5E
0

L

dx
1

Ap
]x~f↑2f↓!5

1

Ap
~f↑2f↓!u0

L .

~2.25!

Motivated by experimental realizations of Hubbard system
where typically doping is fixed, we also impose the co
straint that the total particle number is fixed:

N5E dx
1

Ap
]x~f↑1f↓!5

1

Ap
~f↑1f↓!u0

L . ~2.26!

From Eqs.~2.25! and ~2.26! we see that the fieldsf↑,↓ sat-
isfy the following boundary conditions:

2f↑u0
L5Ap~N1M !, ~2.27!

2f↓u0
L5Ap~N2M !. ~2.28!

Notice, furthermore, that the fieldsf↑,↓ are compactified,
i.e., they satisfy the periodicity condition

f↑,↓→f↑,↓1ApZ. ~2.29!

Therefore, in a semiclassical picture, the vacuum configu
tion for f↑ is

f↑~x!5
Ap

2L
~N1M !x1const. ~2.30!

On the other hand, forf↓ the vacuum configuration is a kin

f↓~x!5k~x!, ~2.31!

where k(x) is a configuration interpolating between tw
minima of the cosine potential in the Hamiltonian Eq.~2.24!
and satisfying the boundary condition Eq.~2.28!. Now we
change the total magnetization, keeping the total numbe
particles fixed. The lowest energy excitation of this type co
sists of reversing the spin of a particle, which correspond
the changeM→M12. The new boundary conditions the
become

2f↑u0
L5Ap~N1M12!, ~2.32!

2f↓u0
L5Ap~N2M22!. ~2.33!

The new vacuum configuration forf↑ is therefore
6-5
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f↑~x!5
Ap

2L
~N1M12!x1const, ~2.34!

and it is straightforward to show that the difference in ene
with respect to the original one is linear in 1/L. On the con-
trary, changing the configuration of the kink requires a fin
amount of energy~proportional tol) because the new con
figuration is in a different topological sector. This corr
sponds to the presence of a gap in the spectrum of mag
excitations, and therefore of a plateau in the magnetiza
curve.

To support the previous conclusion further, we analy
the magnetic susceptibility for a chain of finite sizeL. It is
given by the integral of the correlation function of the sp
density operator (1/Ap)]x(f↑2f↓). Since the down secto
is gapped it does not contribute to the zero temperature l
of the susceptibility. Let us therefore focus on the up sec
which is apparently massless but constrained to be in a
ticular topological sector. One can easily see that determ
tion of the susceptibility amounts to

K S E
0

L

dx]xf↑D 2L 2K S E
0

L

dx]xf↑D L 2

. ~2.35!

For the free massless sector, the Hamiltonian in a finite
L can be written in Fourier space for each topological sec
as ~see for example Ref. 36!:

HL5
v
2 (

qÞ0
F 1

K
q2f2qfq1Kq2u2quqG1

pv
2L S 1

K
Q21KJ2D ,

~2.36!

whereQ andJ stand for the particle number and current ze
modes:

Q5
1

Ap
f↑u0

L , J5
1

Ap
u↑u0

L ,

and the summation overq is for oscillatory modes. If the
global constraint is not present, one has to sum over all p
sible values ofQ, i.e., one has to compute

x5
1

bLS 1

Z
Tr~exp~2bHL!Q2!2S 1

Z
Tr~exp~2bHL!Q! D 2D .

~2.37!

The local part~the oscillator modes! decouples, and if the
constraint is not imposed we obtain the standard result

x5
1

bL S 1

Z (
Q

S expS 2b
pvQ2

2LK DQ2D
2S 1

Z (
Q

S expS 2b
pvQ2

2LK DQD D 2D
5

K

2pv
. ~2.38!

If we now impose the global constraint onN, due to the gap
in the down sector as discussed above, all the sectors wi
exponentially suppressed, except the sectorQ5(N1M )/2.
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Therefore, for small enough temperature, the distribut
exp@2b(pvQ2/2LK)# has to be replaced by a delta functio
in Q5(N1M )/2, giving

x5
1

bL
~^Q2&2^Q&2!50. ~2.39!

We find then an exotic situation in which we have simul
neously algebraic decay of correlation functions, since
local dynamics is massless, but zero magnetic susceptib
due to the global constraint imposed on the system. The o
somewhat similar situations we are aware of include plat
states of strongly frustrated spin ladders with gapless n
magnetic excitations,4,37,38 as well as the large number o
singlets inside the gap of the Heisenberg antiferromagne
a Kagome´ lattice.39

D. Superconducting fluctuations

Having found a situation with a gap that can be attribu
to magnetic excitations and another massless degree of
dom, one may wonder whether superconducting fluctuati
develop. Therefore we now briefly analyze the correlators
the superconducting order parameter. In the presence
magnetic field, the superconducting order parameter has
components which read on the lattice:

Da,b5cx11,acx,b . ~2.40!

