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Raman scattering intensities ina-quartz: A first-principles investigation
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Using a first-principles density functional approach, we calculate the first-order Raman intensities of
a-quartz. The dynamical charge tensors, vibrational frequencies and eigenmodes, and polarizability tensors are
obtained within a perturbational approach. We calculate Raman intensities by evaluating the variation of the
polarizability tensors for finite displacements of the atoms. Calculated intensities agree well with experimental
data, showing an average error of 13% for relative intensities. Using our first-principles results as reference, we
critically examine simple models for the Raman activity. We first consider a bond polarizability model, for
which the parameters are derived from our first-principles results fora-quartz. This model reproduces the
first-principles intensities with an average error of 15%. In the attempt of reducing this error, we then introduce
a model in which the symmetry of the first neighbor shell is accounted for in the most general way. For
a-quartz, this model extends the bond polarizability model, which is recovered as a special case. The model,
which fully accounts for the local symmetry, describes the first-principles results within an average error of
12%, marginally improving upon the bond polarizability model~15%!. However, when these models with
parameters derived fora-quartz are applied to a cristobalite polymorph, only the bond polarizability model
shows good transferability properties. These results support the use of the bond polarizability model as a
simple scheme for calculating Raman intensities in tetrahedrally bonded SiO2 systems.
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I. INTRODUCTION

Raman spectroscopy is nowadays routinely used a
powerful experimental tool for the characterization of ma
rial properties.1 Raman scattering consists of an inelastic p
cess in which incoming photons are scattered by vibratio
excitations. The simplicity of the experimental setup mak
this technique one of the principal methods used in vib
tional spectroscopy. In first-order Raman scattering p
cesses, the shifts of the photon frequencies directly prov
the vibrational frequencies of the scattering material. Ad
tional information is contained in the intensities of the R
man lines, which characterize the vibrational eigenmo
and dielectric response of the material.

The interpretation of the positions and the intensities
Raman lines calls for accurate theoretical modeling. Fi
principles approaches have proved successful in the dete
nation of vibrational properties both for isolated molecule2

and crystalline solids.3–5 However, while these approache
are nowadays routinely used for the determination of vib
tional frequencies, their application to Raman activities h
remained limited, mainly because of the demanding com
tational effort. Recently, the accuracy of density-function
approaches in reproducing Raman activities was exami
and a good agreement between theory and experiment
found for a set of small molecules.6,7 A few successful ap-
plications of first-principles methods have also appeared
crystalline8,9 or, more generally, for periodic systems.10,11

For modeling the Raman activities, theoretical investig
tions have frequently made recourse to empirical or se
empirical approaches, such as the bond polarizab
0163-1829/2001/63~9!/094305~9!/$15.00 63 0943
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model.12,13 These models generally rely on a description
the dielectric response in terms of contributions of individu
bonds, and their empirical parameters are obtained by c
sidering experimental data of representative systems.

We address here the Raman activity ina-quartz. The mo-
tivation of studyinga-quartz is twofold. First, this crystalline
material presents a primitive cell with nine atoms giving ri
to complex vibrational properties, including the occurren
of LO-TO splittings. Combined with the availability of de
tailed experimental data,14 this material provides a nontrivia
system for examining the accuracy of density function
theory in reproducing Raman activities. Second, the struc
of a-quartz is composed of corner-sharing SiO4 tetrahedra,
which is common to a large class of SiO2 polymorphs as
well as to vitreous silica. Therefore, the understanding of
Raman activity ina-quartz might set a basis for the interpr
tation of Raman spectra of other SiO2 materials.

Kleinman and Spitzer provided the first interpretation
measured Raman lines ina-quartz15 using empirical force
constants and the bond polarizability model.16 With the ad-
vent of laser light sources, more accurate experimental d
became available14. However, the theoretical scheme17

which was subsequently used for analyzing these new d
did not differ substantially from that adopted by Kleinma
and Spitzer. More recently, Gonze, Allan, and Teter cal
lated accurate vibrational properties ofa-quartz within a per-
turbational density functional approach.5 However, Raman
intensities were not addressed.

In this work, we calculate Raman activities within th
local density approximation~LDA ! to density functional
theory. This calculation requires several ingredients, such
©2001 The American Physical Society05-1
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the vibrational frequencies and eigenmodes, dynam
charge tensors, and dielectric tensors, which are all obta
by applying a linear response method.3,4 Using our first-
principles results as reference, we then test the accurac
simple models for the calculation of Raman activities.
particular, we introduce a model that fully accounts for t
symmetry of the nearest neighbor shell of each atom,
reduces to the bond polarizability model for a special cho
of its parameters. Finally, the transferability of these sim
models is investigated by considering their accuracy fo
cristobalite polymorph, for which we also determine the R
man intensities by a direct first-principles calculation.

