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Hubbard chains with periodically modulated coupling constants in a magnetic field exhibit gaps at zero
temperature in their magnetic and charge excitations in a variety of situations. In addition to fully gapped
situations(plateau in the magnetization curaadcharge gap we have showfPhys. Lett. A268 418(2000]
that plateaus also appear in the presence of massless modes, leading to a plateau with a magmnetizaten
value depends continuously on the fillingHere we detail and extend the arguments leading to such doping-
dependent magnetization plateaus. First we analyze the low-lying excitations using Abelian bosonization. We
compute the susceptibility and show that due to the constraint of fixidranishes at low temperaturésus
leading to a magnetization platéaeven in the presence of one massless mode. Next we study correlation
functions and show that one component of the superconducting order parameter develops quasi-long-range
order on a doping-dependent magnetization plateau. We then use perturbation theory in the on-site k&pulsion
to compute the width of these plateaus up to first ordéd.ifrinally, we compute ground state phase diagrams
and correlation functions by Lanczos diagonalization of finite clusters, confirming the presence of doping-
dependent plateaus and their special properties.
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I. INTRODUCTION Materials with a ladder structuresee, e.g. Ref. )dare

. . . also good candidates for exhibiting magnetization plateaus.
Strongly correlated electron systems in low d'mens'onSHowever, since the copper-oxide related materials are

are presently a subject of intense research. In particular, tr‘grongw coupled, plateaus with nonzero magnetization are
magnetism of such systems has revealed very interestingredicted in a magnetic field range, which causes difficulties
properties and it is by now well established that spin chainsvith the present experimental tools. A mechanism yielding
and spin ladders present plateaus in their magnetizatioplateaus at lower values of magnetic fields would therefore
curves. It has been shown theoretically that plateaus occur ipe very attractive. As we have shown in the case of modu-
general arational fractions of the saturation magnetization. lated Hubbard chain®, doping may actually provide such a
The position of these plateaus is subject to a quantizatioechanism since it allows a continuous variation of the pla-
condition that involves the volume of a translationally invari- té@u magnetizatiom with the filling n—extending in this
ant unit cell (see, e.g., Refs. 1%7From the experimental Particular case also into the low-field region. Doping-
side, different materials have been found which exhibit pladePendent magnetization plateaus have also recently been
teaus. One example is a dimerized spin-1 cHairhich ex- theoreUca@IIy stud|ed.|n a different system, namely.an inte-
hibits a plateau at half the saturation magnetization as pregrable spins generalization of theé-J chain doped with $

al iardl6
dicted in Ref. 3. A good candidate for a plateau at one third_ +/2) carriers,’ where, however, the appearance of plateaus
. o ; Is restricted to large magnetization values. Another example
of the saturation magnetization is £lg(H,0),

o of such a situation occurs in the one-dimensional Kondo lat-
2HgC,S0,,” though it is not yet fully clear whether the .o model*’ where unpaired spins behave ferromagnetically,
proposed frustrated trimer chain model is really appropnat%ivmg fise to a spontaneous magnetization of a value con-
or which parameters should be uséd. trolled by doping.

The most striking examples of plateaus have so far been Here ‘we detail and extend our previous sttidgf the
observed experimentally in the materials S§(BO;), (Ref.  effect of a magnetic field and a periodic modulation
11) and NH,CuCk (Ref. 12 and again both constitute chal- (p-merization of the hopping amplitude or the on-site en-

lenges for theory. There is general agreement thagrgy on adopedone-band Hubbard chain whose Hamil-
SrCw(BO;3); is a predominately two-dimensional material tonjan is given by

and how it should be modeled theoretically. Though some
progress has been made in understanding the origin of some t + +
of the observed plateadjt remains a difficult problem to ~ H=— XE; tO0(Cxs 1,0Cxat H-C-)“LUZl Cx,1Cx,1Cx,|Cx,1
compute the complete magnetization process within this ’

L

model. On the other hand, the high-temperature crystal struc- ht

ture of NH,CuCk suggests a one-dimensional model, but +> IL‘L(X)CI,aCX,a_E 2, (€] Cep—Cf Cy )
nevertheless it remains unclear which model is appropriate o =1

theoretically for this compound. (1.1

0163-1829/2001/63)/09440615)/$15.00 63 094406-1 ©2001 The American Physical Society