For h50, these components can be grouped in a triplett and
a singlets. On the lattice, the correspondingSz50 compo-
nents can be chosen as

D t,s
latt5cx,↑cx11,↓6cx,↓cx11,↑ . ~2.41!

In the continuum, using Eq.~A1! this leads to the following
expression:

D t,s5e2 ik2xcR,↑cL,↓~eikF↓7e2 ikF↑!1eik2xcL,↑cR,↓

3~e2 ikF↓7eikF↑!1e2 ik1xcR,↑cR,↓~e2 ikF↓7e2 ikF↑!

1eik1xcL,↑cL,↓~eikF↓7eikF↑!. ~2.42!

In particular, for zero magnetic fieldkF↑5kF↓5kF and ne-
glecting ‘‘2kF’’ terms, Eqs. ~2.42! reduce to the standar
ones~see for example Ref. 26!:

D t52i sinkF~cR,↑cL,↓1cR,↓cL,↑!,
~2.43!

Ds52 coskF@cR,↑cL,↓2cR,↓cL,↑~x!#.

For generalm, one finds instead

D t;
1

pa
eiAp(u↑1u↓)cos~Ap~f↑2f↓!2k2x!,

Ds;
i

pa
eiAp(u↑1u↓)sin~Ap~f↑2f↓!2k2x!. ~2.44!

These expressions show that the correlators associated t
order parametersD t andDs decay exponentially, even in th
partially massless plateau phases. Indeed, since theSz50
components ofDa,b are products of up and down degrees
6-6
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EMERGENCE OF IRRATIONALITY: MAGNETIZATION . . . PHYSICAL REVIEW B63 094406
freedom, it is sufficient that one of them is gapped in orde
lead to an exponential decay of the composite object.

On the other hand, the diagonal components
bosonized as

Da,a;2 cos~kF,a!eiA4pua1e2 ikF,a(112x)eiA4p(fa1ua)

1eikF,a(112x)eiA4p(2fa1ua)1 . . . , ~2.45!

where the dots include terms which mixf↑ with f↓ . It is
then clear that on a doping-dependent plateau, where
one of the fields is gapful, only one of the correlato
^Da,a

† Da,a& decays exponentially, but the other exhibitsal-
gebraicbehavior. In fact, all fields involving only the gaples
spin component decay algebraically. In particular, the tw
point correlator ofcx,a also decays algebraically ifDa,a ex-
hibits quasi-long-range order. The algebraic decay of the
ter should therefore not be taken as a sign
superconductivity, but is interesting nevertheless.

III. SMALL- U LIMIT

The previous section was dedicated to the bosoniza
approach to thep-merized Hubbard chain in the sma
p-merization limit. In the present section, we give a furth
argument for doping dependent plateaus, valid in the lowU
limit but at arbitraryp-merization strength. For the sake
simplicity, we will concentrate on the case of modulat
hopping amplitudet(x)5t8 for x a multiple ofp, otherwise
t(x)5t and constantm(x)5m, but the arguments can b
generalized easily.

First we diagonalize the Hamiltonian Eq.~1.1! at U50 by
a unitary transformation

dk,s
l 5

1

AL
(
x51

L/p

eikx(
j 51

p

ak, j
l cxp1 j ,s . ~3.1!

In order for the kinetic part of the Hamiltonian Eq.~1.1! to
take the form

H05 (
l51

p

(
s

el~k!dk,s
†l dk,s

l , ~3.2!

the coefficientsak, j
l have to satisfy the following eigenvalu

equation:

2S 0 t 0 ••• 0 t8e2 ik

t 0 t � 0

0 t � � � A

A � � � t 0

0 � t 0 t

t8eik 0 ••• 0 t 0

D S ak,1
l

ak,2
l

A

ak,p
l

D
5el~k!S ak,1

l

ak,2
l

A

ak,p
l

D . ~3.3!
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The resultingp energy bandsel(k) are illustrated in Fig. 2 of
Ref. 30 forp52 and in Fig. 2 of Ref. 15 forp53 ~note that
in the latter case, the energye was plotted with the wrong
sign which can be absorbed by shiftingk→k1p).

In the sequel we first work out the simpler casep52 and
then generalize top>3.

A. CasepÄ2

In the dimerized case, the eigenvalue equation~3.3! re-
duces to

2S 0 t1t8e2 ik

t1t8eik 0 D S ak,1
l

ak,2
l D 5el~k!S ak,1

l

ak,2
l D .

~3.4!

The eigenvalue problem Eq.~3.4! is solved readily, yielding

e6~k!56At21t8212tt8 cosk,

a1
657A4 t1t8e2 ik

t1t8eik
, ~3.5!

a2
65A4 t1t8eik

t1t8e2 ik
.

