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Triplet dispersion in CuGeOg: Perturbative analysis
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We reconsider the two-dimensional model for CuGeftroduced previouslyfPhys. Rev. Lett79, 163
(1997]. Using a computer aided perturbation method based on flow equations we expand the 1-triplet disper-
sion up to 10th order. The expansion is provided as a polynom in the model parameters. The latter are fixed by
fitting the theoretical result to experimental data obtained by inelastic neutron scattering. For a dimerization
6~0.08(1) we find an excellent agreement with experiment. This value is at least 2 to 3 times higher than
values deduced previously from one-dimensional chain approaches. For the intrachain frusyatefind a
smaller value of 0.28). Theexistence of interchain frustration conjectured previously is confirmed by the
analysis of temperature-dependent susceptibility.
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I. INTRODUCTION IIl. METHOD

The problem to be solved reads
The dispersion of the magnetic excitations is an important
source of information on experimental low-dimensional spin

systems. Knowledge of the dispersion reIati@(ﬂZ) helps whereH, and Hg are schematically given bgsee lines in
essentially to identify the model appropriate to describe thé-ig. 1).

compound under study. The dispersion relation provides also

important insight in the nature of the ground state. Very H /J=2 S —

common in low-dimensional systems is the scenario of a 0
singletS=0 ground statevithout magnetic long-range order

(a “spin liquid”) of which the elementary excitations are
triplets S=1. These systems are generically gapped. Ex-
amples are isolated or weakly coupled dimerized spin chains
and spin ladders such as (V{0-, the spin-Peierls phase +ﬁ 2 S--S+% E S—._S
of CuGeQ,?® and SrCy0s.* A true two-dimensional(2D) A N '

example is SrCyBO), which is characterized by frustrated . o ] ) )
dimers®~7 As in the chain in Ref. 11 the isolated dimer limik (

g =0 at finite u/\) has an equidistant energy spectrum and
the perturbation can alter the number of energy quérdee:

H:H0+)\Hs, (1)

HgJ=>, S—— S+a», S——S

In these gappe®=1/2 systems where the gap is relate
to some “strong” bond(which can be also the rung of a . ) )
two-leg laddey the elementary triplet excitations are in prin- triplets on the dimejsby 2 at maximum. Hencels can be
ciple accessible by a perturbative expansion about the imepresented asHs=T_+T_;+To+T,+ Ty, where T,

stands for the perturbing part changing the number of el-

of isolated dimers. This approach, however, becomes tedlouesmentary triplets by. The same formalism as in Ref. 11 can

for the (;Ies_crlpft;on of treahlsltlc maltletll_eﬁls smcer;[hetexpansmtrbe used. This formalism maps the perturbed Hamiltonian by
parameter 1S often not really small. Thus one has o compuly ., qin oys unitary transformation, the so-called flow equa-

high orders to achieve quantitative agreement. For this reg;) " athodt? to an effective Hamiltoniar « which con-
son various automated approaches have been conceived asthe n’umber of energy quanta iee=QH « Hol
1 oy er .

which leave the tedious part to computBrst The effective Hamiltonian has the form
In the present article, we will apply the previously intro-

duced perturbation by flow equatidn to the two- Aol t

dimensional, though anisotropic, system of CuGe its A 1 A

dimerized low-temperature pha$&hereby we extend the

previous analysigRef. 3, henceforth cited ag ¢onsiderably. : 13
Our starting point remains the same as before. The strongest 2P
coupling is given byJ; the other couplings are given relative 1 A 1
to J as indicated in Fig. Ifor details see Fig. 1 in)l Ad .

Our work has two objectives. One is to show that the s

perturbation method introduced previouglgan be also ap-
plied to two-dimensional systems. The other is to determine FIG. 1. Dimerization pattern in the dimerized low-temperature
within the framework of a static spin model the microscopicphase of CuGe§ The couplings are denoted relative to the stron-
parameters for CuGeQ gest couplingd which is set to unity in the figure.
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FIG. 2. Effective lattice on which the triplet hops. We calculate
the amplitudedy; ; for all hopping processes starting on (0,0) and
ending on one of the depicted dimei@rcles. For all circles that
are accessible by an arbitrary hopping length of 6 or less the am-
plitudes have been calculated within 6th ord@he length of a hop
is the minimum number of bondsolid or dashedrequired to link
the start and end pointThe amplitudes for light gray, dark gray,