This paper is organized as follows. In Sec. II, we outli
the theoretical formulation for the calculation of Raman a
tivities. Section III is devoted to the study ofa-quartz. Using
a density functional approach, we obtain the structure,
electric tensor, dynamical charge tensors, vibrational
quencies and eigenmodes, LO-TO splittings, and Raman
tivities. In Sec. IV, we focus on simple models for th
calculation of the Raman activity. The parameters of th
models are derived from our first-principles results obtain
in Sec. III. In Sec. V, the transferability of the simp
schemes is tested on a cristobalite polymorph. The con
sions are given in Sec. VI.

II. THEORETICAL FORMULATION

Here we briefly outline the formulation that we used f
the calculation of Raman activities. We only focus on fir
order processes, which involve a single phonon excitat
The momentum conservation imposes that only phonon
wave vectorsq close to the center of the Brillouin zone ca
be excited. In practice, adopting the dipole approximati
we only consider center-zone phonons (q50) and account
for the dependence on the direction ofq resulting from the
long-range nature of the Coulomb field in pol
materials.18,19

Using a similar notation as Gonze and Lee,20 we express
the dynamical matrix forq\0 as a sum of an analytical an
a nonanalytical matrix:

D̃a i ,b j~q\0!5D̃a i ,b j~qÄ0!1D̃a i ,b j
NA ~q\0!, ~1!

where the greek and latin indices run over the atoms in
primitive cell and the three Euclidean directions, resp
tively. The analytical part is given by

D̃a i ,b j~qÄ0!5
1

AMaMb

]2Etot

]r a i]r b j
, ~2!

whereEtot is the total energy of the system andMa are the
masses of the atoms. The nonanalytical part depends on
direction of the momentumq exchanged with the radiatio
field:18
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D̃a i ,b j
NA ~q\0!5

1

AMaMb

4p

V

S (
k

qkZa,ki* D S (
i

qk8Zb,k8 j
* D

(
kk8

qkekk8
` qk8

,

~3!

whereV is the volume of the primitive cell,e i j
` the high-

frequency dielectric tensor, andZa,i j* the Born dynamical
charge tensors defined as the induced polarization along
direction i by a unitary displacement of atoma in the direc-
tion j:21

Za,i j* 5
]2Etot

]Ei]r a j
. ~4!

For a given direction ofq, the frequenciesvn and corre-
sponding normalized eigenmodesva i

n of the excited phonons
are obtained by diagonalizing the dynamical matrix in E
~1!. The atomic displacementsua i

n associated with the mod
n are then given by

ua i
n 5

1

AMa

va i
n . ~5!

We obtain transverse-optic~TO! and longitudinal-optic
~LO! modes as follows.20 For a given moden of the analyti-
cal part of the dynamical matrix, we define the associa
three-component mode effective charge vector:20

Z̄i
n5(

a i
Za,i j* ua j

n . ~6!

Whenq"Z̄n50, the eigenmoden of the analytical part is also
an eigenmode with the same frequency of the full dynam
matrix, and is identified as a TO mode. In general, the
modes are obtained from the full dynamical matrix by taki
qiZ̄n for every Z̄n. However, in practice, symmetry con
straints often limit the number of different directions ofZ̄n.

In a Raman scattering process, an incoming photon
frequencyvL and polarizationeL is scattered to an outgoin
photon of frequencyvS and polarizationeS , either creating
~Stokes process! or annihilating~anti-Stokes process! a pho-

TABLE I. Structural parameters ofa-quartz. Lattice cell param-
eters and bond lengths are given in Å , while internal cell para
eters are in cell units.

Theory Experiment
Present Ref. 5 Ref. 29

a 4.870 4.814 4.916
c 5.346 5.321 5.405
u 0.471 0.461 0.470
x 0.415 0.410 0.413
y 0.265 0.281 0.267
z 0.121 0.108 0.119
Si-O 1.59 1.60
Si-O-Si 144.8° 139.1° 143.7°
5-2
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non of frequencyvk . Because of energy conservatio
vS5vL6vk , where the minus~plus! sign applies to the
~anti-!Stokes process. We consider here nonresonant Ra
scattering processes which can be described in the Pla
approximation.1,22 The power cross section of the Stok
process involving a phonon of eigenmodek reads~in esu
units!:1,22

ds

dV
5ueS"R

k"eLu25
vS

4V

c4
ueS"a

k"eLu2
\

2vk
~nk11!, ~7!

whereV is the volume of the scattering sample,c is the speed
of light, andnk is the Boson factor,

nk5
1

exp~\vk /kBT!21
. ~8!

The second rank tensorRk in Eq. ~7! is referred to as the
Raman tensor associated to the vibrational eigenmodek.1

The Raman susceptibilityak is defined as:1

a i j
k 5AV (

a l

]x i j

]r a l
ua l

k , ~9!

wherex i j is the electric polarizability tensor:

x i j 5
e i j

`2d i j

4p
. ~10!

