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Free energy and molecular dynamics calculations for the cubic-tetragonal phase transition
in zirconia
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The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecu-
lar dynamics(MD) simulations and within the framework of the Landau theory of phase transformations. The
interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding model, which
includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that,
on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the
free-energy surfaces around the phase transition is then studied with a second set of calculations. These
combine the thermodynamic integration technique with constrained MD simulations. The results seem to
support the thesis of a second-order phase transition but with unusual, very anharmonic behavior above the
transition temperature.
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. INTRODUCTION structure is observed in the Zy@&rO,s (Ref. 14 and
Zr0,-Y,0; (Ref. 15 systems, and has a cubic unit cell with
A large class of advanced ceramics are solid solutions ofhe oxygen sublattice tetragonally distorted.

zirconia (ZrQ) with cubic stabilizing oxides like ¥Os, The microstructure of samples rapidly cooled from the

MgO or CeO, and are generally callsthbilized zirconias c-phase region presents twinned domains separated by an-

The long list of functional applications includes high- tiphase boundaries. The nature and composition of these do-

temperature devices, thermal barriers, and oxygen sensom®ains are related to the phase-transition mechanism and has

Moreover, partially stabilized zirconias represent a new genbeen a subject of controversy. Originally they have been in-

eration of structural materials, by far the toughest ceramiderpreted as the result of a diffusionless martensitic

oxides, strengthened by the mechanism catredisforma- ~ reaction:®™' Later, Heuer and Rue® suggested that the

tion toughening The processing and service conditions Oftr_ansformatmn could baormartensitic: homogeneous, mas-

these materials involve phase transformations whose unde?ive, and displacive. Similarly, the observations of Lantieri

21 H ’
lying physics is still a subject of controversy. One of these isSt @~ were interpreted to mean that the-t" transforma-

the high-temperature cubic-tetragonal phase transitiorpon is diffusionless but nonmartensitic, and that the transfor-
which is the subject of the present paper fation always goes to completion. The same authors later

Zirconia is monocliniqm) at low temperature;® tetrag- proposed that the transition could be heterogeneous of the

onal (t) between 1400 and 257046 and cubic €) up to the first order with nucleatioR? According to Sakum& the
melting point of 2980 K&’ High-temperature x-ray experi-
ments on stabilized zirconia revealed the existencemfa
phase transition between 2300 and 260% ¥ depending on
the atmosphere, but the mechanism of the transformation stil
has not been fully explained. Tleandt unit cells are shown
in Fig. 1: note the characteristic tetragonal distortion of the
oxygen sublattice in thephase. )
It is not possible to quench to low temperature trendt
forms of pure zirconia, hence the experiments are difficult
because of the high temperatures involved. Alternatively, the
c andt structures may be stabilized at low temperatures by
impurities. The available measurements are mostly done o ()
stabilized samples. This simplifies the experimental proce-
dure but complicates the interpretation of the results, becaus
besides the equilibriumh phase, other metastable tetragonal
structures are observed in stabilized crystals, denotetd by
andt”. The former is the microstructure of a solid solution
guenched from the field of stability of the phase into the
biphasicc+t one!***Thet andt’ forms are the same phase,  FiG. 1. Cubic and tetragonal structures of ZrQight and dark
they belong to the space gro®,/nmc, but have different  circles denote oxygen and zirconium atoms, respectively. Arrows
compositiont* t’ is also callechontransformablébecause it represent the structural instability of the oxygen sublattice along the
does not spontaneously transform to timephase. Thet” X5 mode of vibration.
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transition is instead second order. TABLE |. Order parameters for the—t phase transition de-
The temperature evolution of the tetragonatifya and of ~ composed into irreducible representations of @gcubic group.
the anion sublattice distortion has been followed by Yashima

et al*® in the ZrO-Er0O, 5 system. They showed that both Order parameters Irreducible representations

order parameters depend continuously on the temperatuggxﬁy,,;z) T,
and suggested that “the transition has the nature of a higher;, (6t €yt €2) A,
order phase transition.” (72,73) [(2€2— exx—€yy), \/g(fxx_ €yy)] E

Several attempts have been made in order to include thi@m,ns,
transformation in phenomenological theories. Hillert and
Sakum&* expanded the free energy in terms of the defect
concentration and assumed the transition to be second ordelrhe second one. described in Sec. Il B. combines the ther-

Fan and Chefl used the time-dependent Ginzburg-Landau

theory to expand the free energy of the transformation, tream%a';?;?cto";:gﬁ;; n tht:ﬁ‘?:é?gr?erwnhsu??arz:stat;agriing/lche
ing it as a first-order one. The transformation was instead ay

assumed to be second order in the Landau energy expansignase transformation. We summarize the results in the final

of Katamura and Sakunfa. section.
The theoretical treatment of tlee—t transition is simpler

in stoichiometric zirconia: this is a case similar to thest

phase transition in BaTi§) where, according to symmetry

considerations, the transformation could be either first or sec-

ond order. A free-energy Landau expansion for zirconia, in-

volving the tetragonality of the cell only, without the distor- 1. Order parameters

tion of the oxygen sublattice, inevitably predicts a first-order

transformatiorf’ But the inclusion of the latter in the Landau

expansion opens the possibility for a second-orde

transition?® As already pointed ot the coupling between

the order parameters may change the order of the transiti

from second to first.

