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Elastic strings in solids: Discrete kink diffusion
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The diffusive dynamics of a single discretef4 soliton coupled to an overdamped heat bath is analyzed in
detail. The Langevin equation for the soliton center of mass is derived in general form and compared with the
outcome of extensive numerical simulation. The effective mass of the moving soliton must be renormalized
dynamically for lattice constants of the order of its size or smaller. The corresponding mobility curve and
diffusion coefficient are determined numerically: At variance with the earlier literature, discreteness effects
persist even at high temperature and in the presence of strong drives.
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I. INTRODUCTION

Soliton-bearing field theories have been advocated
model a variety of physical processes in particle physic1

soft matter such as polymers and magnetic chains,2,3 dislo-
cation theory,4–6 and magnetic vortex-line dynamics.7–9 In
the continuum limit both the dynamics of a single soliton a
the statistical mechanics of a dilute gas of solitons are w
understood.10,11 Discreteness, however, is an unavoida
complication, which rests upon two orders of motivation
~a! In most applications the physical system at hand is inh
ently discrete, namely, it reminds one more of a one-~or
two-! dimensional lattice with finite constant, than of a fie
This is the case of physical mechanisms that involve,
instance, linear imperfections in crystals,12,13 and transmis-
sion arrays of either microelectronic9,14 or biochemical
bistable components.15 ~b! The numerical integration of a
field equation requires necessarily the discretization of b
time and space variables. This amounts to introducing
artificial lattice constant that, at variance with~a!, can be
varied in order to minimize uncontrolled corrections. Eith
way, a deeper understanding of discretization effects m
help make the notion of soliton a more viable physical pa
digm.

A great deal of effort has been put into the attempt
clarifying the role of discreteness in soliton dynamic
Roughly speaking the approaches brought forward so far
into two categories.~a! Lattice field theory schemes, wher
the equilibrium partition function of a soliton bearing theo
is computed as a function of the lattice constant and
temperature, irrespective of the actual thermalization mec
nism, by means of either perturbation,3,16 or nonperturbative
techniques.17 ~b! Langevin equation~LE! schemes, where th
diffusive dynamics of a single, discrete soliton is determin
perturbatively either at zero,18,19 or finite temperature, the
heat bath being unspecified,20 supplemented externally,9 or
replaced by an equilibrium phonon gas of the theory itsel21

Both schemes aim at crafting recipes for eliminating un
sirable discreteness effects, for instance, by introducingad
hoc counterterms,3,17 or setting values of the temperature
such that the residual finite-lattice corrections may
neglected.4,5,10
0163-1829/2001/63~9!/094308~11!/$15.00 63 0943
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In this article we study numerically a discretef4 theory
coupled to an overdamped viscous heat bath at fi
temperature—a thermalization mechanism most commo
advocated in the current literature.5,8,22 Our main conclusion
is that the diffusive dynamics of a single soliton turns out
be modified by discreteness more severely than predicte
earlier reports; such an effect persists even at high temp
tures, or even in the presence of strong external driv
forces, at odds with claims to the contrary. Most of the
sults reported here apply to the sine-Gordon~SG! chain, as
well. We focused our numerical investigation on thef4 soli-
ton because~i! no coherent chain depinning from the su
strate is permitted, at variance with the SG chain,23 ~ii ! no
multikink solutions are allowed that, unlike the SG case, m
be more stable than the relevant single kink solution.18 Minor
inconveniences are~iii ! the existence of a soliton shape
mode in the continuum limit10,11 ~Sec. II A!; however, in the
presence of discreteness, even the SG soliton is modul
by a long-lived shape-mode.24 ~iv! Asymmetry of the
minima of the tilted substrate potential; its effect is neg
gible in the weak drive regime~Sec. III C!.

Our presentation is organized as follows. In Sec. II
derive the stationary LE for an overdampedf4 kink sub-
jected to a random field of force at constant temperatu
both in the continuum~Sec. II A! and in the discrete cas
~Sec. II B!; the soliton thermalization question is address
in Sec. II C. In Sec. III we simulate the deterministic dynam
ics of a discrete soliton in order to evaluate the lattice for
it experiences~Sec. III A! and estimate its effective mas
~Sec. III B!. Possible corrections to the basic treatment
Sec. II are quantified in Sec. III C and III D. In Sec. IV w
simulate the stochastic dynamics of a discretef4 kink in
thermal equilibrium, with particular attention to the depi
ning transition from the lattice substrate~Sec. IV A! and the
kink diffusion coefficient at the depinning threshold~Sec.
IV B !. Finally, in Sec. V we outline a summary of the resu
and conclusions, as well as an outlook of potential ext
sions of this work.

II. THE LANGEVIN EQUATION APPROACH

The LE approach to the diffusive dynamics of a sing
topological soliton was spurred in the mid 1980’s by t
©2001 The American Physical Society08-1
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experimental observation that fluxons in long Joseph
junctions execute irregular displacements reminiscent
Brownian motion.8 Langevin equations for the soliton cent
of massX(t) were then construed on the basis of either p
nomenological arguments,25 or simplified energy balance
equations,22 or more systematic collective variab
expansions.19 In this section we derive the LE for a discre
topological soliton in the most general form, leaving the d
termination of its effective masŝMl(X)& and substrate po
tentialVPN(X) ~the so-called Peierls-Nabarro potential! to an
accurate comparison with the results of numerical simu
tion.

A. Continuum limit

Our starting point is the classical, drivenf4 string de-
scribed by the Hamiltonian density

H@f#5
f t

2

2
1c0

2
fx

2

2
1V@f# ~1!

with on-site potential

V@f#5
v0

2

8
~f221!22Ff. ~2!