In the case of an anti-Stokes process, the definition ofvS
changes and the factor (nk11) in Eq. ~7! must be replaced
by nk . We note that the Raman susceptibility defined in E
~9! is independent of the volume of the adopted cellV, be-
cause]x i j /]r a l scales as the inverse ofV.

TABLE II. Diagonal elements of the high-frequency dielectr
tensor ofa-quartz, parallel (e i

`) and perpendicular (e'
`) to the op-

tical axis.

Theory Experiment
Present Ref. 5 Ref. 30

e i
` 2.457 2.383 2.566

e'
` 2.429 2.356 2.527

TABLE III. Calculated Born charge tensors for silicon and ox
gen atoms, compared to results of a previous calculation.5 The
charge tensors are given in atomic units.

Present Ref. 5

Silicon atom in (u,0,0)
3.021 0.000 0.000 3.016 0.000 0.00
0.000 3.671 20.224 0.000 3.633 20.324
0.000 0.257 3.450 0.000 0.282 3.45

Oxygen atom in (x,y,z)
21.413 0.564 0.505 21.326 0.480 0.298

0.519 21.915 20.615 0.429 21.999 20.679
0.447 20.648 21.715 0.222 20.718 21.726
09430
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III. RAMAN SCATTERING IN a-QUARTZ

A. Structure

Thea-quartz structure is described by the space groupD3
4

(P3121) and its hexagonal primitive cell contains three Si2
units.23 The atomic positions in the primitive cell are ident
fied by four internal cell parameters:u, x, y, andz. We ob-
tained relaxed structural parameters ofa-quartz within the
local density approximation24 to density functional
theory.25,26 The valence wave functions were expanded in
plane-wave basis set defined by an energy cutoff of 60
while the core-valence interactions were described by no
conserving pseudopotentials for both Si@Ref. 27# and O
atoms.28 We sampled the Brillouin zone using a single sp

cial k point at (1
3 ,0,14 ) in crystalline coordinates, which is

TABLE IV. Vibrational frequencies ofa-quartz at theG point.
The frequencies are given in cm21.

Theory Experimenta

Present Ref. 5 Refs. 30,32 Ref. 14

A1
193.7 238.9 219 207
355.0 339.3 358 356
460.1 461.7 469 464

1123.3 1061.0 1082 1085
A2T

366.4 341.4 361.3
489.3 493.4 499
792.2 762.4 778

1115.4 1056.5 1072
A2L

391.4 365.7 385
533.8 540.5 553
815.0 784.7 791

1272.6 1218 1230
ET

120.9 133.3 133 128
257.3 261.3 269 265
390.0 377.6 393.5 394
448.0 443.8 452.5 450
703.3 690.8 698 697
809.6 791.7 799 795

1108.7 1045.0 1066 1072
1190.8 1128.1 1158 1162

EL

121.0 133.4 133 128
258.5 263.2 269 265
398.6 389.2 402 401
500.2 498.6 512 509
708.7 694.5 701 697
824.0 803.9 811.5 807

1185.7 1123.9 1155 1162
1270.6 1209.5 1227 1235

aThe first set of experimental data were obtained in Ref. 5 by
trapolating to 0 K the measured frequencies in Refs. 30, 32.
5-3
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TABLE V. Calculated derivatives of the dielectric polarizability tensor with respect to displacem
along the Cartesian axes for silicon and oxygen atoms. The derivatives are given in (4p)21

•1022

3 Bohr21.

]x i j /]x ]x i j /]y ]x i j /]z

Si atom in (u,0,0)
20.29 20.06 0.01 0.11 20.99 2.12 0.50 4.61 2.40
20.06 0.04 2.64 20.99 0.56 0.06 4.61 0.76 20.05

0.01 2.64 20.57 2.12 0.06 0.28 2.40 20.05 1.52
O atom in (x,y,z)
23.46 20.54 1.57 23.30 20.46 0.20 3.11 20.65 22.55
20.54 22.38 20.13 20.46 29.02 0.63 20.64 2.50 20.45

1.57 20.13 23.35 0.20 0.63 24.21 22.55 20.45 6.55
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sufficient for obtaining converged results.5 Our calculated
structural parameters are reported in Table I, where they
compared to experimental29 and previous theoretical results5

The three sets of data are found to be in excellent agreem

B. Dielectric tensor and Born charge tensors

Applying a linear response approach,3,4 we calculated the
high-frequency dielectric tensor and the Born cha
tensors.26 The dielectric tensor ofa-quartz is diagonal and
assumes different values for parallel and perpendicular di
tions to the optical axis (z axis!. Our calculated results ar
reported in Table II, where they are compared with expe
mental data30 and results from a previous density-function
calculation.5 The three sets of data are in excellent agr
ment. A slight overestimation of the theoretical dielect
constants is usual in density functional approaches.31

In the structure ofa-quartz all Si atoms and all O atom
are equivalent by symmetry. We therefore give in Table
only the Born charge tensors of specific Si and O atoms.
comparison, also the results obtained in Ref. 5 are repo
in Table III. The agreement is very good. We attribute t
small differences in the off-diagonal terms to the differe
structural parameters in the two calculations~see Table I!.

