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Elastic strings in solids: Discrete kink diffusion
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The diffusive dynamics of a single discregé¢ soliton coupled to an overdamped heat bath is analyzed in
detail. The Langevin equation for the soliton center of mass is derived in general form and compared with the
outcome of extensive numerical simulation. The effective mass of the moving soliton must be renormalized
dynamically for lattice constants of the order of its size or smaller. The corresponding mobility curve and
diffusion coefficient are determined numerically: At variance with the earlier literature, discreteness effects
persist even at high temperature and in the presence of strong drives.
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[. INTRODUCTION In this article we study numerically a discre¢é theory
coupled to an overdamped viscous heat bath at finite
Soliton-bearing field theories have been advocated téémperature—a thermalization mechanism most commonly
model a variety of physical processes in particle physics,advocated in the current I|;eratu5ré'. “Our main conclusion
soft matter such as polymers and magnetic chfngislo- IS that thga d|ffusn_/e dynamics of a single soliton turns out to
cation theory® and magnetic vortex-line dynamié? In be r_nodlfled by discreteness more _severely than_predlcted in
the continuum limit both the dynamics of a single soliton andearller reports; such an effect persists even at high tempera-

the statistical mechanics of a dilute gas of solitons are Welﬁures, or even in the presence of strong external driving
understood®1! Discreteness, however, is an unavoidable'©CeS: at 0dds with claims to the contrary. Most of the re-

complication, which rests upon two orders of motivations.‘c'uelltlS \;Sg?gtfd ggr(;a applr)T/]éo_éhle_ sw:ae;_Gg:%?Qz)nch%mélgs
(@ In most applications the physical system at hand is inher? ¢ us ur numericai investigat thiesoli-
ently discrete, namely, it reminds one more of a ofm- ton be.causeél).no coherent chaln_deplnnlng frrc%g_] _t_he sub-
two-) dimensional lattice with finite constant, than of a field. strate is permitted, at variance with the SG crditij) no

This is the case of physical mechanisms that involve fOImultikink solutions are allowed that, unlike the SG case, may
instance, linear imperfections in crystafs and transmis- be more stable than the relevant single kink solutfoiinor

sion arrays of either microelectrofit or biochemical inconveniences aréiii) the existence of a soliton shape-

; ; 10,11 . ;
bistable components. (b) The numerical integration of a mrgggr:gghoef Cd(.)gé'rrgt’gg;ggﬁi e(nS?ﬁé”SAc‘;)' leYthr‘]"?g Irchgelate q
field equation requires necessarily the discretization of botf? : ' &Y ' ! u

time and space variables. This amounts to introducing aRy @ Ionfg;::ve?lt sdhap%—rpofé. (“{) t’.*sl}’rqme}][y tof the i
artificial lattice constant that, at variance with), can be minima ot the tiited substrate potential, its efiect 1S negil-

varied in order to minimize uncontrolled corrections. Eitherg'b(l)e Irn t?eesévneg;:r:'ys (r)e;g;mn_éseedc.;él %Ilo <. In Sec. Il we
way, a deeper understanding of discretization effects ma Ju t'?] ati : ILngJ 12 d Wdlé Kink .b w
help make the notion of soliton a more viable physical para- erve the stationary or an overdamp Nk Sub-
digm jected to a random field of force at constant temperature,
' . th in the continuum(Sec. 11 A) and in the discrete case
A great deal of effort has been put into the attempt albo . g -
9 P P (Sec. 11 B); the soliton thermalization question is addressed

clarifying the role of discreteness in soliton dynamics.. : L
Roughly speaking the approaches brought forward so far fall Sec. Il C. In Sec. Il we simulate the deterministic dynam-

into two categories(a) Lattice field theory schemes, where ics of a discrete soliton in order to evaluate the lattice forces
the equilibrium partition function of a soliton bearing theory I experlences(Se_c. A anc_JI estimate its e_ﬁectlve mass
is computed as a function of the lattice constant and th Sec. I B. Poss!ble corrections to the basic treatment of
temperature, irrespective of the actual thermalization mecha—.ec'Illtarthua;m";ed t'm gec. “I.C arf1d ”(ij' I;l,,esﬁc'kl\./ we
nism, by means of either perturbatid or nonperturbative simuiate the stochastic dynamics of a discr inkin -
techniques? (b) Langevin equatiofiLE) schemes, where the thermal eqwllbnum, with p_artlcular attention to the depin-
diffusive dynamics of a single, discrete soliton is determine ing transition from_the lattice substr_a(tﬁ_ec. VA and the
perturbatively either at zerd;'® or finite temperature, the ink diffusion coefficient at the depinning thresho(ec.
heat bath being unspecifiédsupplemented externalfyor IV B). Finally, in Sec. V we outline a summary of the results

replaced by an equilibrium phonon gas of the theory itdelf. and conclusions, as well as an outlook of potential exten-

Both schemes aim at crafting recipes for eliminating unde>'oNs of this work.

sirable discreteness effects, for instance, by introdueitg

hoc counterterms;'” or setting values of the temperatures,
such that the residual finite-lattice corrections may be The LE approach to the diffusive dynamics of a single
neglected:>*° topological soliton was spurred in the mid 1980’s by the

Il. THE LANGEVIN EQUATION APPROACH
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experimental observation that fluxons in long Josephson Eo 5

junctions execute irregular displacements reminiscent of MoZgz:f ¢ (X u=0)dx= 7. (7)

Brownian motiorf Langevin equations for the soliton center 0

of massX(t) were then construed on the basis of either pheThe dilute gas approximation requires thag(T)d<1,

nomenological arguments, or simplified energy balance where ny(T) denotes the equilibriumantikink density

equation$? or more systematic collective variable No(T) o (1/d) exp(~Ey/KT), that isk T<E.*°

eXpanSi0n§.9 In this section we derive the LE for a discrete The phonon Spectrum in the presence of a Sing]e

topological soliton in the most general form, leaving the de-(antjkink consists of a continuum branch, with non-negative

termination of its effective masgv (X)) and substrate po- \ave vectorsk and dispersion relatiom?(k) = w3+ c2k?,

tential Vpy(X) (the so-called Peierls-Nabarro potenti@ an  ang two discrete frequencies: the zero-frequency Goldstone

accurate comparison with the results of numerical simulamge, responsible for the soliton translation, and a shape-

tion. mode with frequencyw; = (1/3/2)w,, describing an internal
oscillation of the soliton.