CABRA, DE MARTINO, HONECKER, PUJOL, AND SIMON PHYSICAL REVIEW B3 094406

Herec;a andc, , are electron creation and annihilation op- satisfied. The latter case generalizes the well known charge
erators at sit, =1, the two spin orientations, arfthe  gap at half filling =1) as well as the charge gap at quarter
external magnetic field. The hopping amplituge) and the ~ filling in the dimerized Hubbard chaim& 1/2, p=2).3°-3
chemical potentiak(x) are taken as periodic in the variable ~ The plan of this paper is as follows: In Sec. Il A we
X with periodp. briefly review the bosonization approach for the Hubbard
The one-dimensional Hubbard model with dimerized cou-chain for arbitrary filling and on-site Coulomb repulsidrin
pling constants §=2) is realized in a number of real com- the presence of an external magnetic fig@ddr conventions
pounds like the organi¢supeyconductor® and the ferro- are summarized in Appendix A and details on the bosoniza-
electric perovskite&? While some materials in the former tion approach in Appendix B In Sec. Il B we then use
class come at quarter filling, one frequently also finds realthis bosonization scheme to study the effect of a modulation
izations of the half-filled Hubbard model. In this case, theof the hopping amplitudes and the on-site eneugx) and
model, Eq.(1.1), is in the same universality class as a modu-find the conditions under which a plateau is present. The
lated spin-1/2 Heisenberg chain. Realizations of the latteappearance of plateaus for irrational values of the magneti-
exist also at periodp>2: Some examples of trimerized zation and superconducting correlations are analyzed in
chains p=3) have been studied in Refs. 20,21, and 9. Secs. II C and 1l D, respectively. In Sec. Ill we study the
A technical motivation for resorting to the one- limit of small U perturbatively and show that the doping-
dimensional Hubbard model is that the uniform chain is ex-dependent plateaus are also present there. Then we study the
actly solvable by Bethe AnsatBA) for arbitrary values of ~ground state phase diagrd®ec. IV A) and correlation func-
the on-site repulsiort, filling, and magnetic field? The tions (Sec. IV B numerically on finite size systems by
exact solution can then be used to construct a low energgneans of Lanczos diagonalization. Finally, we summarize
bosonized effective field theof; > which can in turn be our results in Sec. V, discuss some experimental settings
used to study perturbations of this modste, e.g. Ref. 26  where the features presented in this paper could be observed,
Here we first review some aspects of the bosonization deand point out open routes for further research.
scription of the Hubbard cha&ifi*®and extend it for the case
of a finite magnetic fieldh#0. II. BOSONIZATION APPROACH
Focusing on the case of constant chemical potential
w(X)=u, we have shown in Ref. 15 that magnetization pla- A. Field theory description of the Hubbard chain in a
teaus can appear for the model, Ef.1), if the density of magnetic field
particlesn and magnetizatiom®® satisfy In this section, we summarize the analysis of the Hubbard
model in a magnetic field using Abelian bosonization. For
P further details see Ref. 25. The lattice Hamiltonian is the
=(nxm)eZ. 1.2 ; ; _
2 standard one, i.e., Eq1.1), with constantt(x)=t, w(X)
These conditions are commensurability conditions for the up #
electronsn, = (n+m)/2 and down electrons = (n—m)/2,
respectively. More precisely, if both conditions are simulta-H= —tE (CI+1,aCx,a+ H.c.)+UE CI,TCX,TCIJCX,L
neously satisfied, the system has both charge and spin gaps. oo X
On the other hand, if only one of these conditions is fulfilled, h
the filling has to be kept fixed in order to have a magnetiza-  +u>, (C} Cy;+Ck Ce )~ > > (e} exi—ch e
tion plateau. A simple explanation of the conditions, Eq. X X
(1.2), can be givef? in the noninteracting limit =0). (2.1
Then, the Hamiltonian Eq.1.1) can be easily diagonalized
and is found to have bandse*(k) (see Sec. Ill for more This model was already solved exactly by BA in 196&ut
detaily. The magnetic field breaks the symmetry betweerit took until 1990 for the correlation functions to be com-
up- and down-spin electrons by shifting their chemical po-puted by combining BA results with conformal field theory
tentials by opposite amounts. It is then possible that onéCFT) techniques® Spin-charge separation is a well known
chemical potentialsay for the up electrondies in one of the  feature of the Hubbard chain at zero magnetic field. Interest-
p— 1 band gaps while the othéor the down electronds in ingly, it is no longer spin and charge degrees of freedom that
the middle of a band. This situation leads to a doping-are separated if an external magnetic field is switche& on.
dependent plateau, if one imposes the constraint of fixed fillNevertheless it has been shown that in the presence of a
ing n (and only in this case Then the magnetization can be magnetic field, the spectrum of low energy excitations can be
increased only by moving an electron from the down-spindescribed by a semidirect product of two CFT's with central
band into the up-spin band, which requires a finite energy oghargesc= 1.7 This in turn implies that the model is still in
equivalently a finite change of magnetic field, leading to athe universality class of the Tomonaga-LuttingéL ) liquid
plateau. However, since the filling of the down-spin elec-and therefore allows for a bosonization treatment.
trons remains adjustable, one obtains a doping-dependent In order to proceed, we write the fermion operator as
value of the magnetization at the plateau.
Finally, we have also shownthat a charge gap opens if ¢, ,— tro(X)~ € FXyy o (x)+e KFaXyp (X)+ . ..
the combinationpne 7 of the two conditions Eq(1.2) is (2.2
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=elkr.aXe VAT o) 1 g kr X ETdR () 1 representation of the low energy sector of the full Hamil-
(2.3  tonian Eq.(2.1). This program has been carried out in Ref.
25 and we just quote here the final result. The fixed point

whereke , are the Fermi momenta for up- and down-spln(i_e_, neglecting all irrelevant term$osonized Hamiltonian
electrons and¢g , are the chiral components of two .ooqg

bosonic fields, introduced as usual in order to bosonize the
spin-up and -down chiral fermion operatofg, .. (Our fd
H= X

U - L. Ug -
— D AN D+ = 0D ASD |, (2.9

conventions are settled in Appendix)Alhe dots stand for 2 2

higher order terms, some of which are written explicitly in
Appendix B. They take into account the corrections arisingNherecI*)t:(gﬁRvT PL1 PR, 0L,)). The matricesd. s have
from the curvature of the dispersion relation due to the Couthe following form:

lomb interaction. For nonzero Hubbard repulsibh and

magnetic fieldh, the low energy effective Hamiltonian cor- Acstbes acs—bes Cestdes Cos—des
responding to Eq(2.1), written in terms of the bosonic fields acs—DPes Acstbes Cos—des Costdes

¢; and ¢, has a complicated form mixing up and down , _ ' o ' o
degrees of freedom. The crucial step to obtain a simpler~ ©° Cestdes Cos—des €ostlos Esmfes |
bosonized Hamiltonian is to consider the Hamiltonian of a Ces—Udes Costdes €s—fes €cstics
generalizedtwo componentTL model and identify the ex-

citations of the latter with the exact BA ones for the model (2.9
Eq. (2.1), providing in this way anonperturbativebosonic  where

ac= (Z;cl)z be=(Z¢c— Zsc)2 Cczzgcl(chl+Z;sl

de=ZsdZee—Zso) ec:(Z(:_c1+Zc_sl)2 fC=Z§S 2.6
8s=(Z50)?  be=(ZesZed®  C=ZH(Zt 25

ds=Zs(Zcs—Zsy) es:(zs_sl+zs_cl)2 fs=Z§s : 2.7

In these expressiong;; (respectively,Zijl), i,j=c,s, are U ) )
the entries of the dressed charge mattixrespectively, its _2 EJ dX[(dxepi) "+ (9x6i)°], (2.1
inverseZ 1) taken at the Fermi points oS
where ¢p= dr+ ¢ and 6= ¢pg— ¢, .
(ch ch> At zero magnetic field, the matri reduces to
Z= .

Zse Zss (2.8 & 0
Z(h=0)= ( 7 1,@) : (2.12

These matrix elements are solutions of a set of coupled inte-
gral equations obtained from the BAand depend on the ,
couplingU, the chemical potentiak, and the magnetic field With £=&(x,U). In this case we recover the well known
h. In turn they can be related to physical thermodynamic@XPressions for the charge and spin fields

quantities?®

ituti ic fi 1 1
Substituting for the bosonic fields be=2(bi+d), b=—(d—¢), (213
¢ V2
P _ L Zos ZasZos) [ &1 (2.9 where the compactification radius of the spin fiélé., the
bs| ~ detz| Zsc ZscmZec|| ¢1 ) ' parameter which indicates the period @, ¢<= s
+2mRs, Re=1/\/27)%* is fixed by the SI2) symmetry of
and for their dual fields the spin sector. The radius for the charge field, on the other
hand, depends on the chemical potengiadnd the Coulomb
6, Zee—Zse Zsc 0, couplingU. Furthermore, folh=0 the charge and spin de-
( 0 ) :( 7 7 _7 ) ( 0 ) ’ (2.10  9rees of freedom are completely decoupled.
s ss ¢S ss : It should be noted that fan+#0, the fields arising in the
diagonalized form of the bosonic Hamiltonian Eg.11) are
the Hamiltonian takes the form no longer the charge and spin fields even though they have
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been Iabgled: ands. For example, the charge field is in Oper= N1 SIN K, /2+ pk, x— VT (Zoethe— Zesds) ]
general given byp, + | =Z e —Zcsds.
For generic values of the parameters of the model Eq. X O K_ /24 pk_X— 7T((Zee— 2Zs0) b
(2.1), we can now write down for example the bosonized .
expression for the charge density operator —(Zes—2Zs9 )]+ Ao sink, +2pk, x
- \/E( ch¢c_ chd)s)]a (2-17)

