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Resonance line shapes and catastrophes in particle-surface scattering
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In this work we present a general study of resonance line shapes within the catastrophe theory framework
and valid for any type of scattering: particle-particle, particle-surface, or liquid and light-particle. The standard
profiles analyzed, and issued from the multichannel scattering theory, correspond to isolated Fano-type,
double, critical, and dipole resonances. They have been topologically classified according to the well-known
elementary catastrophes: fold, cusp, and its dual and swallowtail, respectively. The onset of each structural
change, ottopological transition at some external, critical parameter value, like the surface temperature, is
discussed in terms of the probabilities of entering and leaving the resonance as well as of the direct scattering.
Finally, atom-surface scattering is studied in more detail showing that the critical temperature is very close to
the Debye surface temperature.
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[. INTRODUCTION many theoretical calculations and/or experimental results.
Obviously these topological manifestations are very common
Resonance line shapes and signatures have attracted a &td have been observed many times but as far as we know
of interest in many branches of physics. Rules governinghey have not been recognized as such. Application of CT to
such intensity features have been sometimes reported but irsonances is quite straightforward since we are dealing with
many cases their applicability is very limited. One of the analytical functions depending on only one variable, usually
main reasons is due to the lack of a good knowledge of théhe total energy(state variable, in CT terminologyand on
interaction potential governing the physical process in-several parameters as, for example, the temperature and the
volved. However, the different line shapes of resonance fegeressurdéforming the so-called control spacén this control
tures or, in mathematical terms, their different topologiesspace is whereausticsare defined. They are obtained from
found in experiments and calculations can be easily undetthebifurcation setwhich is calculated, for a one-dimensional
stood by a close examination of the nature of the criticalproblem, by equating to zero the first and second derivatives
point, that is, the resonance position. The theory available foef a given function and eliminating the state variable. The
such a study is the catastrophe or singularity the@y)  corresponding parametric curves define the caustic.
introduced by Thorhand widely developed by Zeentfatfor After CT, the mathematical analysis begins with the cal-
an introduction see, for example, Refs. 3 and@T is still  culation of the critical pointx, of a given analytical func-
being widely applied in different branches of physics suchtion, F(x). These points also called isolated or nondegener-
as, for example, thermodynamics for phase transitions, stru@te are calculated by the conditioR$(xg)=0 andF"(X,)
tural mechanics, aerodynamics, climate, quantum mechanics; 0, whereF’(x) and F”(x) stand for the first and second
and caustics and diffraction patterns. In particular, in atomicgderivatives of the functiori-(x) with respect tox, respec-
molecular, and surface physics, the rainbow scattetithg,  tively. These critical points will be called degenerateor
asymptotic evaluation of integrals (uniform  nonisolated when the firdt derivatives are zero. The exis-
approximations® and the molecular geometry discussed intence of degenerate critical points will indicate tesetof
terms of the topology of the charge denSigye the three best structural changes in a resonance profile when some external
known examples where CT has been successfully applied. parameter is varied. The change of the profile is predicted to
In most of those works, CT has not been applied in abe abrupt when a given parameter crosses the caustic. More-
rigorous way using all the concepts and theorems needed faver, functions in the vicinity of these points are rstuc-
its correct implementation. In particular, we study a math-turally stable that is, its qualitative propertigsiumber and
ematical property called transversality which guarantees thaypes of critical pointsare changed by a sufficiently small
a given general function and its elementary catastrophe agerturbation of one or several parameters. Thus, in general, a
sociated, expressed as a simple polynomial or canonicdd-fold critical degenerate point will split up into at molst
form, represents locallfaround a critical pointup to a dif- isolated critical points(possible fewer by a perturbation
feomorphism such a function. Very recently, we have pro-which can be expressed, after CT, by a given canonical form.
posed and applied an algorithm based on the main theorems A study of experimental resonance line shapes in terms of
of CT to a standard phase transition probfé? big advan- CT has been recently reportddin the context of atom-
tage of our approach is that provides a systematic way tsurface scattering for the system He-N@OM). The corre-
analyze and classify the critical points of any general, anasponding selective adsorption resonance line shapes display-
lytical function susceptible to represent any physical processng mixed extrema structure@ Fano-type functionhave
A catastrophe, in this context, would correspond to a coabeen shown to be isomorph to the simplest elementary catas-
lescence of two or more critical points of the analytical func-trophe, the fold catastrophe, when the surface temperature is
tion used to parametrize the different topologies observed inaried around its Debye value. This type of functions is the
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simplest one where a coalescence of two isolated criticahate and this number is called the determinative number,
points can occur. Fano-type profiles in scattering processas(g). A sufficient algebraic condition for thiedeterminacy
appear when there is an interference between the resonanotg can be written as
and background contributions. The former comes from the
short-range attractive component of the potential and the M IC(x)A(g) +(x)* "2, (1)
later from its long-range component. On half-collision prob-
lems is the interference between the direct dissociation an
the predissociation which provokes such profiles. Due to th
fact that this interference behavior is very common in many d
physical processes, we are going to review it in a very gen- A(g)= <_g> )
eral way and extend this study to three more interference dx
mechanisms: double resonances, dipole resonahees] the
so-called critical profiles recently observed in the scatterin
of He atoms from the Na@01) surfacé? andD, molecules
from the CW001) surface®® the originally predicted reso-
nance mechanisms leading to such singular behaviors are n_fyn. \
called the critical kinematiCK) (Ref. 14 and focussed ()= T e B(L)}, for every ne . ©
inelastic resonancéFIR) (Refs. 15 and 1peffects. We will The next step is to introduce the concept of transversality
fmally _show that the critical temperature for the t(_)pologlcal as a means to study structural stability and genericity. The
transition should be very close to the corresponding surfacgansyersality condition is not widely used in the literature to
Debye temperature. The theore.tlcal starting point will be theclassify physical phenomena in terms of elementary catastro-
multichannel resonance scattering. phes. When a property of a given function is invariant under
a perturbation, this property is called generic or structurally

