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Free energy and molecular dynamics calculations for the cubic-tetragonal phase transition
in zirconia
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The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecu-
lar dynamics~MD! simulations and within the framework of the Landau theory of phase transformations. The
interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding model, which
includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that,
on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the
free-energy surfaces around the phase transition is then studied with a second set of calculations. These
combine the thermodynamic integration technique with constrained MD simulations. The results seem to
support the thesis of a second-order phase transition but with unusual, very anharmonic behavior above the
transition temperature.
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I. INTRODUCTION

A large class of advanced ceramics are solid solution
zirconia (ZrO2) with cubic stabilizing oxides like Y2O3,
MgO or CeO, and are generally calledstabilized zirconias.
The long list of functional applications includes hig
temperature devices, thermal barriers, and oxygen sen
Moreover, partially stabilized zirconias represent a new g
eration of structural materials, by far the toughest cera
oxides, strengthened by the mechanism calledtransforma-
tion toughening. The processing and service conditions
these materials involve phase transformations whose un
lying physics is still a subject of controversy. One of these
the high-temperature cubic-tetragonal phase transit
which is the subject of the present paper.

Zirconia is monoclinic~m! at low temperatures,1–3 tetrag-
onal ~t! between 1400 and 2570 K,4,5 and cubic (c) up to the
melting point of 2980 K.6,7 High-temperature x-ray experi
ments on stabilized zirconia revealed the existence of ac↔t
phase transition between 2300 and 2600 K,8–11depending on
the atmosphere, but the mechanism of the transformation
has not been fully explained. Thec andt unit cells are shown
in Fig. 1: note the characteristic tetragonal distortion of
oxygen sublattice in thet phase.

It is not possible to quench to low temperature thec andt
forms of pure zirconia, hence the experiments are diffic
because of the high temperatures involved. Alternatively,
c and t structures may be stabilized at low temperatures
impurities. The available measurements are mostly done
stabilized samples. This simplifies the experimental pro
dure but complicates the interpretation of the results, beca
besides the equilibriumt phase, other metastable tetragon
structures are observed in stabilized crystals, denoted bt8
and t9. The former is the microstructure of a solid solutio
quenched from the field of stability of thec phase into the
biphasicc1t one.12,13The t andt8 forms are the same phas
they belong to the space groupP42 /nmc, but have different
composition;14 t8 is also callednontransformablebecause it
does not spontaneously transform to them phase. Thet9
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structure is observed in the ZrO2-ErO1.5 ~Ref. 14! and
ZrO2-Y2O3 ~Ref. 15! systems, and has a cubic unit cell wi
the oxygen sublattice tetragonally distorted.

The microstructure of samples rapidly cooled from t
c-phase region presents twinned domains separated by
tiphase boundaries. The nature and composition of these
mains are related to the phase-transition mechanism and
been a subject of controversy. Originally they have been
terpreted as the result of a diffusionless martens
reaction.16–19 Later, Heuer and Ru¨hle20 suggested that the
transformation could benonmartensitic: homogeneous, ma
sive, and displacive. Similarly, the observations of Lanti
et al.21 were interpreted to mean that thec→t8 transforma-
tion is diffusionless but nonmartensitic, and that the transf
mation always goes to completion. The same authors l
proposed that the transition could be heterogeneous of
first order with nucleation.22 According to Sakuma,23 the

FIG. 1. Cubic and tetragonal structures of ZrO2. Light and dark
circles denote oxygen and zirconium atoms, respectively. Arro
represent the structural instability of the oxygen sublattice along
X2

2 mode of vibration.
©2001 The American Physical Society01-1
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transition is instead second order.
The temperature evolution of the tetragonalityc/a and of

the anion sublattice distortion has been followed by Yash
et al.14 in the ZrO2-ErO1.5 system. They showed that bot
order parameters depend continuously on the tempera
and suggested that ‘‘the transition has the nature of a hig
order phase transition.’’

Several attempts have been made in order to include
transformation in phenomenological theories. Hillert a
Sakuma24 expanded the free energy in terms of the def
concentration and assumed the transition to be second o
Fan and Chen25 used the time-dependent Ginzburg-Land
theory to expand the free energy of the transformation, tr
ing it as a first-order one. The transformation was inste
assumed to be second order in the Landau energy expan
of Katamura and Sakuma.26

The theoretical treatment of thec↔t transition is simpler
in stoichiometric zirconia: this is a case similar to thec↔t
phase transition in BaTiO3, where, according to symmetr
considerations, the transformation could be either first or s
ond order. A free-energy Landau expansion for zirconia,
volving the tetragonality of the cell only, without the disto
tion of the oxygen sublattice, inevitably predicts a first-ord
transformation.27 But the inclusion of the latter in the Landa
expansion opens the possibility for a second-or
transition.28 As already pointed out29 the coupling between
the order parameters may change the order of the trans
from second to first.

In the case of BaTiO3 it has been possible to measure t
order parameters very close to the transition temperature30,31

and to establish the order and the mechanism of the tran
mation. Analogous experiments are difficult in pure zircon
because of the high transformation temperature. T
neutron-diffraction analysis of Aldebert and Traverse6 pro-
vides the most complete thermomechanical description
pure c and t zirconia at high temperature. Aldebert an
Traverse observe the following:~i! The tetragonal distortion
of the oxygen sublattice persists in the whole field of sta
ity of the t structure.~ii ! The tetragonal distortion of the
oxygen ions vanishes in thec structure.~iii ! The volume
thermal expansion is linear and very close to isotropic up
near the transition point. As a consequence thec/a ratio is
almost temperature independent over a wide range of t
peratures, and sharply decreases near the transition tem
ture. ~iv! The isotropic Debye-Waller factors of both speci
strongly increase before the transition temperature: the
thors interpret it as a possible structural phenomenon an
pating the phase transition, which could increase the io
mobility.