The coupling of the fieldf(x,t) to an equilibrium heat-bath
at temperatureT is represented by the last two terms on t
right-hand side~RHS! of the corresponding field equation

f tt2c0
2fxx1

v0
2

2
~f221!f5F2af t1z~x,t !, ~3!

wherec0 and v0 are the parameters of the unperturbedf4

equation,a denotes the string damping constant and
Gaussian noisez(x,t) has zero mean and autocorrelati
function

^z~x,t !z~x8,t8!&52akTd~ t2t8!d~x2x8!. ~4!

The unperturbed (F50,a50) string bears both extende
~phonons! and localized solutions~solitons!.10 Localized so-
lutions can be well approximated to an appropriate lin
superposition of moving kinksf1 and antikinksf2 with

f6~x,t;u!5tanhS 6
x2X~ t !

2dA12u2/c0
2D , ~5!

provided that the separation between their centers of m
X(t)5x01ut (x0 and u are the integration constants!, is
very large compared with their sized5c0 /v0 ~dilute gas
approximation!. From now on we focus on the single kin
~antikink! solutions~5!. By inspection,f6 describe a rela-
tivistic quasiparticle with energy

E~u!5E H@f6#dx5
E0

A12u2/c0
2, ~6!

momentump(u)5M0u/A12u2/c0
2, and mass
09430
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M05
E0

c0
2 5E f6,x

2 ~x,t;u50!dx5
2

3d
. ~7!

The dilute gas approximation requires thatn0(T)d!1,
where n0(T) denotes the equilibrium~anti!kink density
n0(T)}(1/d)exp(2E0 /kT), that iskT!E0.10

The phonon spectrum in the presence of a sin
~anti!kink consists of a continuum branch, with non-negati
wave vectorsk and dispersion relationv2(k)5v0

21c0
2k2,

and two discrete frequencies: the zero-frequency Goldst
mode, responsible for the soliton translation, and a sha
mode with frequencyv15(A3/2)v0, describing an interna
oscillation of the soliton.

The soliton LE may be best set up through a simple
ergy balance argument.22 As the perturbation terms ar
switched on, thef6(x,t;u) energy varies according to th
rate equation7

d

dt
E~u!5E @F2af6,t1z~x,t !#f6,tdx. ~8!

In order to compute the RHS of Eq.~8!, we impose that the
shape of the~anti!kink—i.e., the functionf7—remains un-
changed; the only effect of the perturbation is to modify t
motion of the soliton center of mass, namely,X(t) andu(t)
must be handled as~time-dependent! stochastic processes
Simple calculations yield

d

dt
E~u!5 ṗu, ~9!

FE f6,tdx57~2F !u, ~10!

2aE f6,t
2 dx52apu, ~11!

K E f6,t~x,t;u!z~x,t !dx•E f6,t~x8,t8;u!z~x8,t8!dx8L
52a~pu!kTd~ t2t8!, ~12!

and, on combining Eqs.~8!–~12!,

ṗ52ap72F1j~ t !A4 11~p/p0!2, ~13!

where p05M0c0 and j(t) is a stationary Gaussian nois
with zero mean and autocorrelation function^j(t)j(t8)&
52aM0kTd(t2t8).

The stationary probability densityP(p) of an undriven
~anti!kink diffusing according to our LE~13! with F50, can
be readily derived from the Fokker-Planck formalism26

namely,

P~p!5N expF2
E* ~u!

kT G , ~14!

where N is a suitable normalization constant. Th
T-dependent term in
8-2
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E* ~u![E~u!1
kT

2
lnFE~u!

E0
G , ~15!

is an artifact of the energy balance argument~8!. More ap-
propriately, in Eq.~8! we ought to make use ofF(u), the
free energy of adressedsoliton with momentump(u)—i.e.,
‘‘dressed’’ with noise-induced fluctuations.10,11 A simple it-
eration scheme allowed us to prove that on posing

F~u!5E~u!S 12
1

2

kT

E~u!
lnFE~u!

E0
G1••• D , ~16!

one can easily calculate theO(kT) corrections to the LE
coefficients. In particular, the new stationary probability de
sity P(p) coincides with Eq.~14! after replacingE* (u) by
E(u) and, in leading order,̂up&5kT, as expected for a
relativistic particle. These remarks, although of some
evance for assessing the self-consistency of our appro
are immaterial to the discussion of discreteness effect
Sec. III.

The momentum LE~13! can be rewritten in the standar
nonrelativistic form

M0Ẍ52aM0Ẋ72F1j~ t !, ~17!

with Ẋ(t)[u(t), under the condition that^u2&!c0
2. As from

Eq. ~17! ^u2&5kT/M0, the nonrelativistic limit coincides
with the dilute gas approximationkT!E0. To make contact
with the collective variable approach,19 we note that, in view
of the energy equipartition theorem, thezero-frequency
Goldstone mode would pick up an amountkT/2 of thermal
energy, corresponding to the average kinetic energy of
soliton.10,11

A final remark about the potential role of the shape mo
of the f4 soliton with frequencyv15(A3/2)v0.10,11 Rice27

has shown that the center of mass coordinateX and the in-
ternal modev1 couple dynamically~at higher order!, so that
the propagation law forX(t) develops a small periodic com
ponent with frequencyv1; however, its amplitude is propor
tional to kT and, therefore, negligible in the overdamp
limit.