76) (Exy ) Eyzvezx) T,

II. THEORY

A. Landau theory of the phase transition

The Landau theory of phase transformatibndescribes

Ithe relationship between two crystal structures, which share a
common symmetry groufs,. The disappearance of a par-
dipular symmetry operation is quantitatively described by or-
der parameters, which are zero in the high-symmetry phase

In the case of BaTiQit has been possible to measure theand becom_e nonzero in the low-symmetry one.
order parameters very close to the transition temperi@gte Our preliminary analysfS of the c—t phase transforma-
and to establish the order and the mechanism of the transfop.pn’.based on 0-K ca_lculat_lons, showeq that the Fransfor.ma-
mation. Analogous experiments are difficult in pure zirconiatio" iS driven by the distortion of the anion sublattice, which
because of the high transformation temperature. ThéS described by therimary order parametes. This is a
neutron-diffraction analysis of Aldebert and Travérpeo- ~ measure of the distance between each oxygen atom and the
vides the most complete thermomechanical description of°'Tésponding centrosymmetric position it occupied in¢he
pure ¢ and t zirconia at high temperature. Aldebert and structqre. TheT=0 K calculations of certain phc.)non. fre-
Traverse observe the following) The tetragonal distortion duencies of the phase show that a frequency of wbg%gca)? at
of the oxygen sublattice persists in the whole field of stabil-th€ X point of the Brillouin zone(BZ) is imaginaryz®** _
ity of the t structure. (i) The tetragonal distortion of the ThiS phonon, labele, , involves the oxygen sublattice
oxygen ions vanishes in the structure. (i) The volume only, and is shown in Fig. 1. It transforms according to the
thermal expansion is linear and very close to isotropic up td\2 irreducible representation of the little co-group of e
near the transition point. As a consequencedreratio is ~ POINtDy4y. The star oD, contains three equivalent points;
almost temperature independent over a wide range of tenfonsequently the order parameter describing the tetragonal
peratures, and sharply decreases near the transition tempefistortion has three component;, 4, and4; . _
ture. (iv) The isotropic Debye-Waller factors of both species N transforming to thet phase, the primitive unit cell
strongly increase before the transition temperature: the aufloubles, so that the phonon correspondingjois at thel’
thors interpret it as a possible structural phenomenon anticPoint, and is generally labeled, ;. Nevertheless, in order to
pating the phase transition, which could increase the ioni¢nify the description for both the and thet structures, we
mobility. will not use this convention and we will always refer to the

The plan of the present paper is as follows. In Sec. Il wesoft mode as the, one, also in thé phase.
introduce the main theoretical tools we have used to study Besides the tetragonal distortion of the oxygen sublattice,
the phase transition: the Landau theory of phase transformdi- is necessary to capture the change of the unit-cell shape.
tions, the thermodynamic integration technique, the conThis is done by introducing auxiliary order parametets
strained dynamics, and the analysis of the order-parameteiefined in terms of the strain tenserWe decompose the six
fluctuations. The results are discussed in Sec. Ill. The phasédependent components of the strain tensor into an irreduc-
transition mechanism was investigated using two sets of calble representation of th®,, cubic point group in Table I.
culations. The first one, described in Sec. Il A, is a tradi- It was shown previously that, at equilibrium, each auxil-
tional molecular dynamic¢MD) analysis, with which we iary order parameter is second orderdis®>° From now on,
observed the softening of a particular vibrational frequencythe order of the expansion terms will be expressed with re-
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TABLE II. Polynomials in the order parameters of Table | that about the minimum of the energy-volume curve for the
are invariants under the set of transformations belongin@to structure predicted by the self-consistent, orthogonal tight-
binding (SC-TB) calculations?®

Ay(5?) (85+ 85+ 82)
A8 (5g+25§+25§) , B. Free-energy calculation
Al 5%) (838y+ 805+ 6,5%)

Free-energy surfaces may be calculated directly from MD
B, (e, 52 Pt 2t Vet et e simulations in terms oénsembleaverages by using the ther-
&) (54 0% %) (Gt &yt &z modynamic integration techniqd&>’ Here we briefly de-

2 2 2 2
Ba(e,5) (+235z52ix525y)(2_ezz € €yy) scribe how this method was applied to zirconia.

Bu(c 8 s é jﬂs ?fg% €vy) e The thermodynamic integration method allows us to cal-
3(€.) (0x0yt 0y02+ 028 (€xy T €y2t €2 culate free-energy differences between a reference state, for
) ) which the internal energy, is known, and another state of
Cl(ez) (6t €yt €29 ) ) the same system with internal enefdy The idea is to relate
Ca(€) (267~ €5 €yy) "+ 3 (€ €yy) the two structures with awitching parametery, which is

2 2 2 2 A .
Ca(e?) (€T €yt €2) zero in the reference state and nonzero otherwise. The free-
energy variation in the infinitesimal chandes may be cal-
culated using standard statistical mechanics:

spect to the order id, therefore, as an example, a term like
627, is fourth order. AU ()
dF= < >d V.
Y

3 (2
2. Energy expansion Y

The.Landau .theory assumes that the appropria_te thermarhis is equivalent to the reversible work done for the struc-
dynamic potential of the crystab can be expanded in pow- tural modification described hyy, implicitly assumed to be
ers of the ord_er parameters gbou'_r the transition point. Thadiabatic. By - - - ) we indicate the ensemble average, which
Taylor.expansmn o@ must be invariant under the symmetry nas to be calculated at a constant valueyefy. The free-
operations of the high-symmetry phase. As a consequencgnpergy difference can be obtained by integrating the previous
Fhe a}IIowed terms in the expansion h_ave to be Symmetr)équation. In the general cagé(y) is not known. The com-
invariants as well, and can be found using group theory. Thg,o strategy is to perform several constrained MD simula-
terms in the energy expansion will be polynomials in thegqng ot different values of and then integrate Eq2) nu-
strainse; and displacements; of Table |. We constructed all - perically. Many calculations may be necessary in order to
the possible polynomials up to the sixth order and SYMMejniegrate Eq(2) with sufficient precision.
trized them with respect to the symmetry operations of the ~ A’ynowledge of the functional form of the energy would
cubic point groupOy,. The resulting invariants are shown in greatly simplify this procedure, reducing the number of cal-
Table 1. culations and allowing the analytic integration of H@).

This analysis showed that all the third-order invariants arerpe |andau theory in combination with MD simulations can
identically zero, which is a necessahut not sufficientcon-  provide such useful information. In order to apply this for-
dition for a phase transition to be second order. We alreadyajism it is necessary to define the thermodynamic vari-
mentioned tha'g the instability appears at the boundary of thgp|es of Eq(1) from a MD run at finite temperature. Statis-
BZ, therefore it halves the number of symmetry elementsjca| mechanics allows us to calculate the order parameters
and this is a further condition allowing tle~t phase tran-  y averaging the corresponding time-dependent ones over all
sition to be second ordéf'._ _ _ _ the available atomic configurations.