A. Continuum limit The soliton LE may be best set up through a simple en-
ergy balance argumeff. As the perturbation terms are
switched on, thep..(x,t;u) energy varies according to the
rate equatioh

Our starting point is the classical, drivep®* string de-
scribed by the Hamiltonian density

2 2
_rt zﬁ d
Aol 5 ey TVidl W GEW= [ [Foag. b ax0Igegx @©

with on-site potential In order to compute the RHS of E), we impose that the

2 shape of thgantikink—i.e., the function¢-—remains un-
V[p]= ﬂ((ﬁz_ 1)2-F ¢. (2)  changed; the only effect of the perturbation is to modify the

8 motion of the soliton center of mass, nameX(t) andu(t)
must be handled a&ime-dependentstochastic processes.

The coupling of the fieldp(x,t) to an equilibrium heat-bath Simple calculations yield

at temperaturd is represented by the last two terms on the
right-hand sidgRHS) of the corresponding field equation

d .
. GEW=pu, ©)
bu—Cobuxt 5 (H*—1)p=F—ap+{(x1), ()
FJ' ¢ dx=F(2F)u, (10
wherec, and w, are the parameters of the unperturbgt '
equation, « denotes the string damping constant and the
Gaussian nois€(x,t) has zero mean and autocorrelation
function R _af ¢4 (dx=—apu, (11

't "1))=2akTs(t—1t")6(x—x"). 4
(LOGDLX 1)) =2aKTa(t=t) S(x=x"). (4 U ¢i’t(x,t;u)§(xyt)dx,j%(X,,t,;u)g(x,,t,)dx,>
The unperturbed K=0,0=0) string bears both extended

(phonons and localized solutionésolitons.'° Localized so- =2a(pu)kTs(t—t"), (12
lutions can be well approximated to an appropriate linear
superposition of moving kinkg, and antikinks¢_ with and, on combining Eqg¢8)—(12),
r( x—X(t) p=—apF2F+ &)1+ (p/py)?, (13
¢+ (X,t;u)=tanh *+————
2d\/1—u2/c§)’ where po=Mgcy and &(t) is a stationary Gaussian noise

. . . with zero mean and autocorrelation functidg(t)&(t’))
provided that the separation between their centers of masﬁc’zaMokTﬁ(t—t’).

X(t)=xp+ut (xg and u are the integration constaiptss
very large compared with their siz@=cy/w, (dilute gas
approximation. From now on we focus on the single kink
(antikink) solutions(5). By inspection,¢.. describe a rela-

The stationary probability densit?(p) of an undriven
(antkink diffusing according to our LE13) with F=0, can
be readily derived from the Fokker-Planck formaliéh,

tivistic quasiparticle with energy namely,
Eq P(p)=/\/ex;{ - E"(u) , (14
E(U):f H[¢.]dx= \/?2/(:0, (6) kT
where N is a suitable normalization constant. The
momentump(u)=Mou/\/l—uzlcoz, and mass T-dependent term in
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kT

E(u)
E*(u)=E(u)+ 7In

= (15)

is an artifact of the energy balance argumésjt More ap-
propriately, in Eq.(8) we ought to make use af(u), the
free energy of alressedsoliton with momentunp(u)—i.e.,
“dressed” with noise-induced fluctuatiod&* A simple it-
eration scheme allowed us to prove that on posing

_ ( 1 kT
]-"(u)—E(u) 1- E mm

E(u)
Eo

+ --), (16)

one can easily calculate th@(kT) corrections to the LE

coefficients. In particular, the new stationary probability den-

sity P(p) coincides with Eq(14) after replacinge* (u) by

E(u) and, in leading order{up)=KkT, as expected for a
relativistic particle. These remarks, although of some rel

PHYSICAL REVIEW B3 094308

B. Discrete chains

Discreteness, no matter what the cause, has a twofold ef-
fect on the soliton dynamics(i) Phonon dressing, as it
modulates the shape of the solutidbs Upon expanding the
corresponding deformation on an appropriately defihbd-
sis of orthogonal discrete phonon modes, the soliton rest en-
ergy E, turns out to be no longer translational invari&ht.
The functionE;(X) becomes periodic in space with period
equal to the chain constantx. (ii) Phonon radiation, as the
moving soliton excites phonons that resonate with its modu-
lation time constar(s).31%?8The ensuing radiation damping
is negligible in the overdamped regime, and will be ignored
in the following.

The numerical integration of the field equati¢®) was
carried out by discretizing the spatial variabte so that

D(IAX 1) = ¢i(t), withi=1,2,... N, and Eq.(3) becomes

evance for assessing the self-consistency of our approach,
are immaterial to the discussion of discreteness effects in
Sec. lll.

The momentum LE13) can be rewritten in the standard

2
b1~ 3o+ (- b =F—ad+ L(1), (19

nonrelativistic form

MoX=—aMXF 2F + &(t), 17
with X(t)=u(t), under the condition thgu?)<c3. As from
Eq. (17) (u?)=kT/M,, the nonrelativistic limit coincides
with the dilute gas approximatiokT<E,. To make contact
with the collective variable approachye note that, in view
of the energy equipartition theorem, theerofrequency
Goldstone mode would pick up an amow/2 of thermal

where AX=1, Ay,i=¢; 1+ di_1—2¢; and {;(t) denote
local Gaussian noise sources wit¢;(t))=0 and
(G E(t")=2akTs; o(t—t).