We now summarize the range of parameter values
plored in our simulation work.~i! Low temperature,kT
!E0, to ensure that kink-antikink pairs are not therma
nucleated during our observation time.13 Accordingly, for a
given temperatureT, one ought to choose string lengthsL
such thatn0(T)L!1. ~ii ! Overdamped regime,a@v0, to
avoid relativistic effects@note that the asymptoticf6 veloc-
ity in Eq. ~17! is uF with uF52F/aM0#, to suppress phonon
radiation,12,18 and to quench breather10,18 and phonon
oscillations20,21 ~of course, with the exception of the transl
tional, or Goldstone mode1!. ~iii ! Small ~constant! drive, F
!v0

2, to preserve the bistable nature of the on-site poten
V@f# ~which gets lost forF.v0

2/3A3), to limit the soliton
speeduF to sub-relativistic valuesuF!c0, and to ignore the
drive dependence of the soliton shape. Indeed, the min
and the barrier ofV@f# shift differently with F ~Sec. III D!:
The corresponding tail offsets and shape deformation off6

are totally neglected in the LE approach adopted here.
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B. Discrete chains

Discreteness, no matter what the cause, has a twofold
fect on the soliton dynamics.~i! Phonon dressing, as i
modulates the shape of the solutions~5!. Upon expanding the
corresponding deformation on an appropriately defined20 ba-
sis of orthogonal discrete phonon modes, the soliton rest
ergy El turns out to be no longer translational invariant12

The functionEl(X) becomes periodic in space with perio
equal to the chain constantDx. ~ii ! Phonon radiation, as the
moving soliton excites phonons that resonate with its mo
lation time constant~s!.18,19,28The ensuing radiation dampin
is negligible in the overdamped regime, and will be ignor
in the following.

The numerical integration of the field equation~3! was
carried out by discretizing the spatial variablex, so that
f( iDx,t)→f i(t), with i 51,2, . . . ,N, and Eq.~3! becomes

f̈ i2c0
2D2f i1

v0
2

2
~f i

221!f i5F2aḟ i1z i~ t !, ~18!

where Dx51, D2f i5f i 111f i 2122f i and z i(t) denote
local Gaussian noise sources witĥz i(t)&50 and
^z i(t)z j (t8)&52akTd i j d(t2t8).

Our simulation code23 is a framework based on Numerica
Python and custom C libraries. Time integration is p
formed by means of a modified Mil’shtein algorithm, at fi
nite T, and a standard fourth-order Runge Kutta forT50.
For the time integration step used here,dt51023, outputs
from the two integration algorithms coincide in the limit o
vanishingly low temperatures.

The one-soliton bearing chain$f i% is free-end @f0
5f1 ,fN115fN# and long enough,L5NDx, for the diffus-
ing soliton not to experience boundary forces. The chain
trema fluctuate around oppositeV@f# minima at any time,
that is f15f̄7 and fN5f̄6 , for a kink or an antikink,
respectively, withf̄65611(F/v0

2)7(3/2)(F/v0
2)21•••.

Coherent chain oscillations~with marginal effects on the
soliton dynamics! may be ignored fora@v0.

The LE approach of Sec. II can be implemented in t
discrete case, too, but with some caution. In the nonrela
istic limit, the time-dependent energy of the unbiased ch

E~ t !5(
i 51

N F ḟ i
2

2
1

c0
2

2
~Df i !

21
v0

2

8
~f i

221!2G , ~19!

with Df i5f i2f i 21, can be approximated to6

E~ t !.El~X!1 1
2 MlẊ

2[El~
1
2 !1VPN~X!1 1

2 MlẊ
2,

~20!

whereMl is an unspecified effective soliton mass,VPN(X) is
the Peierls-Nabarro~PN! potential4 experienced by a free
soliton moving on a periodic substrate—it vanishes in

continuum limit ~17!—and El(
1
2 ) is the minimum of the

function El(d), in reduced zone notationd[Frac@X/Dx#
~see discussion of Fig. 1, below!. The time derivative of
E(t), see Eq.~9!, reads
8-3
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Ė~ t !5ẊFMlẌ1VPN8 1
Ẋ2

2
Ml8G , ~21!

where for later convenience we retain also the last term
the RHS, although it turns out to be negligible in the nonr
ativistic limit ^Ẋ2&!c0

2.
Analogously, Eqs.~10! and ~11! must be replaced with

F(
i 51

N

ḟ i572FẊ ~22!

and

2a(
i 51

N

ḟ i
2.2g l Ẋ

2, ~23!

respectively, where

g l

g0
5

(
i 51

N

ḟ i
2

M0Ẋ2
5

Kf

K6
, ~24!

with g05aM0. Here, Kf and K6 are the kinetic energy
respectively, of the entire one-soliton bearing chain$f i% and
of the quasiparticle with massM0, associated with the soli
ton center of mass. Note that due to discreteness, the e
tive soliton massMl and the viscous coefficientg l are ex-
pected to be periodic functions of the center of ma
coordinateX. In view of thez i(t) correlation functions~18!,
the discrete version of Eq.~12! reads

^j~ t !j~ t8!&52g lkTd~ t2t8!. ~25!

FIG. 1. Dynamical parameters of a driven kink versus time:u(t)
~dots!, El /E0 ~squares!, Ml /M0, static definition~35! ~circles!, and
Ml /M0, dynamical definition~38! ~triangles!. Configurations and
velocity profiles of the chain have been simulated by numer
integration of Eq.~18!. Here, El was obtained from Eq.~19! by

subtracting the kinetic energy and the average offset (1/2)(V@f̄1#

1V@f̄2#); u(t) was determined from the average velocity of t

chain center of mass,ḟc.m. ~see Sec. III B, bottom!. Note that a
minimum of El(t), in coincidence with a kink crossing the botto
of a PN well, corresponds to a maximum of the static mass an
minimum of the dynamical mass. Parameter values:v0

258, c0

51.5, a/v0510 andT50.
09430
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Finally, on inserting Eqs.~20!–~23! and~25! into the energy
balance Eq.~8!, we obtain for a nonrelativistic discretef4

soliton the nonlinear LE

Ml~X!Ẍ52g l~X!Ẋ2
Ẋ2

2
Ml8~X!2VPN8 ~X!72F1j~ t !.

~26!