and black circles have been extended in 8th order, provided that O O

these sites can be reached by a hopping of length 8. Analo- O

gously, the amplitudes for dark gray and black circles were ex-

tended by calculating hopping processes® within 9th order. Fi- FIG. 3. Computer generated cluster necessary to confpute

nally, the amplitudes for all black circles were extended byin 8th order, allowing for arbitrary hopping processes of length 8.
processes< u® within 10th order. The arrows indicate axes with The light gray (dark gray circle denotes the staiend dimer
respect to which reflection symmetry holds. (0,0)(3-1).

o starting at dimer (0,0) and ending gt,f). The minimum
Hor=Ho+ 2, \K > C(m)T(m), (2)  cluster is determined by considering all paths from (0,0) to

k=1 [m=kM(m=0 — — (j,n). All dimers and links covered by one of these paths are
part of the minimum cluster. In Fig. 3, the computer gener-

where m=(m,,my, ... my) is a vector of dimensioNm|  ataq minimum cluster for calculatings _, in order 8 is

=k of which the componentsm; are in {*2,  choun.

+1,0; M(m)=%{_;m=0 signifies that the sum of the ~ pye to the strong anisotropy of the quasi-1D system

components vanishes Which reflects the conservation of th@uGeQ it is reasonable to use higher-order terms only along

number of energy quantaiplets). In each ordek one hasto  the chains. This simplifies the computational task consider-

evaluate the restricted sum over the operator product§b|y since the calculation of a hopping process along the

T(M)=Tmy Tm, - Tm,. The coefficient<C(m) are generally  chain is much simpler. The cluster to be considered can be

valid fractions computed up to ordkr=10 in Ref. 11 where chosen smaller. The same is true for hopping procedsss

also further details on the flow equation method can beo the chain direction. Here we restrict the hopping processes

found. The product€(m)T(m) can be viewed as weighted to be at maximum quadratic in the interchain hoppjag

virtual processes. - which reduces the cluster sizes significantly so that the per-
Since H; conserves the triplet number the one-tripletturbation order can be enlarged.

sector is particularly easy to solve. Acting on one triplet the

action of He may only consist in shifting the triplet. This I1l. ANALYSIS OF EXPERIMENTAL DATA

means that the triplet hops on an effective lattice where one

site stands for one dimer on the original lattisee Fig. 2 in The results for thé; , are too lengthy to be published in
| or Fig. 2. written form. We will provide them in electronic form on our

home pages on appearance of this article. In hifygin third
order in\ and u were presented. A few of these are errone-
ous. They are corrected herewithThe corrections, how-
w(k)=3>, hj.nexdi(kyj +kon)]. (3y  ever, have no influence on the conclusions ifs¢e also
jn discussion beloyv

The hopping amplitudek; ,, can be calculated on finite Once all amplitudes; , are calculated the dispersion re-
clusters of the(in principle infinite effective lattice: From lation is given by Eq(3). After rewriting Eq.(3) in terms of
the linked cluster theorem we know that the finite order conk, andk, (the reciprocal basis te, ande;) we add the term
tribution of a short-ranged perturbation does not depend o#At, cosk,)cosk,) with 4t,=0.22 meV to account for the
the cluster size for sufficient large clusters. Carrying out ourdispersion ina direction (cf. 1). To fix the parameters
perturbation within ordef implies that one allows dimer to J, «, B, u and\ (cf. Fig. 1) we use the one-magnon dis-
dimer hopping processes of lendth' The minimum cluster persion data for CuGeQexperimentally determined by in-
for a given amplitudeh; , in a given orderl contains all  elastic neutron scattering Note that the hopping amplitudes
dimers and links that are involved in a hopping of length  are computed as polynomials overin the parameters.