In order to keep the discussion as simple as possible, at The primitive ¢ cell is unstable with respect to three
this stage weasssumethe phase transition to be second order,mades of vibration whose frequency is degenerate. The in-
truncating_ the _Taylor expansion at t_he fourth-order terrﬁ_.in stability appears at th¥ points of the primitive BZ and the
The possible importance of the higher-order terms will becorresponding eigenmodes distort the anion sublattice along
discussed later. The energy expansion, expressed in terms @f x, y, and z directions. In the following we consider a

the basis function defined in Table Il, is as follows: supercell which is not the primitive one, and those points,
2 originally at the border of the BZ, are folded in at the
a A4i oint. The eigenvectors are therefore real
F=Fo+ —Ay( %)+ > —tAgy(5* 1 point g eret '
02 2(5) Zl 4 4(%7) @ Let us denote by the atomic displacements from a per-

fect site of the high-symmetry phase. We exparid normal
3 ° ¢ coordinates using the notation of Maradueéinal .
+2, biBi(e,6)+ 2 S Ci(e)+0(8).
=1 =1

1
F, is the energy of the high-symmetry phase and is a func- u(x)= M. 2]: e(«[1)Q()- )
tion of the hydrostatic straim;=Tr(€). The choice of the “
reference volume fixe§, and the expansion coefficients x« andM, label the atoms and their mass in the ce{lg|j)
a,, ...,C3. In the present case, the eneffgyas expanded is the eigenvectoy at thel” point of the BZ, and)(j) is the
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corresponding normal coordinate. We will denote |l), The superscripti stands for unconstrained, thés are the
wherea=Xx,y,z, the indiceg describing the soft modes. Lagrange multipliers to be calculated, and s are the

Given a general atomic configuration at timéwe now  functions describing the constraints. Three of them are
include the time in the notation we define thetime- needed, one for each directianof the tetragonal distortion
dependentorder parameter as the average displacement

along X, of therg oxygen atoms of the cell: o, (t)=68,(t)—8,=0. 9
1 The Lagrangian of the constrained system is obtained from
O (t)=— 2 u(x,t)-e(kla) (4) Egs.(8) and(9), and the corresponding equations of motion
Vro % are
= et) Moil, () =Fo(el) el (10
= . u,(x,l)= K|la
roMo © Jro

The time averages of these quantitiés,, are the experi- whereu, andF, are thea=Xx,y,z components of the dis-
mentally measurable order parameters, which we now takplacement and of the force. The orthonormality of the nor-
as thermodynamic variables. mal modes of vibration decouples the equations along the
The factordU(t)/d8, entering in Eq.(2) can now be three crystallographic directions, simplifying the implemen-
calculated at each time step by applying the definitionsof tation of the method. Moreover, since the tetragonal distor-

given in Eq.(4), and by using the chain rule: tion involves the anion sublattice only, we need apply the
above modified equation only to thg, oxygen atoms. In
aU(t) JU(t) du(k,t) general, the Lagrange multipliers have to be found numeri-

=\roM 02 "9Q(ayt) ) cally, but in the present cagdecoupled crystallographic di-
rections and linear constraintan analytical solution does
Noting that the eigenvectors are orthonormal and that thexist.
first term of the sum is the forcE acting on the atoms we The expression of the Lagrange multipliers may be found
end up with the following expression: as follows: (i) Advance the atomic positions withfakeun-
constrained MD step(ii) Use these unconstrained coordi-
AU (t) nates to find the multipliers that exactly satisfy the con-
a6, (1) \/E)E —F(x,t)- ex|a). ®  straints.(iii) Use these values of's to perform thetrue MD
step which satisfies the constraining equations by construc-
Therefore the free-energy gradient is calculated from thdion. Here we specify this procedure for the leapfrog Verlet
time average of the atomic forces projected along X3e  algorithm.

du( k,t)

mode of vibration: Given a set of atomic positiong(t) which satisfy the
constraining Eq(9), thefakestep involves solving the equa-
dF tion of motion corresponding to the Lagrangiéari. By do-
EI\/G 2,:’ —F(x,t)-&(]a) e (@) ing so, the set of unconstrained coordinatg¢t+At) is
“ S obtained. These are related to the constrained atomic posi-

Note that the above average has to be taken on an ensemblonsu(HAt) as follows:

with a constant value of order paramet‘gr, i.e., it is nec- N, ()AL
essary to constrain the order parameters during the MD Ug( K, t+ A =UY (K, t+ AL — ———— e(K|a) (1)
simulations. \/G o

c ining the ord Applying the definition(4) to these coordinates, a similar
- Constraining the order parameters relationship may be found for the order parameters.
The dynamics of canonical and microcanonieasembles
with fixed cell shape automatically constrain the auxiliary " A, (1AL
order parameters. On the contrary, in order to constrain the Sa(t+A)=6 (HAU_W- (12)
dynamics of the primary order parameters and then integrate
Eq. (7) from the results of the MD simulation, it is necessary The analytic solution of the Lagrange multipliers is obtained
to modify the Lagrangian of the systeih. by imposing the constraining equatiorgt+At)=0 and
The goal is to obtain an equation of motion describing thethen solving the resulting linear equationXn
time evolution of a system with a fixed order paramefer
This is done by extending the Lagrangian of the uncon-

strained systent Y: A (t)_ N [5”(t+At) 3,1 13
[=[U" E N o (8) The substitution of Eq(13) in Eq. (11) gives the constrained
a coordinates at+ At in the nve ensemble
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Un( K, 1+ AD) = Ul (K, 1+ AL — T o[ SU(t+At)— 8, ]e( k| ). lll. MD SIMULATIONS
(14 The polarizable self-consistent tight-binding mddéP
. . . . was used to perform two sets of MD simulations. In the first
It IS Important to nqtlt_:e that using _th|s method, the. €X"0ne, standard MD calculations were used to investigate the
pressions for the multipliers are functions of both the inte-

i " . temperature dependence of the order parameters and to fol-
grating scheme and any other additional constraints, such P P P

thermostats. The simple case of the leapfrog Verlet algorithri(§W t_h_e soft(_emng of theX, mode of V|brat|on_ up to the
. ; L ; transition point. In the second one, we combined the con-
described here has to be slightly modified in order to include

the NoseHoover thermosta—4L The same procedure may strained MD simulations and the thermodynamic integration

be repeated for thavt ensembland the resulting equations tg(_:hnlque to calculate the free energy of thet phase tran-
of motion are sition, to study the nature of the order-parameter fluctuations,

and to explain the high-temperature stability of thphase.