The inverse of the transformation Eq.~3.1! is

c2x12,s5
1

AL
(

k
e2 ikxA4 t1t8e2 ik

t1t8eik
~dk,s

2 1dk,s
1 !,

~3.6!

c2x11,s5
1

AL
(

k
e2 ikxA4 t1t8eik

t1t8e2 ik
~dk,s

2 2dk,s
1 !.

Eigenstatesu$kj ,s
l %& of the free HamiltonianH0 are now writ-

ten down by simply specifying the momentakj ,s
l occupied in

the various bands. Now we treat the Coulomb repulsion

HI5U (
x51

L

nx,↑nx,↓ ~3.7!

in first order perturbation theory.
To proceed further, we assume that none of the bands

half filled. ThenHI has only diagonal terms~i.e., Umklapp
scattering is absent! which are readily evaluated as~denoting
nk,s

l 5dk,s
†l dk,s

l )

^$kj ,s
l %uHI u$kj ,s

l %&

5
U

L
^$kj ,s

l %u(
k,k8

~nk,↑
2 1nk,↑

1 !~nk8,↓
2

1nk8,↓
1

!u$kj ,s
l %&

5
U

L
~N↑

21N↑
1!~N↓

21N↓
1!5

U

4
L~n↑

21n↑
1!~n↓

21n↓
1!.

~3.8!
6-7
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In the second line, we have defined the number of partic
with spin s in bandl by Ns

l5ns
lL/2.40 The densities have

been normalized such thatns
l51 for a completely filled

band.
Similarly, expectation values of the number operat

(x51
L nx,s give L(ns

21ns
1)/2. Putting everything together

we find the energy of the Hamiltonian Eq.~1.1! to first order
in U as

E5(
l

(
kj ,s

l
el~kj ,s

l !1
U

4
L~n↑

21n↑
1!~n↓

21n↓
1!

1
m

2
L~n↑

21n↑
11n↓

21n↓
1!2

h

4
L~n↑

21n↑
12n↓

22n↓
1!.

~3.9!

Assume now that the ‘‘2 ’’ bands are both partially filled.
Then Eq.~3.9! specializes to

E/L5
1

4p (
s

E
2nsp

nsp

dke2~k!1
U

4
n↑n↓1

m

2
~n↑1n↓!

2
h

4
~n↑2n↓!, ~3.10!

wherens5ns
2 .41 Settingn5n↑1n↓ and fixing n↑'1, we

find from the condition that it does not require energy to fl
↑ to ↓ spins

hc1
5e2~p!2e2~~n21!p!1US n

2
21D . ~3.11!

On the other hand, if we consider the case of a comple
filled ‘‘ 2,↑ ’’ band and partially filled ‘‘1,↑ ’’ and ‘‘ 2,↓ ’’
bands, Eq.~3.9! specializes as follows:

E/L5
1

2pE(12n↑
1)p

n↑
1p

dke1~k!1
1

2pE0

p

dke2~k!

1
1

2pE0

n↓p

dke2~k!1
U

4
~11n↑

1!n↓

1
m

2
~11n↑

11n↓!2
h

4
~11n↑

12n↓!. ~3.12!
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Setting n511n↑
11n↓ and fixing n↑

1'0, we find in the
same way as before that

hc2
5e1~p!2e2~~n21!p!1US n

2
21D . ~3.13!

Using Eqs.~3.13! and ~3.11! we find that the width of the
plateau at fixedN is not affected by the on-site Coulom
repulsion to first order inU:

hc2
2hc1

52ut2t8u1O~U2!. ~3.14!

This ensures the presence of a doping-dependent pla
with m512n in the low U limit. The absence of a first-
order correction inU to the width in Eq.~3.14! can be traced
to the mean-field form Eq.~3.8! of the matrix elements
of the on-site repulsionHI . This in turn is due to the
fact thatuai

6u51 for all k as can be seen from Eq.~3.5! and
is a manifestation of the symmetry between the lower a
upper band. Both the mean-field form of the interaction
well as the absence of a first-order correction to the plat
width are special properties of the casep52, as will become
clear in the following discussion of the casep>3.

B. CasepÐ3

For generalp, the diagonalization Eq.~3.3! is more
complicated leading to the absence of explicit expressi
such as Eq.~3.6!. Nevertheless, we can still use unitarity
the transformation Eq.~3.1! to formally invert it

cxp1 j ,s5
1

AL
(

k
(
l

e2 ikxak, j* ldk,s
l . ~3.15!

First, we look at the transformation of number operato
nx,s5cx,s

† cx,s→nk,s
l 5dk,s

†l dk,s
l :

(
x

nx,s5
1

p(k,l
(
j 51

p

uak, j
l u2nk,s

l 5(
k,l

nk,s
l . ~3.16!