The full dispersionw(IZ) is obtained by Fourier transform
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FIG. 4. Schematic view of the microscopic super-exchange
paths between the chaingunning along thec direction in 0.0 L L L L
CuGeQ. The three-dimensional situation is depicted in Ref. 16. 0.00 0.10 0-20 0.30 0.40 0.50

k. /rlul]
c

As noticed in | the parametg8 has almost no influence
on the shape of the dispersion. Hence we refrain from deter- FIG. 5. Dispersionw(k,=0k,=0,1/2+k) in ¢* direction.
mining B from the dispersion but set it beforehand to some’he arrows indicate the expe.rlmental points used to fix the
reasonable values in the intenfat 0.3,0.3. This choice is ~Parameters. 10th ~order fits based onpXa,u,J)
motivated by comparing the microscopidirect super- 6%53’006%3;6’12'525' 0.266, 13} meV)  and(-0.3, 0.846,
exchange pathe and theshifted super-exchange pathp 209, 0.081, 12.3 me respectively.
shown schematically in Fig. &f. Fig. 1). There is only one
path per C&" -site for the shifted coupling whereas there arehand by its obvious applicabilitisee Fig. 7. On the other it
two paths for the direct coupling. Thus we expépts| stems from the fact that CuGg@® a quasi-one-dimensional
~1/2u|, i.e.,|B|=0.5. There are also results fraab initio ~ gapped spin system. So one expects the magnetic correla-
calculation for the interchain couplings which indicate thetions to drop exponentially with distance. Furthermore the
existence of interchain frustratidn Further evidence is pro- orderl determines the maximum distance over which corre-
vided below by the analysis of the susceptibility. Further-lations occur(cf. Ref. 11, namelyl counted in dimers or[2
more, we find that fo 8|>0.4 fits to the dispersion data counted in spin sites. Hence the constaim Eq. (4) can be
become worse. understood as the inverse of a correlation lergthVith the

To determine the remaining parameters we equate foussual relationé~uvg/A for one-dimensional systems we ob-
different experimental points with the corresponding paramtain c~1/6 based on the rough estimateg=/2-J(1
eter dependent dispersion values given by B). The ex- —1.12x,) (Ref. 17 and a(=~0.3;J=12 meVA~2 meV.
perimental points were chosen such that the maxima of th&his is indeed what is foun¢tf. Tables | and Il so that we
dispersion(two point9 and the high-precision data points at judge our extrapolations as being well justified.
k.<0.1 are fitted as good as possible. In Figs. 5 and 6 they
are indicated by arrows. This approach was chosen to illus-  gg
trate explicitly how delicately the dispersion shape, in par-

O exp. points
ticular the curvature at the minimum, depends on the frustra- 7.0 | B=-0.3 -
tion. The parameters are fixed by solving the resulting — B=03
system of equations. Fg8=0.3 and—0.3 Figs. 5 and 6 6.0
show the resulting dispersion curves it and in ¥ direc-
tion, respectively, using ali; ,, calculated. 5.0

As can be seen from Figs. 5 and 6 the plain series up t(.%,
10th order provides excellent fits. Yet one realizes that theE, 4°
parameter values still change on passing from order to order3
So it appears that even at 10th order the results are not quar
titative. In order to obtain quantitative reliable results we 2\0‘1
adopt a systematic extrapolation in the order. In each ordel
l€{3,4,...10 we determine the optimum fit parameters. 4, [ 1
For illustration, Fig. 7 shows results f@r=0.3.

Assuming exponential convergence we use 0.0 L L L L

0.0 0.2 0.4 0.6 0.8 1.0

f(l)=X—be 2, (4) ky/Irl.u]

whereX is the asymptotic value of the parameter considered FIG. 6. Dispersionw(k,=0ky,k.=0) in b* direction. Other-
andb andc are constants. The choi¢4) is motivated on one wise as in Fig. 5.
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TABLE |. Extrapolated parameter valu¥saccording to Eq(4). TABLE 1ll. Final parameter intervals resulting from Tables |
The experimental points we used in the fit process for this tablend Il for three different values g8.