Our simulation cod® is a framework based on Numerical
Python and custom C libraries. Time integration is per-
formed by means of a modified Mil'shtein algorithm, at fi-
nite T, and a standard fourth-order Runge Kutta 1o+ 0.
For the time integration step used hed¢=10 2, outputs
from the two integration algorithms coincide in the limit of
vanishingly low temperatures.

energy, corresponding to the average kinetic energy of the The one-soliton bearing chaifi¢;} is free-end [ ¢y

soliton101!

= ¢1,¢Pn+1= dn] and long enough, = NAX, for the diffus-

A final remark about the potential role of the shape modang soliton not to experience boundary forces. The chain ex-

of the ¢* soliton with frequencyw; = (1/3/2)wo.1!! Rice?”’
has shown that the center of mass coordinétend the in-
ternal modew; couple dynamicallyat higher order, so that

the propagation law foK(t) develops a small periodic com-
ponent with frequencw,; however, its amplitude is propor-
tional to kT and, therefore, negligible in the overdamped

limit.

trema fluctuate around oppositd ¢] minima at any time,
that is ¢1=¢= and ¢y=¢., for a kink or an antikink,
respectively, withg. = =1+ (F/wd) F (3/2) (F/wd)?+ - - -.
Coherent chain oscillationgwith marginal effects on the
soliton dynamicsmay be ignored fow> w.

The LE approach of Sec. Il can be implemented in the
discrete case, too, but with some caution. In the nonrelativ-

We now summarize the range of parameter values exgyjc limit, the time-dependent energy of the unbiased chain

plored in our simulation work(i) Low temperature kT

<E,, to ensure that kink-antikink pairs are not thermally

nucleated during our observation tirfeAccordingly, for a
given temperaturd, one ought to choose string lengths
such thatng(T)L<1. (i) Overdamped regimeg> w,, to
avoid relativistic effect$note that the asymptoti¢.. veloc-

ity in Eq. (17) is ug with ug=2F/aM ], to suppress phonon

radiation’>*® and to quench breath@r® and phonon

oscillationg®?! (of course, with the exception of the transla-

tional, or Goldstone modg (iii) Small (constank drive, F

N I2 Cz 2
EM)=2, %+§(A¢i>2+%<¢?—1>2, (19

with A ¢;= ¢, — ¢;_ 4, can be approximated %o

E()=E|(X)+ 3 M{X?=E|(3)+ Vpn(X)+ 5 M| X2,
(20)

< w3, to preserve the bistable nature of the on-site potentiavhereM is an unspecified effective soliton ma¥(X) is

V[ ¢] (which gets lost forF > w3/34/3), to limit the soliton
speedur to sub-relativistic values<<cy, and to ignore the

the Peierls-NabarrdPN) potentiaf experienced by a free
soliton moving on a periodic substrate—it vanishes in the

drive dependence of the soliton shape. Indeed, the minimgontinuum limit (17)—and E;(3) is the minimum of the

and the barrier oV[ ¢] shift differently with F (Sec. IlI D):
The corresponding tail offsets and shape deformatios.of
are totally neglected in the LE approach adopted here.

function E|(8), in reduced zone notatiod=Frad X/AXx]
(see discussion of Fig. 1, belpwThe time derivative of
E(t), see Eq(9), reads
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' Finally, on inserting Eqs20)—(23) and(25) into the energy

S —
= | —2
FFa=20 10 balance Eq(8), we obtain for a nonrelativistic discreig”
L3 G soliton the nonlinear LE
| | v .. e
M (X)X= = (X)X~ 7M|,(X)_VEN(X)12F+ &(1).

(26)

A discrete soliton is thus represented by a Brownian walker
diffusing on a trapping potential; in the forthcoming section
the functionavl|(X), v,(X), andVpy(X) will be investigated

t numerically in thenoiseless(or zero-temperatujdimit, by
stlzjé:iying the soliton response to an appliednstant drive

FIG. 1. Dynamical parameters of a driven kink versus tio¢)
(dots, E,/E, (squares M, /M, static definition(35) (circles, and
M, /M, dynamical definition(38) (triangles. Configurations and
velocity profiles of the chain have been simulated by numerical C. Kink thermalization

integration of Eq.(18). Here,E, was obtained from Eq(19) by We determine now under what conditions the discrete LE
subtracting the kinetic energy and the average offset (Y2}(]  (31) guarantees thermalization of an undrivé=0) soliton
+VILé-1); u(t) was determined from the average velocity of the diffusing at the string temperatufle To keep our discussion
chain center of massp., (see Sec. IlIB, bottom Note that a  as simple as possible, we take the Smoluchowski approxima-
minimum of E|(t), in coincidence with a kink crossing the bottom {5 (M|5(=0) of Eq.(26), i.e.,

of a PN well, corresponds to a maximum of the static mass and a

minimum of the dynamical mass. Parameter value%::S, Co ) X2
=1.5, a/wy=10 andT=0. y|(X)x=—7M,’(X)—V§,N(X)+§(t). (27)
. : .o X2 , As for an equilibrium dilute gagX?)=kT/M,, Eq.(27) can
E()=X] M X+ Vet oM, (21)  pe further approximated to
where for later convenience we retain also the last term on N kT d /
. - . X)X=——— =< InM;(X) = V5 (X) + &(1). 28
the RHS, although it turns out to be negligible in the nonrel- n(X) 2 dX NM(X)=Ve(X) T£(D). (28
ativistic limit (X*)<cg. The corresponding Fokker-Planck equaffocan be written

Analogously, Eqs(10) and(11) must be replaced with  gown readily and solved for the stationary probability den-
sity P(X), that is