. F(k,t) S, (t+At)— 4,
u,(k,t)= M - \/G ST E— A. Standard MD simulations
o At
1. Softening of a vibrational frequency
x| 1+ §(t)g) e(k|a), (15) The time evolution of a system of 96 particles with peri-
2 odic boundary conditions has been followed at temperatures

between 300 and 2200 K. The lattice parameter of the simu-
lation cell were the correspondent experimental values of
Aldebert and Traverse, which, where necessary, have been
D. Fluctuations linearly extrapolated at lower temperatures. During each MD

The fluctuations of the instantaneous order parametefn. the temperature has been constrained with a Nose
5,(t) were used to calculate the frequency of a particulatrioover thermostat,™** and the equations of motion have
vibration directly from the MD run. The central point of this been integrated for not less then 5 ps with a typical time step

analysis is the calculation of the fluctuation correlation func-Of 5 fs. Near the transition point, the time step has been
tion spectrum: reduced to 2.5 fs and the total simulation time has been in-

creased to 15 ps.
. The cell size was constrained by the relatively high num-
Sa(V):f e 2T 8,(1=0)8,(1))dt. (1) ber of MD runs necessary to follow the phase transition. In
total, we simulated the time evolution of 96 particles for
The above dynamic form factor is known to exhibit two more than 120 ps. As discussed later, the cell size does not
important feature$’ a temperature-dependent resonant pealghange our qualitative description of the phase transition,
at », and an additional central peak at=0. The relative and the 324-atom unit cell would have just implied a heavier
magnitude of the two peaks depends on the transformatiooomputational effort, without adding further information to
mechanism and on the temperature. This has been proved fthre physical picture provided by the smaller cell.
phase-transition mechanisms as different as order-disorder We started the simulations from the crystallographic po-
and displacivé® Therefore, without loss of generality, fol- sitions of the tetragonal phase and equilibrated the system at
lowing Padlewskiet al,*® the power spectrunil6) can be the temperature of 300 K. This temperature is well inside the
modeled as a superposition of two peaks with the followingfield of stability of them phase, however, during the MD

where¢ is the thermostat variable.

functional form: simulations, the system remained in thphase because of
the existence of an energy barrier between the two structures.
2AB CD an We calculated the vibrational frequencies of thstructure
Sa(v)= + - 1 by diagonalizing the dynamical matrix at the origin and at
BZ+V2 D2+(V_Va)2 y g g y g

the borders of the BZ along thd00), (110, and(111) di-
rections. This analysis showed that all the vibrational fre-
quencies are real and that thphase does not spontaneously
distort towards them structure.

In this set of MD simulations we followed the approach of
Padlewskiet al*® described in Sec. IID, focusing on the
instantaneous order parameteig(t) [see EQq.(4)], which

S,(t)=Ae B+ Ce Plcog 27 t). (18)  fluctuate about the mean valdg . Figure 2 shows the typi-
cal time evolution of the primary order parameters for the

The time-dependent order parameter is calculated frof¥ID run at T=700 K. Figure 3 shows the fluctuation auto-
the MD atomic positions. The time correlation function of correlation functionS(v) and the corresponding frequency
5,(t) is then obtained using the multiple time-origin SpectrumS(t) for the MD run at 700 K: the arrow points at
method’ and fitted to Eq.(18). The fitting procedure pro- w,, the frequency that softens. It can be seen thakedy
vides both the time correlation function and its Fourier trans-components, corresponding to the transverse-optical frequen-
form. cies, are degenerate.

whereA, B, C, D, andv, are parameters to be fitted to the
calculations. The analytical form of the time-dependent cor
relation functionS(t)=(4,(t=0)45,(t)) may be found by
substituting Eq.(17) in Eqg. (16) and passing into the time
domain with an inverse Fourier transform
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FIG. 4. Temperature dependence of the macroscopic order pa-

FIG. 2. Time-dependent order parameters at 700Kand 6,  rameters,. The symbols @) are the results of the calculations.
oscillate around 0, and, aroundd,, the value of the macroscopic The continuous solid eyeline is extrapolated in the region figar
order parameter. where the large fluctuations i, make the averaging procedure

inaccurate.

On increasing the temperature, the softening of the fre-
quency?z is evident from the dynamic form factor, where theory. We found that the critical exponent for this phase
the resonant peak shifts. At the same time, the primary orddfansition is =0.35. According to the same theory, the
parameter decreases continuou$lig. 4), as experimentally ~critical exponentg’ for the auxiliary order parameters
observed in the similar system ZsQ2%ErQ 5.1 The cal- (72, 73) describing the tetragonality of the cell is bigger than
culated temperature dependence of the macroscopic ordér Therefore thec/a ratio should depend more strongly on
parametes, and of the corresponding vibrational frequency, the temperature thaé.

shown in Fig. 5, was then interpreted using the Landau As the transition temperature is approached, the decrease
’ of the order parameter and of the corresponding frequency is

accompanied by an increase in the order-parameter fluctua-
tions, which theoretically diverge &, for a second-order