Here, we note that( j 51
p uak, j

l u25p.
The diagonal terms of the interaction Eq.~3.7! can now be

treated similarly as forp52. Instead of Eq.~3.8! one finds
for generalp
^$kj ,s
l %uHI u$kj ,s

l %&5
U

pL
^$kj ,s

l %u(
j 51

p

(
k,l

uak, j
l u2nk,↑

l (
k8,l8

uak8, j
l8 u2nk8,↓

l8 u$kj ,s
l %&

5
U

pL (
j 51

p

(
k,l

kj ,↑
l occupied

uak, j
l u2 (

k8,l8
k8 j ,↓

l8 occupied

uak8, j
l8 u2. ~3.17!
6-8
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EMERGENCE OF IRRATIONALITY: MAGNETIZATION . . . PHYSICAL REVIEW B63 094406
Next we pass to the thermodynamic limit which leads
replacing sums by integrals. Due to Eq.~3.16!, integrals and
differentials over densities can be replaced by integralsk
space. We work at a fixed particle numbern, which implies

05dn5dn↑1dn↓⇒dn↓52dn↑ . ~3.18!

Now we concentrate on the situation where all bandsl
<l0 are completely occupied with up spins and those w
l.l0 do not contain any up spins, thus generalizing
reasoning of the previous section. The bandl08 is partially
occupied with down spins, those withl8,l08 are completely
filled with down spins, while those withl8.l08 do not con-
tain any down spins. For a partially filled bandn, let us
denote the range of occupied states by@kl

n ,ku
n#.

Then we can generalize Eq.~3.10! to first order inU as
follows:41

E/L5u1v1
m

p
~n↑1n↓!2

h

2p
~n↑2n↓! ~3.19!

with

u5
1

2pp H (
l<l0

E
2p

p

dkel~k!1E
k

l

l08

k
u

l08

dk8el08~k8!

1 (
l8,l08

E
2p

p

dk8el8~k8!J ~3.20!

and

v5
U

4p2p3 H (
j 51

p

(
l<l0

E
2p

p

dkuak, j
l u2S E

k
l

l08

k
u

l08

dk8ua
k8, j

l08 u2

1 (
l8,l08

E
2p

p

dk8uak8, j
l8 u2D J . ~3.21!

This yields for the lower boundary of the associated plat

hc1
5el0~ku

l0!2el08~k
u

l08!1U~l0!1O~U2! ~3.22!

with

U~n!5
U

2pp2 H (
j 51

p

uak
u
n , j

n u2S E
k

l

l08

k
u

l08

dk8ua
k8, j

l08 u2

1 (
l8,l08

E
2p

p

dk8uak8, j
l8 u2D

2(
j 51

p

(
l<l0

E
2p

p

dkuak, j
l u2ua

k
u

l08 , j

l08 u2J . ~3.23!

For the corresponding upper boundary one finds

hc2
5el011~ku

l011
!2el08~k

u

l08!1U~l011!1O~U2!.
~3.24!
09440
h
e
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Equations~3.22! and ~3.24! imply that

hc2
2hc1

5el011~ku
l011

!2el0~ku
l0!1UO11O~U2!

~3.25!

with

O15
1

2pp2 (
j 51

p

~ ua
k

u

l011
, j

l011
u22ua

k
u

l0 , j

l0 u2!

3S E
k

l

l08

k
u

l08

dk8ua
k8, j

l08 u21 (
l8,l08

E
2p

p

dk8uak8, j
l8 u2D .

~3.26!

Generally, the first-order contribution does not vanish~for
p.2). It can be estimated as

uO1u<
1

2pp2 (
j 51

p

pS E
k

l

l08

k
u

l08

dk8ua
k8, j

l08 u2

1 (
l8,l08

E
2p

p

dk8uak8, j
l8 u2D 5

n↓
p

, ~3.27!

which shows that in principle it can be of order one.
In general, it is not difficult to evaluate the first-orde

contribution Eq.~3.26! to the plateau width numerically. We
will illustrate this now for p53. First notice that, for the
casep53, the contribution from the kinetic energy can b
readily evaluated as

e3~0!2e2~0!5e2~p!2e1~p!5UA8t21t8223t8

2
U.
~3.28!

Now we fix n↑52, i.e., the lowest two bands of up electro
are completely filled. Then one has thatku

35ku
250 in Eq.

~3.26!. Numerical diagonalization of Eq.~3.3! and evaluation
of the remaining integrals in Eq.~3.26! then leads to Fig. 1.
Note that in the conventions of the other sections~where 0
<n<2) this corresponds to the plateau withm54/32n.
The numerical data satisfyO1→2O1 as n↓→32n↓ . This
implies in particular that the values ofO1 can be both posi-

FIG. 1. Value of the first-order correctionO1 to the plateau
width as given by Eq.~3.26! for p53 andn↑52.
6-9
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CABRA, DE MARTINO, HONECKER, PUJOL, AND SIMON PHYSICAL REVIEW B63 094406
tive and negative, corresponding to an enhancement o
duction of the plateau width, respectively. Furthermore,
t→0 andn↓,1, the linear behavior of Eq.~3.27! is repro-
duced, although with a coefficient which is 1/6, i.e., by
factor of 2 smaller than in the estimate. The maximal valu
attained are61/6 for n↓→1 or 2, respectively, andt→0.
This shows that the doping-dependent plateaus should
stable features forp53 as well.