The plan of the present paper is as follows. In Sec. II
introduce the main theoretical tools we have used to st
the phase transition: the Landau theory of phase transfor
tions, the thermodynamic integration technique, the c
strained dynamics, and the analysis of the order-param
fluctuations. The results are discussed in Sec. III. The ph
transition mechanism was investigated using two sets of
culations. The first one, described in Sec. III A, is a tra
tional molecular dynamics~MD! analysis, with which we
observed the softening of a particular vibrational frequen
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The second one, described in Sec. III B, combines the th
modynamic integration technique with constrained M
simulation to calculate the free-energy surfaces around
phase transformation. We summarize the results in the fi
section.

II. THEORY

A. Landau theory of the phase transition

1. Order parameters

The Landau theory of phase transformations32 describes
the relationship between two crystal structures, which sha
common symmetry groupG0. The disappearance of a pa
ticular symmetry operation is quantitatively described by
der parameters, which are zero in the high-symmetry ph
and become nonzero in the low-symmetry one.

Our preliminary analysis29 of the c↔t phase transforma
tion, based on 0-K calculations, showed that the transfor
tion is driven by the distortion of the anion sublattice, whi
is described by theprimary order parameterd. This is a
measure of the distance between each oxygen atom an
corresponding centrosymmetric position it occupied in thc
structure. TheT50 K calculations of certain phonon fre
quencies of thec phase show that a frequency of vibration
the X point of the Brillouin zone~BZ! is imaginary.29,33,34

This phonon, labeledX2
2 , involves the oxygen sublattice

only, and is shown in Fig. 1. It transforms according to t
A2 irreducible representation of the little co-group of theX
point D4h . The star ofD4h contains three equivalent points
consequently the order parameter describing the tetrag
distortion has three components:dx , dy , anddz .

In transforming to thet phase, the primitive unit cel
doubles, so that the phonon corresponding toX2

2 is at theG
point, and is generally labeledA1g . Nevertheless, in order to
unify the description for both thec and thet structures, we
will not use this convention and we will always refer to th
soft mode as theX2

2 one, also in thet phase.
Besides the tetragonal distortion of the oxygen sublatt

it is necessary to capture the change of the unit-cell sha
This is done by introducing auxiliary order parametersh i ,
defined in terms of the strain tensore. We decompose the six
independent components of the strain tensor into an irred
ible representation of theOh cubic point group in Table I.

It was shown previously that, at equilibrium, each aux
iary order parameter is second order ind.29,35 From now on,
the order of the expansion terms will be expressed with

TABLE I. Order parameters for thec↔t phase transition de-
composed into irreducible representations of theOh cubic group.

Order parameters Irreducible representations

(dx ,dy ,dz) T1

h1 (exx1eyy1ezz) A1

(h2 ,h3) @(2ezz2exx2eyy),A3(exx2eyy)# E
(h4 ,h5 ,h6) (exy ,eyz ,ezx) T2
1-2
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spect to the order ind, therefore, as an example, a term lik
dx

2h1 is fourth order.

2. Energy expansion

The Landau theory assumes that the appropriate ther
dynamic potential of the crystalF can be expanded in pow
ers of the order parameters about the transition point.
Taylor expansion ofF must be invariant under the symmet
operations of the high-symmetry phase. As a conseque
the allowed terms in the expansion have to be symm
invariants as well, and can be found using group theory.
terms in the energy expansion will be polynomials in t
strainse i and displacementsd i of Table I. We constructed al
the possible polynomials up to the sixth order and symm
trized them with respect to the symmetry operations of
cubic point groupOh . The resulting invariants are shown
Table II.

This analysis showed that all the third-order invariants
identically zero, which is a necessary~but not sufficient! con-
dition for a phase transition to be second order. We alre
mentioned that the instability appears at the boundary of
BZ, therefore it halves the number of symmetry elemen
and this is a further condition allowing thec↔t phase tran-
sition to be second order.32

In order to keep the discussion as simple as possible
this stage weassumethe phase transition to be second ord
truncating the Taylor expansion at the fourth-order term ind.
The possible importance of the higher-order terms will
discussed later. The energy expansion, expressed in term
the basis function defined in Table II, is as follows:

F5F01
a2

2
A2~d2!1(

i 51

2
a4i

4
A4i~d4! ~1!

1(
i 51

3

biBi~e,d2!1(
i 51

3
ci

2
Ci~e2!1O~d6!.

F0 is the energy of the high-symmetry phase and is a fu
tion of the hydrostatic strainh15Tr(e). The choice of the
reference volume fixesF0 and the expansion coefficien
a2 , . . . ,c3. In the present case, the energyF was expanded

TABLE II. Polynomials in the order parameters of Table I th
are invariants under the set of transformations belonging toOh .

A2(d2) (dx
21dy

21dz
2)

A41(d
4) (dx

41dy
41dz

4)
A42(d

4) (dx
2dy

21dy
2dz

21dz
2dx

2)

B1(e,d2) (dx
21dy

21dz
2)(exx1eyy1ezz)

B2(e,d2) (2dz
22dx

22dy
2)(2ezz2exx2eyy)

13(dx
22dy

2)(exx2eyy)
B3(e,d2) (dxdy1dydz1dzdx)(exy1eyz1ezx)

C1(e2) (exx1eyy1ezz)
2

C2(e2) (2ezz2exx2eyy)
213(exx2eyy)

2

C3(e2) (exy
2 1eyz

2 1ezx
2 )
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about the minimum of the energy-volume curve for thec
structure predicted by the self-consistent, orthogonal tig
binding ~SC-TB! calculations.29

B. Free-energy calculation

Free-energy surfaces may be calculated directly from M
simulations in terms ofensembleaverages by using the the
modynamic integration technique.36,37 Here we briefly de-
scribe how this method was applied to zirconia.