1

0.8 .
06 i phase transition. As a result, it was not possible to follow the
0'4 ] complete softening of the frequency: there is a temperature
) window aboutT, where, even though long MD simulations
00.2 i allow one to evaluate the average order parameters, it is not
= 9 T possible to calculate the frequency. In this temperature range,
02 i the frequencyv is so low that the corresponding peak in the
-04 T dynamic form factorS(v) merges with the central peak and
-0.6 § it is not possible to separate them.
0.8 y . The theoretical transition temperature sf1800 K is
-1 L L L L L ~30% lower than the experimental value f2600 K®°
0 20 40 ¢ ??) 80 100 120 This may be explained by noting that the first-principles cal-
S
T T I}‘ T T
i z 50 ., .
H X,y ceceemees '3 "..,."
o 40t .
-,T é 3 (a)
by 30 -
V. <
B i VN
& 20F (b) .
or N )
,;.é "" 600 800 1000 1200 1400 1600 1800 2000 2200
0 - T (K)
5 10 15 20 25 )
v (THz) FIG. 5. Calculation results of the frequency squarédss tem-

perature for two simulation sets{a) tetragonal cell with
FIG. 3. Time correlation functiondop) and corresponding Fou- temperature-dependent lattice parameters taken from experiment,
rier transforms(bottom) of the time-dependent order parameters (Ref. 6 and(b) cubic cell with temperature-independent lattice pa-
Oy, 6y, and s, . rameter(see text
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culations underestimate the energy difference betweeu thewell. The slope was slightly different because in the previous
andt structuresAU' "¢, which determined.2%**Thisis  simulations the thermal expansion of the cell was included in
the ab initio energy barrier between the minima of the the description, while in this case the volume was fixed to
double well, which was used to parametrize the SC-TBthe initial value. Because of this we could calculate the fre-
model. In particular the SC-TB results underestimate the exquency up to withinr=200 K of the transition temperature.
perimentalAU'"¢ by 30%, which is consistent with the un- The temperature was then increased to 2000 K. Surprisingly,
derestimate of the transition temperature. __even in this case, there was no structure in the autocorrela-
According to the renormalized phonon group the®ry?  tion function S(t) and the expectetiardeningof the fre-
depends linearly on the temperature in both the regibns quency was not observed. This suggests that incthhase
<T.andT>T., and the correspondent slopes are related byhe motion of the oxygen sublattice along tig mode of

the following relationship: vibration is, in terms ofS(t), uncorrelated. This behavior
072 072 will be clarified by the free-energy surfaces described in Sec.
14 14
( dT T<T, dT /1 7
However, our simulations at >T, suggest that the«—t B. MD simulations at constant &

phase transition in zirconia has a different behavior from the
ideal case described by E(.9), because no frequency was
observed abové .

In our previous papef$>® we restricted the analysis of
the 0-K energy surface to one tetragonal invariant only. By

The exploration of the high-temperature region of the zir-domg so, we defined a simplified version of the energy ex-

conia phase diagram has been carried out in two stages. APnsion(1) involving the strain and one component of the
first attempt, we continued the MD simulations on the sysPrmary order parameter. We then fitted the correspondent
tem described above, simply increasing the temperature. ThEPefficientsa,, as, by, bz, ¢, andc; to the results of
has been done up to 2200 K. The time autocorrelation functotal-energy calculations. We also showed how the coupling
tion (18) of these simulations exponentially decayed withoutPetween the primary and auxiliary order parameters could
showing any structure. As a result, the central peak domicreate a critical point where the transformation becomes first
nated the corresponding dynamic form factor, and therefor@rder. Here that analysis is extended by exploring the topol-

it was not possible to isolate the resonant peak fiom the ~ 09y Of the energy surface in the whotedomain and by

central one. A possible explanation of this may be proposeg‘JoIIowing its temperature evolution through the phase transi-

by noticing that, according to E419), for T>T, the slope tion into the field of stability of the phase. This sheds light

of (dv2/dT) is ,half that for T<T ,This meacns that the ©" the mechanism of the phase transformation and on the
-

temperature window arouri . in which it is not ible t high-temperature stability of the phase.

cezalczlea?eu ?he frce)z uir?g -Bc,extendg m(?reo igostie eh(i) h- The following results were obtained using a 12-atom unit
. quency, 9Ncell with differentc/a ratios(1, 1.01, 1.02 at the 0-K theo-

temperature field than in the low-temperature one. Probabl

T . . . Yetical equilibrium volume of thec structure. Preliminary
;gﬁg Kiis still in the region offisturbanceof the transition unconstrained MD simulations were done to explore the ef-

In order to verify if the frequency does eventually in- fect of the cell size on the physical picture of the phase
q y y transformation described in the previous section. Even in this

crease in the high-temperature region, we studied a similar )
system with the same properties of that one described abowdnall system, the frequenay; depends linearly on the tem-

but with a lower transition temperature. The idea is based oRerature and the predicted transition temperature is of
the following argument. It is well established that the relative™~1600 K. The effect of using a small cell is to shift to
energetics of the two phases is governed by a double well iRigher temperqtures. This is consistent W|th the physical pic-
the potential energy that depends on volume efal4’~%°  ture proposed in Sec. Il A: the a}utocorrelatlon functi_i(m)

We studied in detalil its dependerf@ayhich is also captured Mmeasures the degree of correlation between the motion of the
by the Landau expansiofl). Both the hydrostatic and te- OXygen atoms along th¢, mode of vibration. We described
tragonal strains modify the double well in the same way: thehow the temperature acts &t) by reducing the correlation
smaller the voluméor thec/a ratio), the smaller the energy until this is completely lost abovE., where the correspond-
difference and therefore the smaller the transition temperdhg frequency is soft, and where the structure.ighe small

ture. Incidentally, this is connected to th® initio underes-  Cell size and the periodic boundary conditions force the mo-
timate of the energy barrier, which is calculated with thetion of atoms in adjacent cells to be correlated, and therefore

structural parameters corresponding to 0 K. counteract the effect of the temperature&fn). As a result,