A discrete soliton is thus represented by a Brownian wal
diffusing on a trapping potential; in the forthcoming secti
the functionsMl(X), g l(X), andVPN(X) will be investigated
numerically in thenoiseless~or zero-temperature! limit, by
studying the soliton response to an applied~constant! drive
F.26

C. Kink thermalization

We determine now under what conditions the discrete
~31! guarantees thermalization of an undriven (F50) soliton
diffusing at the string temperatureT. To keep our discussion
as simple as possible, we take the Smoluchowski approxi
tion (MlẌ50) of Eq. ~26!, i.e.,

g l~X!Ẋ52
Ẋ2

2
Ml8~X!2VPN8 ~X!1j~ t !. ~27!

As for an equilibrium dilute gas,̂Ẋ2&5kT/Ml , Eq.~27! can
be further approximated to

g l~X!Ẋ52
kT

2

d

dX
ln Ml~X!2VPN8 ~X!1j~ t !. ~28!

The corresponding Fokker-Planck equation26 can be written
down readily and solved for the stationary probability de
sity P(X), that is

P~X!5NAg l~X!expS 2
VPN~X!

kT
2

1

2
ln@Ml~X!# D , ~29!

whereN is a suitable normalization constant. Thermalizati
requires thatg l(X)}Ml(X); hence, in the nonrelativistic
limit,

P~X!5N expS 2
VPN~X!

kT D , ~30!

as from the canonical formalism. In the following, therm
fluctuations, if any, are taken so small thatO(kT/E0) cor-
rections may be neglected. The linear version of the LE
Eq. ~26!,

MlẌ52g l Ẋ2VPN8 ~X!72F1j~ t !, ~31!

thus provides an adequate framework to interpret our sim
lation data.

III. DISCRETE DYNAMICS

The periodic LE coefficientsMl(X), g l(X), andVPN(X)
can be determined to a large accuracy by comparison w
numerical simulation. Actually, a number of perturbatio
schemes have been developed6 to compute analytically the

l

a

8-4
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coefficients of the Fourier series forMl(X) andVPN(X). De-
spite a considerable mathematical effort, at this time th
appear to persist substantial discrepancies among theore
predictions by different authors20,29,30 and between theory
and simulation30 ~for a review see Ref. 6!.

In a preliminary report31 we showed that the relation

g l~X!5aMl~X!, ~32!

is verified numerically for a discrete chain too~see also Sec
III B !. This result, in addition to ensuring thermalization
the soliton dynamics~Sec. II C!, makes the phenomenolog
cal quantityMl(X), introduced in Eq.~20!, expressible, in
principle, as a ratio of chain sums. Moreover, for a travelli
soliton, the spatial modulation ofMl(X) turns out to be rela-
tively unimportant~at least for not too small ad value19,20!,
so that Ml(X) may be replaced with its time averag
^Ml(X)&. In conclusion, on neglectingO(kT/E0) correc-
tions, the number of unspecified LE coefficients is reduce
two, only, namely, theX-dependent PN potential and an a
propriate soliton effective mass.

A. The Peierls-Nabarro potential

Our ansatz is the assumption, to be assesseda posteriori
~Sec. III C!, that the PN potential is dominated by its fir
spatial Fourier component20

VPN~X!5
kPN

4p2 @11cos~2pX!#. ~33!

Then we plotted the instantaneous configurational energEl
@computed through Eq.~19! after subtracting the chain ki
netic term and correcting for the soliton offsetsf̄6 , see Fig.
1# versus time for a soliton in the running state, i.e., driv
with nonvanishing speedu(t): El oscillates between a mini
mum Emin and a maximumEmax, that do not depend on th
actual ~small! value of the drive. The choice ofF, though,
affects the time dependence ofu(t) in a manner reminiscen
of a damped particle falling down a tilted washboa
potential.26 Furthermore, we computed the rest energ

El(
1
2 ) and El(0) statically atF50. It turns out that the

damped soliton, no matter what the initial speed, gets trap

midway between sites,d51/2, with energyEl(
1
2 )5Emin . On

the other hand, one can pin the soliton atX5 iDx, or d50,
and observe that the energyEl(0) of the pinned solution
coincides withEmax. Hence, the static determination of th
PN potential amplitudekPN(d)/4p25(Emax2Emin)/2.

In Fig. 2 the ratiosEl(
1
2 )/E0 , El(0)/E0, andkPN/ k̄PN are

plotted for increasing values of the soliton sized. As d gets
much larger thanDx, discreteness effects tend to vanish, i.
El→E0 and kPN→0. In the opposite limit,d→0, Eq. ~19!

yieldsEl(
1
2 )/E053d andEl(0)/E053/16d; analogously, for

k̄PN[kPN(0) we obtaink̄PN5(p2/4)v0
2.

Finally, we investigated the unlocking transition that tak
place asF increases above the threshold valueF35kPN/4p.
As shown by Risken26 for the cosine potential~33!, the time
09430
re
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averageu(F)[^u(t)& tends to an asymptotic valueul ~ana-
lyzed in Sec. III B! according to the zero-temperature law

u~F !

ul
5A12S F3

F D 2

~34!

for F>F3 and u(F)50, otherwise. As pointed out in Sec
II A, in the continuum limitu(F)5uF with uF52F/g0. The
curves of u(F)/uF versus F ~Fig. 3! illustrate well the

FIG. 2. Characterization of the PN potential. The static qua

tiesEl(
1
2 )/E0 ~open circles! andEl(0)/E0 ~solid circles! are plotted

versus d. The differenceEl(0)2El(
1
2 ), in units of v0

2/8 ~solid

squares!, is compared withkPN/ k̄PN, as obtained from the fitting
law ~34! ~open squares!. The agreement is very close ford.0.2.
Parameter values:v0

258, a/v0510 and T50; F was chosen
larger than, but close toF3 ~see text!.