here A(g) is the ideal of Jacobi of the gerig which is
efined for one variable by

and the notatior{- - -) is used to denote the ideal of the ring
Yormed by the set of germs in one dimensid{(1l). The
powers in Eq(1) are interpreted operationally as

Il. GENERALITIES ABOUT CATASTROPHE THEORY Sta}bllgz One of tt)he o thefor”ems _abwransver_(sjahw for
WITH ONE STATE VARIABLE: unio Ings can be stated as fo OWS-. Let us C(?I"ISI eraagerm
THE CT ALGORITHM k determinate anélandh two unfoldings ofg with r param-

eters which arek-tranversal; therf and h are isomorphic.

In this section we are going to review very briefly the Moreover, ifh is an unfolding ofg, the algebraic condition
concepts and theorems of CT used thorought this work. Fdfior the transversality can be established as follows: we say
simplicity, we will focus on one dimensional functions with thath is k transversal if
several parameters. CT deals with the singularities of smooth
real-valued functions. The character of the singularity is re- (X)=A(g)+{(x)* 1+ Vv, (4)
vealed by perturbing locally the function around such a )
point. If, as a result of a perturbation, the qualitative properWhereVy is the real vector space generated by the vectors
ties of the function remain unaffected, we will say that this Px,9(%,0)=Dy,9(0,0),... D) 9(x,0)—~ D, g(0,0) whereD,
function is stable or structurally stable. A very important Stands for the partial derivative with respect to param-
concept is the so-callekjet of a given function at a given €ter.
point which is defined as its Taylor series truncated beyond After this brief introduction, the CT program or algorithm
terms of degred. Now the next important step is to know applied® can be now established as: LEE{x,\) be a real
what information is lost when we truncate the Taylor seriesiunction withx e R the state variable and control parameters
of a function around a given point, namely, the problem ofA1,...,A; (A e R"); that is,F:R**"—R. Then we proceed as
determinacy. In other words, we are interested in determinfollows:
ing whether a function can be truncated and if so, up to what (i) We pick (xo,\o) such thatx, is a degenerate critical
degree the Taylor expansion can be truncated without angoint of F(x,\) and we build the unfoldindi(x,\)=F(x
loss of substantial information. In this way, we determine thet Xqg,A +Xg) —F(Xg,Ag) and obtain the germ ag(x)
most general family of functionsunfolding of minimum  =h(x,0). Doing this, we have translated this local study to
dimension(the least number of Taylor series coefficignts the origin of coordinates.
which contains the original function. The unfolding dimen- (i) One calculates the determinacy and codimensiog of
sion is the number of parameters describing a general pertufrom thek jet of g. Of course, ifg is k determinate thery
bation and the minimum number to describe it is called the~j¥(g), that is, the functiong is equal toj*(g) up to a
codimension. When all the unfolding parameters go to zeroghange of coordinates and hence they are equivalent and
the remainder of the universal unfolding is called ggemof  have qualitatively the same properties. Moreover, their codi-
the canonical form. mensions are equal; that is, cgdiEe cod jX(g)].