The thermodynamic integration method allows us to c
culate free-energy differences between a reference state
which the internal energyU0 is known, and another state o
the same system with internal energyU. The idea is to relate
the two structures with aswitching parameterg, which is
zero in the reference state and nonzero otherwise. The f
energy variation in the infinitesimal changedg may be cal-
culated using standard statistical mechanics:

dF5 K ]U~g!

]g L
ḡ

dg. ~2!

This is equivalent to the reversible work done for the stru
tural modification described bydg, implicitly assumed to be
adiabatic. Bŷ •••& we indicate the ensemble average, whi
has to be calculated at a constant value ofg5ḡ. The free-
energy difference can be obtained by integrating the previ
equation. In the general case,U(g) is not known. The com-
mon strategy is to perform several constrained MD simu
tions at different values ofg and then integrate Eq.~2! nu-
merically. Many calculations may be necessary in order
integrate Eq.~2! with sufficient precision.

A knowledge of the functional form of the energy wou
greatly simplify this procedure, reducing the number of c
culations and allowing the analytic integration of Eq.~2!.
The Landau theory in combination with MD simulations c
provide such useful information. In order to apply this fo
malism, it is necessary to define the thermodynamic v
ables of Eq.~1! from a MD run at finite temperature. Statis
tical mechanics allows us to calculate the order parame
by averaging the corresponding time-dependent ones ove
the available atomic configurations.

The primitive c cell is unstable with respect to thre
modes of vibration whose frequency is degenerate. The
stability appears at theX points of the primitive BZ and the
corresponding eigenmodes distort the anion sublattice a
the x, y, and z directions. In the following we consider
supercell which is not the primitive one, and those poin
originally at the border of the BZ, are folded in at theG
point. The eigenvectors are therefore real.

Let us denote byu the atomic displacements from a pe
fect site of the high-symmetry phase. We expandu in normal
coordinates using the notation of Maradudinet al.38:

u~k!5
1

AMk
(

j
e~ku j !Q~ j !. ~3!

k andMk label the atoms and their mass in the cell,e(ku j )
is the eigenvectorj at theG point of the BZ, andQ( j ) is the
1-3
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FABRIS, PAXTON, AND FINNIS PHYSICAL REVIEW B63 094101
corresponding normal coordinate. We will denote byua),
wherea5x,y,z, the indicesj describing the soft modes.

Given a general atomic configuration at timet ~we now
include the time in the notation!, we define thetime-
dependentorder parameter as the average displacem
alongX2

2 of the r O oxygen atoms of the cell:

da~ t ![
1

Ar O
(
k

u~k,t !•e~kua! ~4!

[
Q~a,t !

Ar OMO

.

The time averages of these quantities,d̄a , are the experi-
mentally measurable order parameters, which we now t
as thermodynamic variables.

The factor ]U(t)/]da entering in Eq.~2! can now be
calculated at each time step by applying the definition od
given in Eq.~4!, and by using the chain rule:

]U~ t !

]da~ t !
5Ar OMO(

k
S ]U~ t !

]u~k,t ! D • ]u~k,t !

]Q~a,t !
. ~5!

Noting that the eigenvectors are orthonormal and that
first term of the sum is the forceF acting on the atoms we
end up with the following expression:

]U~ t !

]da~ t !
5Ar O(

k
2F~k,t !•e~kua!. ~6!

Therefore the free-energy gradient is calculated from
time average of the atomic forces projected along theX2

2

mode of vibration:

dF

dda
5Ar OK (

k
2F~k,t !•e~kua!L

d̄a

. ~7!

Note that the above average has to be taken on an ense
with a constant value of order parameterd̄a , i.e., it is nec-
essary to constrain the order parameters during the
simulations.

C. Constraining the order parameters

The dynamics of canonical and microcanonicalensembles
with fixed cell shape automatically constrain the auxilia
order parameters. On the contrary, in order to constrain
dynamics of the primary order parameters and then integ
Eq. ~7! from the results of the MD simulation, it is necessa
to modify the Lagrangian of the system.36

The goal is to obtain an equation of motion describing
time evolution of a system with a fixed order parameterd̄.
This is done by extending the Lagrangian of the unc
strained systemL u:

L5L u2(
a

lasa . ~8!
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The superscriptu stands for unconstrained, thel ’s are the
Lagrange multipliers to be calculated, and thes ’s are the
functions describing the constraints. Three of them
needed, one for each directiona of the tetragonal distortion

sa~ t !5da~ t !2 d̄a50. ~9!

The Lagrangian of the constrained system is obtained fr
Eqs.~8! and ~9!, and the corresponding equations of moti
are

MOüa~k,t !5Fa~k,t !2
la~ t !

Ar O

e~kua!, ~10!

whereua and Fa are thea5x,y,z components of the dis
placement and of the force. The orthonormality of the n
mal modes of vibration decouples the equations along
three crystallographic directions, simplifying the impleme
tation of the method. Moreover, since the tetragonal dis
tion involves the anion sublattice only, we need apply t
above modified equation only to ther O oxygen atoms. In
general, the Lagrange multipliers have to be found num
cally, but in the present case~decoupled crystallographic di
rections and linear constraints! an analytical solution does
exist.