C. Vibrational frequencies

We considered first the analytic part of the dynami
matrix at theG point. The eigenmodes transform accordi
to the irreducible representations of the symmetry groupD3:
the nondegenerateA1 and A2 and the doubly degenerateE.
The representationsA2 and E are infrared active, whileA1
andE are Raman active.

To derive LO-TO splittings, we calculated the vectorZ̄n

belonging to each eigenmoden. For theA1 modes,Z̄n50.
Hence, theA1 do not depend on the direction ofq. For the
A2 modes,Z̄n is parallel to thez axis, resulting in different
frequencies for LO and TO excitations. In Table IV, we r
port frequencies forA2T andA2L modes obtained by diago
nalizing the full dynamical matrix withq orthogonal and
parallel to thez axis, respectively. The doubly degenera
modesE are characterized by a couple of orthogonal vect
Z̄n spanning thexy plane. Thus a LO-TO splitting of theE
09430
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modes occurs forq vectors orthogonal to thez axis, while
the E modes remain degenerate at theET frequencies forq
parallel to thez axis.

In Table IV, we compare our calculated frequencie26

with results from another density-functional calculation5 and
with two sets of experimental data. The first set of expe
mental data corresponds to extrapolations to 0 K of frequ
cies measured in Refs. 30, 32, as detailed in Ref. 5.
second set of experimental data was obtained in Ref. 1
room temperature. Overall, the agreement between
present theoretical values and experiment is very good, w
errors generally smaller than 5%. The differences betw
the theoretical approaches should again be attributed to
different equilibrium structures.

D. Raman activities

The Raman susceptibility defined in Eq.~9! requires the
derivatives of the polarizability tensor with respect to t
atomic displacements. We calculated these derivatives b
nite differences using polarizability tensors obtained by
plying a density-functional linear response approach.3,4,26

For every Cartesian direction, we used finite displaceme
of 61 and62% of the unit cell parametera to estimate the
derivatives of the polarizability tensor.8,10 We calculated de-
rivatives of the polarizability tensor only for displacemen
of a single O and a single Si atom. The results are given
Table V. Note that the matricial norm of the O tensor
Table V is almost a factor of 3 larger than that of the
tensor. The derivatives with respect to the displacement
the other atoms are determined by symmetry.

By symmetry, the Raman tensors assume a well-defi
form. Following the notation of Loudon,33 the Raman tensors
of the A1 modes are given by

S a

a

b
D , ~11!

while those associated toE(x) andE(y) modes assume th
forms
5-4
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S c

2c d

d
D and S 2c 2d

2c

2d
D , ~12!

respectively. For the modesE(x) and E(y), the associated
charge vectorsZ̄n, defined in Eq.~6!, are parallel to thex and
y axes, respectively.

The Raman tensors depend on the direction of the w
vector q. The calculation proceeds as follows. First, we
agonalized the full dynamical matrix whose nonanlytic
term is determined by the direction ofq. The resulting eigen-
modes, together with the calculated derivatives of the po
izability tensor, gave the Raman susceptibility in Eq.~9!.
The Raman tensors were then obtained from Eq.~7!.

In order to compare with experimental data,14 we tookq
parallel to thex axis. For this choice, three kind of modes a
observed:A1 , ET , andEL . The forms of the Raman tenso
associated to these modes are given in Eqs.~11! and ~12!.
For this particular choice ofq, theET andEL have the form
of theE(y) andE(x) tensors, respectively. Calculated valu
of a2, b2, c2, andd2 characterizing the Raman tensors f
the Stokes process are given in Table VI. Note that the
perimental data are generally obtained at room tempera
whereas the theoretical results account for the tempera
only through the statistical Boson factor.

The absolute intensities associated to the strongesA1
mode~at about 466 cm21) were determined experimentall
by Gorelik and Sushchinskii.34 Using an argon laser (\vL
515308 cm21), these reseachers measureda2 andb2 to be
0.2 and 0.331027 sterad21 cm21,1,34 in fair agreement
with our calculated values of 0.39 and 0.3
31027 sterad21 cm21, respectively. In Table VI, we car
ried out a more detailed comparison between theory and
periment considering the more extensive set of Raman in
sities measured by Masso, She, and Edwards.14 However,
because these authors only give relative intensities, we
mated the unknown scaling factorf by minimizing the rela-
tive errorD, defined as

D5A(
n

~ I n
theo2 f I n

expt!2

(
n

f 2~ I n
expt!2

, ~13!

whereI theo and I expt are the theoretical and experimental i
tensities, respectively, and where the sum overn is over all
entry in Table VI for which an experimental result is ava
able. For the sake of comparison, the theoretical data
Table VI were rescaled by the factor of 1/f .