We conclude this section by noting that the calculatio
are also valid for the on-sitep-merized energy. The free
HamiltonianH0 to be diagonalized is modified, but the co
clusions remain qualitatively unchanged.

IV. LANCZOS DIAGONALIZATION

Finally, we have performed Lanczos diagonalizations
the Hamiltonian Eq.~1.1! for p52 andp53 with constant
m(x)5m and periodic boundary conditions on finite lattic
in order to further support the previous results. The part
numbersn↑ andn↓ have been used as quantum numbers
translational symmetry was exploited. Furthermore, refl
tion symmetry was exploited fork50,p and spin inversion
for n↑5n↓ .

FIG. 2. Ground state phase diagram of the dimerized chainp
52) with U53t, t850.7t. In ~a! the lines are forL56 ~dotted!,
L510 ~dashed!, and L514 ~full ! while in ~b! they are forL58
~dotted!, L512 ~dashed!, andL516 ~full !.
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A. Ground state phase diagrams

Computations have been performed mainly for one cho
of parameters due to the large number of sectors for wh
the ground state energy had to be found~for p52 and L
516 of the order of 103 sectors!. Keeping Eq.~2.16! in
mind, we have chosen the parametersU53t andt850.7t in
order to look at a situation sufficiently different from th
limiting cases discussed before, i.e., both intermediate~to
strong, as compared to the bandwidth! on-site repulsionU
and intermediatet8/t.

For the interpretation of our Lanczos results to be p
sented below, it is useful to remember the following con
quences of particle-hole symmetry on a finite size lattice~see
Refs. 22 and 42 and references therein!: For L even, the
ground state phase diagram of the Hubbard chain with p
odic boundary conditions is symmetric underm°2U2m
~with our conventions!, while for L odd the particle-hole
transformation interchanges periodic and antiperiodic bou
ary conditions.

Our numerical results for the ground state phase diag
are shown in Figs. 2 and 3 forp52 andp53, respectively.
The polygons in the figures denote regions in the (m,h)

FIG. 3. Ground state phase diagram of the trimerized chainp
53) with U53t, t850.7t. In ~a! the lines are forL59 ~dashed!
and L515 ~full ! while in ~b! they are forL56 ~dotted!, L512
~dashed!, and L518 ~full !. Note that theL518 data in~b! are
incomplete forn.2/3 ~e.g., onlym>1/3 for n51).
6-10



ar
s

.
ad
ni

e
et
co
h
e
a

nt
no
al
f

rm
u
ts
i

ly

e
g

ith
em
arge
l
s.
e

re

ne-
.

to
in

ent

is-
now
at

e-
to

ges

EMERGENCE OF IRRATIONALITY: MAGNETIZATION . . . PHYSICAL REVIEW B63 094406
plane where the ground state has a fixed fillingn and mag-
netizationm at the given system sizeL ~those values ofm
andn which are common to all investigated system sizes
indicated in the figures!. The ground state phase diagram
are symmetric under spin inversion (m→2m when h→
2h) and as mentioned before, for evenL also under a
particle-hole transformation (n→22n whenm→2U2m).
Therefore, for evenL we show only the quadrant withm
>2U/2, h>0, and for oddL only the region withh>0.

The schematic ground state phase diagrams in Ref
were in fact based on parts of these results and the re
may wish to use them as a guide to the diagrams at fi
size.

We note that for the saturated casen↓50 ~and by
particle-hole symmetry also forn↑51), the Coulomb repul-
sion is not effective and the noninteracting result@e6(k)
given by Eq.~3.5! for p52] can be used to determine th
transitions between different particle numbers. Compl
agreement between this analytical computation and the
responding numerical results in Figs. 2 and 3 is found. T
also guides the interpretation of the finite-size data sinc
follows in particular that the completely gapped situations
saturation are those withpnPZ in the thermodynamic limit.
Such a guide is useful since the fermions behave differe
for even and odd particle numbers, thus yielding nonmo
tonic finite-size effects which can be still strong for the sm
systems sizes considered here. In the particular case o
gapped states withpnPZ at m5n ~or m522n), the corre-
sponding ground state always has an even number of fe
ons whenL/p is even while cases with an odd number occ
when L/p is odd. This leads to vanishing finite-size effec
for the transition lines in the former case, but not always
the latter. Since even and oddL/p behave differently, we
show separate figures for the two cases.
ns

s
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For p52, one can quite clearly recognize the ful
gapped situations at (n,m)5(1,0), (1,1), (1/2,1/2) and
(0,0) from the finite-L data shown in Fig. 2. Also the charg
gap at half filling (n51) is obvious. The most interestin
region is the doping-dependent plateau withm512n which
is a stable feature in Fig. 2~a!, but less clear in Fig. 2~b!.
Still, in the latter case the region of stability of states w
m512n can be seen to increase with increasing syst
size, thus supporting the presence of a gap. Just the ch
gap at quarter filling (n51/2) is not distinct in this numerica
data, however it is known to be small for these parameter30