When thek jets of two functions are equal we say that (iii) One studies after thie transversality oh and, if this
both functions aré& equivalent. A gerng is k determinate if ~ function isk transversal, we can affirm thatand the canoni-
for every germf such that botlk jets are equal we have that cal unfolding ofg are isomorph. Thus we can replace the
f andg are equivalentor related by a change of coordinates, original h unfolding by that canonical unfolding. If not, we
being usually expressed &s-g). The determinacy of a germ can claim that thé& function is not susceptible to be studied
g is the smallest natural numbkrsuch thatg is k determi- by CT.

094302-2



RESONANCE LINE SHAPES AND CATASTROPHES IN . .. PHYSICAL REVIEW &3 094302

Ill. STANDARD RESONANCE LINE SHAPES lustrate here how to proceed for the simplest case where only
IN MULTICHANNEL SCATTERING two resonances interfere. The profile is given by
Our starting point is the multichannel resonance scattering By B, |2
theory as formulated by Ref. 17. The total probabifty of P=1Shi|2=|Sp i +i ——+i— (10)

—+i -
the transition from the incident chanridb a final channel, Xpth Xl

via an isolated resonance, is given by the square modulus efith the x, andx, variables defined by
the collisionS matrix elements

5 12 x,=(2/T';)- (E~Ey) (12)
- Bii

Pt:|Sfi|2:Sb,fi+|ﬁ , (5 and

with S, ¢; being the collision backgroun8 matrix, which Xo=(2IT3)- (E—Ey). (12

includes a_II elastic and inelastic contributions except forTo facilitate the study of this new case we need to introduce
those coming from the resonance. Its square modulus give

the probability of the direct, i.e., nonresonant, scattering,al0 different variables,

Pp=1Sp.si|?>. The matrix elemenBy; is such that its square 2A=X,—Xq,

modulus|Bsj|2= o2 links the probabilities of enteringR,)

and leaving P,,) the bound state according to X=X1+A=X,—A, (13
02=4.Py P, (6) and any matrix element of Eq10) can be rewritten as

This matrix element determines the signature of the reso- 05+2py[coSy— (x+A)sin g, ]

nance profilé*!® In general,P,, and P;, are equal except Fa(X)=a+ Bx+ X+ A2+ 1

when the time-invariance property does not hold. Both prob-

abilities can be treated independently according to the inde- 05+ 2p,[COShy— (x— A)sin¢,]

pendence hypothesis widely accepted in scattering theory + (x—A)2+1

which states that any scattering event can be separated in two

steps: formation of the resonance with probabikty and its (X2—A2+1)20 cose—4Ap sing

ulterior decay with probabilityP,,. In Eq. (5), we have + (2= A2+ 1)2+4AZ . (19

introduced a dimensionless varialke which can be ex-

pressed in terms of the resonance posifioand widthl as ~ Where the symbolsy, p, and ¢ are defined for each reso-
nance with a subindex 1 or 2, respectively, and the new

x=(2I)-(E—E). @ symbolsp and ¢ are used for the modulus and phase of the
complex numbeB, ;- ;yﬁ, respectively.