are (cf. Figs. 5 and B [(ky,kc);w(k)/meV]: [(0,0);2.1,
[(0,0.05;4.55],[(0,0.25);15.7, [(1,0);5.79. parameter interval parameter interval
All points considered last four points considered p=03
P 0.274) ag 0.253)
X b c X b c A 0.862) 5 0.0411)
B=03 m 0.271) o 0.291)
a 0.245 261 0249 0.236 824  0.338 J/meVv 13.85) Jo/meV 12.86)
A 0.867 0.501 0.155 0.840 8.66 0.418 B=0.22
Jmev 136 110 0.164 132 105 0.357 4 0.274) @ 0.2503)
B=0.22 A 0.862) 5 0.081)
a 0.232 327 0.268 0.228 9.50 0343 4 0.21(1) Lo 0.231)
A 0.863 0.681 0.184 0.842 13.6 0.444  j/meV 13.44) Jo/meV 12.55)
JmevV 131 113 0171 1238 68.9 0.324 B=0.0
B=0 a 0.275) g 0.255)
a 0.218 416 0.294 0.226 9.20 0.334 )\ 0.8403) F) 0.072)
A 0.862 0.902 0213 0.848 1494 0442 0.131) o 0.141)
J/meV 12.8 111 0.174 12.6 44.48 0.287  j/meV 13.26) Jo/meV 12.47)
B=-03 B=-0.3
a 0.212 448 0.300 0.222 9.94 0.337 0.275) a 0.2505)
A 0.863 0.974 0.218 0.849 16.5 0.448 ) 0.8403) S 0.062)
J/meV  12.7 109 0.173 12.5 42.2 0282 0.082) o 0.091)
J/meV 13.15) Jo/meV 12.37)

In Fig. 7 the extrapolations are depicted by lines. Th
solid lines were obtained by using all calculated paramete
values. The dashed lines are obtained from on the last fouf

e. - .
lines in Fig. 7. From this we conclude that the dependence of

on the order is fairly small though not negligible. The size
f the fluctuation determines the reliability of the approxima-

points, i.e., the results in order 7, 8, 9, and 10. The deviatio? f Ki ith d seri ke th
between these two extrapolations are used as a measure Porn of working with truncated series. So we take the average

. . X . of the two bounds as our estimate ferand their difference
the extrapolation error. This procedure is carried out for . S
a, \, andd. as the error in the determination pf

There is no systematic dependenceobn the order, Tables | and Il summarize the results of the fits for the

The parametep fluctuates between the two thin horizontal parametersy, )\,_and\_] for four preset values of. The
values foru are listed in Table IlI.

TABLE Il. Same as in Table | based on different experimental ' ' ) '
points:[(0,0);2.1, [(0,0.05);4.35, [(0,0.25;15.7],[(1,0);5.79. 03 | Ad -
- - - - all points
All points considered last four points considered ——- last 4 points |
X b c X b c g )
p=03 RN ]
a 0297 141 0215 0309 118  0.187 AN
A 0.868 0.423 0.197 0.877 0404  0.165 = = S =
J/meV 143 8.88 0.142 13.9 37.4 0.269 os E——— ok i
B=0.22 w
a 0.301 1.41 0.208 0.318 1.15 0.175 06| \\\
A 0.867 0.850 0.274 0.886 0.526 0.175 04 b N J
JmevV 136 120 0191 1338 15.2 0.191 e e O
B=0 0.2 M v v \\ E
a 0.308 1.34 0.191 0.323 1.30 0.173 . . N
A 0.900 0.38 0.140 0.896 0754  0.191 0.0 01 02 03 0.4 05
J/mevV  13.6 8.00 0.133 13.7 9.31 0.139 171
p=-03 FIG. 7. Dependence of the parameter values on the perturbation
a 0314 128 0.180 0.326 1.37 0.173  orderl at 3=0.3. The quasiconstant behavior mfis found for all
\ 0.913 0.369 0.127 0.903 0.832 0.192 B values checked. The lines are fits to the data according t64EqQ.
J/meV 13.6 7.69 0.127 13.6 9.12 0.136 The solid lines consider all points, the dashed ones only the last

four points.
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FIG. 9. Alternative notation for the couplings in the dimerized
phase of CuGe9 The couplings are denoted relative to the average
. nearest-neighbor coupling, in the chains.

O exp. points

i il ® exp. points
= exp. points
fitting—point: (0.05, 4.55 meV)
——~- fitting—point: (0.05, 4.35 meV) a= %o _ Mo (5)
0.0 - 1-5 M 1xs
0.00 0.05 0.10
ke/lrlu] It corresponds to the Hamiltonian depicted in Fig. 9.