T t
X)= X)+ X
PLO =1 () + 14y () where \;,\,*5 and the Fermi momenta ark, =Kg ;

+Kg, =mn, K_=Kg;—kg =7m, wheren is the filling

= \/_;ax(zccd’c_zcsd)s) andmis the magnetization. The presence of a fagiar the
oscillating part will play an important role in the following.
+ ap Sil”[ k+X— \/;(ch(f)c_zcsd’s)] The operator
X cogk_x— \/;((ch_ 2Zse) e~ (Zes—2Zs9) ds) ] Nzcogk_+2pk_x— 2\/;((2(:6— 27Z40) b
+bp sin(2k+x— \/E(chd’c_zcs(ﬁs))a (2-14> _(ch_ Zzss)d’s)]v (2-18)

wherea, b, are nonuniversal constants, whose numericalVith A3 8% is radiatively generated from the first term in Eq.
values are known only in special cases. Details on how suctf-17 and must therefore be included as well.
expressions are obtained are given in Appendix B. Formulas_ N the case of zero magnetic field the dressed charge ma-

of the type Eq.(2.14 are our fundamental bosonization trix is given by Eq.(2.12 and we have then a neat separation
rules. between charge and spin fields. The most relevant perturba-

tion takes the form

B. Space dependent modulations

~\ysin - Vb |cog 2
In the present subsection we study two different perturba- ~ Operi™ M. SIN 7=+ PNTX= 7| CO$ V27 ¢bs]
tions of the Hubbard chain E¢2.1), which consist of space

dependent modulations of certain parameters. In particular TN sinmn+2pnmx— J4m{d.]. (2.19
we shall consider a space dependent modulation of the hop- . ) )
ping amplitudet(x) and of the on-site energy(x). The marginal operator associated with contains only the

spin field, its dimensiorifixed by the SW2) symmetry is 2,

and it is marginally irrelevant. A term like this is already

present in the original model and is also marginally irrel-

In this case, the Hamiltonian reads as in Ef1) with  evant. Hence, fos small enough, this term can be absorbed
u(x)=constand(x) =t if x#Ip andt(Ip)=t'=t+ 45, with  in the original marginally irrelevant perturbation term with-

p,! integers and fixed. This is equivalent to the uniform out changing its relevance character.

Hubbard Hamiltonian Eq(2.1) perturbed by the term The ), term affects only the charge degrees of freedom
and its dimension runs from 1, fdd — to 2, for U=0,
being then always relevant for the cases of interest. We can

Hper=— 96 2 (cl,’acx,+1ya+ H.c.). (2.15 therefore conclude that the charge field is massive whenever
x'=lp,a this operator is commensurate, which in turn happens if the
conditionpne Z is satisfied.

At half filling and for largeU, a standard second order per-  If this happens, we can integrate out the massive charge

turbative computation in I/ shows that the effective Hamil- degrees of freedom which leaves us with an effective theory

1. Modulated hopping amplitude

tonian is given by for the spin degrees of freedom. This effective theory is
massless except when the operator associated wjitbe-
B AM2(x). . comes also commensurate, i.e., if the condifponi2 e 7 is
H=>, U S Sei1s (2.16  satisfied. In that case, we have also a spin gap in the system.
X

These considerations are easily generalized to the case of
nonzero magnetization as long as the conditpome Z is

thus leading to thep-merized Heisenberg chain studied in satisfied. In this case, the, term in Eq.(2.17) is always
Ref. 6. It was predicted there that magnetization plateausommensurate. Since it contains only the proper charge field
occur when the conditiop/2(1—m) e Z is satisfied?® We ¢+ ¢, a charge gap opens for all values mfat these
now use Abelian bosonization techniques to analyze theommensurate values of the filling. The conditipne Z is
more general case of the model Ed.1) in the smallé  also satisfied when the two conditions Efj.2) are simulta-
(weak p-merization) limit. neously satisfied. In this case, also theterm in Eq.(2.19

Using the bosonization dictionary given in Appendix B, becomes commensurate, thus leading also to a spin gap.
we find the expression for the continuum limit of the lattice  In particular forp=2,3, we predict the following fully
perturbation Eq(2.15 gapped situations:
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p=2: Half filling (n=1): gap for the charge, and plateau but thatn+m is not an integer, i.e., the commensurability
for m=0. Quarter filing = 1/2) (and als;n=23/2): gap for ~ condition is fulfilled only for down electrons. Assume first
the chargé®33and plateau fom= +1/2. that there is no interaction between up and down electrons
p=3:n=1, n=1/3, andn=5/3: gap for the charge, and (U=0). Then we are led to analyze the excitation spectrum
plateau fom= + 1/3. n=2/3 andn=4/3: gap for the charge, Of the following Hamiltonian in a system of length
and plateau fom=+2/3, 0. .
The final case where only one of the conditions Bg2) _ b1 2 21, Y1 2 2
holds is more complicated since then the charge and spinH_fo x5 L(oxb) ™+ (0014 510 )7+ (46))"]
degrees of freedom can no longer be separated. We therefore
postpone discussion of this case. +\cog2\mg)), (2.29

2. Modulated on-site energy with total magnetization

Now we consider the Hubbard chain E6.1) with a uni- L1 1
form hopping amplitudé(x) =t but a periodic modulation of M= | dx—=dx(¢;— )= —=(d;—¢))ls.
the chemical potentiau(x)=pu if x#Ip and w(Ip)=pu o \mw m
+ 6w, with p,l integers,p fixed. This is equivalent to the (2.29
uniform chain Eq.(2.1) plus an on-site energy term that Motivated by experimental realizations of Hubbard systems,
reads where typically doping is fixed, we also impose the con-

straint that the total particle number is fixed:
Hper= 01 20 €5 Cxa- (220
x"=Ip,a 1

1
o - N= | dx—=dx(d1+ )= —=(d;+¢)|5. (2.26
The casgp=2, h=0 has been studied in detail in Ref. 35. N v

In the continuum limit the perturbing operator EG.20

becomes From Egs.(2.25 and(2.26 we see that the fieldg, | sat-

isfy the following boundary conditions:

O;,)ert: Ay Sir[ pk+X_ \/;( ch¢c_ ch¢s)]
X co$ PR X— 7 ((Zoo—2Zs) be— (Zos— 2259 bs)] )

2¢ |5=\T(N=M). (2.29

T N2 SIN2pK X— VA4T(Zecpe— Zesps)), (2.2
_ . Notice, furthermore, that the field$, , are compactified,
which radiatively generates a term of the form i.e., they satisfy the periodicity condition

N3 €0§ 2pk_X—2\m((Zoo— 2Z50) bo— (Zos— 2Zs9 bs) . b1 — b+ T (2.29

2.2
) . . 2.22 Therefore, in a semiclassical picture, the vacuum configura-
The only difference with respect to the previous case, EQs;g for b is

(2.17 and(2.18), is a phase in each of the sines or cosines,
which however plays a role only at half filling and zero mag- J7

netic field(see also Ref. 35Apart from this particular case, Pi(x)= Z(N + M)x+ const. (2.30
the conclusions remain the same as in the previous case.