Thusx=0 gives the resonance position axd + 1 the po- The isolated resonance case above described is also called
sition shifted by=I/2, covering the resonance region. sometimes monopole resonance. In scattering theory, it is
Any matrix element from Eq(5) can also be rewritten in  possible to describe from a mathematical point of view what

terms of an analytical functiok ,(x) as it is called in generamultipole resonances The existence

_ of a dipole resonance was first reported in particle physics.
o?+2p(cos¢—xsine) This case has a lot of similarities to the double resonance

Fl(X):a+ﬁX+

X2+ 1 ' (8) but, as we will see, its topological manifestations are not

) __strictly the same. We are going also to analyze this profile.
Here, it has been assumed that the background contributiofhis profile can be expressed as

to the resonance profile is a smooth functionxpfthat is,

Po=|Sp.1i|?= @+ Bx; and b,=pcos¢ and b;=p sin¢ are e o By
the real and irr_laginary parts of the prodBgt- S} ; , respec- Pi=|Sxil*=|Sp,1i + 2ix —(x+i)2
tively. In particular, the square modulus of this complex _ _
number is related to the scattering probabilities by the fol-which after a little algebra any matrix element becomes the

2
: (15

lowing expression: following analytical function:
[Bri- S5 1[%=p?=4-Pow Pin' Py (9) Fa(x)=atpx
. . H 2 2_ 3 H
As we will show later, the interference between the back- +4XP sing+(0°+2p cosp)x“—x"p sing
ground and resonant contributions can give place to the coa- (x?+1)? '

lescence of the two critical point§-ano-type profilg dis-
(16)
played by Eq.(8).

Another mechanism of coalescence of critical points is thevhere the parameters have the same meaning as before.
so-called double resonance which is also very common in In atom-surface scattering, there are special resonance
scattering problems. In general, we could envisage the inteprofiles called critical profiles where the functiét(x) is
ference of more than two resonances. However, we will il-replaced by
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a2+ 2p(cosp—x2sing) From this preliminary study we can say that the function

A1 (170 F4(x) is susceptible to be studied by CT. We proceed there-
fore to apply the CT program. We start building the unfold-

. N y ing of Fy(x) as

These profiles occur under special incident conditions of the

incoming particle scatteringlastically or inelasticallyfrom h(x,B8,0,p,¢)=F1(X+Xq,B8+ Bo,0+ 00.,p+ po, b+ do)

a given surface. The CK and FIR mechanisms were

predicted*® and recently observed in the scattering of He —F1(X0,80,0,p0, %0) (19

atoms and D, molecules from insulators and metal

surfaces?!3 respectively.

Equations(8), (14), (16), and(17) defining the analytical _
functionsF;(x) with i=1,2,3,4 are the starting point for the 900=h(x,0,0,0.0 20
topological analysis of resonance profiles by means of CT.and where the critical point has been shifted to the origin of

coordinates, thex parameter not being relevant in this CT
analysis. Now we impose the conditionsxgt=0,

with the germ defined by

IV. APPLICATION OF THE CT PROGRAM
A. Isolated resonances: Fano-type profiles 9'(0)=g"(0)=0, g"(0)#0, (21)

The background contributiofP,= e+ 8x in Eq. (8)],  which lead to the system of equations
taken as a small perturbation near the resonance region, af-

fects differently the line shapes around the isolated and non- 0=Bo—2ppSingg,

isolated critical points. If the coefficients accompanyxnig

Eq. (8) are equal to zero£=0 and sing=0), thenx=0 is 0= 02+ 2pyCOSho,

not a degenerate critical point. At these conditions the reso-

nance profileF(x) will exhibit a symmetric Lorentzian 0% 120, Sin g 22)

function and show(i) a maximumwheneverP,<P, Pi,
and (ii) a minimumwheneverP,> P, Pi,. These profiles  with p,>0 and¢e]7/2,7[U]7,37/2[. Then the three jet
are structurally stable from a topological point of view. of the germg is
Moreover, if sing=0 only, asymmetric maxima or minima
will be exhibited depending on the relation among the above- i3(9)=2x3pg sin ¢y (23
mentioned scattering probabilities. _ _ _
On the contrary, whemB#0 and sinp#0, asymmetric and the ideal of Jacobi of the germ is
Fano-type functions(minimum-maximum structurg¢sare 5
present. We are interested under what conditions the two A(9)=(g" (X)) =(x%). (24)
isolated critical points coalesce. A close examination of th
three first derivatives reveals very important consequenc
Thus we have that
(i) If F1(0)=0 thenB=2p sing, that is, the coefficients
accompanying are equalsee Eq(8)]. For convenience, we
Wl’it? this cont;llitiorl_a951=2p sin ¢>/,8i1. i%g)~g~2 (25)
(i) If Fj(0)=0 then cosp=—(c?/2p) or &,
=2p cos¢la® =—1 which implies thatP,> P, Pi,. Both  and the canonical form
conditions can be written in a single expression sugl 4
=pB2+o". 22+ Nz (26)
(iii) Finally, if F7'(0)#0 then sing#0 andB+0.
These three requirements form a necessary condition for t
most elementary catastrophe, that is, foll catastrophe. form corresponds to thfeld elementary catastrophe.