The expression of the Lagrange multipliers may be fou
as follows:~i! Advance the atomic positions with afakeun-
constrained MD step.~ii ! Use these unconstrained coord
nates to find the multipliers that exactly satisfy the co
straints.~iii ! Use these values ofl ’s to perform thetrue MD
step which satisfies the constraining equations by const
tion. Here we specify this procedure for the leapfrog Ver
algorithm.

Given a set of atomic positionsu(t) which satisfy the
constraining Eq.~9!, the fakestep involves solving the equa
tion of motion corresponding to the LagrangianL u. By do-
ing so, the set of unconstrained coordinatesuu(t1Dt) is
obtained. These are related to the constrained atomic p
tions u(t1Dt) as follows:

ua~k,t1Dt !5ua
u~k,t1Dt !2

la~ t !Dt2

Ar OMO

e~kua!. ~11!

Applying the definition~4! to these coordinates, a simila
relationship may be found for the order parameters.

da~ t1Dt !5da
u~ t1Dt !2

la~ t !Dt2

r OMO
. ~12!

The analytic solution of the Lagrange multipliers is obtain
by imposing the constraining equationss(t1Dt)50 and
then solving the resulting linear equation inl:

la~ t !5
r OMO

Dt2
@da

u~ t1Dt !2 d̄a#. ~13!

The substitution of Eq.~13! in Eq. ~11! gives the constrained
coordinates att1Dt in the nve ensemble
1-4
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ua~k,t1Dt !5ua
u~k,t1Dt !2Ar O@da

u~ t1Dt !2 d̄a#e~kua!.
~14!

It is important to notice that using this method, the e
pressions for the multipliers are functions of both the in
grating scheme and any other additional constraints, suc
thermostats. The simple case of the leapfrog Verlet algori
described here has to be slightly modified in order to inclu
the Nose´-Hoover thermostat.39–41 The same procedure ma
be repeated for thenvt ensembleand the resulting equation
of motion are

üa~k,t !5
Fa~k,t !

MO
2Ar OFda~ t1Dt !2 d̄a

Dt2

3S 11j~ t !
Dt

2 D Ge~kua!, ~15!

wherej is the thermostat variable.

D. Fluctuations

The fluctuations of the instantaneous order param
da(t) were used to calculate the frequency of a particu
vibration directly from the MD run. The central point of th
analysis is the calculation of the fluctuation correlation fun
tion spectrum:

Sa~n!5E e2 i2pnt^da~ t50!da~ t !&dt. ~16!

The above dynamic form factor is known to exhibit tw
important features,42 a temperature-dependent resonant p
at n̄, and an additional central peak atn50. The relative
magnitude of the two peaks depends on the transforma
mechanism and on the temperature. This has been prove
phase-transition mechanisms as different as order-diso
and displacive.43 Therefore, without loss of generality, fo
lowing Padlewskiet al.,43 the power spectrum~16! can be
modeled as a superposition of two peaks with the follow
functional form:

Sa~n!5
2AB

B21n2
1

CD

D21~n2 n̄a!2
, ~17!

whereA, B, C, D, and n̄a are parameters to be fitted to th
calculations. The analytical form of the time-dependent c
relation functionS(t)5^da(t50)da(t)& may be found by
substituting Eq.~17! in Eq. ~16! and passing into the time
domain with an inverse Fourier transform

Sa~ t !5Ae2Bt1Ce2Dt cos~2pn̄at !. ~18!

The time-dependent order parameter is calculated f
the MD atomic positions. The time correlation function
da(t) is then obtained using the multiple time-orig
method37 and fitted to Eq.~18!. The fitting procedure pro-
vides both the time correlation function and its Fourier tra
form.
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III. MD SIMULATIONS

The polarizable self-consistent tight-binding model29,35

was used to perform two sets of MD simulations. In the fi
one, standard MD calculations were used to investigate
temperature dependence of the order parameters and to
low the softening of theX2

2 mode of vibration up to the
transition point. In the second one, we combined the c
strained MD simulations and the thermodynamic integrat
technique to calculate the free energy of thec↔t phase tran-
sition, to study the nature of the order-parameter fluctuatio
and to explain the high-temperature stability of thec phase.

A. Standard MD simulations

1. Softening of a vibrational frequency

The time evolution of a system of 96 particles with pe
odic boundary conditions has been followed at temperatu
between 300 and 2200 K. The lattice parameter of the sim
lation cell were the correspondent experimental values
Aldebert and Traverse, which, where necessary, have b
linearly extrapolated at lower temperatures. During each M
run, the temperature has been constrained with a No´-
Hoover thermostat,39–41 and the equations of motion hav
been integrated for not less then 5 ps with a typical time s
of 5 fs. Near the transition point, the time step has be
reduced to 2.5 fs and the total simulation time has been
creased to 15 ps.

The cell size was constrained by the relatively high nu
ber of MD runs necessary to follow the phase transition.
total, we simulated the time evolution of 96 particles f
more than 120 ps. As discussed later, the cell size does
change our qualitative description of the phase transiti
and the 324-atom unit cell would have just implied a heav
computational effort, without adding further information
the physical picture provided by the smaller cell.

We started the simulations from the crystallographic p
sitions of the tetragonal phase and equilibrated the syste
the temperature of 300 K. This temperature is well inside
field of stability of them phase, however, during the MD
simulations, the system remained in thet phase because o
the existence of an energy barrier between the two structu
We calculated the vibrational frequencies of thet structure
by diagonalizing the dynamical matrix at the origin and
the borders of the BZ along the~100!, ~110!, and ~111! di-
rections. This analysis showed that all the vibrational f
quencies are real and that thet phase does not spontaneous
distort towards them structure.