FIG. 3. The kink mobility u(F)/uF versusF/F3 for kT50
~solid circles!; 50.2 ~squares!; 50.5 ~triangles!; 51.0 ~open
circles! ~in units of kPN/4p2). The kink velocity u(F) has been
obtained by numerical integration of Eq.~18!, see text. The thresh
old F3 is identified withkPN/4p and plotted in Fig. 2. The solid
curves represent the relevant Risken’s solution@Eq. ~11.78! in Ref.
26, or Eq. ~34! at T50#. As we chose to rescaleu(F) by uF ,
Risken’s solutions have been divided by the fitting parameteruF /ul

reported in Fig. 4. Parameter values:v0
258, c051.5 anda/v0

510.
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discreteness-induced trapping mechanism mentioned in
earlier literature12,18–20and afford an independent determin
tion of bothkPN andul . This provides us with a dynamica
measurement of the PN potential amplitude: The agreem
between our alternate estimates ofkPN, is verified within a
1% accuracy in Fig. 2, deviations being expected at smad,
due to the asymmetry of the tilted potentialV@f# ~see Sec.
III D !. In fact, the maximum value ofkPN accessible to a
driven ~anti!kink is (16/3pA3)k̄PN, because for F
.v0

2/3A3 the chain becomes unstable.31 Note that, forF
.F3 the profile ofVPN(X) could have been determined d
rectly, by combining the ‘‘trajectories’’ ofE(t) and u(t)
numerically, see Fig. 1.

B. The kink effective mass

We discuss now the renormalized parametersg l and Ml
of the Brownian soliton~31!. These parameters control th
diffusive properties of the fluctuating soliton at finite tem
perature. Strictly speaking, in the overdamped regimea
@v0, our LE approach gives us direct access to two qua
ties, only, the temperatureT and the viscous coefficientg l

~24!, asMlẌ.0 ~Smoluchowski approximation!.
Numerical fits of the curvesu(F)/uF in the suprathresh

old neighborhoodF*F3, based on the zero-temperature la
~34!, provide a rather accurate estimate oful as a function of
d. In view of our ansatz~33!, u(F)/uF must be compared
with the RHS of Eq.~34! divided by the fitting paramete
uF /ul . Unfortunately, we could not explore the domaind
,0.2, lest the thresholdF3 grows so large that the solito
deformation caused by the drive can no longer be negle
@and Eq.~34! must be modified as explained in Sec. III D#.
Moreover, we computed numerically the RHS of Eq.~24!
and observed that it oscillates with time;g l is actually a
periodic function of the soliton position withminima at d
51/2. As the definition oful involves the time average of th
instantaneous velocityu(t), it seems quite reasonable to po
ul52F/^g l& and compareuF /ul with ^g l&/g0, as we did in
Fig. 4. The agreement is very close, thus lending furt
evidence to our LE picture of the discrete one-soliton d
namics. It should be remarked at this point, that discret
tion may affect througĥ g l& most simulations of therma
pair nucleation too.2,13

The question of an independent determination ofMl
could be tackled for instance in the underdamped diffus
regime,a!v0, at the cost of large radiation effects.12,18 Al-
ternately, one could study the oscillations of a trapped, f
tionless soliton around a minimum of the PN potential,30 or
rely on a collective variable scheme.19,20 Indications are that
a viablestatic definition of Ml would be

Ml5(
i 51

N

~Df i !
2. ~35!

Direct computations show a markedX2dependence ofMl
with maximamidway between sites~Fig. 5!. This result is
certainly true in the high discreteness limit, as ford→0 the

extrema of Ml(X) are Ml(
1
2 )54 and Ml(0)52, respec-
09430
he

nt

i-

ed

r
-
-

n

-

tively. Surprising are, indeed, conflicting predictions, for i
stance in Refs. 19,20, based on the notion of ‘‘bare’’ solit
mass. As a matter of fact, Fig. 1 shows that, again at varia
with Refs. 19,20, also the dc component ofMl(X) is strongly
affected by discreteness. However, the time-averaged m
^Ml& deviates from its continuum limitM0 by an amount
that does not suffices to explain alone the numerical val
of ^g l&/g0 plotted in Fig. 4; actually, not even its maximum

Ml(
1
2 ) shown in Fig. 5, would do it.31 Therefore, usinĝMl&

from definition~35! for the renormalized mass of the discre
soliton, would require introducing simultaneously a reno
malized damping constanta l[^g l&/^Ml& in place ofa.

FIG. 4. The kink damping question. The fitting parameteruF /ul

~open circles! is plotted versusd and compared with^g l&/
g0(5^Ml&/M0) ~Eq. ~38!, squares! also as a function ofd. Param-
eter valuesv0

258, a/v0510, andT50. Inset: subtracted autocor
relation function~36!—from numerical integration of Eq.~18!—
and its exponential fitC(t)5C(0)e2at for kT5kPN/4p2. Other
parameter values:v0

258, c051.5, a/v0510, andF5F3.

FIG. 5. The static mass~35! of a kink at rest at the bottom an

the top of a PN substrate:Ml(
1
2 )/M0 ~open circles! andMl(0)/M0

~solid circles! are plotted versusd. For the sake of a comparison, w
also display the arithmetic average of the two quantities~dotted
curve!. Parameter values:v0

258, a/v0510, andT50.
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In order to test this possibility we computed the su
tracted autocorrelation function of the kink velocityu(t),

C~ t2t8![ lim
t,t8→`

@^u~ t !u~ t8!&2^u~ t !&^u~ t8!&# ~36!

~see Fig. 4, inset! at finite temperatureT and large butfinite
damping constant. Such a damping regime is well descri
by the so-called 1/a expansion,26 which goes beyond the
Smoluchowski approximation~corresponding toa5`) of
the relevant LE; accordingly, one expects thatC(t
2t8)/C(0)5exp@2a(t2t8)#, with C(0)5kT/^Ml&. The nu-
merical valueanum fitted through our simulation data agre
with the input valuea within less than 1%.32 This result
rules out the notion of renormalized damping constanta l .
An alternate definition of soliton effective mass is sugges
by Eq. ~24!, namely,

1

2
MlẊ

2[(
i 51

N ḟ i
2

2
. ~37!