The bifurcation set can be obtained by equating to zero the Nex:},l tﬂe import_antl ]E)Oint s t0 sfhowhth?tlgﬁq(x) func;]
first and second derivatives &(x) and, from both equa- Uon and the canonical form E@26) for the fold catastrophe

tions, to eliminate the state variabteIn doing so, we have are |_somorph. When this is true, we can affirm that bqth
that thebifurcation setis functions are strictly equal and present the same topological

properties as well as describe the same scattering process. As
said in the Introduction, for this goal, a mathematical local

eel'he codimension of the germ is the dimension of the quo-

Tient vector space, codf=dim(x)/(x?)=1 and a basis of
this vector space if x]}. After Eq. (1), the germg is three
determinate. Then

Hé a k-transversal unfolding of® for k=3. This canonical

Be. =6,=(BvV3/9)-(5,+8)-V1— 64, (19 property calledtransversality Eq. (4), has to be prove],
! namely
with §;<1. In general, the bifurcation set is not easy to (x>=(x2>+(x>3+1+vh, 27)

extract from a general function since tkevariable can be
involved in a quite complex wagfor example, transcenden- whereV,, is the vector space of the transversality and reads
tal functions. in our case as
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—2Xg N g(x)=h(x,0,0), (33
Vi=1{ X,X20¢ 5. X[ = (Xgt+ 1) "2 singg

(xo+1) where for simplicity we have assumed that only fand A
parameters play an important role in this CT analysis. Now

_ _ H 2 -2
AX0(C0Sho—Xo SiNho) (Xp+ 1) "+ ..., we impose the conditions ap=A,=0,

X[_(Xé+1)712p0 COS¢0+4XOPO(Sin¢O+XO COS¢O) gr(o):gn(o):gm(o)zo' g(iv)(o);toy (34)

><(x§+ 1)—2]+,,,]> (28) which lead to the system of equations
! 0=—Bo+2(p1SiNg1+p,sing,),

where after deriving with respect to the parameigrs, p,
and ¢, the resulting functions depending ®iare replaced by 0=03+05+2(p1 COSh1+ p, COSh,+ Q COSQ),
the first terms of their Taylor series. Due to the fact tiat
contains the generatorthe transversality condition applied 0=2(pysing;+p;sing,),
to h, Eq.(4), is fulfilled for k=3. ThusF(x) is three trans-
versal. Therefore, as this function has four parameters and 0+#24(2¢ cosp—1) (35

the canonical form of the fold catastrophe only one, there ar@ng thereforg3,=0. Then the four jet of the germ is
three parameters which are irrelevant. Finally we can claim
that F4(x) and the canonical unfolding 4 1 (iv) 4
11(9)= 579" (0)x (36)
Fl(Z,)\l,)\z,)\3,)\4)=23+)\12 (29)
and the ideal of Jacobi of the germ is
are isomorph; that is, there are three changes of coordinates

and a perturbation of parameters involving the state variable A(g)z(g’(x))z(x3) (37)

and the parameters of the theory. CT guarantees these thrEe : . . . .
) : . ihally the codimension of the germ is the dimension of the
changes of coordinates, however, it can be in general ver

difficult to find them &uotient vector space, cagl(=dim(x)/(x*>)=2 and a basis

The bifurcation set of Eq29) is of this vector space i x],[x?]}. After Eq.(1), the germgis
‘ four determinate and