FIG. 8. Enlargement of Fig. 5 for small wave vectors @t
=0.3. The solid curve is the same as in Fig. 5, leading to Table I. IV. IMPLICATIONS FOR THE SUSCEPTIBILITY
The dashed line corresponds to a 10th order fit where the point
(k.=0.05w=4.55 meV) indicated by the arrow is replaced by = The temperature dependence of the homogeneous suscep-
(kc=0.05w=4.35 meV), leading to Table IIl. The filled circles tibility x(T) is often used to determine the parameters of
correspond to highly accurate experimental points for which theCuGeQ.*®-?!Already the Curie-Weiss temperatugepro-
error bars are of the size of the symbols. vides valuable information on the sum of the coupling con-
) . ) stants. This is particularly useful to detect frustration. The
A closer inspection of Figs. 5 and 6 reveals that we arejispersions are governed by the difference of the direct and
Confronted W|th a Certain al’bitrarineSS Of Wh|Ch f|t we Shouldthe frustrating Coup"ng Wherea&(T) at |arger temperatures
favor. The experimental errors enhance this problem. Thes more influenced by the sum of direct and frustrating cou-
filled circles in the range of small wave vectors in Fig. 5 pjing.
represent experimental points which have been measured The analysis of the Curie-Weiss temperature alone bears
with a high degree of precision. Thus it is reasonable to filsome risks. It is easy to calculate but difficult to determine
the theoretical curve as well as possible to these points. Figsxperimentally since it has to be deduced from values at high
ure 8 shows an enlargement of this region. The solid line isemperatures wherg(T) is fairly small and hence strongly
the 10th order fit result fo=0.3 as the solid line in Fig. 5. jnfluenced by background effectgan Vieck, diamagnetism
The depicted arrow indicates the experimental poikt ( or by slight structural changes.
=0.05p=4.55 meV) used to obtain Table I. A convincing fit for temperatures above 50 K is given by
A likewise well suited curve, however, is produced if one Fapriciuset al. in Ref. 20 on the basis of frustrated chains.
uses the pointK.=0.05w»=4.35 meV) for the fit keeping The inclusion of interchain couplings, however, would spoil
the other pointgTable lI). It is not possible to prefer one of the excellent agreement and a redetermination of the con-
the two lines in Flg 8 to the other on the basis of theirstant would be necessary. Adescriptiormﬂ') on the basis
agreement to the experimental data. Hence we choose thegea two-dimensional model has not been done except for a
two fits as the bounds within which all fits are acceptableconsideration of the two leading coefficients in an expansion
The corresponding parameter values(fit 1) andX; (fit2)  in 1/T in 1. In Fig. 10 we show the same high quality experi-
provide an interval X;,X,] which we expect to contain the mental data as in Ref. 20 and compare it to theoretical curves
true model parameteX. Hence the latter is estimated by  at four values of3 with corresponding parameter valugs\
- _ and « as given in Table Ill. The theoretical curves are ob-
X=(Xy+Xp)2EAX, tained by computing &4,5] Dlog Padeapproximantyo(T)

— ; ; — = - based on the high-temperature series provided in Ref. 22 for
with ﬁzll 2(@“ Fﬂnts+_)(!a5t_4p0|mj’ AXi=|Xi—X?” i the frustrated cgains. 'lla'his procedure ICE)rovides excellent re-
and AX=max|X—X;|,AX;,AX;}. The results are summa- sults down toT ~J/5.2% The asymptotic behavior of the ap-
rized in Table IIl. proximant is chosen such thgh(T) vanishes linearly off

For the readers’ convenience Table IlI also gives the re-,0 as is to be expected for a two-dimensional massless
sults in  the more commonly used parametersantiferromagnet. Besides this feature the two dimensionality

o, ag, Mo, Jo, @andB. This notation is connected to the s incorporated on a chain-mean-field level
one used so far in this article by

I=0(1t8), A=l T = Xo(T)
=Jo(1+5), A= X = (1 2B xo(T)