Calculated and measured intensities show overall g
agreement. The theory correctly describes the important
ference in magnitude between the intensities of theA1 andE
modes. Among theA1 modes, the lines at 193.7 an
460.1 cm21 are found to be much stronger than those
355.0 and 1123.3 cm21, in agreement with the experiment
trend. However, the relative ordering of the intensitiesa2

and b2 is not always reproduced. Among theE modes, the
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line at 120.9 cm21 stands out as the strongest and is w
described by our theory. The quality of the comparison c
be quantified by the errorD in Eq. ~13!, which is found to be
13% for the optimal scaling factor.

It is interesting to observe that the values ofc2 andd2 for
the two components of a LO-TO doublet are different due
the electrooptic effect associated with the E vibrations.14 In
particular, we focus on the three LO-TO doublets identifi
by the theoretical frequencies at 390–399, 448–500,
810– 824 cm21, for which LO-TO ratios of intensities could
be determined experimentally. For the ratiod2(LO)/d2(TO)
associated to the 448–500 and 810–824 doublets, we fo
0.60 and 1.38 in good agreement with the measured va
of 0.79 and 1.43, respectively. The agreement betw
theory and experiment is less good for the ra
c2(LO)/c2(TO) of the 390–399 doublet, in which we calcu
lated a value of 1.0 while a value of 0.55 was found expe
mentally.

TABLE VI. Theoretical Raman intensities for the Stokes pr
cess ina-quartz, obtained by first principles and within a bon
polarizability model~BP!, are compared to the experimental valu
of Ref. 14. The vibrational modes are identified by the theoret
frequencies~in cm21). The correspondence with the experimen
modes is according to Table IV. The theoretical absolute intens
per unit volume can be obtained by multiplying the values in
table byvS

4 and 1/f 52.368•10270 sterad21 cm21 s4. The experi-
mental data are only known on a relative scale.14

Mode First principles Model BP Experiment

A1 a2 b2 a2 b2 a2 b2

193.7 601.5 693.7 592.4 876.5 484 619
355.0 60.4 33.3 7.4 13.4 38 55
460.1 898.7 864.3 946.7 740.0 906 1000

1123.3 3.7 28.3 8.1 46.0 2.3 31

ET c2 d2 c2 d2 c2 d2

120.9 117.9 68.2 103.3 23.7 125 62
257.3 1.6 22.6 13.4 6.8 ,1 28
390.0 21.6 1.0 4.5 4.7 11 ,1
448.0 0.3 19.1 0.2 16.5 ,1 13
703.3 10.5 5.2 1.4 1.0 - -
809.6 2.5 17.8 0.3 18.0 ,1 14

1108.7 1.5 13.7 9.0 15.4 ,1 2.7
1190.8 32.6 5.8 23.9 1.4 23 5.5

EL c2 d2 c2 d2 c2 d2

121.0 117.3 68.6 104.7 23.7 - -
258.5 1.7 24.1 12.8 7.2 - -
398.6 22.1 5.5 5.3 10.7 6 2
500.2 1.4 11.5 0.5 9.4 ,1 10
708.7 9.7 5.2 0.8 1.1 - -
824.0 3.2 24.7 1.0 24.0 ,1 20

1185.7 25.2 11.2 13.1 5.2 - -
1270.6 7.3 2.9 17.4 5.8 3.7 ,1
5-5
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IV. SIMPLE MODELS

In order to extend the present results to other SiO2 poly-
morphs composed of corner-sharing tetrahedra, we eval
in this section the accuracy of simple model schemes. In
approach, we obtained the parameters of these simple mo
directly from the derivatives of the polarizability tens
]x/]r calculated from first principles in Sec. III D.

A. Bond polarizability model

The bond polarizability model12,13 has successfully bee
applied for the calculation of Raman intensities in a lar
variety of systems.1 In this approach, the polarizability i
modeled in terms of bond contributions:

ai j 5
1

3
~2ap1a l !d i j 1~a l2ap!S RiRj

R2
2

1

3
d i j D , ~14!

where R5Rb2Ra is a vector which defines the directio
and the distance of a pair of nearest neighbor atoms at
Ra and Rb . The parametersa l and ap correspond to the
longitudinal and perpendicular bond polarizability, respe
tively.

The bond polarizability model further assumes that
bond polarizabilitiesa l andap only depend on the length o
the bond. Thus the derivative of the bond polarizability w
respect to the displacement of the atomb reads:

]a i j

]Rbk
5

1

3
~2ap81a l8!d i j R̂k1~a l82ap8!S R̂i R̂j2

1

3
d i j D R̂k

1
~a l2ap!