2¢|6=\m(N+M), (2.27)

On the other hand, fog, the vacuum configuration is a kink
C. Partial gap: irrational plateaus

We have shown in the previous subsection that, when b, () =k(X), (2.3)

both commensurability conditions E(]L.2) are satisfied, the \ypere k(x) is a configuration interpolating between two
spectrum of the model Eq1.1) is fully gapped. Itis not yet  minima of the cosine potential in the Hamiltonian E2.24)
unQerstood what happens if only one of these conditions ignq satisfying the boundary condition EQ.28. Now we
satisfied. In this case, apparently one degree of freedom reqange the total magnetization, keeping the total number of
mains massless. We will show that the system neverthelessyiicles fixed. The lowest energy excitation of this type con-
exhibits a gap for magnetic excitatione., excitations  gsts of reversing the spin of a particle, which corresponds to

changing the value of the magnetizatipprovided the total 1o changeM —M +2. The new boundary conditions then
charge(i.e., the fillingn) remains fixed. become

For the sake of simplicity we will restrict ourselves to the
dimerized chain = 2) in this subsection although the argu- 2 |5=VT(N+M+2), (2.32
ment can be generalized easilyfgo-2. Suppose that !

26|6=\m(N-M~-2). (2.33

P /
z(N~m=n-m=2neZ, 2.23 The new vacuum configuration fef; is therefore
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Jr Therefore, for small enough temperature, the distribution
d(x)= Z(N+ M +2)x+ const, (239  exd—pB(mvQ?%2LK)] has to be replaced by a delta function
in Q=(N+M)/2, giving
and it is straightforward to show that the difference in energy
with respect to the original one is linear inL1/On the con-
trary, changing the configuration of the kink requires a finite

amount of energyproportional toh) because the new con- We find then an exotic situation in which we have simulta-

figuration is in a different topological sector. This corre- neously algebraic decay of correlation functions, since the
sponds to the presence of a gap in the spectrum of magnetlic y algebra y N o
ocal dynamics is massless, but zero magnetic susceptibility,

excitations, and therefore of a plateau in the magnetizatiogue to the global constraint imposed on the system. The only

curve. o . ; .
. . somewhat similar situations we are aware of include plateau
To support the previous conclusion further, we analyze P

the magnetic susceptibility for a chain of finite sikzelt is ﬁ:gteﬁegi Sg;%ﬂglgloggggtsg vsv‘()allT ;Zd?ﬁéslg\r"tg %?r)rl]%sésr g?n'
given by the integral of the correlation function of the spin _. ghetic & ’ . 9!
. . singlets inside the gap of the Heisenberg antiferromagnet on
density operator (/) dy($:— ¢,). Since the down sector Kacomdattice®
) . . . agomelattice:
is gapped it does not contribute to the zero temperature limi?
of the susceptibility. Let us therefore focus on the up sector,
which is apparently massless but constrained to be in a par-
ticular topological sector. One can easily see that determina- Having found a situation with a gap that can be attributed
tion of the susceptibility amounts to to magnetic excitations and another massless degree of free-
) ) dom, one may wonder whether superconducting fluctuations
- _ - develop. Therefore we now briefly analyze the correlators of
dXdyeh, dxdeey | ) . (2.35 )
0 0 the superconducting order parameter. In the presence of a

o ... _._magnetic field, the superconducting order parameter has four
For the free massless sector, the Hamiltonian in a finite S'Z'Eomponents which read on the lattice:

L can be written in Fourier space for each topological sector

- (@ 2)=0 2.3
x= g €QI=(@9)=0. (239

D. Superconducting fluctuations

as(see for example Ref. 36 A g p=Cyi1aCxp- (2.40
v 1 wv (1l Forh=0, these components can be grouped in a tripdetd
Hi=5 zo Rq2¢7q¢q+ KG?6_q6q| + 50 RQ2+ KJ?|,  a singlets. On the lattice, the correspondit&=0 compo-
g (2.36 nents can be chosen as

whereQ andJ stand for the particle number and current zero A'ﬁ;‘z Cx 1Cx+1, FCx |Cxs1 - (2.41
modes: In the continuum, using EqA1) this leads to the following

1 1 expression:

Q=-—=d¢lg, I=—=05, — aik_x ke, — a—ikp ik_x

J J Ais=e Urytp (€FFLxe” R+ ™"y g
and the summation ovey is for oscillatory modes. If the X (e *rixekrn) +em KXy g (e KFLT e IkRY)
global constraint is not present, one has to sum over all pos- K ox ik
sible values ofQ, i.e., one has to compute TN g (€T, (242

In particular, for zero magnetic fieldg, =kg | =kg and ne-

1 1 2 o
ZTr(eXp(—,BHL)QZ)— ZTr(eXp(—,BHL)Q)) ) glecting “2kg” terms, Egs.(2.42 reduce to the standard

X ﬁ ones(see for example Ref. 26
(2.37
The local part(the oscillator modesdecouples, and if the Ac=2i sinke(r i, YR 1 ¥L1), (243
constraint is not imposed we obtain the standard result Ag=2 coske[ Yrm, 1 ., — | 1 (X)]. :
11 mQ% For generaim, one finds instead
vz 3 [ a3 1
Ly Q2| )2 A~ —e T ooy (¢ — ¢)) —k-x),
z4 | &N Pk ,
I N .
K Ay~ — e T Osin(Va(d = d)—k-x). (249

These expressions show that the correlators associated to the
If we now impose the global constraint &) due to the gap order parameterd, andA¢ decay exponentially, even in the
in the down sector as discussed above, all the sectors will bgartially massless plateau phases. Indeed, sinceStheé)
exponentially suppressed, except the seQer(N+M)/2.  components of, ; are products of up and down degrees of
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freedom, it is sufficient that one of them is gapped in order toThe resultingp energy bands™ (k) are illustrated in Fig. 2 of

lead to an exponential decay of the composite object. Ref. 30 forp=2 and in Fig. 2 of Ref. 15 fop= 3 (note that

On the other hand, the diagonal components arén the latter case, the energywas plotted with the wrong
bosonized as sign which can be absorbed by shiftikg->k+ ).