The casep53 is shown in Fig. 3. There is clear evidenc
for the expected fully gapped situations~the labeled regions
in the figure! as well as the charge gap at half filling. The
is also evidence for the charge gap atn52/3 and the equiva-
lent casen54/3, just the charge gap atn51/3,5/3 is again
difficult to see. Also the expected doping-dependent mag
tization plateau withm5un22/3u can be recognized in Fig
3~a!. By particle-hole symmetry, the plateau withm5u4/3
2nu must be present as well though it is more difficult
recognize. The finite-size behavior of its stability region
Fig. 3~a! @and of both plateaus in the case of Fig. 3~b!# can
again be taken as an indication that it will indeed be pres
in the thermodynamic limit.

B. Correlation functions

Having also provided numerical evidence for the ex
tence of doping-dependent magnetization plateaus, we
present a few numerical results for correlation functions
p52.

Is technically useful to consider only objects which r
spect the decomposition of the Hilbert space according
symmetries of the Hamiltonian. We therefore define avera
of an operatorAx as
^Ax&55
1

L K c0~k!U (
x051

L

Ax0Uc0~k!L for kÞ0,p,

1

2L K c0~k!U (
x051

L

~Ax0
1A2x0

!Uc0~k!L for k50,p,
~4.1!
sity
fi-
tics

nc-
rre-

rall
4
itu-
-
nc-
where uc0(k)& is the ground state with momentumk. An
additional advantage of this definition is that oscillatio
originating from the modulation oft(x) are smoothed by
taking averages of the up top52 correlation functions at a
given distance.

The connected correlation function of two quantitiesA
andB is defined as

CA,B~x!5^Ax01x
† Bx0

&2^Ax0

† &^Bx0
&. ~4.2!

Of particular interest are the diagonal components of the
perconducting order parameter Eq.~2.40! since quasi-long-
range order is expected for one of them.
u-

Numerical results for correlation functions on anL518
system at the plateau withm512n are shown in Fig. 4.
Characteristic oscillations are observed in the density-den
and electron-electron correlation functions. This and the
nite system size make a detailed analysis of the asympto
difficult. Nevertheless, one observes that correlation fu
tions containing up electrons decay faster than the co
sponding ones containing only down electrons~the latter
may still be smaller in absolute value due to a smaller ove
prefactor!. In fact, all correlation functions shown in Fig.
are very similar to those obtained in the noninteracting s
ation (U50) at the sameL. We therefore interpret our re
sults as support for exponential decay of all correlation fu
6-11
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tions containing↑ operators and power-law decay for tho
containing only↓ operators, as is expected according to
analysis of Sec. II. In particular, these numerical results
compatible with quasi-long-range order inD↓,↓ on the m
512n plateau.

V. DISCUSSION AND CONCLUSIONS

We have shown that Hubbard chains with periodic ho
ping or on-site energy present a rich structure of magnet
tion plateaus. More precisely, for a periodicityp, we obtain
the conditions Eq.~1.2! for the appearance of the plateaus.
both conditions are simultaneously satisfied, both spin
charge degrees of freedom are massive. When the comb
tion pnPZ of these two conditions is satisfied, a charge g
opens irrespective of the value ofm. Finally, if just one of
the conditions Eq.~1.2! is satisfied, a magnetization platea
appearsif the total filling n remains fixed. This result ha
been shown first by means of bosonization techniques, v
in the regime where the differences in the modulation am
tudesd in Eq. ~2.15! anddm in Eq. ~2.20! are small and for
arbitrary values ofU. We have then shown that these resu
are confirmed by standard quantum mechanical argum
valid for small U and arbitraryp-merization strength and
provided an expression for the width of the plateau to fi
order in U. We finally showed explicitly such plateaus
finite size systems by means of Lanczos diagonalization

The combination of a gap, which can be attributed to
spin degrees of freedom and gapless~charge! modes,
prompted us to look for superconducting correlations.
deed, we found quasi-long-range order in one componen

FIG. 4. Correlation functions for the dimerized chain (p52)
with U53t, t850.7t at L518, n52/3, andm51/3. Panel~a!
shows density-density correlationsCna ,nb

(x), panel ~b! electron-
electron correlationsCca ,cb

(x), and panel c! superconducting cor-
relationsCDa,a ,Db,b

(x). The symbols are fora5b5↑ ~boxes!, a
5b5↓ ~filled diamonds!, and a5↑, b5↓ (3); the lines are
guides to the eye.
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the superconducting order parameter in those cases w
only one of the conditions Eq.~1.2! is satisfied.