R
~d ikR̂j1d jkR̂i22R̂i R̂j R̂k!, ~15!

where R̂ is a unit vector alongR and a l8 and ap8 are the
derivatives of the bond polarizabilities with respect to t
bond length. Therefore, when one type of bond occurs,
bond polarizability model is completely defined by three p
rameters:

a52ap81a l8 , b5a l82ap8 , g5~a l2ap!/R. ~16!

We determined parameters of the bond polarizabi
model as follows. Adopting the standard tensorial norm,
minimized the deviations of the tensor]x/]r with respect to
our first principles results given in Table V. The paramet
obtained in this way are given in Table VII. In the following

TABLE VII. Parameters of the bond polarizability model d
rived for a-quartz~BP! and a cristobalite structure of space gro

F4̄d2 ~BPC!. For the purpose of comparison, the parameters
rived for the cristobalite structure are rescaled to account for
volume of the primitive cell ofa-quartz. The values are given i
(4p)21

•10233 Bohr21.

Model a b g

BP 771 196 56
BPC 773 144 34
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we refer to this specific bond polarizability model as to t
BP model. The deviations of tensor,]x/]r for Si and O
atoms are 50% and 16%, respectively.

It is more significant to quantify the accuracy of the B
model on the basis of the Raman intensities. To this end,
used the same set of intensities as in Eq.~13!. We first com-
pared the intensities resulting from the BP model with tho
obtained by first principles, finding a relative deviation
15%. This deviation is small, despite the rather large dev
tion found for the derivatives of the polarizability tenso
with respect to the displacements of Si atoms. This eff
results from a combination of factors. The tensors in Table
are intrinsically larger for O than for Si atoms. The cont
butions of the O atoms to the Raman intensities are furt
enhanced by the larger number of O atoms in the unit
and by their lighter atomic mass.

We also compared the intensities of the BP model w
experimental data.14 We calculatedD, as in Eq.~13!, with
the same scaling factorf as obtained previously, findingD
525%. As expected, this value ofD obtained within the BP
model is worse than the corresponding value obtained
first principles~13%!.

The parameters of the bond polarizability model are u
ally obtained by fitting the experimental intensities. Follow
ing this procedure, the parameters of the bond polarizab
model remain indeterminate by a scaling factor, because
experimental intensities are only known on a relative sca
By minimizing D in Eq. ~13!, we found a deviation of 20%
independent of the scaling factorf. It is worth noting that this
deviation is substantially larger than the deviation found
the first-principles intensities~13%!.

B. Model dependent on local symmetry

In SiO2 polymorphs composed of corner-sharing tetrah
dra, the Si atoms are at the centers of tetrahedra while th
atoms are at their vertices. The Si-O bond length and O-S
angles generally do not deviate significantly from;1.6 Å
and the tetrahedral angle, respectively. The great variet
such polymorphs results from the flexibility of the Si-O-
angle and the formation of different bonding networks.

In the attempt of improving upon the bond polarizabili
model, we introduce here a model for the tensor]x/]r ,
based on the ideal symmetry of the first neighbor shells
the following, we refer to this model as the local symme
~LS! model. In the case of Si atoms, we assumed the s
metry of the ideal tetrahedron (Td), while we took theC2v
symmetry group for describing the environment of the
atoms. We express the derivatives of the polarizability ten
with respect to Si and O displacements,]x/]rSi and]x/]rO,
in terms of invariant tensors.35 The third-order tensor]x/]r
transforms like a product of three polar vectors and is sy
metric for exchanges of two of them.

By applying group theory, the form of the invariant te
sors can be determined. For Si atoms a single invariant
sor is found, requiring the use of a single parameter for a
description. When the bonds of the Si atoms are orien

-
e
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along the~1 1 1!, (1̄ 1̄ 1!, (1̄ 1 1̄) and~1 1̄ 1̄) directions, the
explicit form of the tensor@(]x/]x),(]x/]y),(]x/]z)#
reads:

F S s

s
D ,S s

s
D ,S s

s D G . ~17!

In the case of O atoms, the lower symmetry allows as m
as five different invariant tensors, and the full tensor th
remains indeterminate by five parameters. In order to ob
an explicit form, we located the O atom on the positivez axis
and took thex axis along the segment connecting its
neighbors. For this orientation, the tensor]x/]r reads:

F S o4

o4

D ,S o5

o5

D ,S o1

o2

o3

D G .

~18!