Br,=\;1=0 (30) i*g)~g~=+z* (38)
and is related to the bifurcation set Bf(x) by since g”)(0) can be positive or negative. The canonical
forms
Br,=Br X R°. (3D
+ 74 Nyz+ N\ ,22 (39

arek-transversal unfoldings of z* for k=4. These canoni-
"Bal forms correspond to theusp(plus sign elementary ca-

enon. It is well-known from CTRefs. 3 and #that the fold : . ! )
catastrophe has the following topological properties: its bi_tastrophe and its dudminus sign. The transversality now

furcation set is a single poifh;=0 in Eq.(29)] and when reads

the phys!cal problem passes thrpugh this.\_/alue an abrupt ()= + (X)L Vv, (40)
change in the topology(topological transitioh occurs. . . o
Again, from CT, it follows that for negative values af,,  WhereVy is the vector space of the transversality, this time

F,(x) has two critical pointsa maximum and minimupp ~ deriving only with respect to the parametggsand A. This
while for positive \; values, no critical point is found in condition is fulfilled fork=4. The canonical unfoldings of
F,(x). In the bifurcation, Fy(x) will display a plateau the cusp catastrophe and its dual,

around the resonance position. These three different topolo- .4 2

gies can be found in any standard book of €TIn sum- Ta(2hh0) = 2204 Mz 4 N2 (42)
mary, when the background contribution is not negligibleare isomorph toF,(x); that is, there are four changes of
and Py>P;,- Py, @an abrupt change in the resonance profilecoordinates and a perturbation of parameters involving the
is expected by varying an external parameter as, for examplstate variable and the parameters of the theory.

the temperature of the surface in atom-surface scattéting.  The bifurcation set of Eq41) is

— 972 3_
B. Double resonances BF2=27)‘1+8>‘2_0 (42)
The unfolding ofF,(x) is and is related to the bifurcation set fBp(x) by
h(x,8,4)=F 2(x+Xo,B+ Bo,A+A0) ~ F5(X0, B0, A0) Br,=Br, (43
32
(32 As before, both unfoldings present exactly the same topo-
and the germ defined again by logical properties and’, can be used to describe the same
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physical phenomenon. It is well-known from QRefs. 3 cated and can be found in any standard book off¢The
and 4 that the cusp catastrophe and its dual exhibit the folbifurcation set for-5(x) is related to that of'5 by

lowing topological propertiesbimodality (two minima for 5

the cusp or two maxima for the dual coisphen the control Br,=Br X R*. (52

parameters lie within the cusp-shaped acegrgenceof the The topological properties are much more complicated and

linear response since two nearb_y paths in control SPACE Mo interested reader is again referred to any standard book
lead to widely different topological features ahgisteresis about CT

which occurs when a physical process is not reversible. This
final aspect will be discussed in more detail in next section. N
D. Critical resonances

C. Dipole resonances The unfolding ofF4(x) is

The procedure applied to the functibg(x) is completely h(X,B,0,p,d)=F 4(X+Xo,B+ Bo,0+00,p+ po, b+ bo)
similar to the preceding cases. Due to the fact that this func-

tion is slightly more complicated the calculation of the suc- —F4(X0,80,00,p0,00) (53
cesive derivatives is much more tedious. Again, we build theand the germ
unfolding of F5(x) as before,

h(X,B,O’,p,(ﬁ): F3(X+XO!B+[3010—+0-01p+p01¢+ ¢O)

—F3(X0.80,00,p0: %0, (44)
with the germ defined by

g(x)=h(x,0,0,0,0. (54)
Now we impose the same conditionsxgt=0,
9'(0)=g"(0)=g"(0)=0, g"'(0)#0, (595
which lead toB,=0 and sing,=0 as before. Then the four