R _ R In the sequel we first work out the simpler cgse 2 and
A 0~ 2 COSKg )€V 0at @7 IR a(1F 20l AT Pat f) then generalize tp=3.
+ekr a1+ ) AT(—dot0a) (2.45
A. Casep=2

where the dots include terms which mix with ¢, . Itis he di ved he ei |
then clear that on a doping-dependent plateau, where onl ucl:r(]est tg imerized case, the eigenvalue equatids) re-

one of the fields is gapful, only one of the correlators
(Aa A o) decays exponentially, but the other exhikais 0 et ik [ a) 2
gebraicbehavior. In fact, all fields involving only the gapless _ k1 N k1
spin component decay algebraically. In particular, the two- - ( t+t ek 0 ) ( a{;z) -€ (k)( a{;yz) :
point correlator ofc, , also decays algebraically X, , ex-

hibits quasi-long-range order. The algebraic decay of the lat- (3.4

ter should therefore not be taken as a sign ofthe eigenvalue problem EB.4) is solved readily, yielding
superconductivity, but is interesting nevertheless.

€ (k)= =+ Jt?+t'?+ 2tt’ cosk,
. SMALL- U LIMIT

The previous section was dedicated to the bosonization L4 t+trek
approach to thep-merized Hubbard chain in the small ap =+ mv 3.5
p-merization limit. In the present section, we give a further
argument for doping dependent plateaus, valid in the lbw :
limit but at arbitraryp-merization strength. For the sake of L4 [ trtek
simplicity, we will concentrate on the case of modulated a = t+t e ik

hopping amplitudeé(x)=t’ for x a multiple ofp, otherwise
t(x)=t and constanfu(x)=w, but the arguments can be The inverse of the transformation E@®.1) is
generalized easily.

First we diagonalize the Hamiltonian Ed..1) atU =0 by 1 4 figte ik
a unitary transformation Coxrog=—= 2, € X\ [——— (di ,+dy ),
TL K t+telc T

L/p p (3.6)

2 ékXE akJCxpﬂ o (3-1) ik
x=1 = E —|kx t+t'e
o Cox+1,0= - e tte T dico)-

In order for the kinetic part of the Hamiltonian E(L.1) to

take the form Elgenstate${k - of the free Hamiltoniart o are now writ-

p ten down by S|mply specifying the momerkja occupied in
= E > € k)d k o (3.2  the various bands. Now we treat the Coulomb repulsion
A=1 o
L
the coe1‘ficientsaﬁ’j have to satisfy the following eigenvalue _
equation: Hi= ngl M, 1M, 37
0O t 0 - 0 te' in first order perturbation theory.
0 t 0 al To proceed further, we assume that none of the bands are
0 ';'1 half filled. ThenH, has only diagonal term§.e., Umklapp
ay 2 scattering is absenwhich are readily evaluated &édenoting
1+ - ot 0 : Nie o= Ak )
0 t 0 t a>k\ k H, k
P
U _ -
a)\ = E<{ki\,0'}| E (nk,T+ nzT)(nk"l + nl‘:”l)|{k]?\,0'}>
k,1 K,k
as U U
=] 7 (3.3 = T(NTHEND(NT+N) = ZL(ng +n{)(n] +n]).
ap (3.9
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In the second line, we have defined the number of particleSetting n=1+ ”¢++ni and fixing nf%O, we find in the
with spin o in band\ by NA=nL/2.%° The densities have same way as before that
been normalized such thatt=1 for a completely filled

band.
Similarly, expectation values of the number operators he.=et(m)—€e ((n—1)m)+U E_l)_ (3.13
St_ine, give L(n,+n})/2. Putting everything together, 2 2

we find the energy of the Hamiltonian E@..1) to first order Using Egs.(3.13 and (3.11) we find that the width of the
in U as plateau at fixed\ is not affected by the on-site Coulomb
repulsion to first order itJ:

u _
E:})\: k};, MK )+ ZL(n +n{)(n +n/) o
ip c

o 2

—he, =2[t—t'|+O(U?). (3.19

o P S This ensures the presence of a doping-dependent plateau
+5Lnp+ny+n +np)— 2Ly +ny=n —nf). with m=1—n in the low U limit. The absence of a first-
order correction irJ to the width in Eq(3.14) can be traced
(3.9  to the mean-field form Eq(3.8) of the matrix elements
Assume now that the " bands are both partially filled. Of the on-site repulsiorH,. This in turn is due to the
Then Eq.(3.9) specializes to fact that|a;"| =1 for all k as can be seen from E(.5 and
is a manifestation of the symmetry between the lower and
1 o U upper band. Both the megn-field form of t_he interaction as
E/lL=— > f “ dke (k) + —n;n + ﬁ(nﬁ n) well as the absence of a first-order correction to the plateau
4 —n,m 4 2 width are special properties of the case 2, as will become
clear in the following discussion of the cape=3.

h
B. Casep=3
wheren,=n, .*! Settingn=n,+n, and fixingn;~1, we  For generalp, the diagonalization Eq(3.3 is more
find from the condition that it does not require energy to flipcomplicated leading to the absence of explicit expressions
T to | spins such as Eq(3.6). Nevertheless, we can still use unitarity of
the transformation Eq3.1) to formally invert it
n
hclzef(w)—ef((n—l)ﬂ')+U E_l)' (3.11 .
o= —ikKXq* N A
On the other hand, if we consider the case of a completely Cxptiio N EK ; e ayjdy - (3.15
filled “ —,7” band and patrtially filled “+,7” and “ —,|"”
bands, Eq(3.9) specializes as follows: First, we look at the transformation of number operators

_ AT N AT N
nx,(r_ CX,()'CX,U'_> r]k,(r_ dk,rrdk,rr .

1 (ns
E/lL=—|"

1 T
+ . -
o (1_n;)wdke (k)+2wfodke (k)

1 p
EX: nx,aza%:\ j§=:l |a}k\,j|2n)k\,a':% nﬁ,o" (316

1 (= B U "
* Zfo dke (k) + 7 (1+npn, Here, we note thakP_, |ay ;|*=p.