For SiO2 polymorphs composed of corner-sharing tet
hedra, the bond polarizability model results from the
model as a special case. The following relations between
parameters hold:

s52A3~b22g!/9,

o15~cosu!@b~3 sin2u21!1a26g sin2u#/3,

o25~cosu!~a2b!/3,

o35~cosu!@b~3 cos2u21!1a16g#/322g cos3u,

o45~cosu!@~b22g!sin2u1g#,

o55g cosu, ~19!

where 2u is the Si-O-Si angle.
The free parameters of the LS model, in Eqs.~17! and

~18!, are obtained from our first-principles results in Table
by symmetrization. The values of these parameters are
ported in Table VIII. The deviations of the LS model tenso
with respect to the tensors obtained by first principles, refl
the significance of the contributions of the global enviro
ment which do not satisfy the symmetry of the first-neighb
shell. In order to estimate these deviations, we adopted
standard tensorial norm and found a relative deviation
50% and 12% for Si and O atoms, respectively. Because
BP model is a special case of the more general LS model
latter necessarily provides a better description, as can be
from the comparison in Table IX. However, despite the u

TABLE VIII. Parameters of the local symmetry~LS! model
obtained from first-principles results fora-quartz. The parameter
are given in (4p)21

•10223 Bohr21.

s o1 o2 o3 o4 o5

3.22 8.82 4.55 9.94 3.83 1.34
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of six parameters instead of three, the LS deviations o
marginally improve upon the BP ones.

This limited improvement is also evident when focusi
on the intensities. The deviations of the LS and BP inten
ties do not differ significantly, neither when calculated wi
respect to the first-principles intensities nor to the expe
mental ones~Table VIII!.

V. TRANSFERABILITY

In order to examine the transferability of the simple mo
els, we consider here in detail another SiO2 polymorph com-
posed of corner-sharing tetrahedra. Because we were un
to find in the literature a polymorph other thana-quartz for
which detailed experimental Raman activities were availab
we chose to consider a cristobalite structure of space gr
F4̄d2,36,37 and to use Raman activities calculated from fi
principles as reference. This cristobalite structure offers
computational advantage of a unit cell containing just t
formula units and the possibility of selecting the Si-O-
angle by applying an appropriate tensile or compress
strain.38 We fixed the cubic lattice parameter ata56.97 Å ,
and relaxed the internal degree of freedom. The electro
structure was described with the same technical parame
used fora-quartz. The Brillouin zone was sampled with tw

special k points at (14 , 1
4 , 1

4 ) and (1
2 , 1

2 , 1
4 ) with respective

weights of 1
4 and 3

4 .39

We found a Si-O bond length of 1.58 Å and a Si-O-
angle of 144.4° upon relaxation. We chose on purpose
work with a Si-O-Si angle close to that ofa-quartz (143.7°),
in order to avoid the consideration of additional paramet
in our investigation of the transferability of the simple mo
els.

The vibrational modes at theG point of the Brillouin zone
belong to the irreducible representations of theD2d group:
the nondegenerateA1 , A2 , B1 , B2 modes and the doubly
degenerateE mode. The calculated vibrational frequenci
are reported in Table X where they are ordered accordin
the symmetry of their eigenmodes. All the modes but tho
of A2 symmetry are Raman active. Following the notation
Loudon,33 the forms of the Raman tensors read

TABLE IX. DeviationsD]x/]r for Si and O atoms with respec
to the corresponding first-principles tensors ofa-quartz, as found
for the bond polarizability~BP! and local symmetry~LS! models
using the standard tensorial norm. Deviations of the intensitiesDI
with respect to first-principles and experimental results, determi
using Eq.~13!. The deviations are given in percent.

BP LS

with respect to first-principles
D]a/]r ~Si! 50 50
D]a/]r ~O! 16 12
DI 15 12
with respect to experiment
DI 25 23
5-7
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S a

a

b
D , S c

2c D , S d

d D , ~20!

for the nondegenerate modesA1 , B1, andB2, respectively,
and

S e

e
D , S e

e
D , ~21!

for the doubly degenerate modesE(x) andE(y), as defined
in the case ofa-quartz. The calculated parameters for t
Raman tensor of each mode are given in Table X. TheA1
mode at 342.6 cm21 and theE mode at 135.5 cm21 are the
strongest Raman lines.

We used our first-principles results as a reference to
the transferability of the BP and LS models. Using the st
dard tensorial norm, we calculated the deviationsD]x/]r
with respect to the first-principles tensors. The accuracy
the BP and LS models were found to be similar, with dev
tions of 32% and 23% for Si and O atoms, respectively.
order to quantify the deviation with respect to the fir
principles intensities, we calculated an average deviationDI ,
as in Eq. 13, using all the entries in Table X. We found
deviation of 16% and 25% for the BP and LS models,
spectively. Table XI summarizes the results of these tra
ferability tests. From Table XI, it clearly appears that the
model, which depends on six parameters, does not bring
advantage with respect to the three-parameter BP model.