(6)
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0.0020 —— - - T T spin-Peierls transition there is definitely a structural change.
So far, however, the assumption that only the dimerization
o Ez_oog | changes worked well. The structural changes in the transition
- B= 0.22 are very smalf whereas the changes needed to explain the
——- B=03 discrepancy are of the order of 20 to 30assuming a
——— exper. data i change in the intrachain frustratiprEstimates point into the
direction that the changes on the couplings are
unimportant® Yet the estimates concern in the first place the
- nearest-neighbor coupling only. Quantitative ab initio calcu-
lations of the frustration are very difficult,even more so for
changes of the frustration. So, again, this explanation is per-
haps not the most promising but cannot be excluded either.
Third, the influence of the phonon dynamics is to be con-
. . . . sidered. It is shown that spin-Peierls systems can be unitarily
0 200 400 600 800 1000 transformed in such a way that an effective spin model re-
mains at low energies uncoupled to the phondrihe ef-
fective couplings in a single chain model become tempera-
ture dependent so that this may account for the discrepancy.
But it turns out for nonresonant phonone > J) that these
effects leave the susceptibility fairly unchanged. This is so
since these effects become significant for relatively large
This relation is exact in linear order ja. Estimates of cor- temperatures wherg(T) depends only on the sum of all
rections quadratic inu indicate that they are negligible for coyplings which is unchanged by the unitary transformation
the values ofu and B in which we are interested. _ [this is observed in (VOP,0,].2° So this reason appears
From the results in Fig. 10 it is evident that the interchainyather unlikely even though it looked plausible at first sight.
about 0.22 a very good agreement can be obtained. Th@e spin-Peierls transition. By this we mean on one side the
the position of the maximum is also reproduced. But on the 3 K) around the spin-Peierls temperatét®©n the other
basis of the neutron-scattering restfltis is undoubtful that side, we mean any precursor which goes beyond a purely
CuGeQ is a two-dimensional substance. Furthermore, itstatic spin model. Experimentally, a finite lattice correlation
must be considered that the previous™fitvas a two- |ength can be detected already B£40 K far above the
parameter  and ao) fit whereas only one parameteBXis  actual transitiof® From there on deviations from the behav-
fitted to obtain Fig. 10. The other parametet®.o.10)  jor of a static spin model should be observable. In the adia-
were determined from an entirely different experiment.patic limit, for instance, the fluctuation yield already a reduc-
Hence the agreement fqi(T) corroborates also the validity tjon of the susceptibility® What happens in the antiadiabatic
of the parameters determined in the preceding section.  |imit has not yet been investigated for a two or higher dimen-
We want to emphasize that we try to explain simulta-sjonal model. The mapping in Ref. 27 leads to four-point
neously aT=0 and aT>0 experiment in the framework of jnterchain couplings the influence of which is unclear so far.

i
0.0016 [/

0.0012

0.0008

y/[emu/(mol Cu)]

0.0004

0.0000

FIG. 10. Comparison of experimental data in b direct{&ef.
20) and theoretical susceptibilities for various values of the inter-
chain frustration. The value used is 2.26Refs. 24 and 26

a static modelexcept for changes ). Naturally, fitting In view of the above mentioned possible pitfalls of the
the magnetic susceptibility alon@s done in Refs. 18-20 static model the agreement in Fig. 10 is already very con-
produces better agreement to the experiment. vincing. Summarizing our results we propose the parameters

given for 8=0.22 in Table Il to be the ones deduced from
the dispersion data. Assessing the reliability of our estimates,
we redo the analysis of the susceptibility fep=0.28 (the

We will first discuss our results and propose a set of paupper bound of our estimate fary) with the corresponding
rameters. Then we will put these results into the context ofalue ofJo=12.8 meV. Then the optimura(T) is obtained
other results in the literature. for B=0.15; thex(T) curve is almost identical to the one

Let us consider the remaining difference between experishown in Fig. 10. So the value @ cannot be determined
ment and theory concerning(T) in Fig. 10. There are four very precisely, but it should be in the range=0.2(1). A
conceivable sources for it. The first are experimental inaccueertain discrepancy between the optimum parameters for the
racies. We are not in the position to judge this aspect. W& =0 dispersion data and for thgT>Tgp data remains.
would just like to comment that from the results and error We split the comparison of our findings to previous works
bars in Fig. 8 it is obvious that the experimental data is nointo three groups. The first comprises the analysis on the
completely consistent so that this explanation is possible. basis of a one-dimensional modér2%*1The most striking

Second, it is conceivable that the couplings change acrosdifference to the results for static spin mod&f€°is that the
the transition, i.e., the intrachain frustrationTat0 (where  dimerization § is not of the order of 1% but significantly
the dispersions are measuyrésidifferent from the one above larger. This is not astounding since it has been noted already
Tsp [Where x(T) is measurefl Since we are considering a in | that the gap is lowered by the interchain hopping. Hence

V. DISCUSSION
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the neglect of the latter requires to lower the gap otherwisethe present work since the whojgT) curve is used, not
i.e., by assuming a lower dimerization. only the leading coefficients.