The diagonal terms of the interaction Eg.7) can now be
treated similarly as fop=2. Instead of Eq(3.8) one finds

S enten) - Y1anton). (312
2 T g T ' for generalp

U ’ !
<{kj)\,o'}|H||{kj\,(r}>: pL<{kJ)\,(r}|z |a)k\,j|2nﬁﬁk2 |a)k\"j|2nﬁ"l|{kj?\,a'}>
/’)\/

=1k
IS S jar 3 ek (3.17
pL= & ki Y K'J

KM occupied

i1 k’}\l occupied
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Next we pass to the thermodynamic limit which leads to
replacing sums by integrals. Due to E§.16), integrals and
differentials over densities can be replaced by integrals in
space. We work at a fixed particle numberwhich implies

(318 o

Now we concentrate on the situation where all bands
<M\ are completely occupied with up spins and those with
N>\, do not contain any up spins, thus generalizing the
reasoning of the previous section. The bavdis partially
occupied with down spins, those witH <\ are completely
filled with down spins, while those with’ >\ do not con-
tain any down spins. For a partially filled band let us
denote the range of occupied states| ky/,k; 1.

Then we can generalize E€B.10 to first order inU as
follows:*

0=dn=dn;+dn=dn =—dn,.

FIG. 1. Value of the first-order correctio®, to the plateau
width as given by Eq(3.26 for p=3 andn;=2.

Equations(3.22 and(3.24) imply that

m h
BlL=utv+o(ni+n)=o2(m=n) (319 he,—he, = €071k — ok} + U0, + O(U?)
" (3.2
W with
-t > JW dke*(k) + kzédk’s”é(k’) D atl A
2mp | =y J -7 k;\‘,’ OFW jzl(lak§°+1,j|2_|ak§°,j|2)
! g ! T ’
£ 3 [T awe ) (320 X fkufdkwa:?. 2, S j dk'ja) 2.
)\’<)\(’) - kl)\o ") )\’<)\(,) — T )
and (3.29
U P By N Generally, the first-order contribution does not vanifbr
= A2 udk'la™® |2 >2). It can be estimated as
v 4772p3{j§=:1 W, 77Tdk|akj| ( ka, d |ak, J-| p>2)
' 19 Ko ¥
Ol 3, p( [<awiay
(3.21) K

This yields for the lower boundary of the associated plateau

he, = €0(K2) — 0(K\) + U\ o) + O(U?) (3.2

with

U=goes| 3, g, 7 [l
Za? | 24 1%l ] oK1
|

Ao
dklay;|*a ,; jlz}. (3.23

+ 2

’ '
N <N

T ’
! A
f dk'|ay, |
-

’

33 |

For the corresponding upper boundary one finds

e, = 07 1(K20 1) — (KX0) + U N+ 1) + O(U?).
(3.24

+ 2

m ’ n
f dk’|aﬁ,j|2>=—l,
! ! - ’ p
N <Ag

which shows that in principle it can be of order one.

In general, it is not difficult to evaluate the first-order
contribution Eq.(3.26 to the plateau width numerically. We
will illustrate this now forp=3. First notice that, for the
casep=3, the contribution from the kinetic energy can be
readily evaluated as

(3.2

€3(0)—eX(0)=€*(7)— eX(m)=

V8tZ+t'2-3t’
I —
(3.28

Now we fixn,;=2, i.e., the lowest two bands of up electrons
are completely filled. Then one has tHgi=k2=0 in Eq.
(3.26.. Numerical diagonalization of E¢3.3) and evaluation
of the remaining integrals in E¢3.26) then leads to Fig. 1.
Note that in the conventions of the other sectiowbere 0
=<n=<2) this corresponds to the plateau with=4/3—n.
The numerical data satisf;——0; asn;—3—n . This
implies in particular that the values @f; can be both posi-
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15F
h/t

b/t 1F

05

h/t 1F h/t 1

05F

FIG. 2. Ground state phase diagram of the dimerized chain (  FIG. 3. Ground state phase diagram of the trimerized chgin (

=2) with U=3t, t'=0.7. In (a) the lines are folL=6 (dotted, =3) with U=3t, t'=0.7. In (a) the lines are folL=9 (dashed
L=10 (dashed, andL =14 (full) while in (b) they are forL=8 and L=15 (full) while in (b) they are forL=6 (dotted, L=12
(dotted, L=12 (dashed, andL =16 (full). (dashed, and L=18 (full). Note that theL=18 data in(b) are

incomplete fom>2/3 (e.g., onlym=1/3 forn=1).
tive and negative, corresponding to an enhancement or re-
duction of the plateau width, respectively. Furthermore, for
t—0 andn <1, the linear behavior of Eq3.27) is repro- Computations have been performed mainly for one choice
duced, although with a coefficient which is 1/6, i.e., by aof parameters due to the large number of sectors for which
factor of 2 smaller than in the estimate. The maximal valueshe ground state energy had to be fouffiokr p=2 andL

A. Ground state phase diagrams

attained are+1/6 forn,—1 or 2, respectively, ant—0. =16 of the order of 19 sector$. Keeping Eq.(2.16 in
This shows that the doping-dependent plateaus should bweind, we have chosen the parametdrs 3t andt’=0.7t in
stable features fop=3 as well. order to look at a situation sufficiently different from the

We conclude this section by noting that the calculationdimiting cases discussed before, i.e., both intermeditde
are also valid for the on-sitp-merized energy. The free strong, as compared to the bandwijddn-site repulsionJ
HamiltonianH, to be diagonalized is modified, but the con- and intermediate’/t.

clusions remain qualitatively unchanged. For the interpretation of our Lanczos results to be pre-
sented below, it is useful to remember the following conse-
IV. LANCZOS DIAGONALIZATION guences of particle-hole symmetry on a finite size lattsse