N
FY ¢=72FX (22) Ven(X) 1
= P<X>=Nw|<X>exp( R : —Eln[wxn), (29
and whereA is a suitable normalization constant. Thermalization
N requires thaty,(X)«M,;(X); hence, in the nonrelativistic
—a df=—yX’, (23 fimit
Vpn(X)
respectively, where P(X)—NGXF{ kT (30
N as from the canonical formalism. In the following, thermal
E »? fluctuations, if any, are taken so small th@tk T/E,) cor-
Y i=1 ' _ Ky (24 rections may be neglected. The linear version of the LE in
Yo Mx? Ki' ) Eq.(26),
with yo=aM,. Here, K, and K. are the kinetic energy, M X == 3 X=Vp(X) 7 2F + £(1), (31

respectively, of the entire one-soliton bearing chain; and  thys provides an adequate framework to interpret our simu-
of the quasiparticle with mas¥l,, associated with the soli- |5tion data.

ton center of mass. Note that due to discreteness, the effec-
tive soliton masdM, and the viscous coefficient, are ex-

. . Ill. DISCRETE DYNAMICS
pected to be periodic functions of the center of mass

coordinateX. In view of the;(t) correlation functiong18), The periodic LE coefficientd/;(X), y,(X), andVpp(X)
the discrete version of E¢12) reads can be determined to a large accuracy by comparison with
numerical simulation. Actually, a number of perturbation
(E()E())=2ykTs(t—t"). (25) schemes have been develobén compute analytically the
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coefficients of the Fourier series ff,(X) andVpy(X). De- Sy 7T 1 71— .
spite a considerable mathematical effort, at this time there
, o : : E(0)/E,
appear to persist substantial discrepancies among theoretical
predictions by different authc®®**3° and between theory
and simulatior (for a review see Ref.)6 1.0
In a preliminary report we showed that the relation

N(X)=aM;(X), (32)
is verified numerically for a discrete chain tésee also Sec. 03
[l1B). This result, in addition to ensuring thermalization of
the soliton dynamicgSec. Il Q, makes the phenomenologi-
cal quantityM,(X), introduced in Eq(20), expressible, in . . S, L
principle, as a ratio of chain sums. Moreover, for a travelling 0 02 04 06 08 1 12 14
soliton, the spatial modulation &fl,(X) turns out to be rela- d
tively unimportant(at least for not too small d value®29,
so that M;(X) may be replaced with its time average FIG. 2. Characterization of the PN potential. The static quanti-
(M|(X)). In conclusion, on neglectin@(kT/Ey) correc- tiesE,(3)/E, (open circlesandE, (0)/E, (solid circles are plotted
tions, the number of unspecified LE coefficients is reduced tQersusd. The differenceE,(0)—E;(3), in units of w2/8 (solid

two, only, namely, th&X-dependent PN potential and an ap- squarey is compared withkpy/kpy, as obtained from the fitting

propriate soliton effective mass. law (34) (open squares The agreement is very close fde>0.2.
Parameter valuesw3=8, alwy=10 and T=0; F was chosen
A. The Peierls-Nabarro potential larger than, but close tB3 (see text

Our ansatz is the assumptio_n, tp be a;seaspdste.riori. averageu(F)=(u(t)) tends to an asymptotic valug (ana-
(Sec. 1O, that the PN potential is dominated by its first lyzed in Sec. Il B according to the zero-temperature law
spatial Fourier componetit

u(F Fs)\?
ub) _ i (_3) 34

k
Ven(X) =5 5[ 1+ cog2mX)]. 33 U F
for F=F5; andu(F)=0, otherwise. As pointed out in Sec.
IIA, in the continuum limitu(F) =ug with ug=2F/vy,. The

Then we plotted the instantaneous configurational enkl . .
P g 19 curves of u(F)/ug versusF (Fig. 3 illustrate well the

[computed through Eq.19) after subtracting the chain ki-

netic term and correcting for the soliton offsets , see Fig. 1.0
1] versus time for a soliton in the running state, i.e., driven

with nonvanishing speed(t): E, oscillates between a mini-

mum E,;, and a maximunk,,,,, that do not depend on the 038
actual (small value of the drive. The choice df, though,
affects the time dependence wuft) in a manner reminiscent
of a damped particle falling down a tilted washboard
potential’® Furthermore, we computed the rest energies

E,(3) and E,(0) statically atF=0. It turns out that the
damped soliton, no matter what the initial speed, gets trapped

midway between sitesi= 1/2, with energyg(3) =Ei,. On
the other hand, one can pin the solitonXatiAx, or §=0,
and observe that the enerd((0) of the pinned solution
coincides withE,.. Hence, the static determination of the
PN potential amplitudépn(d) /472 = (Emax— Emin)/2.

In Fig. 2 the ratioE|(3)/Ey, E|(0)/Eq, andkpy/Kpy are FIG. 3. The kink mobility u(F)/ug versusF/F; for kT=0
plotted for increasing values of the soliton siteAs d gets  (solid circleg; =0.2 (squares =0.5 (triangleg; =1.0 (open
much larger thar x, discreteness effects tend to vanish, i.e. circles (in units of key/47®). The kink velocityu(F) has been
E,—Ey andkpy—0. In the opposite limitd—0, Eq. (19) obtained by numerical integration of E({.8), see text. The thresh-

i 1 — _ . old F; is identified withkpy/47 and plotted in Fig. 2. The solid
yieldsE,(z)/Eo=3d andE, (0)/E,=3/16d; analogously, for curves represent the relevant Risken’s solufigq. (11.78 in Ref.