TABLE X. Transverse-optic vibrational frequencies at theG
point and corresponding Raman intensities for a cristobalite st

ture of space groupF4̄d2.36,37 Intensities obtained by first prin
ciples and by applying the bond polarizability model BP, origina
derived fora-quartz, are compared. The absolute Raman intens
per unit volume can be obtained by multiplying the values in
table byvS

4 and by 1/f 52.368•10270 sterad21 cm21 s4.

Mode Calculated intensity
Symmetry Frequency (cm21) First-principles BP

A1 342.6 a2 1501.6 1630.3
b2 1241.4 1001.0

A2 1158.3 Raman inactive
359.8 Raman inactive

B1 1114.0 c2 38.9 70.7
445.9 24.5 13.9

B2 779.2 d2 4.2 5.3
442.3 0.0 33.6

E 1144.0 e2 5.6 16.8
815.8 38.1 24.6
474.4 0.8 1.5
135.5 281.8 100.5
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BP model reproduced the first-principles intensities
a-quartz and cristobalite with a similar deviation~15% and
16%, respectively!. The intensities calculated with the B
model are shown in Table X, where they are compared w
the first principles results. By comparison, the LS model
produced the first-principles intensities of cristobalite with
deviation of 25%, substantially larger than the correspond
deviation found fora-quartz~12%!.

We further examined the transferability of the bond p
larizability model by extracting a new set of parametersa,
b, and g from the tensors]x/]r calculated for the cristo-
balite structure. The parameters of this new bond polariza
ity model, which we refer to as the BPC model, are repor
in Table VII, where they are rescaled to the volume of t
primitive cell of a-quartz for permitting a comparison wit
the parameters of the BP model. The difference between
parametersa, b, andg are smaller than 3% with respect t
the size of the largest parametera. We also added in Table
XI the deviationsD]x/]r andDI for the BPC model. This
comparison shows that the BPC model, which correspond
the optimal bond polarizability model for the cristobali
structure, only marginally improves upon the BP mod
originally derived fora-quartz. All these results provide ad
ditional evidence in support of the transferability of the bo
polarizability model.

While the LS model slightly improves upon the BP mod
in describing the Raman intensities ofa-quartz, it now
clearly appears that this is achieved at the cost of degra
the transferability properties. We attribute the better trans
ability properties of the bond polarizability model to the v
lidity of the underlying physical picture.

We only addressed here two structures with close Si-O
bond angles. It is of interest to extend the simple models
structures with different angles. In principle, the paramet
of the simple models should be optimized for each an
separately. However, in the case of the bond polarizab
model, this angular dependence follows from the physi
picture on which the model is based@Eqs. 19#.

VI. CONCLUSIONS

In the first part of our study, we calculated Raman inte
sities ina-quartz from first principles using a linear-respon
approach. Calculated and measured relative intensities w
found to agree within an average error of 13%. This agr
ment is remarkable in consideration of the error of 20

c-

s
e

TABLE XI. Deviations D]x/]r and DI with respect to first-

principles results for a cristobalite structure of space groupF4̄d2,
as found for the local symmetry~LS! and bond polarizability~BP
and BPC! models. The parameters of the BP and BPC models w
derived for thea-quartz and cristobalite structures, respective
The deviations were calculated, as in Table IX.

LS BP BPC

D]a/]r ~Si! 32 32 30
D]a/]r ~O! 23 23 19
DI 25 16 10
5-8
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found for the bond polarizability model based on parame
which optimally fit the experimental intensities. In particula
this investigation provided us with the derivatives of the p
larizability tensors with respect to the atomic displaceme
which cannot be extracted from experiment in a trivial wa

In the second part of our work, we addressed the valid
of simple models for the calculation of Raman intensities
SiO2 polymorphs composed of corner-sharing tetrahed
Using our first-principles results fora-quartz as reference
we derived a set of three parameters defining the bond
larizability model. This model described the first-principl
intensities with an average error of about 15%. Searching
a more accurate model, we extended the bond polarizab
model, introducing a six-parameter model that accounts
the most general way for the symmetry of the first-neigh
shell. Indeed, this new model improves upon the bond po
izability, slightly reducing the average error from 15%
12%. However, this improvement is rather modest.

Furthermore, application to a cristobalite structu
showed that the transferability properties of the new mo
hy

d

r.

s
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are rather unsatisfactory. On the other hand, the bond po
izability model derived fora-quartz describes the cristobalit
structure without loss of accuracy. Therefore, it appears
a full description of the symmetry of the first-neighbor sh
does not lead to significant improvements, suggesting
the bond polarizability model already accounts for the r
evant physical contributions. Simple schemes improv
upon the bond polarizability model should necessarily
beyond a description of the first-neighbor shells. Over
these considerations support the use of the bond polariz
ity model as a simple scheme for the calculation of Ram
intensities in tetrahedrally bonded SiO2 systems.
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