By exploiting this property of the energy surfaces, wein the small system, higher temperatures are needed to ob-
made a new set of MD simulations aimed to explore theserve the complete softening of the frequengy
temperature rang&>T.. In these calculations the volume  The 12-atom and 96-atom supercells have the same tem-
was Chosen to |0Wer the tranSitiOI’l temperaturee'ﬂ:BOO K perature dependence (ﬂz and ;Z but the Corresponding
and the cell was kept cubiccfa=1) even in the low- cyrves are shifted to different temperatures. We can therefore
temperature region. As expected, fox T, the linear soft-  conclude that the phase-transformation mechanism is the
ening of v [Fig. 5, set(b)] was obtained for this system as same in the two systems. We shall calculate the free energy
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(@ O]
" — c/a=1.00
: 1 I c/a=1.01
g .$$§\$:tl (. A, cfa=1.02
::.::.M’ \/\ ,?\1 0 '-x\"’...
HHOIEDIBAAN 3
"',"//’” “““ 0.4 >
YA ‘ g
3 /
270 = AR — cfa=1.00 12
L I c/a=1.01
........ C/a=1.02
-3 L L L L L L ) L o3
; . 0 01020304050 01 02 03 04
FIG. 6. Section of the 0-K energy surface for the cubic cell. The 008> (a.0) 550> (a0

isoenergetic contours are plotted on the base every 0.3 mRy/ZrO

FIG. 7. Transferability of the 0-K energy-expansion coefficients

d that th It litati hvsical pict ' between different tetragonal cells with the tetragonal axis along
and assume that the resufting qualitative physical picture aF15rojections of the corresponding energy surfaces along the high-

plies to bigger cell sizes. symmetry order-parameter directiof@05) (a) and{850) (b).
Before exploring the free-energy temperature dependence?/ y P )@ (650) (0)

it is useful to simplify the complete energy expansidhby Finally, the same procedure described above was used to
neglecting the order parameters that are unlikely to play afit the remaining coefficients,; andc, by distorting the cell
important role in the phase transition. The transformationwith respect to the order parametgy defined in Table I.
between the andt structures does not distort the cell shape In conclusion, the static calculations show that the 0-K
as described by the order parameteys,(7s, 7¢). Itis there-  energy surfaces can be captured by Taylor expansion up to
fore reasonable to neglect them in the discussion of the folfourth order and are therefore completely defined by the set
lowing results. Moreover, even though the transformatiorof coefficients given in Table IIl.

between the and thet structure does involve a change in the

volume, the energetic contribution of the associated order 2. Free-energy surfaces

parameters, is well understood and has already been dis- The MD simulations were carried out in the temperature
cussed. Apart frqm the 0-K case, we yviII not consider therange from 50 K to 2000 K, constraining the primary and
terms B; and C; in the energy expansion. However, their secondary order parameters. Let us first focus on the results
possible influence on the character of the phase transition iy, the cubic cell, commenting later on the effect of tia
terms of softening of th.(.e corregponding elastic constant will3tio. The explorations along the directioh$00) and(550)
be discussed posterioriin the final Sec. 11l B 3. fully determine the free-energy surfaces to fourth order,
therefore we constrained the order parameters along these
directions from 0 to 0.7 a.u., using the dynamics described in
We start our analysis with the primary order parameterSec. Il C. The quantity defined in E¢6) was accumulated
Two sets of calculations on a stress-free cubic unit cell wereluring the MD run and its time average provided the en-
used to fit the coefficients,, a,;, anda,,. These have been semble average required in Eg). The analytical form(1)
determined by distorting the oxygen sublattice al@#§0) of the energy surface was then differentiated along the cor-
and along(580). We plot the resulting energy surface, responding direction and fitted to the results of the simula-
which we take as the starting point of our analysis, as dions. For this particular case, the fit provided both the free-
function of two tetragonal invariants in Fig. 6. In this simple energy gradient and the free energy itself. This is because we
case, because of the cubic cell, the three components of tlehose the reference energy as the top of the double well for a
primary order parameter are equivalent. cubic crystal. The integration of Eq7) provides the energy
The same set of calculations was then done on a tetragalifferenceAF,
nal cell (c/a=1.01), by which we determined the param-
etersb, andc,. The latter is proportional to the elastic con- (a)
stant C'. The transferability of the parameters was then Yy
checked by redoing the calculations for a different tetragonal $
cell (c/a=1.02): Fig. 7 shows that the same set of coeffi- X
cients fit the results for this cell as well. #fis the tetragonal 0_4
axis, the tetragonality of the unit cell shortens the average °*4
interatomic distances in the transverssg plane and length-
ens them along the tetragonal axis. As a consequence, the
energy surface section in the transverse plane, , shown FIG. 8. 0-K energy surfaces for a tetragonal cell with the tetrag-
in Fig. 8@), is similar to the reference one of Fig. 6 but onal axis along: (a) section in thes, , 5, plane, andb) section in
shallower and tighter, while it is deeper and broader al®ng the &,, 5, plane. The isoenergetic contours are plotted on the base
[Fig. 8b)]. every 0.3 mRy/ZrQ.

of the transition from the MD simulations of the small cell

1. Topology of the 0-K surface
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TABLE Ill. Coefficients for the Landau energy expansidn at 2
the 0-K equilibrium volume of thec cell: a, and a,, in 15
Ry/a3, a4 in Ry/ag, andc, in Ry, wherea, is the Bohr radius. .
The coefficientd,=—0.363 Ryh, andc,;=16.768 Ry complete ~
the 0-K set. See text for the temperature dependencg.of 0.5
S
T (K) a, ag ag b, Cz % 05
0 —0.0534  0.347 1.825 -0.0763  1.228 5 -1
50 —0.0478 0.330 1.191 -0.0749 1.204 -1.5
500 —0.0258 0.235 0.873 —0.0705  0.998 2 T=0K
1000 -0.0143 0.191 0.751 -0.0384 0.768 25 . . . s .
1500 —0.0058 0.184 0.661 —0.0354  0.537 06 04 02 0 02 04 06
2000 0.0030 0.152 0.273 0.307 <0,0,8> (a.u.)

FIG. 10. Temperature evolution of the free-energy profiles pro-
o o 5/ oU jected along the order-parameter directi@®05). The symbols
AF=F(¢,8)—F(€,6=0)= f <—> ds. (20 (@) are the 0-K calculations; the thick solid lines are the result of
0\dé 5 the thermodynamic integration and correspond to the temperatures
50, 500, 1000, 1500, and 2000 K.
We arbitrarily set to zero the integration constant for the

cubic cell F(e:O,gz 0). If the cell is tetragonal the same
constant isc,C,(e2)/2. Therefore, the fit of the free-energy

gradient to the MD simulations of the cubic cell provided theCalculate the frequency,, the dynamic form facto§(»)
coefficientsa,, a,;, a,, andb, at the corresponding tem- being dominated by a wide central peak. The soft frequency

perature. v,, together with the large fluctuations of the order param-
The fit to the computed results along th&00) and the etersd,, suggests a disordered dynamics of the oxygen sub-

corresponding free-energy profiles obtained from E2f) lattice along theX; mode of vibration. The anharmonicity of
are shown in Figs. 9 and 10, respectively. The corresponding’e_ energy surfaces explains this behavior. It may also ex-
expansion coefficients are included in Table Ill. Also at high lain the fact that tg,g optical-phonon branches are not ex-
temperature the fourth-order energy-expansion well deperlmentally observed in cubic stabilized zirconia.