Ken=Kpn(0) we ObtainkpN=(772/4)w§- 26, or Eq.(34) at T=0]. As we chose to rescale(F) by ug,

Finally, we investigated the unlocking transition that takesRisken’s solutions have been divided by the fitting paramatéu,
place asF increases above the threshold vakig=kp\/47.  reported in Fig. 4. Parameter valuess=8, co=1.5 anda/wq
As shown by Riskef? for the cosine potentigl33), the time  =10.
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discreteness-induced trapping mechanism mentioned in the '

earlier literaturé&*8-2%and afford an independent determina-
tion of bothkpy andu, . This provides us with a dynamical

measurement of the PN potential amplitude: The agreementl' B

between our alternate estimateskef,, is verified within a
1% accuracy in Fig. 2, deviations being expected at sdhall
due to the asymmetry of the tilted potenti§l¢] (see Sec.
[ID). In fact, the maximum value oOkpy accessible to a
driven (antikink is (16/37\3)kpy, because for F

> w3/3y/3 the chain becomes unstaBfeNote that, forF
>F, the profile of Vpy(X) could have been determined di-
rectly, by combining the “trajectories” of(t) and u(t)
numerically, see Fig. 1.

B. The kink effective mass

We discuss now the renormalized parametgrand M,
of the Brownian soliton(31). These parameters control the
diffusive properties of the fluctuating soliton at finite tem-
perature. Strictly speaking, in the overdamped regimae,

PHYSICAL REVIEW B63 094308

1.0

1.1

1
0.7

1.0 :

|
0.5 0.6

d
FIG. 4. The kink damping question. The fitting parametefu,

(open circleg is plotted versusd and compared with(y,)/
vo(={M)/My) (Eqg. (38), squaresalso as a function of. Param-

> wo, our LE approach gives us direct access to two quantieter valuess2=8, a/w,=10, andT=0. Inset: subtracted autocor-

ties, only, the temperatur€ and the viscous coefficieny,

(24), asM,;X=0 (Smoluchowski approximation

Numerical fits of the curvesa(F)/ug in the suprathresh-
old neighborhood-=F 3, based on the zero-temperature law
(34), provide a rather accurate estimateupfas a function of
d. In view of our ansat433), u(F)/ug must be compared
with the RHS of Eq.(34) divided by the fitting parameter
Ug/u;. Unfortunately, we could not explore the domain
<0.2, lest the threshol&; grows so large that the soliton

relation function(36)—from numerical integration of Eq.18)—
and its exponential fiC(t)=C(0)e ' for kT=kpy/4m?. Other
parameter valuesn(2,=8, co=1.5, a/wyg=10, andF=Fj.

tively. Surprising are, indeed, conflicting predictions, for in-
stance in Refs. 19,20, based on the notion of “bare” soliton
mass. As a matter of fact, Fig. 1 shows that, again at variance
with Refs. 19,20, also the dc componentdf( X) is strongly
affected by discreteness. However, the time-averaged mass

deformation caused by the drive can no longer be neglectedV) deviates from its continuum limiM, by an amount

[and Eq.(34) must be modified as explained in Sec. IlJ.D
Moreover, we computed numerically the RHS of EB4)
and observed that it oscillates with time; is actually a
periodic function of the soliton position witminima at &
=1/2. As the definition ofl; involves the time average of the
instantaneous velocity(t), it seems quite reasonable to pose
u,=2F/(v,) and compareir /u; with {y,)/yy, as we did in

Fig. 4. The agreement is very close, thus lending further
evidence to our LE picture of the discrete one-soliton dy-
namics. It should be remarked at this point, that discretiza-

tion may affect through(y,) most simulations of thermal
pair nucleation toé:*®
The question of an independent determination Nof

could be tackled for instance in the underdamped diffusion

regime,a<wy, at the cost of large radiation effects'® Al-

ternately, one could study the oscillations of a trapped, fric-

tionless soliton around a minimum of the PN potentfadr
rely on a collective variable scheni&? Indications are that
a viablestatic definition of M; would be

N
Mi=2, (A% (35)
Direct computations show a marked— dependence oM,
with maximamidway between site§Fig. 5). This result is
certainly true in the high discreteness limit, as dbr 0 the
extrema ofM(X) are M;(3)=4 and M,(0)=2, respec-

that does not suffices to explain alone the numerical values
of () yo plotted in Fig. 4; actually, not even its maximum
M,(3) shown in Fig. 5, would do it Therefore, usingM)

from definition(35) for the renormalized mass of the discrete
soliton, would require introducing simultaneously a renor-
malized damping constanat,=(y,)/(M,) in place ofa.

1.5 T T T T T T T
o o o © o o ° . M’(I/Z)/MO
° o
Lok 6 ...:28500000003
o .
.
.
o .
ot MOM,
05 7 o s
o e
.
q.-"':o
o
0.0 L | L | L | L |
0.0 0.2 04 0.6 0.8 1.0
d

FIG. 5. The static mas&5) of a kink at rest at the bottom and

the top of a PN substraté,(3)/M, (open circlesandM;(0)/M,
(solid circles are plotted versud. For the sake of a comparison, we
also display the arithmetic average of the two quantifigstted
curve. Parameter values»3=8, a/wo=10, andT=0.
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In order to test this possibility we computed the sub- o[ ' ' ' ' ' "]
tracted autocorrelation function of the kink velocityt), I * e, .
C(t—t")= lim [(uBut))—(u®)ut)] (36  08Fo o . .
tt/ —oo L o, o ¢ . O)L/O)O |
(see Fig. 4, insetat finite temperaturd@ and large bufinite 0.6 °o o ® -
damping constant. Such a damping regime is well described | o e
by the so-called ¥ expansiorf® which goes beyond the o._/o °e .
Smoluchowski approximatioricorresponding tow=«) of 0.4 PN 0 ° 7
the relevant LE; accordingly, one expects theax(t r e .
—1")/C(0)=exd —a(t—t")], with C(0)=kT/{M,). The nu- 02 ¢,
merical valuea,,, fitted through our simulation data agrees | e
with the input valuea within less than 1962 This result , . | . , . ,
rules out the notion of renormalized damping constant 0.0 0.1 0.3 0.5 07
An alternate definition of soliton effective mass is suggested d