Such adynamicaldefinition of Ml replaces the static defini
tion ~35! with the advantage that both the chain$f i% and the
solitonf6 have the same damping constanta. The two defi-
nitions of the kink effective mass are contrasted in Fig. 1
maximum of the static mass corresponds to a minimum
the dynamical mass, and vice versa.

For computational purposes, definition~37! can be conve-
niently rewritten as

Ml54
(
i 51

N

ḟ i
2

S (
i 51

N

ḟ i D 2 . ~38!

Here we made use of the equalityu(t)5(N/2)ḟc.m.(t), that
relates the velocity of the kink to that of the chain center
mass,Nḟc.m.5( i 51

N ḟ i ; Eq. ~38! is certainly valid in the ab-
sence of thermal fluctuations (T50) and phonon distur-
bances (a@v0). An alternate technique for computingu(t)
is discussed at the top of Sec. IV.

C. The librational frequency

Our determination~37! of the kink mass applies implicitly
to the driven case, where the soliton propagates at a fi
average speedu(F). In the absence of an external drive,F
50, a discrete kink gets trapped between two adjacent c
sites and undergoes damped oscillations~depending on its
initial conditions! until it comes to a halt. Under such cir
cumstances, Boeschet al.30 proposed to indentifŷMl& with
the static mass~35! at d5 1

2 , namely, with itsmaximumvalue

Ml(
1
2 ).

Following this indication we measured the oscillation~or
‘‘librational’’ ! frequency of anunderdampedkink trapped at
the bottom of a PN well. To do this, we tooka andN small
and tilted the potentialV@f# with F!F3; after the chain
reached equilibrium, the tilt was removed instantaneou
The chain starts oscillating around the symmetricV@f#
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minima, f561, with angular frequencyv0, whereas the
kink oscillates inside the trap with librational frequencyvL ,
smaller thanv0. Of course, forc0→0 ~strong discretenes
limit ! vL must tend tov0.30 The velocity of the chain cente
of massḟc.m. has been recorded and Fourier transformed
extract its periodic components with frequenciesv0 andvL .
@The discrete phonon spectrumv2( i )5v0

214c0
2 sin(pi/

2N), with i 51, . . . ,N, and the onset of the shape modev1
have been also resolved.12,19# In Fig. 6 the ratiovL /v0 is
compared with the corresponding estimatevPN/v0 based on
the ansatz~33! for VPN(X). The frequencyvPN is defined

throughvMl(
1
2 ), wherekPN(d) is taken from the data set o

Fig. 2 andMl(
1
2 ) is the static mass of the trapped kink plo

ted in Fig. 5. Note that in the limitd→0, kPN and Ml(
1
2 )

tend to (p2/4)v0
2 and 4, respectively, hencevPN/v0→p/4.

We make now an important remark. In the foregoing S
tion we have proven that our definition~37! for the kink
mass is more accurate than definition~35! employed in Ref.
30 and here, above; however, Eq.~38! clearly shows that the

limit Ml(
1
2 )54 for d tending to zero, holds for both defini

tions. This allows us to interpret the unexpected discrepa
betweenvL ~measured directly! andvPN ~derived for a sinu-
soidal PN potential! as a confidence test of our ansatz~33!.
Following the more refined approaches of Refs. 19,20, le
consider the next-to-leading component of the spatial Fou
expansion ofVPN(X), that is,

VPN~X!5
kPN

4p2 @11cos~2pX!2k cos~4pX!#. ~39!

Accordingly, the correction parameterk(d) reaches its maxi-
mum for d50, where it must obey two simple constraint

VPN(0)2VPN( 1
2 )5v0

2/8 ~see Sec. III A! and VPN9 ( 1
2 )/Ml(

1
2 )

5v0
2 . Solving for k(0) yields k(0)54/p22(1/4).0.15.

FIG. 6. The librational frequency of a trapped kink:vL /v0

~solid circles! was determined numerically by integrating Eq.~18!,
see text;vPN/v0 ~open circles! is computed from the definition

vPN
2 5kPN/Ml(

1
2 ), with kPN(d) andMl(

1
2 ) plotted in Figs. 2 and 5,

respectively. Parameter valuesv0
258, a/v051022, N540, and

T50.
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This is an estimate of the maximum error introduced by
ansatz forVPN(X). Finally, we notice that thek corrections
to the maximum slope of the PN potential Eq.~39!, which in
turn is proportional to the depinning thresholdF3, are
O(k2), only. This explains the close agreement betwe
static and dynamical measurements ofkPN, even at the low-
estd values reported in Fig. 2.

D. Asymmetry effects

In Sec. III A the PN amplitude has been computed in t
alternate ways: On assuming forVPN(X) the sinusoidal form
~33!, we have relatedkPN, first, to the rest-energy differenc

El(0)2El(
1
2 ) of an undriven kink,F50, and, then, to the

depinning thresholdF3. In Fig. 2, static and dynamical de
terminations ofkPN appear to coincide with one anoth
within the accuracy of our numerics, thus corroborating
conclusion that the PN substrate experienced by the so
center of mass, is independent ofF over most of the drive
interval. @It can be easily proven that corrections toVPN(X)
contribute to the order (F/v0

2)3 or higher, only, and make th
PN wells asymmetric.#

The same conclusion does not apply to the overall dyn
ics of the soliton. Under the action of a positive, small t
F!v0

2, the curvaturesv6
2 of the f4 potential~2! around its

right (f̄1) and left (f̄2) minimum split off with v6
2

5v0
2@163(F/v0

2)23(F/v0
2)21•••#. Simultaneously, the

center of the soliton shifts to a distancea65163(F/v0
2)

2(3/2)(F/v0
2)21••• from the stable pointsf̄6 , respec-

tively.
Thus, a finite tilt,FÞ0, causes anasymmetricspatial de-

formation of the soliton—not accounted for explicitly in ou
derivation of the LE~31!—that results eventually in a driv
dependence of its effective mass^Ml&. As a consequence
we expect thatul /uF , too, depends onF, so that the fitting
law ~34! may not level off at a horizontal asymptote. T
avoid such an inconvenience, in Fig. 3 we restricted the
ting procedure to the rising branch of the mobility curv
immediately above the depinning thresholdF3; accordingly,
the fitted values of̂ Ml&/M0 reported in Fig. 4 have bee
obtained atF5F31, namely, for an applied drive that in
creases with decreasingd.