In this set of MD simulations we followed the approach
Padlewskiet al.43 described in Sec. II D, focusing on th
instantaneous order parametersda(t) @see Eq.~4!#, which
fluctuate about the mean valued̄a . Figure 2 shows the typi-
cal time evolution of the primary order parameters for t
MD run at T5700 K. Figure 3 shows the fluctuation auto
correlation functionS(n) and the corresponding frequenc
spectrumS(t) for the MD run at 700 K: the arrow points a
n̄z , the frequency that softens. It can be seen that thex andy
components, corresponding to the transverse-optical freq
cies, are degenerate.
1-5
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FABRIS, PAXTON, AND FINNIS PHYSICAL REVIEW B63 094101
On increasing the temperature, the softening of the
quencyn̄z is evident from the dynamic form factor, wher
the resonant peak shifts. At the same time, the primary o
parameter decreases continuously~Fig. 4!, as experimentally
observed in the similar system ZrO2-12%ErO1.5.14 The cal-
culated temperature dependence of the macroscopic o
parameterd̄z and of the corresponding vibrational frequenc
shown in Fig. 5, was then interpreted using the Land

FIG. 2. Time-dependent order parameters at 700 K:dx and dy

oscillate around 0, anddz aroundd̄z , the value of the macroscopi
order parameter.

FIG. 3. Time correlation functions~top! and corresponding Fou
rier transforms~bottom! of the time-dependent order paramete
dx , dy , anddz .
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theory. We found that the critical exponent for this pha
transition is b50.35. According to the same theory, th
critical exponent b8 for the auxiliary order parameter
(h2 ,h3) describing the tetragonality of the cell is bigger th
b. Therefore thec/a ratio should depend more strongly o
the temperature thand.

As the transition temperature is approached, the decre
of the order parameter and of the corresponding frequenc
accompanied by an increase in the order-parameter fluc
tions, which theoretically diverge atTc for a second-order
phase transition. As a result, it was not possible to follow
complete softening of the frequency: there is a tempera
window aboutTc where, even though long MD simulation
allow one to evaluate the average order parameters, it is
possible to calculate the frequency. In this temperature ra
the frequencyn̄ is so low that the corresponding peak in th
dynamic form factorS(n) merges with the central peak an
it is not possible to separate them.

The theoretical transition temperature of'1800 K is
'30% lower than the experimental value of'2600 K.6

This may be explained by noting that the first-principles c

FIG. 4. Temperature dependence of the macroscopic order

rameterd̄z . The symbols (d) are the results of the calculations
The continuous solid eyeline is extrapolated in the region nearTc ,
where the large fluctuations indz make the averaging procedur
inaccurate.

FIG. 5. Calculation results of the frequency squaredn̄z
2 vs tem-

perature for two simulation sets:~a! tetragonal cell with
temperature-dependent lattice parameters taken from experim
~Ref. 6! and~b! cubic cell with temperature-independent lattice p
rameter~see text!.
1-6
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FREE ENERGY AND MOLECULAR DYNAMICS . . . PHYSICAL REVIEW B 63 094101
culations underestimate the energy difference between tc
and t structuresDUt2c, which determinesTc .29,44,45This is
the ab initio energy barrier between the minima of th
double well, which was used to parametrize the SC-
model. In particular the SC-TB results underestimate the
perimentalDUt2c by 30%, which is consistent with the un
derestimate of the transition temperature.

According to the renormalized phonon group theory,46 n̄2

depends linearly on the temperature in both the regionT
,Tc andT.Tc , and the correspondent slopes are related
the following relationship:

R5S dn̄2

dT
D

T,Tc

US dn̄2

dT
D

T.Tc

522. ~19!

However, our simulations atT.Tc suggest that thec↔t
phase transition in zirconia has a different behavior from
ideal case described by Eq.~19!, because no frequency wa
observed aboveTc .

The exploration of the high-temperature region of the z
conia phase diagram has been carried out in two stages.
first attempt, we continued the MD simulations on the s
tem described above, simply increasing the temperature.
has been done up to 2200 K. The time autocorrelation fu
tion ~18! of these simulations exponentially decayed witho
showing any structure. As a result, the central peak do
nated the corresponding dynamic form factor, and there
it was not possible to isolate the resonant peak atn̄ from the
central one. A possible explanation of this may be propo
by noticing that, according to Eq.~19!, for T.Tc the slope
of (dn̄2/dT) is half that for T,Tc . This means that the
temperature window aroundTc , in which it is not possible to
calculate the frequency, extends more in the hig
temperature field than in the low-temperature one. Proba
2200 K is still in the region ofdisturbanceof the transition
point.

In order to verify if the frequency does eventually i
crease in the high-temperature region, we studied a sim
system with the same properties of that one described ab
but with a lower transition temperature. The idea is based
the following argument. It is well established that the relat
energetics of the two phases is governed by a double we
the potential energy that depends on volume andc/a.47–50

We studied in detail its dependence,29 which is also captured
by the Landau expansion~1!. Both the hydrostatic and te
tragonal strains modify the double well in the same way:
smaller the volume~or thec/a ratio!, the smaller the energy
difference and therefore the smaller the transition temp
ture. Incidentally, this is connected to theab initio underes-
timate of the energy barrier, which is calculated with t
structural parameters corresponding to 0 K.