9(x)=h(x,0,0,0,0. (45 jet of the germg is
Now we impose again the following conditions: 1
4 _ = i) 4_ 2 4
, ” 17(9)= 579""(0)x"= = (05 +2pg)X (56)
9'(0)=g"(0)=g"(0)=0, (46) 24 o
giving rise to the system of equations and the same ideal of Jacobi of the germ is reached as in the
double resonance case. The codimension of the germ is 2, it
0= Bo+4pgSingg, is four determinate and
0=8(g+2po COS¢ho), ") ~g~=z" (57
) A basis is agaif[x],[x?]}. The canonical forms are again
0=—"72posindo (47)  those of the cusp and its du#l,(x) has been proved that it

with B,=0, sing,=0. With these values, the fourth deriva- IS @lso four transversal and the canonical unfolding,

tive is identically zero and the fith derivative is nonzero. b 2
Then, the five jet of the germ is equivalent to Ta(Z M2 ks o) = 2204 M ZH N2 (58)
. 5 is isomorph toF4(x). The corresponding bifurcation set is
°(9)~g~2, (49 the same than for the canonical unfoldifig,
g is five determinate, its codimension is 3 and its ideal of _
- Br,=Br,, (59
Jacobi is 4 2
, and is related to the bifurcation set fBy(x) b
A(@)=(g" () = (x*). (49) 5(x) by
The canonical form Br,=Br,XR>. (60)
2+ Nz+ N 2%+ \g28 (50)

V. PHYSICAL DISCUSSION AND CONCLUSIONS

is a k-transversal unfolding o for k=5. This canonical
form corresponds to thewallowtail elementary catastrophe.
For the transversality we have shown that Et.is fulfilled

for k=5. In V|, derivation is with respect to the parameters
B, o, p, and ¢, replacing the resulting functions by the first
terms of their Taylor series. Thdpg(x) and the canonical
unfolding,

This kind of study has been initially tackled in atom-
surface scattering where clear evidences of some of the sin-
gular behaviors found here have been already
observed®'2130ur main goal in this work has been to ex-
tend, justify, and generalize that previous topological analy-
sis to the most common resonance features reported in many
physical processes. We have shown mathematically that
(51) resonance line shapes are governed by CT, the different to-

pologies being dictated only by the canonical forms. In par-
are isomorph but only two of the four parameters are relticular, the analytical functionE(x) andF,(x) represent-
evant. The bifurcation set of E¢51) is much more compli- ing Fano-type and double resonance profiles, respectively,