by Eq.(24), namely,
v Y FIG. 6. The librational frequency of a trapped kink; /wq

1 N ¢ (solid circles was determined numerically by integrating E48),
—M X EE — (37 see text;wpy/wg (Open circley is computed from the definition
- w2 =kpn/M (3), with kpy(d) andM(3) plotted in Figs. 2 and 5,
Such adynamicaldefinition of M, replaces the static defini- respectively. Parameter valueg=8, a/w,=10"2, N=40, and
tion (35) with the advantage that both the chéi;} and the  T=0.
soliton ¢ have the same damping constantThe two defi-
nitions of the kink effective mass are contrasted in Fig. 1: Aminima, ¢= =1, with angular frequency,, whereas the
maximum of the static mass corresponds to a minimum okink oscillates inside the trap with librational frequenay,
the dynamical mass, and vice versa. smaller thanw,. Of course, forc,— 0 (strong discreteness
For computational purposes, definitié8i7) can be conve-  limit) w, must tend taw,.%° The velocity of the chain center
niently rewritten as of massé, , has been recorded and Fourier transformed to
extract its periodic components with frequencigsandw, .
2 b2 [The discrete phonon spectrum)z(i)zw§+ 403 sin(i/
= 2N), withi=1,... N, and the onset of the shape magde
TN 2 (38 have been also resolvéd! In Fig. 6 the ratiow, /g is
y .) compared with the corresponding estimaig,/ oy based on
the ansatz33) for Vp\(X). The frequencywpy is defined

Here we made use of the equalil!(t)=(N/2)<'1>c_m,(t), that throughwM,(3), wherekpy(d) is taken from the data set of
relates the velocity of the kink to that of the chain center ofFig. 2 andM,(3) is the static mass of the trapped kink plot-
massNaoem=2IL,¢:; Eq.(38) is certainly valid in the ab- ted in Fig. 5. Note that in the limiti—0, kpy and M,(2)
sence of thermal fluctuationsT &0) and phonon distur-  tend to (r%/4)w3 and 4, respectively, heneepy/ wy— /4.

bances &> w(). An alternate technique for computingt) We make now an important remark. In the foregoing Sec-
is discussed at the top of Sec. IV. tion we have proven that our definitiof87) for the kink
mass is more accurate than definiti@b) employed in Ref.
C. The librational frequency 30 and here, above; however, Eg§8) clearly shows that the

Our determinatiori37) of the kink mass applies implicitly limit M(z)=4 for d tending to zero, holds for both defini-
to the driven case, where the soliton propagates at a finitdons. This allows us to interpret the unexpected discrepancy
average speed(F). In the absence of an external drive, betweenw  (measured directlyand wpy (derived for a sinu-
=0, a discrete kink gets trapped between two adjacent chaigoidal PN potentialas a confidence test of our ans&33).
sites and undergoes damped oscillatiédepending on its Following the more refined approaches of Refs. 19,20, let us
initial conditions until it comes to a halt. Under such cir- consider the next-to-leading component of the spatial Fourier
cumstances, Boesat al° proposed to indentifyM,) with ~ expansion oVpy\(X), that is,
the static mas&35) at 5= 3, namely, with itsmaximunvalue y
Mi(3)- -~ -

Following this indication we measured the oscillati@n Ven(X) 4772[1+C05(27Tx) wcogdmX)l. (39
“librational” ) frequency of arunderdampedkink trapped at , ) ) .
the bottom of a PN well. To do this, we toakandN small Accordingly, the correction paramete(d) rt_eaches its maxi-
and tilted the potentiaV[#] with F<F; after the chain Mum ford=0, where it must obey two simple constraints:
reached equilibrium, the tilt was removed mstantaneoustVpN(O) Ven(3) = 0§/8 (see Sec. Il A and Viy(3)/M(3)

The chain starts oscillating around the symmetvite] —wo Solving for «(0) vyields «(0)=4/mw?—(1/4)=0.15.
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This is an estimate of the maximum error introduced by our 1.05
ansatz fo’Vp(X). Finally, we notice that th& corrections
to the maximum slope of the PN potential Eg§9), which in L o P
turn2|s proporthnal to 'the depinning threshok, are 1.00) N — o o
O(x°), only. This explains the close agreement between *x X
static and dynamical measurementskgf;, even at the low- I JRSIPUINPSSS S con S
estd values reported in Fig. 2. = 0.8 - . ]
& o6l s -
D. Asymmetry effects = o

In Sec. lll A the PN amplitude has been computed in two 04 L ’ |
alternate ways: On assuming fgpy(X) the sinusoidal form ) $
(33), we have relatettpy, first, to the rest-energy difference 02
E,(0)—E(3) of an undriven kink,F=0, and, then, to the :
depinning thresholdrs. In Fig. 2, static and dynamical de- 00 M | . | .
terminations ofkpy appear to coincide with one another 0 2 4 6
within the accuracy of our numerics, thus corroborating the F/F,
conclusion that the PN substrate experienced by the soliton
center of mass, is independent Bfover most of the drive FIG. 7. Asymmetry corrections to the mobility curegF)/u,

for co=40 (dashed curve and data points above the solid mel

contribute to the order/ »2)3 or hi her, only, and make the co=1.5 (dashed curve and data points below the solid)liffde
R/ wp) 9 y data pointgopen and solid circlehave been computed by numeri-

PN wells asymmetrig. ; . K S
The same conclusion does not apply to the overall dynam(-:al integration of Eq(18), following the technique in Sec. Il B. In

. . . " . the discrete regime,,= 1.5, the dashed curve is the fitting 1d84),
ics of the soliton. Under the action of a positive, small tilt, | ... u=2F/a(M,) andM, computed from Eq(38). For c,= 40,

F<wg,_the curvature&)_i of the ¢* potential(2) around its  tne dashed curve represents the continuum limtF)/ue
right (¢.) and left (¢_) minimum split off with w2 =My/(M,) (see the tejtwith (M,)/M, approximated as in Eq.
= w(z)[ltS(F/wS) —3(F/w§)2+ ---]. Simultaneously, the (40). The solid line, corresponding to=ug , was drawn for graphi-
center of the soliton shifts to a distanee = 1i3(F/w(2)) cal convenience. Other parameter vaIm%?S, al wg=10, andT

—(3/2)(F/w§)2+~-~ from the stable pointszi, respec-
tively.