By exploiting this property of the energy surfaces, w
made a new set of MD simulations aimed to explore
temperature rangeT.Tc . In these calculations the volum
was chosen to lower the transition temperature to'1300 K
and the cell was kept cubic (c/a51) even in the low-
temperature region. As expected, forT,Tc , the linear soft-
ening of n̄2 @Fig. 5, set~b!# was obtained for this system a
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well. The slope was slightly different because in the previo
simulations the thermal expansion of the cell was included
the description, while in this case the volume was fixed
the initial value. Because of this we could calculate the f
quency up to within'200 K of the transition temperature
The temperature was then increased to 2000 K. Surprisin
even in this case, there was no structure in the autocorr
tion function S(t) and the expectedhardeningof the fre-
quency was not observed. This suggests that in thec phase
the motion of the oxygen sublattice along theX2

2 mode of
vibration is, in terms ofS(t), uncorrelated. This behavio
will be clarified by the free-energy surfaces described in S
III B.

B. MD simulations at constant d

In our previous papers29,35 we restricted the analysis o
the 0-K energy surface to one tetragonal invariant only.
doing so, we defined a simplified version of the energy
pansion~1! involving the strain and one component of th
primary order parameter. We then fitted the correspond
coefficientsa2 , a41, b1 , b2 , c1, and c2 to the results of
total-energy calculations. We also showed how the coup
between the primary and auxiliary order parameters co
create a critical point where the transformation becomes
order. Here that analysis is extended by exploring the top
ogy of the energy surface in the wholed domain and by
following its temperature evolution through the phase tran
tion into the field of stability of thec phase. This sheds ligh
on the mechanism of the phase transformation and on
high-temperature stability of thec phase.

The following results were obtained using a 12-atom u
cell with differentc/a ratios~1, 1.01, 1.02! at the 0-K theo-
retical equilibrium volume of thec structure. Preliminary
unconstrained MD simulations were done to explore the
fect of the cell size on the physical picture of the pha
transformation described in the previous section. Even in
small system, the frequencyn̄z

2 depends linearly on the tem
perature and the predicted transition temperature is
'1600 K. The effect of using a small cell is to shiftTc to
higher temperatures. This is consistent with the physical p
ture proposed in Sec. III A: the autocorrelation functionS(t)
measures the degree of correlation between the motion o
oxygen atoms along theX2

2 mode of vibration. We described
how the temperature acts onS(t) by reducing the correlation
until this is completely lost aboveTc , where the correspond
ing frequency is soft, and where the structure isc. The small
cell size and the periodic boundary conditions force the m
tion of atoms in adjacent cells to be correlated, and there
counteract the effect of the temperature onS(t). As a result,
in the small system, higher temperatures are needed to
serve the complete softening of the frequencyn̄z .

The 12-atom and 96-atom supercells have the same
perature dependence ofdz and n̄z but the corresponding
curves are shifted to different temperatures. We can there
conclude that the phase-transformation mechanism is
same in the two systems. We shall calculate the free ene
1-7
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FABRIS, PAXTON, AND FINNIS PHYSICAL REVIEW B63 094101
of the transition from the MD simulations of the small ce
and assume that the resulting qualitative physical picture
plies to bigger cell sizes.

Before exploring the free-energy temperature depende
it is useful to simplify the complete energy expansion~1! by
neglecting the order parameters that are unlikely to play
important role in the phase transition. The transformat
between thec andt structures does not distort the cell sha
as described by the order parameters (h4 ,h5 ,h6). It is there-
fore reasonable to neglect them in the discussion of the
lowing results. Moreover, even though the transformat
between thec and thet structure does involve a change in th
volume, the energetic contribution of the associated or
parameterh1 is well understood and has already been d
cussed. Apart from the 0-K case, we will not consider
terms B3 and C3 in the energy expansion. However, the
possible influence on the character of the phase transitio
terms of softening of the corresponding elastic constant
be discusseda posteriori in the final Sec. III B 3.

1. Topology of the 0-K surface

We start our analysis with the primary order parame
Two sets of calculations on a stress-free cubic unit cell w
used to fit the coefficientsa2 , a41, anda42. These have been
determined by distorting the oxygen sublattice along^d00&
and along ^dd0&. We plot the resulting energy surfac
which we take as the starting point of our analysis, a
function of two tetragonal invariants in Fig. 6. In this simp
case, because of the cubic cell, the three components o
primary order parameter are equivalent.

The same set of calculations was then done on a tetr
nal cell (c/a51.01), by which we determined the param
etersb2 andc2. The latter is proportional to the elastic co
stant C8. The transferability of the parameters was th
checked by redoing the calculations for a different tetrago
cell (c/a51.02): Fig. 7 shows that the same set of coe
cients fit the results for this cell as well. Ifz is the tetragonal
axis, the tetragonality of the unit cell shortens the aver
interatomic distances in the transversex,y plane and length-
ens them along the tetragonal axis. As a consequence
energy surface section in the transverse planedx ,dy , shown
in Fig. 8~a!, is similar to the reference one of Fig. 6 b
shallower and tighter, while it is deeper and broader alongdz
@Fig. 8~b!#.

FIG. 6. Section of the 0-K energy surface for the cubic cell. T
isoenergetic contours are plotted on the base every 0.3 mRy/Z2.
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Finally, the same procedure described above was use
fit the remaining coefficientsb1 andc1 by distorting the cell
with respect to the order parameterh1 defined in Table I.

In conclusion, the static calculations show that the 0
energy surfaces can be captured by Taylor expansion u
fourth order and are therefore completely defined by the
of coefficients given in Table III.