Refs. 22 and 42 and references thereifor L even, the

Finally, we have performed Lanczos diagonalizations ofground state phase diagram of the Hubbard chain with peri-
the Hamiltonian Eq(1.1) for p=2 andp=3 with constant odic boundary conditions is symmetric under>—U — u
m(x)=u and periodic boundary conditions on finite lattices (with our conventions while for L odd the particle-hole
in order to further support the previous results. The particleransformation interchanges periodic and antiperiodic bound-
numbersn; andn; have been used as quantum numbers andry conditions.
translational symmetry was exploited. Furthermore, reflec- Our numerical results for the ground state phase diagram
tion symmetry was exploited fdt=0,7 and spin inversion are shown in Figs. 2 and 3 f@=2 andp= 3, respectively.
forn,=n,. The polygons in the figures denote regions in theh)
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plane where the ground state has a fixed fillimgnd mag- For p=2, one can quite clearly recognize the fully
netizationm at the given system size (those values om  gapped situations atn(m)=(1,0), (1,1), (1/2,1/2) and
andn which are common to all investigated system sizes ar€0,0) from the finitek data shown in Fig. 2. Also the charge
indicated in the figures The ground state phase diagramsgap at half filing i=1) is obvious. The most interesting
are symmetric under spin inversiom{>—m when h—  region is the doping-dependent plateau witk 1—n which
—h) and as mentioned before, for evénalso under a IS a stable feature in Fig.(@, but less clear in Fig. ®).
particle-hole transformatiomn(~2—n whenu——U-y).  Still, in the latter case the region of stability of states with
Therefore, for everl we show only the quadrant wite =~ M=1—n can be seen to increase with increasing system
=-U/2, h=0, and for odd_ only the region withh=0. size, thus supporting the presence of a gap. Just the charge
The schematic ground state phase diagrams in Ref. 18ap at quarter fillingi§=1/2) is not distinct in this numerical
were in fact based on parts of these results and the read@@ta, however it is known to be small for these paramefers.
may wish to use them as a guide to the diagrams at finite The case=3 is shown in Fig. 3. There is clear evidence
size. for the expected fully gapped situatiofthe labeled regions
We note that for the saturated case=0 (and by in the figu_re) as well as the charge gap at half filling. There
particle-hole symmetry also for,=1), the Coulomb repul- IS @lso evidence for the charge gamat 2/3 and the equiva-
sion is not effective and the noninteracting regudt' (k) ~ lent casen=4/3, just the charge gap at=1/3,5/3 is again
given by Eq.(3.5 for p=2] can be used to determine the difficult to see. Also the expected doping-dependent magne-
transitions between different particle numbers. Completdization plateau witrm=|n—2/3 can be recognized in Fig.
agreement between this analytical computation and the coR(@. By particle-hole symmetry, the plateau with=4/3
responding numerical results in Figs. 2 and 3 is found. This~n| must be present as well though it is more difficult to
also guides the interpretation of the finite-size data since ifecognize. The finite-size behavior of its stability region in
follows in particular that the completely gapped situations afFig- 3@ [and of both plateaus in the case of Figb)3 can
saturation are those withne Z in the thermodynamic limit. 2dain be taken as an indication that it will indeed be present
Such a guide is useful since the fermions behave differentijyn the thermodynamic limit.
for even and odd particle numbers, thus yielding nonmono-
tonic finite-size effects which can be still strong for the small
systems sizes considered here. In the particular case of the Having also provided numerical evidence for the exis-
gapped states withne Z atm=n (or m=2-—n), the corre- tence of doping-dependent magnetization plateaus, we now
sponding ground state always has an even number of fermpresent a few numerical results for correlation functions at
ons wherlL/p is even while cases with an odd number occurp=2.
whenL/p is odd. This leads to vanishing finite-size effects Is technically useful to consider only objects which re-
for the transition lines in the former case, but not always inspect the decomposition of the Hilbert space according to
the latter. Since even and oddp behave differently, we symmetries of the Hamiltonian. We therefore define averages

B. Correlation functions

show separate figures for the two cases. of an operato\, as
|
L
1
Tl 2 A do(k) ) for k0.,
L Xp=1 0
(Ad=1 1 L (4.1)
TR 21 (A, tA_x) | Yo(k) | fork=0,m,
|
where | #,(k)) is the ground state with momentuka An Numerical results for correlation functions on ar-18

additional advantage of this definition is that oscillationssystem at the plateau witm=1—n are shown in Fig. 4.
originating from the modulation of(x) are smoothed by Characteristic oscillations are observed in the density-density
taking averages of the up =2 correlation functions at a and electron-electron correlation functions. This and the fi-

given distance. nite system size make a detailed analysis of the asymptotics

The connected correlation function of two quantities  difficult. Nevertheless, one observes that correlation func-

andB is defined as tions containing up electrons decay faster than the corre-
sponding ones containing only down electrottise latter

Cas()=(A] 1 By) —(A] )}(By,). (4.2)  may still be smaller in absolute value due to a smaller overall

prefactoy. In fact, all correlation functions shown in Fig. 4
Of particular interest are the diagonal components of the suare very similar to those obtained in the noninteracting situ-
perconducting order parameter HQ.40 since quasi-long- ation (U=0) at the samé.. We therefore interpret our re-
range order is expected for one of them. sults as support for exponential decay of all correlation func-
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i L ' ' ' ' ' ' 7 the superconducting order parameter in those cases where
only one of the conditions Ed1.2) is satisfied.

In Ref. 15 it has been pointed out that the fully gapped
situations can be most easily understood in the lirfit 0
(the same argument applies also &r=). Then the chain
effectively decomposes into clusters pkites, whose mag-
netization curves are obviously staircase-like. The charge
gap atpneZ can also be understood in the limit of<t
(éu>p), one just needs to generalize the mapping of a
quarter-filled dimerized chain to an effective half-filled ho-
mogeneous chaifl to m#0 and commensurate filling at
generalp. Finally, this mapping can also be adapted to pro-
vide a further complementary argument for the existence of
the doping-dependent magnetization plateaus. Again, to first
order int’, an effective Hamiltonian can be found in the
regime of strongp-merization, i.e., in the limit’ <t,U (re-
spectively,du>t,U) for the case of modulation of the hop-
ping amplitude(respectively, of the on-site enengyWhen
only one of the conditions Eq(l.2) is satisfied, which
amounts to a condition on the filling of spin-up or spin-down

FIG. 4. Correlation functions for the dimerized chaip=(2) bands, this effective Hamiltonian acquires a gap in the spin
with U=3t, t'=0.7t at L=18, n=2/3, andm=1/3. Panel(a) sector, thus leading to a doping-dependent magnetization
shows density-density correlatior&a,nﬁ(x), panel (b) electron-  plateau.
electron correlationé:ca,cﬁ(x), and panel £superconducting cor- We would like to emphasize that such irrational plateaus
reIationsCA“'ABB(x). The symbols are foo=8=1 (boxes, a are not present in systems where the doping is not fixed.
=pB=| (filled diamond$ and a=1, B=| (X); the lines are Moreover, due to the remaining massless mode on such a
guides to the eye. plateau, the thermodynamical behavior of the system retains

some particularities of a gapless system, such as a specific

tions containing] operators and power-law decay for those heat vanishing linearly a6— 0. An important feature is that
containing only| operators, as is expected according to thethe value of the magnetizatiam on the plateaus at fixed
analysis of Sec. II. In particular, these numerical results arélepends continuously on dopimg Analogous situatiort§

compatible with quasi-long-range order i | on them  €ncourage us to believe that this scenario is generic in doped
=1-n plateau. ' systems. Doping could therefore be used as a tool to study