Our intrachain frustration is slightly larger than the one of  Bouzeraret al. have carried out an estimate leading to
Castillaet al. (0.24), but significantly smaller than the value results not too far from ours:6=0.065, a;=0.2, J
of Riera and Dobry(0.36) or the value of Fabriciugtal. =12.2 meV, ©=0.15. They used just linear order in the
(0.35. Fabriciuset al. showed that the value,=0.24 is too  interchain hopping without interchain frustration and some
small for a single chain model. The difference between thesquare-root averaging with numerical results for chains to
larger frustration value in the single chain model to our valuedescribe the dispersion. The intrachain frustratiom, (
results directly from the interchain coupling. As can be=0.2) could only be taken from the Curie-Weiss constant.
nicely seen in Eq(6) the interchain coupling lowers the The resultingy(T) has similarities with the experimental
susceptibility without changingin the chain mean-field ap- one.
proximation) the position of its maximum. The one-  The third group comprises ab initio calculations of the
dimensional models favor a larger intrachain frustration andexchange couplings and of the spin-phonon couplings. Mi-
a concomitant larger couplingin order to reduce the mag- croscopic calculatiori&'®find relatively large values of the
nitude of the susceptibility. dimerization between 0.07 and 0.2 in agreement with our

The claim by Wellein and coworkers that the dimeriza-findings.(Even though there is also a different restijtVery
tion, which is experimentally found to be larger than wouldimportant for our work are recent results by Drechsler and
fit to a static 1D modet? is due to the phonon dynamics is coworkers supporting the existence of interchain
not compelling. They use a root-mean-square definition ofrustration!® Werner and coworkef estimate a large
the dimerization which naturally provides larger values fordimerization from the spin-phonon couplings and the shifts
the dimerization since it includes all the fluctuations. Theof the ions ¢=0.11). From the balance of elastic and mag-
dispersion perpendicular to the chains, however, is an unannetic energy in the D phase they obtain a lower bound of
biguous experimental fact. Furthermore, Trebst and>0.044 under the assumption of a singlet product ground
coworker$® do not find a substantial gap renormalization for state. Assuming critical frustratiom,=0.2412 they find
parameters relevant for CuGg@ven though one should evens>0.078 which fits very nicely to our findings.
take care of different schemes to couple the phonons. In summary, we provide by the present work a determi-

Let us turn to the second group of papers considering th@ation in great detail of the coupling parametdrg
essentially two-dimensional character of CuGe®he first  =0.2(1) and right column in Table Il unde8=0.22] of
work used a bond-operator technigifeNo frustration was CuGeQ based on a static dimerized spin modelTat 0.
considered, hence rather small valuesef10.2 meV and a The experimental input comes from inelastic neutron scatter-
rather small interchain hopping~0.06 resulted. The same ing. The implications of the parameters found for the suscep-
technique was also applied later again by Bréhigcluding tibility are also studied. Very good agreement could be ob-
frustration. It turned out, however, that only(1—2«) and  tained fitting the interchain frustration appropriately. A small
w(1—2p) matter on the free-boson level. Hence an independiscrepancy at low temperatures around 50 K indicates that
dent determination of the frustration is not possible. Usingthe static spin model is probably insufficient to describe
additional input ¢=0.012) the valuesr,=0.059 andu(1  CuGeQ completely. By this work, we proved the outstand-
—23)=0.054 were obtained. In view of the extensive com-ing possibilities of high-order series expansigasound the
parisons to numerical results made in Ref. 35 it appears thatimer limit or around the limitT=«) in the analysis of
the bond-operator method overestimates the influence of aéxperimental data.
ditional couplings such as dimerization or frustration. Gen-
erally, the values for dimerization or frustration tend to be
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