2. Free-energy surfaces

The MD simulations were carried out in the temperatu
range from 50 K to 2000 K, constraining the primary a
secondary order parameters. Let us first focus on the res
for the cubic cell, commenting later on the effect of thec/a
ratio. The explorations along the directions^d00& and^dd0&
fully determine the free-energy surfaces to fourth ord
therefore we constrained the order parameters along t
directions from 0 to 0.7 a.u., using the dynamics describe
Sec. II C. The quantity defined in Eq.~6! was accumulated
during the MD run and its time average provided the e
semble average required in Eq.~7!. The analytical form~1!
of the energy surface was then differentiated along the c
responding direction and fitted to the results of the simu
tions. For this particular case, the fit provided both the fr
energy gradient and the free energy itself. This is because
chose the reference energy as the top of the double well f
cubic crystal. The integration of Eq.~7! provides the energy
differenceDF,

FIG. 7. Transferability of the 0-K energy-expansion coefficien
between different tetragonal cells with the tetragonal axis alonz.
Projections of the corresponding energy surfaces along the h
symmetry order-parameter directions^00d& ~a! and ^dd0& ~b!.

FIG. 8. 0-K energy surfaces for a tetragonal cell with the tetr
onal axis alongz: ~a! section in thedy ,dx plane, and~b! section in
the dz ,dx plane. The isoenergetic contours are plotted on the b
every 0.3 mRy/ZrO2.
1-8
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FREE ENERGY AND MOLECULAR DYNAMICS . . . PHYSICAL REVIEW B 63 094101
DF5F~e,d̄ !2F~e,d̄50!5E
0

d̄ K ]U

]d L
d̄

dd. ~20!

We arbitrarily set to zero the integration constant for t
cubic cell F(e50,d̄50). If the cell is tetragonal the sam
constant isc2C2(e2)/2. Therefore, the fit of the free-energ
gradient to the MD simulations of the cubic cell provided t
coefficientsa2 , a41, a42, andb2 at the corresponding tem
perature.

The fit to the computed results along the^d00& and the
corresponding free-energy profiles obtained from Eq.~20!
are shown in Figs. 9 and 10, respectively. The correspond
expansion coefficients are included in Table III. Also at hi
temperature the fourth-order energy-expansion well
scribes the calculated free-energy gradients. The tempera
acts on the double well by gradually reducing the ene
difference between the distorted and undistorted struct
As expected, the energy surface is very flat near the crit
temperature, but, surprisingly, it remains quite flat even
higher temperatures, well inside the field of stability of t
cubic phase. The energy surfaces above the transition
perature are highly anharmonic.

The unconstrained MD simulations described in the p
vious section generated the temperature dependence o

TABLE III. Coefficients for the Landau energy expansion~1! at
the 0-K equilibrium volume of thec cell: a2 and a42 in
Ry/a0

2 , a41 in Ry/a0
4, andc2 in Ry, wherea0 is the Bohr radius.

The coefficientsb1520.363 Ry/a0 andc1516.768 Ry complete
the 0-K set. See text for the temperature dependence ofc2.

T (K) a2 a41 a42 b2 c2

0 20.0534 0.347 1.825 20.0763 1.228
50 20.0478 0.330 1.191 20.0749 1.204
500 20.0258 0.235 0.873 20.0705 0.998
1000 20.0143 0.191 0.751 20.0384 0.768
1500 20.0058 0.184 0.661 20.0354 0.537
2000 0.0030 0.152 0.273 0.307

FIG. 9. Temperature-dependent free-energy gradients calcu
using Eq.~7! and corresponding fit via the analytic form derive
from the Landau theory@Eq. ~1!#. Projection along the order
parameter direction̂00d&.
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X2
2 vibration frequency~Fig. 5! up to the transition point

only. Above the critical temperature it was impossible
calculate the frequencyn̄z , the dynamic form factorS(n)
being dominated by a wide central peak. The soft freque
n̄z , together with the large fluctuations of the order para
etersdz , suggests a disordered dynamics of the oxygen s
lattice along theX2

2 mode of vibration. The anharmonicity o
the energy surfaces explains this behavior. It may also
plain the fact that the optical-phonon branches are not
perimentally observed51 in cubic stabilized zirconia.

As in other perfect fluorite structures,52 the vibrational
motion of the anions inc zirconia appears to be anharmoni
This is consistent with the neutron powder-diffraction e
periments of Kisi and Yuxiang53 on cubic stabilized zirconia
(ZrO2-9.4%Y2O3). They measured the temperature depe
dence of the Debye-Waller factor and proposed differ
models to fit the data. Both a simple Debye model and
Debye model plus a static disorder component provide
poor fit of the data. A radical improvement of the fit wa
obtained when an isotropic anharmonic vibration of bo
species was included in the description.

We may further investigate the nature of the double-w
temperature dependence by splitting the free energy into
energetic and entropic contributions. The time average of
internal energyU from each constrained MD simulation i
plotted in Fig. 11. It is clear that the double well in th
internal energy is present even atT.Tc . The internal energy
double well is relatively insensitive to the temperature, a
the 0-K coefficients of Table III provide an excellent fit o
the finite temperature results for both the low- and hig
temperature structures. From the definition ofF, the differ-
ence between the free energy calculated with Eq.~20! and
the internal energy gives the entropic contributionTSplotted
in Fig. 12. The high-temperature stability of thec phase is
therefore ensured by this entropic term, which changes
shape of the energy surface from double to single welled

3. Coupling to the elastic strains

The fit of the Landau energy expansion~1! to the calcu-
lation results has allowed us to follow the temperature e

ed

FIG. 10. Temperature evolution of the free-energy profiles p
jected along the order-parameter direction^00d&. The symbols
(d) are the 0-K calculations; the thick solid lines are the result
the thermodynamic integration and correspond to the temperat
50, 500, 1000, 1500, and 2000 K.
1-9
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FABRIS, PAXTON, AND FINNIS PHYSICAL REVIEW B63 094101
lution of the free-energy surface through the phase transit
The fitting coefficients for each temperature are included
Table III. We can see that at the critical temperature
'1600 K, whena2 goes to zero, the fourth-order coeffi
cient a4 is positive. Therefore, in this cell, the phase tran
tion is diffusionless displacive and second order.