scribes the calculated free-energy gradients. The temperatuge S 1N Other perfect fluorite structurés the vibrational
motion of the anions i zirconia appears to be anharmonic.

acts on the double well t.’y gradually redqcmg the ENer9¥%ris is consistent with the neutron powder-diffraction ex-
difference between the distorted and undistorted Strucw%eriments of Kisi and Yuxiarﬁ on cubic stabilized zirconia

X5 vibration frequency(Fig. 5 up to the transition point
only. Above the critical temperature it was impossible to

As expected, the energy surface is very flat near the critic 7r0,-9.4%Y,05). They measured the temperature depen-
temperature, but, surprisingly, it remains quite flat even ajjonce of the Debye-Waller factor and proposed different
higher temperatures, well inside the field of stability of the ,qdels to fit the data. Both a simple Debye model and a
cubic phase. The energy surfaces above the transition tenfyehye model plus a static disorder component provided a
perature are highly anharmonic. poor fit of the data. A radical improvement of the fit was

The unconstrained MD simulations described in the pregbtained when an isotropic anharmonic vibration of both
vious section generated the temperature dependence of tBpecies was included in the description.

We may further investigate the nature of the double-well

0.03 . . temperature dependence by splitting the free energy into its
0.025 | M %:ggoKK energetic and entropic contributions. The time average of the
) s T=1000K internal energyU from each constrained MD simulation is
0.02 | @ $=%(5)881é plotted in Fig. 11. It is clear that the double well in the

internal energy is present eventat T.. The internal energy
double well is relatively insensitive to the temperature, and
the 0-K coefficients of Table Il provide an excellent fit of
the finite temperature results for both the low- and high-
temperature structures. From the definitionFofthe differ-
ence between the free energy calculated with @) and

the internal energy gives the entropic contributio® plotted

in Fig. 12. The high-temperature stability of tleephase is
therefore ensured by this entropic term, which changes the
shape of the energy surface from double to single welled.

FIG. 9. Temperature-dependent free-energy gradients calculated
using Eqg.(7) and corresponding fit via the analytic form derived
from the Landau theorfEqg. (1)]. Projection along the order- The fit of the Landau energy expansi@) to the calcu-
parameter directiog0036). lation results has allowed us to follow the temperature evo-

/2:05)

0.015 |
: 001 |
0.005 |

0
-0.005 |
-0.01

dF/dé (a.u

T=50K

0 01 02 03 04 05 06
<0,0,8> (a.u.)

3. Coupling to the elastic strains

094101-9



FABRIS, PAXTON, AND FINNIS PHYSICAL REVIEW B63 094101

1

At equilibrium the two order parametess and 7, are not
05 independent and the relationship between the two may be
’ found by imposing the equilibrium condition
™ 0y
& 0 oF _ 2 ’
% ) a772_ =12= c, z* ( )
N -]‘ i
= A similar procedure may be repeated for the hydrostatic
< L5y strain e+ €,,+ €,,= 7, and the substitution of Eq22)
2l back in Eq.(21), together with the corresponding one fgy,
clarifies the combined effect of the coefficieftsandc; on
'2-5_0 P the renormalization of the fourth-order coefficient:
<0,0,8> (a.n.) 2 2
a as 2b; b 6
=Fo+— — ——— =5+ .
FIG. 11. Double well in the internal energy along the order- F=Fo 2 55 4 C, 2Cq 5‘21 0(5;). (239

parameter directioq005): the solid line corresponds to the 0-K

calculation; the symbols are the averaged internal energies from tHé may be verified that the above formulation is independent
constrained MD simulation. of the initial choice of the tetragonal axis.

The coefficientsc; and c, are proportional to the bulk
lution of the free-energy surface through the phase transitiormodulus and to the elastic constddt, respectively. If one
The fitting coefficients for each temperature are included iror both of these quantities significantly decrease with tem-
Table 1ll. We can see that at the critical temperature ofperature, the correspondent term in E2@3) may dominate
~1600 K, whena, goes to zero, the fourth-order coeffi- the sign of the fourth-order coefficient, making it very small
cienta, is positive. Therefore, in this cell, the phase transi-or negative. A 0 K the coupling terms B3/c, and b?/2c,
tion is diffusionless displacive and second order. reduce the fourth-order coefficient by 16% and 4%, respec-

If the thermodynamic potentid is expanded in terms of  tively. Because of this difference we focused our attention on
elastic strains as well a& the coupling between the primary the elastic constantC’. Experimentally, the high-
order parameter and the strain in H4) renormalizes the temperature dat4°®*’do not show any anomalous tempera-
fourth-order coefficieri->**> and could make it small or ture dependence of the elastic constants, with a general de-
negative near the transition point. As a result, the transforerease of~15—20% between 300 and 1700 K. If this is
mation may become first order. This could happen if thevalid for pure zirconia as well, we may anticipate that the

temperature reduces an elastic constant degree of softening of the elastic constants will not affect the
In order to see this, let us consider a tetragonal cell at theharacter of the phase transition.
reference volume, whose tetragonal axig snd where the The calculations described above for the cubic cell have

oxygen sublattice is distorted along the order-parameter dibeen repeated for two tetragonal cells witha=1.01 and
rection(005,). With these restrictions the energy expansion1.02. The constrained MD simulations along $#00) di-

(1) has a simplified form: rection allowed the fit of the coupling coefficiebj to each
temperature. Therefore it has been possible to obtain the
F=Fy+ e 52+ a_“5ézl+ b,28%7,+ C2 n2+0(8%). temperature and/a-dependent free-energy curve along this
2 4 2 direction. However, in this case we are interested in the rela-