In Ref. 15 it has been pointed out that the fully gapp
situations can be most easily understood in the limitt850
~the same argument applies also fordm5`). Then the chain
effectively decomposes into clusters ofp sites, whose mag-
netization curves are obviously staircase-like. The cha
gap atpnPZ can also be understood in the limit oft8!t
(dm@m), one just needs to generalize the mapping o
quarter-filled dimerized chain to an effective half-filled h
mogeneous chain30 to mÞ0 and commensurate filling a
generalp. Finally, this mapping can also be adapted to p
vide a further complementary argument for the existence
the doping-dependent magnetization plateaus. Again, to
order in t8, an effective Hamiltonian can be found in th
regime of strongp-merization, i.e., in the limitt8!t,U ~re-
spectively,dm@t,U) for the case of modulation of the hop
ping amplitude~respectively, of the on-site energy!. When
only one of the conditions Eq.~1.2! is satisfied, which
amounts to a condition on the filling of spin-up or spin-dow
bands, this effective Hamiltonian acquires a gap in the s
sector, thus leading to a doping-dependent magnetiza
plateau.

We would like to emphasize that such irrational platea
are not present in systems where the doping is not fix
Moreover, due to the remaining massless mode on suc
plateau, the thermodynamical behavior of the system ret
some particularities of a gapless system, such as a spe
heat vanishing linearly asT→0. An important feature is tha
the value of the magnetizationm on the plateaus at fixedn
depends continuously on dopingn. Analogous situations16,17

encourage us to believe that this scenario is generic in do
systems. Doping could therefore be used as a tool to st
experimentally irrational plateaus in systems whose h
filled parent compounds exhibit plateaus only at prohi
tively high magnetic fields. A natural candidate are ladd
systems,14 where doping can indeed be controlled. Theore
cal results on doping-dependent magnetization plateau
Hubbard ladders will be reported elsewhere.43

There are also natural problems for further study in
case of modulated chains. For example, the large-U limit of
the Hubbard model leads to thet-J model. As a check of the
generality of our results, one could therefore investigate
t-J model, which at half filling would then be exactly th
situation studied in Ref. 6. Due to the reduced Hilbert spa
the t-J model would be particularly well suited for furthe
numerical checks. Another problem to be addressed is
universality class of the transitions associated to the corn
of a plateau. In the case of the BA solvable model16, it was
found that the presence of a massless mode on a dop
dependent plateau may modify the universality class of p
of these transitions—a fact that would also be interesting
investigate in the present model.
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APPENDIX A: CONVENTIONS

In this short Appendix, we define our conventions a
notations. The continuum fermion operators read

ca~x!5e2 ikF,axcR,a~x!1eikF,axcL,a~x!, ~A1!

ca
†~x!5eikF,axcR,a

† ~x!1e2 ikF,axcL,a
† ~x!. ~A2!

Using standard bosonization rules we have

cR,a~x!5
1

A2pa
eiA4pfR,a(x)1 . . . , ~A3!

cL,a~x!5
1

A2pa
e2 iA4pfL,a(x)1 . . . , ~A4!

wherea is the lattice constant andfR,L,a are the chiral com-
ponents of two real bosonic fields

fa~x!5fR,a~x!1fL,a~x!, ~A5!

whose dual fields are defined by

ua~x!5fR,a~x!2fL,a~x!. ~A6!

The dots in Eqs.~A3! and~A4! stand for higher order terms
due to the curvature of the dispersion relation, which
discussed in Appendix B. The up and down Fermi mome
are related to filling and magnetization:

k15kF,↑1kF,↓5pn; k25kF,↑2kF,↓5pm, ~A7!

where

n5
1

L K (
x,a

nx,aL , m5
2

L K (
x

Sx
zL 5

1

L K (
x,a

nx,↑2nx,↓L ,

~A8!

nx,a5cx,a
† cx,a and L is the number of sites. Note that ou

definition ofm ~which is the one used for theXXZ chains in
Ref. 4! differs by a factor of 2 from the one of Frahm an
Korepin.23

APPENDIX B: FERMION FIELD OPERATOR

In this Appendix we discuss the bosonization of the f
mion operator in the Hubbard model in a magnetic fie
starting from the exact BA solution. According to Frahm a
Korepin23, the long-distance asymptotics of zero-temperat
09440
d

r

e
ta

-

e

correlation functions of physical fields is in general a sum
terms of the form

exp~2 i2DckF↑x!exp@2 i ~Dc1Ds!kF↓x#

~x2 ivct!2Dc
1

~x1 ivct!2Dc
2

~x2 ivst!2Ds
1

~x1 ivst!2Ds
2 ,

~B1!

where the scaling dimensionsDc,s
6 are given by

2Dc
65S ZccDc1ZscDs6

ZssDNc2ZcsDNs

2detZ D 2

1Nc
6 ,

~B2!