The effects of theF dependence of̂Ml& are illustrated
explicitly in Fig. 7, where the kink mobility curve,u(F)/uF ,
is plotted for two choices ofd, representing the continuum
and the discrete regime, respectively. For larged values the
kink runs freely along an almost continuous chain; its mob
ity, however, slants upwards, slightly above the expected
ymptoteu(`)/uF51. A simple interpretation of this resu
takes into account the kink deformation in the tilted poten
~2!. The mass of the tilted soliton may be approximated

^Ml&
M0

5
a1

2

2 S v1

v0
D1

a2
2

2 S v2

v0
D , ~40!

whose reciprocal is plotted in Fig. 7 for a comparison.
For smaller soliton sizes, the mobility curve does not co

verges to a horizontal asymptote, either. Nevertheless,
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validity of the fitting law ~34! can be extended to the entir
range of interest, provided thatul /uF , or M0 /^Ml&, be com-
puted explicitly from Eq.~38! as a function ofF. The out-
come of the improved fitting procedure of Fig. 7 is ve
encouraging, indeed: The asymmetry effects due to the d
F can be fully incorporated in the framework of our L
approach.

IV. KINK DIFFUSION

So far, we have determined the LE coefficients^Ml(X)&
andVPN(X) by simulating the deterministic response of t
coordinateX(t) to an external forcing term. Relying on th
results of Sec. III, we are now in the position to interpret o
simulation data for the termal diffusion of a single solito
along a discretef4 chain. At this point, no further paramete
can be fitted to the numerics; the LE~31! alone, comple-
mented with relations~32!, ~33! and ~37!, should suffice to
reproduce the temperature dependence of both the mob
curve and the diffusion coefficient of a diffusing~over-
damped! soliton.

As an introductory note, we remind that the identityu

5(N/2)ḟc.m. of Sec. III B fails in the presence of persiste
fluctuations and could hardly be used to locate a rando
diffusing soliton. We developed a more efficient compu
tional technique to sample the stochastic processX(t): At
regular time intervalsDtX copies of the chain configuratio
are recorded and then fed through a filtering routine t

FIG. 7. Asymmetry corrections to the mobility curveu(F)/ul

for c0540 ~dashed curve and data points above the solid line! and
c051.5 ~dashed curve and data points below the solid line!. The
data points~open and solid circles! have been computed by numer
cal integration of Eq.~18!, following the technique in Sec. III B. In
the discrete regime,c051.5, the dashed curve is the fitting law~34!,
with ul52F/a^Ml& and Ml computed from Eq.~38!. For c0540,
the dashed curve represents the continuum limitu(F)/uF

5M0 /^Ml& ~see the text! with ^Ml&/M0 approximated as in Eq
~40!. The solid line, corresponding tou5uF , was drawn for graphi-
cal convenience. Other parameter valuesv0

258, a/v0510, andT
50.
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makes the chain evolve further in time, but at zero tempe
ture and much larger a damping constant; as a result,
chain converges quickly to a static configuration with t
~anti!kink located between two adjacent chain sites. This c
responds to filtering out any phonon oscillation, possible d
crete breathers6 and thermal fluctuations; the ensuing qua
tization ~with unit step! of the sampled soliton trajector
Xn5X(nDtX) ~see Fig. 8, inset! has no bearing on the sta
tistics of our simulations, provided that the displaceme
measured are conveniently long andDtX is chosen shorte
than any relevant time scale in the problem.

A. Depinning transition

In Fig. 3 the soliton mobility is plotted versusF at finite,
but low temperatures,kT<kPN/4p2. Our simulation data for
u(F,T)/uF match very closely the corresponding Risken
solution, also displayed for reader’s convenience—it took
little as summing up the continued fraction expans
~11.78! of Ref. 26. In particular, the suprathreshold values
u(F,T)/uF do not change much with the temperature, ev
whenkT is raised clear abovekPN/4p2 ~half the PN barrier
height!, and approach the valueg0 /^g l& obtained in the
noiseless case of Sec. III B. This remark conforms well
our picture of a diffusing discrete soliton as of a mass
quasiparticle undergoing~driven! Brownian motion in a pe-
riodic, nonfluctuating potentialVPN(X), with effective mass
^Ml&, ~37!, and equilibrium temperatureT. In particular, as
anticipated in Sec. II C, finite temperature corrections
^Ml(X)& and VPN(X) are negligible forkT!E0 Moreover,

FIG. 8. Diffusion coefficientD(F) of a single kink versusF for
v0

258, c051.5, a/v0510, andkT5kPN/4p2 ~open dots with error
bars!. The quantityD05kT/a^Ml& has been computed by makin
use of definition~38! for the kink mass. The solid curve represen
prediction~42! as obtained numerically from Risken’s solution f
the mobility curveu(F)/uF in Fig. 3. For the sake of a compariso
we simulated also the diffusion of a driven Brownian particle d
scribed by LE~31! with fixed damping constanta and masŝ Ml&
~solid circles!; the PN potential~33! and the masŝMl& were taken
to coincide with the relevant discrete chain values fitted in Figs
and 4 Inset: samples of theX(t) trajectories forF50 ~a! and F
50.1. ~b! The quantization ofX due to our kink positioning tech
nique is apparent. The kink residence times in the PN wells
distributed according to an exponential law.
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the fits in Fig. 3 support the conclusion that the dynami
role of discreteness does not fade away at high temperatu
nor does for strong driving forcesF, at odds with common
knowledge.