T)r/\us a finite tilt,F =0, causes ansymmetricspatial de- validity of the fitting law(34) can be extended to the entire
formation of the soliton—not accounted for explicitly in our fange of interest, provided that/ug, or Mo/(M,), be com-
derivation of the LE(31)—that results eventually in a drive Puted explicitly from Eq.(38) as a function ofF. The out-

dependence of its effective maéhl,). As a consequence, come of _the _|mproved fitting procedure of Fig. 7 is very
we expect thati, /ur , too, depends off, so that the fitting encouraging, ered: The asymmetry effects due to the drive
law (34) may not level off at a horizontal asymptote. To F can be fully incorporated in the framework of our LE
avoid such an inconvenience, in Fig. 3 we restricted the fitaPProach.

ting procedure to the rising branch of the mobility curve,

immediately above the depinning threshélgl accordingly, IV. KINK DIFEUSION

the fitted values of M|)/M, reported in Fig. 4 have been

obtained atF=F;+, namely, for an applied drive that in- So far, we have determined the LE coefficie(its, (X))

interval.[It can be easily proven that corrections\Mgy(X)

creases with decreasin and Vp\(X) by simulating the deterministic response of the
The effects of theF dependence ofM,) are illustrated coordinateX(t) to an external forcing term. Relying on the
explicitly in Fig. 7, where the kink mobility curvey(F)/ug, results of Sec. lll, we are now in the position to interpret our

is plotted for two choices ofl, representing the continuum simulation data for the termal diffusion of a single soliton
and the discrete regime, respectively. For lafigealues the along a discrete* chain. At this point, no further parameter
kink runs freely along an almost continuous chain; its mobil-can be fitted to the numerics; the LB1) alone, comple-
ity, however, slants upwards, slightly above the expected agnented with relation$32), (33) and (37), should suffice to
ymptoteu(«)/uz=1. A simple interpretation of this result reproduce the temperature dependence of both the mobility
takes into account the kink deformation in the tilted potentialcurve and the diffusion coefficient of a diffusin@ver-
(2). The mass of the tilted soliton may be approximated to damped soliton.
As an introductory note, we remind that the identity
=(N/2)¢. . of Sec. llI B fails in the presence of persistent
' (40 fiyctuations and could hardly be used to locate a randomly
diffusing soliton. We developed a more efficient computa-
whose reciprocal is plotted in Fig. 7 for a comparison. tional technique to sample the stochastic prooggy: At
For smaller soliton sizes, the mobility curve does not con+egular time intervald\ty copies of the chain configuration
verges to a horizontal asymptote, either. Nevertheless, thare recorded and then fed through a filtering routine that

My _ a2
My 2

w4

o

_

a2
2 wqo
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IRARERERAAE AL SRR the fits in Fig. 3 support the conclusion that the dynamical

I - role of discreteness does not fade away at high temperatures,
nor does for strong driving forces, at odds with common
knowledge.

B. Diffusion coefficient

The soliton response to an external foFees customarily
expressed in terms of its mobility, i.e., a stationary observ-
able that may be averaged over time according to the ergodic
hypothesi€® In the present section we pursue an alternative
approach: We focus on the spatial dispersion of the soliton
center of mas¥(t) along the driven discrete chain. As the
soliton runs with average speedF) in the direction of the
external forceF, the random switches between locked and

2F|G- 8. Diffusion coefficienD (F) of a single kink versu& for  running state are expected to cause an additional diffusion
w5=8, Co=1.5, a/wy=10, andkT=kpy/47* (open dots with error  effect on the particle around its average positit)). To

barg. The quantityDo=KkT/a(M,) has been computed by making thjs purpose we computed numerically thermal diffusion
use of definition(38) for the kink mass. The solid curve represents coefficient

prediction(42) as obtained numerically from Risken’s solution for

the mobility curveu(F)/ug in Fig. 3. For the sake of a comparison, 1

we simulated also the diffusion of a driven Brownian particle de- D= Iimz<[X(t)—(X(t))]z) (41)
t—oo

scribed by LE(31) with fixed damping constant and masgM,)
(solid circleg; the PN potentia(33) and the maséM,) were taken

to coincide with the relevant discrete chain values fitted in Figs. 3of the transport proces®1) and studied as a function of

and 4 Inset samples of the(t) trajectories forF =0 (@ andF 4 piagE ot constant temperature. In Fig. 8 we display our

=0.1.(b) The quantization oK due to our kink positioning tech- results forD/Dg, where the quantitp,=kT/a(M,) denotes

g:gtl: ﬁ)liegpapcagsgi'nﬂ;g I;:}nl;xre;l](lirtlg lgwes in the PN wells Einstein’s diffusion coefficient for the free Brownian motion
9 P ' in one dimensiori? A bump in the curves oD versusF is

. I detectable foF ~F3, with D(F)>D,; the depinning thresh-
makes the chain evolve further in time, but at zero temperag|j is thus characterized by an excess diffusion.