experimentally irrational plateaus in systems whose half-
V. DISCUSSION AND CONCLUSIONS filled parent compounds exhibit plateaus only at prohibi-
' tively high magnetic fields. A natural candidate are ladders
We have shown that Hubbard chains with periodic hopsystemé,4 where doping can indeed be controlled. Theoreti-
ping or on-site energy present a rich structure of magnetizaca@l results on doping-dependent magnetization plateaus in
tion plateaus. More precisely, for a periodicitywe obtain Hubbard ladders will be reported elsewhéte.
the conditions Eq(1.2) for the appearance of the plateaus. If ~ There are also natural problems for further study in the
both conditions are simultaneously satisfied, both spin angase of modulated chains. For example, the laygénit of
charge degrees of freedom are massive. When the combinte Hubbard model leads to the] model. As a check of the
tion pne 7 of these two conditions is satisfied, a charge gapgenerality of our results, one could therefore investigate the
opens irrespective of the value of Finally, if just one of t-J model, which at half filling would then be exactly the
the conditions Eq(1.2) is satisfied, a magnetization plateau Situation studied in Ref. 6. Due to the reduced Hilbert space,
appearsif the total filling n remains fixed. This result has the t-J model would be particularly well suited for further
been shown first by means of bosonization techniques, valigumerical checks. Another problem to be addressed is the
in the regime where the differences in the modulation ampliuniversality class of the transitions associated to the corners
tudess in Eq. (2.15 and 8 in Eq. (2.20 are small and for of a plateau. In the case of the BA solvable motjet was
arbitrary values ofJ. We have then shown that these resultsfound that the presence of a massless mode on a doping-
are confirmed by standard quantum mechanical argumengependent plateau may modify the universality class of part
valid for small U and arbitraryp-merization strength and Of these transitions—a fact that would also be interesting to
provided an expression for the width of the plateau to firstnvestigate in the present model.
order in U. We finally showed explicitly such plateaus in

finite size systems by means of I__anczos diago_nalization. ACKNOWLEDGMENTS
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APPENDIX A: CONVENTIONS 20¢ =|ZeDet ZsDst——5 o7 N

In this short Appendix, we define our conventions and (B2)
notations. The continuum fermion operators read

+

+Ng .

| . . ZeeANg—Z AN\ 2
Pa(x) = KEXyp (x)+ MRy (X),  (AL) 2As=(2csDc+Zssti = 2Zetzs )

i i B3

PL0=eMeagl (0 el (0. (A2) (89

Using standard bosonization rules we have AN s,Dcs,Ng s are the quantum numbers characterizing the
low energy excitationsAN, and ANy are integers denoting
the number of electrons and down spins with respect to the

PR o(X)= e @TdRa ¢ (A3)  ground state and are fixed by the correlator under consider-
2ma ation. The summation runs over all integers or half integers
D s (depending on the parity N, ,ANs) and on positive
1 R ; e
UL ()= e LW (A4) integersN; ,Ng .

2 ma By analyzing the leading contributions to the fermion

two-point correlator, one can write down, after some algebra,
wherea is the lattice constant andlg |, are the chiral com-  the bosonized fermion operator
ponents of two real bosonic fields

$a(X)= G ulX)+ b1 alX), (A5) = e IR (4 r e 2rXel AT
whose dual fields are defined by +rge! e T oy o 1 2ke Xl T
0(X)= b (X)~ b o(X). (A6) Frse IO L)
The dots in Egs(A3) and(A4) stand for higher order terms, +elkriXe NITALIO)(| + | el 2kr X~ 1VATS

due to the curvature of the dispersion relation, which are
discussed in Appendix B. The up and down Fermi momenta
are related to filling and magnetization: +1geiKixg I ET G E) Ly, (B4)

+1 67 12Ke X AT 4| 0i2ke Xg—IVET,

Ke=ke ke = K-=Ke;=Kg =am, (A7) wherer; ,I; are unknown numerical constants. Notice that at
where U=0, h=0 all these constants vanish excepi=I,
=1/{J2ma. At h=0, the scaling dimensions of the different
1 2 , 1 contributions in Eq.(B4) are known from BA for arbitrary
=T g Maf M= g S)=C g N1~ Mx1 /) repulsionU and densityn# 1. It follows that it is sufficient
(A8)  toretain only the following terms:

+

Ny.o=Cyx «Cx,« @nd L is the number of sites. Note that our — ke X FT b (%) 2K X ET
definition of m (which is the one used for théXZ chains in g =e TFe (rytrae e !
Ref. 4 dzigfers by a factor of 2 from the one of Frahm and 12k miVATA L

Korepin:

+ eik,:lxefi\sﬂqﬁu(x)(l - 2ei2k,:T><e*i VAT,

APPENDIX B: FERMION FIELD OPERATOR Flge i ZegET g ). (B5)
In this Appendix we discuss the bosonization of the fer-

mion operator in the Hubbard model in a magnetic fieldThe expression foy, can be easily obtained by exchanging

starting from the exact BA solution. According to Frahm and| and T, with the numerical constants generically different.

Korepir?®, the long-distance asymptotics of zero-temperature Using this expression fogs; and ¢, one obtains

094406-13



CABRA, DE MARTINO, HONECKER, PUJOL, AND SIMON

¥l = constiy g, +constydy |
+2r1; sin(2ke | x— \Am¢))
+2(r 1) 1ol )SiN 2k x— VAm(di+ )]
—2(rylg+r3ly)sin 2k _x—Am(d—p )]+ . ..

(B6)
and

¥l = constiy g, +consty
+2r 11} sin(2kg x— 47 d,)
+2(rilp 1l )sin 2k x— VA + )]
+2(r{lg+ril)sin 2k x—Vam(¢— )1+ ...,

(B7)

where we assumed the constanik to be real. Otherwise,
the only modification would consist in shifts of the argu-

PHYSICAL REVIEW B3 094406

sin 2k x—\Am(i+ )1+ ... . (B8)
Substituting finally Eq(2.9), one obtains Eq(2.14).

Similarly, the difference of Eq¥B6) and(B7) yields the
S? operator:

27 =yl — iy, = consw, (b — ) +4ryl,
X cogkyx—m( i+ )]sk x— (e — )]

—A4(r gl g+ rgly)sin 2k _x—4m(d—p )]+ ... .
(B9)

Notice the last term in th&* operator. In the usual treat-
ments(see for example Ref. 26this term does not appear.
As it is obvious from Eq(B9), this term would be absent if
we retain only the first two terms in E¢B5) or if r;=1, and
I’3= - I 3-

The assumptions on the constanisl

i,fi,l{ to be real

ments of the sines or cosines by unknown constant phase2nd equal for up and down fields are supported by operator
Now, assuming the constants to be equal for up and dowRroduct expansion computations of the original free fermion

fields, and adding EqsB6) and (B7) we obtain for the
bosonized density operator

p= U+ Y =consty (¢ + )
+arly sk, x— (¢ + ¢))]
X cogK_X— (1= )1+ 4(rlo+T15l4)

operator with the perturbing Umklapp operator of the Hub-
bard Hamiltonian

cog 2k, x— VAm (¢ +¢))]. (B10)

These computations also show that, at lowest order, the con-
stantsr,,rg,l,,l3 are linear inU.
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