B. Diffusion coefficient

The soliton response to an external forceF is customarily
expressed in terms of its mobility, i.e., a stationary obse
able that may be averaged over time according to the erg
hypothesis.26 In the present section we pursue an alternat
approach: We focus on the spatial dispersion of the sol
center of massX(t) along the driven discrete chain. As th
soliton runs with average speedu(F) in the direction of the
external forceF, the random switches between locked a
running state are expected to cause an additional diffus
effect on the particle around its average position^X(t)&. To
this purpose we computed numerically thenormal diffusion
coefficient

D5 lim
t→`

1

2t
^@X~ t !2^X~ t !&#2& ~41!

of the transport process~31! and studiedD as a function of
the biasF at constant temperature. In Fig. 8 we display o
results forD/D0, where the quantityD05kT/a^Ml& denotes
Einstein’s diffusion coefficient for the free Brownian motio
in one dimension.32 A bump in the curves ofD versusF is
detectable forF;F3, with D(F).D0; the depinning thresh-
old is thus characterized by an excess diffusion.33

TheF dependence of the diffusion coefficient in the ove
damped regimea@v0 can be interpreted analytically in th
framework of the linear response theory. On extending
approach developed by Risken26 for the zero bias case, on
derives an approximate law that relates the mobility o
biased Brownian particle to its diffusion coefficient, that is33

D

D0
5

u~F !

ul
1F

d

dF Fu~F !

ul
G . ~42!

The bump in theD(F) curve of Fig. 8 is thus related to th
jump of u(F)/ul at the depinning threshold. In Fig. 8 th
simulation data for a diffusing discretef4 kink are compared
with the theoretical prediction~42! and the simulation data
for an equivalent Brownian particle~31!, with PN potential
~33! and averaged coefficients~32! and~38!. Within the sta-
tistics of our data, the agreement is very close.

More notably, the same quantitative agreement has b
obtained over the entire drive and temperature range we h
explored in Fig. 3. At lower temperatures the subthresh
diffusion process is apparently dominated by the interw
hopping mechanism@and formula~42! becomes less and les
accurate#;33 longer and longer residence times come in
play, that eventually exceed our computing capabilities.
nally, Eq. ~42! in the zero drive case,F50, leads to the
simple formulaD(F)/D05u(F)/ul ;

26 we checked such a
prediction successfully for the threekT values reported in
Fig. 3.
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V. CONCLUSIONS

A single soliton diffusing along a discretef4 chain is
well described as a nonrelativistic, massive particle exe
ing Brownian movement on a periodic substrate modeled
a PN potential. Discreteness affects the inertial propertie
the soliton, for which we have introduced a dynamical de
nition of effective mass, and the profile of the PN potent
closely fitted by its first two Fourier components. On t
contrary, the two quantities that determine the coupling
the chain to its heat bath, are insensitive to discreten
soliton temperature and damping constant coincide, ind
with those of the chain, as desirable in thermal equilibriu

The Brownian motion of a single~anti!kink obeys a linear
LE, whose coefficients have been related phenomenol
cally to chain sums. This approach, while not complet
self-consistent, has the great advantage of providing a sim
recipe for interpreting quite accurately the results of num
cal simulations, and in principle, of experiments on act
physical systems. On combining a few simple measu
mentes, one can fine-tune the coefficients of the soliton L
full statistical description of the thermal diffusion of a sing
soliton ~and, possibly, of the entire chain! follows immedi-
ately. Such a procedure allowed us to detect certain disc
ancies in the more self-consistent collective variable tre
ments published in the recent literature.

A number of related problems would deserve further
vestigation.

~1! Underdamped regime.We remind that all of the above
applies to an overdamped chain, only, where phonons
suppressed altogether. On decreasing the string dam
constant, both the nonrelativistic limit and our LE derivatio
explicitly based on neglecting phonon damping, become
tenable~phononradiation dampingstarts playing an impor-
tant role18,19,28!: Soliton diffusion is then likely to be bette
describable as a nonstationary stochastic process, for w
B

O

er
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however, the phenomenology available to-date is still rat
poor.6,12,20

~2! Phonon spectrum of a one-soliton bearing chain.Dis-
creteness affects both the spectrum and the density of
normal modes in af4 chain.12 Our simulation shows that the
librational vL and the shape-mode frequencyv1, shift to
opposite directions with increasingd. Moreover, internal
modes are known24,34 to bifurcate from the phonon essenti
band v( i ) in thresholdless fashion, i.e., extra modes m
appear as soon as the continuum stringf(x,t) is modeled
through the discrete chainf i(t), no matter whatd. Further-
more, localized nonlinear solutions~also termed discrete
breathers! show up for vanishingly smalla values.35

~3! Collisional dynamics.Discreteness affects the solito
scattering off another soliton or a chain defect, as well.6 As a
consequence, the kink-antikink pair nucleation rates13 ought
to be computed to account for the trapping action of the
potential. Analogously, the soliton-impurity interaction
likely to be effectively screened by the PN substrate. Fina
as discrete solitons are not transparent to propaga
phonons, one might consider the possibility of phonon m
diated soliton-soliton interactions.28

~4! Periodic forcing. At zero ~or low! damping the ac
driven dynamics of a single discrete soliton might reve
resonant behaviors due to the frequency matching betw
internal modes and the periodic shape modulation of the s
ton travelling on a PN substrate.36 Asymmetry in the pres-
ence of a tilt,FÞ0, might also support ratchetlike solito
transport.37
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