2Ds
65S ZcsDc1ZssDs6

ZccDNs2ZscDNc

2detZ D 2

1Ns
6 .

~B3!

DNc,s ,Dc,s ,Nc,s
6 are the quantum numbers characterizing

low energy excitations.DNc andDNs are integers denoting
the number of electrons and down spins with respect to
ground state and are fixed by the correlator under consi
ation. The summation runs over all integers or half integ
Dc,s ~depending on the parity ofDNc ,DNs) and on positive
integersNc

6 ,Ns
6 .

By analyzing the leading contributions to the fermio
two-point correlator, one can write down, after some algeb
the bosonized fermion operator

c↓5e2 ikF↓xeiA4pfR↓(x)~r 11r 2e2 i2kF↑xeiA4pf↑

1r 3ei2kF↑xe2 iA4pf↑1r 4e2 i2kF↓xeiA4pf↓

1r 5e2 i2k1xeiA4p(f↑1f↓)1 . . . !

1eikF↓xe2 iA4pfL↓(x)~ l 11 l 2ei2kF↑xe2 iA4pf↑

1 l 3e2 i2kF↑xeiA4pf↑1 l 4ei2kF↓xe2 iA4pf↓

1 l 5ei2k1xe2 iA4p(f↑1f↓)1 . . . !, ~B4!

wherer i ,l i are unknown numerical constants. Notice that
U50, h50 all these constants vanish exceptr 15 l 1

51/A2pa. At h50, the scaling dimensions of the differen
contributions in Eq.~B4! are known from BA for arbitrary
repulsionU and densitynÞ1. It follows that it is sufficient
to retain only the following terms:

c↓5e2 ikF↓xeiA4pfR↓(x)~r 11r 2e2 i2kF↑xeiA4pf↑

1r 3ei2kF↑xe2 iA4pf↑1 . . . !

1eikF↓xe2 iA4pfL↓(x)~ l 11 l 2ei2kF↑xe2 iA4pf↑

1 l 3e2 i2kF↑xeiA4pf↑1 . . . !. ~B5!

The expression forc↑ can be easily obtained by exchangin
↓ and↑, with the numerical constants generically differen

Using this expression forc↓ andc↑ , one obtains
6-13
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c↓
†c↓5const]xfR↓1const]xfL↓

12r 1l 1 sin~2kF↓x2A4pf↓!

12~r 1l 21r 2l 1!sin@2k1x2A4p~f↑1f↓!#

22~r 1l 31r 3l 1!sin@2k2x2A4p~f↑2f↓!#1 . . .

~B6!

and

c↑
†c↑5const]xfR↑1const]xfL↑

12r 18l 18 sin~2kF↑x2A4pf↑!

12~r 18l 281r 28l 18!sin@2k1x2A4p~f↑1f↓!#

12~r 18l 381r 38l 18!sin@2k2x2A4p~f↑2f↓!#1 . . . ,

~B7!

where we assumed the constantsr ,l to be real. Otherwise
the only modification would consist in shifts of the arg
ments of the sines or cosines by unknown constant phas

Now, assuming the constants to be equal for up and d
fields, and adding Eqs.~B6! and ~B7! we obtain for the
bosonized density operator

r5c↑
†c↑1c↓

†c↓5const]x~f↑1f↓!

14r 1l 1 sin@k1x2Ap~f↑1f↓!#

3cos@k2x2Ap~f↑2f↓!#14~r 1l 21r 2l 1!
ive

.

i,

, J

ys

09440
s.
n

sin@2k1x2A4p~f↑1f↓!#1 . . . . ~B

Substituting finally Eq.~2.9!, one obtains Eq.~2.14!.
Similarly, the difference of Eqs.~B6! and~B7! yields t

Sz operator:

2Sz5c↑
†c↑2c↓

†c↓5const]x~f↑2f↓!14r 1l 1

3cos@k1x2Ap~f↑1f↓!#sin@k2x2Ap~f↑2f↓!

24~r 1l 31r 3l 1!sin@2k2x2A4p~f↑2f↓!#1 . . .

~B

Notice the last term in theSz operator. In the usual t
ments~see for example Ref. 26!, this term does not app
As it is obvious from Eq.~B9!, this term would be abse
we retain only the first two terms in Eq.~B5! or if r 15 l 1 a
r 352 l 3.

The assumptions on the constantsr i ,l i ,r i8 ,l i8 to be r
and equal for up and down fields are supported by o
product expansion computations of the original free fe
operator with the perturbing Umklapp operator of the
bard Hamiltonian

cos@2k1x2A4p~f↑1f↓!#. ~B1

These computations also show that, at lowest order, t
stantsr 2 ,r 3 ,l 2 ,l 3 are linear inU.
.
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