ture and much larger a damping constant; as a result, thé o £ qenendence of the diffusion coefficient in the over-

chain converges quickly to a static configuration with thedamped regimer> w, can be interpreted analytically in the
(antkink located between two adjacent chain sites. This COMramework of the linear response theory. On extending the
responds to filtering out any phonon oscillation, possible dis'approach developed by Riskérfor the zero bias case, one
crete breafche?sapd thermal fluctuations; the. ensuin_g auan-gerives an approximate law that relates the mobilit’y of a
tization (with unit st_ep of_the sampled so!|ton trajectory piased Brownian particle to its diffusion coefficient, thatds,
X,=X(nAty) (see Fig. 8, insgthas no bearing on the sta-

tistics of our simulations, provided that the displacements

measured are conveniently long aady is chosen shorter D _ulF)

d |u(F)
than any relevant time scale in the problem. Do u dF

" 42

The bump in theD(F) curve of Fig. 8 is thus related to the
jump of u(F)/u, at the depinning threshold. In Fig. 8 the
In Fig. 3 the soliton mobility is plotted versusat finite,  simulation data for a diffusing discrets® kink are compared
but low temperaturek T<kpy/4m2. Our simulation data for with the theoretical predictio42) and the simulation data
u(F,T)/ug match very closely the corresponding Risken’sfor an equivalent Brownian particlg1), with PN potential
solution, also displayed for reader’s convenience—it took a$33) and averaged coefficient82) and(38). Within the sta-
littte as summing up the continued fraction expansiontistics of our data, the agreement is very close.
(11.78 of Ref. 26. In particular, the suprathreshold values of More notably, the same quantitative agreement has been
u(F,T)/ug do not change much with the temperature, everobtained over the entire drive and temperature range we have
whenkT is raised clear abovkpy/472 (half the PN barrier explored in Fig. 3. At lower temperatures the subthreshold
heigh), and approach the valug,/(y,) obtained in the diffusion process is apparently dominated by the interwell
noiseless case of Sec. Ill B. This remark conforms well tochopping mechanisrifand formula(42) becomes less and less
our picture of a diffusing discrete soliton as of a massiveaccuraté>® longer and longer residence times come into
quasiparticle undergoin@riven) Brownian motion in a pe- play, that eventually exceed our computing capabilities. Fi-
riodic, nonfluctuating potentia¥/pp(X), with effective mass nally, Eq. (42) in the zero drive casek=0, leads to the
(M), (37), and equilibrium temperatur®. In particular, as simple formulaD(F)/Dy=u(F)/u,;*® we checked such a
anticipated in Sec. IIC, finite temperature corrections toprediction successfully for the thrdel values reported in
(M (X)) and Vp\(X) are negligible fork T<E, Moreover, Fig. 3.

A. Depinning transition
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V. CONCLUSIONS however, the phenomenology available to-date is still rather
6,12,20

A single soliton diffusing along a discreté* chain is poor. . : .
well described as a nonrelativistic, massive particle execut (2) Phonon spectrum of a one-soliton bearing chai-
ina Brownian movement on a eri(;dic substrgte modeled bcreteness affects both the spectrum and the density of the
9 . ; P o : ormal modes in @* chain!? Our simulation shows that the
a PN potential. Discreteness affects the inertial properties . .
. : : ! Clibrational w, and the shape-mode frequeney, shift to
the soliton, for which we have introduced a dynamical defi- ! e SN ) '
o . X . opposite directions with increasind. Moreover, internal
nition of effective mass, and the profile of the PN potential, 34 . .
. o . modes are know#3*to bifurcate from the phonon essential
closely fitted by its first two Fourier components. On the . . .
. ; . and w(i) in thresholdless fashion, i.e., extra modes may
contrary, the two quantities that determine the coupling o . ) .
ppear as soon as the continuum stripix,t) is modeled

the chain to its heat bath, are insensitive to discretenes Arough the discrete chaigi (1), no matter whatl, Further-
soliton temperature and damping constant coincide, indee 9 . ; i (), : o
more, localized nonlinear solution@lso termed discrete

with those of the chain, as desirable in thermal equ'“bnum'breather}‘,show up for vanishingly smalk values®

The Brownian motion of a singl@ntikink obeys a linear o L .
LE, whose coefficients have been related phenomenologi- (3) (.:O"'S'O”al dynamlplescretengss affects the soliton
scattering off another soliton or a chain defect, as {él a

cally to chain sums. This approach, while not completely nsequence, the kink-antikink pair nucleation ritesight

self-consistent, has the great advantage of providing a simpl"éO . .
recipe for interpreting quite accurately the results of numeri—t0 be computed to account for the trapping action of the PN

cal simulations, and in principle, of experiments on actuaIPOtential' Analogously, the soliton-impurity interactiqn 5
physical systems. On combining a few simple measureI_|kely_to be effect.lvely screened by the PN substrate. Fmally,
mentes, one can fine-tune the coefficients of the soliton LE; g8s discrete SO“.tonS are not tranqurgnt to propagating
full statistical description of the thermal diffusion of a single phonons, .one m'ght (?on5|der the possibility of phonon me-
soliton (and, possibly, of the entire chaifollows immedi-  diated soliton-soliton interactiorf8, ,

ately. Such a procedure allowed us to detect certain discrep- (4) Periodic forcing. At zero (or low) damping the ac
ancies in the more self-consistent collective variable treatdriven dynamics of a single discrete soliton might reveal

ments published in the recent literature. resonant behaviors due to the frequency matching between
A number of related problems would deserve further in-internal modes and the periodic shape modulation of the soli-
vestigation. ton travelling on a PN substraté Asymmetry in the pres-

(1) Underdamped regiméVe remind that all of the above ence of a tilt,F#0, might also support ratchetlike soliton
applies to an overdamped chain, only, where phonons argansports’
suppressed altogether. On decreasing the string damping
constant, both the nonrelativistic limit and our LE derivation,
explicitly based on neglecting phonon damping, become un-
tenable(phononradiation dampingstarts playing an impor- We acknowledge partial support from the Michigan Cen-
tant role®%%: Soliton diffusion is then likely to be better ter for Theoretical Physics, University of Michig&Ann Ar-
describable as a nonstationary stochastic process, for whichor).
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