(2D tive position of the free-energy surfaces for the different
cells, depending on the integration constdnte,5=0)
=¢,C,(€?)/2. In principle one could calculate, by a
simple thermodynamic integration, but this would require
monitoring the stress, which is not yet implemented in the
current program. Therefore we decided to continue the
analysis by choosing an extreme scenario, which would be a
strong temperature dependence@f. With a large safety
margin with respect to the experimental values, we linearly
reduced this elastic constant by 75% from 200 to 50 MPa
between 0 and 2000 K.

| With this assumption, the sections of the free-energy sur-

. ~ T=50K . faces at different temperatures between 500 and 2000 K are
04 02 0 02 04 plotted in Fig. 13 as a function of andc/a. As experimen-
tally observed, the tetragonal cell witlt/a=1.02 is thermo-
<0,0,8> (a.u.) . .
dynamically stable up to very nedr, where the minimum
FIG. 12. Entropic contribution to the phase transition obtainedconfiguration goes fromg{a=1.025=0.4) to (c/a=1,6
by applying the definition of the Helmholtz free energy =AU =0) quickly but continuously. We believe that the sudden
—TAS to the data shown in Figs. 10 and 11. change of the order parameters, due to the flat energy sur-

TAS (mRy/ZrO,)
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0 0.1 0.2 0.3 0.4 a clear definition in terms of the displacement of the oxygen
a0 T=500K atoms away from their centrosymmetric position, which de-
30-5 —— 1 fine a zone-boundary phonot, . But the same definition
% 0 P, . cannot be directly applied to a finite temperature atomic con-
SO05 | caml0l e » figuration. Instead, we defined the more general macroscopic
S c/a=1.02 — thermodynamic variable as an ensemble average of the dis-

1 placements of the O atoms projected onto ¥ zone-

T=1000 K boundary phonon coordinate. The corresponding frequency
....................... of vibration was then calculated directly from the MD simu-

o
[
T
!

,,,,,,,,,,,,,,,,, lations by applying standard statistical-mechanics tech-

AF (mRy/Z10,)
o

— cfa=1 ey e :
)L — cfa=1.01 i niques.
------- c/a=1.02 The temperature evolution of both the equilibrium order

|
——

AF (mRy/Z10,)
P

-
1]
o
[
(]
~

\

3

parameters and of the corresponding frequengywas then
followed during the MD run. The results of these simulations
............................................ have been interpreted with the Landau theory: the critical

— c/a=1 exponent of 0.35 fitted to the results is between the extreme
05 [ meeen ¢/a=1.01 ] values of 0.5 and 0.25 corresponding to a second-order phase
....... c/a=1.02 L - .
-1 transition and to a tricritical phase transition.
1 5 ApproachingT, from the field of stability of the phase,

T=2000K the order parametet gradually decreases up to very near the

-~
éo.s ................................. ) transition point, as in a displacive second-order phase trans-
‘é L p— ca=1 1 formation. In a temperature window aboly, the large fluc-
L05 e ¢/a=1.01 ] tuations of the order parameter degrade the quality of the
< L cfazl.02 . averages achievable from MD simulations, but we were able
0 0.1 0.2 0.3 0.4 to observer? decreasing linearly witil by some 70%. In
<0,0,8> (a.u.) contrast to the prediction of the Landau theory, no increase

of that frequency in the field of stability of thephase was
‘observed. At high temperatures the dynamics of the oxygen
sublattice revealed a high degree of mobility of the anions
and a low correlation between their motion along e

f the t it int and therefore to th h vibrational mode.
aces near the transition point and theretore 1o th€ anharmo- -, 5 qar g clarify these observations, we calculated the

hicity pf the material, may explain the_fact that Fh's phasefree energy surfaces relating the two structures at different
tran§|t|on has been considered to be first order in the earlYemperatures, combining constrained MD simulations and
StUd'.eS.' . _ the thermodynamic integration technique. These calculations
It is interesting to note that both tf&, and the coupling  g,\veq that the high-temperature stability of thetructure
coeff_|C|entb2 de_crease with temperatufgable “!)' Because s que to the entropic contributioPA S and not to a variation
of this, even with the large postulated so_ft_enmg(ﬁf, the of the internal energy profile. Moreover, we showed that the
renormalization of the fourth-order coefficient in E@3) energy surfaces of the phase are highly anharmonic, not
does not increase with temperature. From the data of Tablgnly at the transition temperature, but also well abd'\g’e
IIl, we find that atT,, the term D3/c, is still only 10% of  Tpis confirms and may explain in terms of thermodynamic
ay1/4, less than in the 0-K case. These results show that evejantities the absence of the optical modes of vibration in
a large softening of the elastic const&it does not change ihe experimental spectra of Liet al,° and the postulated
the character of the phase transition, which remains displayncorrelated “fluidlike” motion of the oxygens about their
cive second order. - centrosymmetric position. Similarly, the experimentally ob-
Figure 13 shows also that, above the transition temperaseryed increase of the ionic conductivity and the “structural
ture, the minimum energy corresponds to the cubic cell a”%henomenon” mentioned by Aldebert and Travérseay
therefore the results about the high temperature structurzﬂossimy be connected with the soft dynamics of the oxygen
stability of thec phase discussed in the previous section rexpattice caused by the flat energy surfaces.
main valid. Our analysis revealed the peculiar character ofthet
transformation in zirconia. Approaching, from below, the
variation of the free-energy surfaces seems to support the
thesis of a— c displacive second-order phase transition. On
The c—t phase transition of pure stoichiometric zirconia the contrary, approaching, from above, it is not possible to
has been studied from different theoretical perspectivedollow the softening of a particular phonon mode. The en-
Both symmetry arguments and the lattice-dynamical analysigropic termTAS eliminates the double well in the free en-
suggested that this transformation might be second order. lergy, and frees the atoms to move along that mode without
the 0-K perfect structure, the primary order parametehas  an energy cost and without a well-defined vibrational fre-

FIG. 13. Free-energy profiles projected along the order
parameter directio005) for cubic and tetragonal cells below and
above the transition temperature.

IV. CONCLUSIONS
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guency. This is more akin to the high-temperature phase isions with Nigel Marks. A.T.P. and M.W.F. are grateful to

an order-disorder phase transformation.
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