F3(Z,)\1,7\2,)\3,)\4):ZS+ )\12+ )\222+ )\323,
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are isomorph to the most elementaifgpwer codimension  example in the critical profiles, the density of resonance
catastrophes; that is, the fold and cusp catastrophes. The ditates becomes infinify.In the double resonance case, the
pole resonance has been analyzed in some detail since same interpretation could be considered.
points out a tendency about how to reach higher codimen- Along these lines, it has been clearly established that CT
sions. Moreover, the critical profiles provide a good illustra-describes the behavior of a system by comparing it to certain
tion of the selective adsorption phenomenon, very wellpatterns, the canonical forms. However, in most cases try to
known in the context of particle-surface scattering, andfind the changes of coordinates leading to such canonical
where the corresponding CK and FIR effects supply a meangolynomials is indeed impossible but their existence is as-
to make weak resonance features visible when metal surfacesred by CT. In this sense, the procedure followed in this
are probed. In fact, thE ,(x) function has been successfully work is not sufficient to give an interpretation of the micro-
applied to fit the resonance line shape observed in the scatcopic phenomena which bring about the critical behavior.
tering of D, molecules from the Q001) surface and showed For example, in atom/diatom-surface scattering, the variation
the topological transition around the critical temperature preof the surface temperature has been recently shown to pro-
dicted in this work!®> Even more, from that fitting, the life- duce topological transitions for a given selective adsorption
time of the corresponding resonance has been easily otsesonancé®*3In both cases, it was remarkable that the criti-
tained. This is a very important issue since many times it iscal temperatures observed were very close to their corre-
very difficult to extract(inelastic or elasticresonance life- sponding surface Debye temperatures where multiphonon
times if no information about the topologies of line shapes igprocesses begin to be important. We feel that this fact is not
known. In this sense, the present study can be considered ascoincidence at all but, unfortunately, we also think that CT
a useful guide for experimentalists. The final conclusiongs not in a position to provide a complete theoretical justifi-
drawn in this work can also be extended to half collisioncation of the underlying physical mechanism. The tempera-
problems, nuclear scattering, neutron-surfawediquid) scat-  ture dependence &y, Py,, andP,is really very different
tering, electron-molecule scattering, gas-phase scatteringf, elastic or inelastic(phonon-assistgdresonances are in-
etc. volved. Nevertheless, for elastic selective adsorption reso-
A second aspect of this general study has consisted afances, some behaviors can be easily devised. For example,
stressing the importance of the linear behavior displayed by} is expected to follow the overall Debye-Waller attenua-
the background contribution. In other words, this theoretication. The parametes, involving the “in” and “out” reso-
development is based on two main assumptions: the backwant probabilities, should depend weakly on the temperature
ground contribution inside the resonance region can be corsince these probabilities are ratios between a partial width
sidered as a small perturbation and, at least, a linear term iffesonance decay by an open diffraction chanaeld the
energy should be included to fulfill the property of transver-total width (resonance decay by all open diffraction chan-
sality. Obviously, resonance processes very near to threshoftels of the resonance. In contrast, the parametérex-
conditions or with very active backgrounds are not good expressed in terms of the background probability should also
amples to apply such a study. follow the thermal Debye-Walle(DW) attenuation and be
Interestingly enough is the interpretation we can give tothe major contribution to the surface temperature of the nu-
the bifurcation sets or caustics found. In optics, for examplemerators from the functions;(x) with i=1,2,3,4. In a very
the envelope of rays reflected from a curved surface forms good approximation, the variable is independent on the
caustic; two or more rays coalesce on each point of the causurface temperature. On the other hand, it is well known that
tic and the intensity along the envelope is very high. A com-the DW exponent depends linearly on the surface tempera-
pletely different meaning should be attributed to caustics isture, the proportional factor being a function mainly of the
sued from resonance processes. By passing through ttseattering geometry and masses. On the other hand, this ex-
bifurcation set the topology of the profile is changedponent is usually interpreted as the average number of
abruptly; it delimits in the control space the borders where gohonons exchanged in the collision. Thus, if we admit that
topological transitiontakes place. As has been establishedsuch an exponent is close to 1, a more or less limit for single
the different line shapes predicted by CT are related to th@honon processes, the critical temperature will be in a very
behavior of the background which can be modified in severajood approximation close to the surface Debye temperature
ways. First, depending on th®matrix element chosen to whenever the proportional factor is also close to 1. This is
describe a given resonance, the arrangement of the collexactly what has been observed recently in Ref. 10.
sional channels determines drastically such a behavior. Sec- Concerning the hysteresis problem which arises in Sec.
ond, any external parameter such as the temperature of th& B where the cusp catastrophe appears, several comments
target, the initial orientation of the collisional partners, theneed to be mentioned. It is well known that hysteresis occurs
pressure in gas phase or liquid scattering, the intensity of th&zhenever a physical process is not strictly reversible. More-
radiation field in a half collision problem, etc., can provoke over, hysteresis is also very much related to the conventions
substantial modifications on the background contribution andised in CT. The bifurcation set is associated to the so-called
it would be possible to follow continuously the topological delay convention, valid when the values of the control pa-
transitions predicted by CT for a given resonance. Andyameters are changing with time very slowly. On the con-
third, each line shape displayed is associated to a given rdrary, in the other extreme, for the so-called Maxwell or con-
lation among the three fundamental probabilities discussed iflicting set, the Maxwell convention is applied. In this new
the text,P;,, Pou,» andPy. Moreover, in some cases, as for set, the critical values of a function at two or more critical
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points are degenerate and the equations determining it adescribing the physical process is indeed isomorphic to one
called the Clausius-Clapeyron equations. It is well knownof the elementary catastrophes. As has been said, this aspect
that when a physical system exhibits large fluctuations, thés many times neglected in applying CT to different branches
Maxwell convention holds and hysteresis fails to occur.of physics and chemistry. Moreover, thanks to that math-
Thus, in physical irreversible resonance processes, the presmatical property, completely different phenomena are
ence of double or critical resonances is a indirect indicatiorclosely related among them due to the genericity underlying
that hysteresis should exist. In atom-surface scattering, fan nature, being remarkably described and justified in the CT
example, when the surface is heated the response to the dffamework.
fraction of He atoms is different from that observed when the
surface is cpoled down. The same is predicted in the selec- ACKNOWLEDGMENTS
tive adsorption phenomenon.
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