If the thermodynamic potentialF is expanded in terms o
elastic strains as well asd, the coupling between the primar
order parameter and the strain in Eq.~1! renormalizes the
fourth-order coefficient32,54,55 and could make it small o
negative near the transition point. As a result, the trans
mation may become first order. This could happen if
temperature reduces an elastic constantci .

In order to see this, let us consider a tetragonal cell at
reference volume, whose tetragonal axis isz and where the
oxygen sublattice is distorted along the order-parameter
rection^00dz&. With these restrictions the energy expansi
~1! has a simplified form:

F5F01
a2

2
dz

21
a41

4
dz

41b22dz
2h21

c2

2
h2

21O~dL
6!.

~21!

FIG. 11. Double well in the internal energy along the ord
parameter direction̂00d&: the solid line corresponds to the 0-
calculation; the symbols are the averaged internal energies from
constrained MD simulation.

FIG. 12. Entropic contribution to the phase transition obtain
by applying the definition of the Helmholtz free energyDF5DU
2TDS to the data shown in Figs. 10 and 11.
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At equilibrium the two order parametersdz and h2 are not
independent and the relationship between the two may
found by imposing the equilibrium condition

]F

]h2
50⇒h252

2b2

c2
dz

2 . ~22!

A similar procedure may be repeated for the hydrosta
strain exx1eyy1ezz5h1 and the substitution of Eq.~22!
back in Eq.~21!, together with the corresponding one forh1,
clarifies the combined effect of the coefficientsbi andci on
the renormalization of the fourth-order coefficient:

F5F01
a2

2
dz

21S a41

4
2

2b2
2

c2
2

b1
2

2c1
D dz

41O~dz
6!. ~23!

It may be verified that the above formulation is independ
of the initial choice of the tetragonal axis.

The coefficientsc1 and c2 are proportional to the bulk
modulus and to the elastic constantC8, respectively. If one
or both of these quantities significantly decrease with te
perature, the correspondent term in Eq.~23! may dominate
the sign of the fourth-order coefficient, making it very sm
or negative. At 0 K the coupling terms 2b2

2/c2 and b1
2/2c1

reduce the fourth-order coefficient by 16% and 4%, resp
tively. Because of this difference we focused our attention
the elastic constant C8. Experimentally, the high-
temperature data51,56,57do not show any anomalous temper
ture dependence of the elastic constants, with a genera
crease of'15220% between 300 and 1700 K. If this i
valid for pure zirconia as well, we may anticipate that t
degree of softening of the elastic constants will not affect
character of the phase transition.

The calculations described above for the cubic cell ha
been repeated for two tetragonal cells withc/a51.01 and
1.02. The constrained MD simulations along the^d00& di-
rection allowed the fit of the coupling coefficientb2 to each
temperature. Therefore it has been possible to obtain
temperature andc/a-dependent free-energy curve along th
direction. However, in this case we are interested in the r
tive position of the free-energy surfaces for the differe
cells, depending on the integration constantF(e,d50)
5c2C2(e2)/2. In principle one could calculatec2 by a
simple thermodynamic integration, but this would requ
monitoring the stress, which is not yet implemented in t
current program. Therefore we decided to continue
analysis by choosing an extreme scenario, which would b
strong temperature dependence ofC8. With a large safety
margin with respect to the experimental values, we linea
reduced this elastic constant by 75% from 200 to 50 M
between 0 and 2000 K.

With this assumption, the sections of the free-energy s
faces at different temperatures between 500 and 2000 K
plotted in Fig. 13 as a function ofd andc/a. As experimen-
tally observed,6 the tetragonal cell withc/a51.02 is thermo-
dynamically stable up to very nearTc where the minimum
configuration goes from (c/a51.02,d50.4) to (c/a51,d
50) quickly but continuously. We believe that the sudd
change of the order parameters, due to the flat energy

-

he

d

1-10



m
s
ar

ab

v

pl

er
an
ur
re

ia
e

ys
r.

en
e-

on-
opic
dis-

ncy
u-
ch-

er

ns
cal
me

hase

he
ns-

the
ble

ase

gen
ns

the
ent
nd
ons

the
t

ic
in

ir
b-
ral

en

the
n

n-
-
out

re-

er
d

FREE ENERGY AND MOLECULAR DYNAMICS . . . PHYSICAL REVIEW B 63 094101
faces near the transition point and therefore to the anhar
nicity of the material, may explain the fact that this pha
transition has been considered to be first order in the e
studies.

It is interesting to note that both thea41 and the coupling
coefficientb2 decrease with temperature~Table III!. Because
of this, even with the large postulated softening ofC8, the
renormalization of the fourth-order coefficient in Eq.~23!
does not increase with temperature. From the data of T
III, we find that atTc , the term 2b2

2/c2 is still only 10% of
a41/4, less than in the 0-K case. These results show that e
a large softening of the elastic constantC8 does not change
the character of the phase transition, which remains dis
cive second order.

Figure 13 shows also that, above the transition temp
ture, the minimum energy corresponds to the cubic cell
therefore the results about the high temperature struct
stability of thec phase discussed in the previous section
main valid.

IV. CONCLUSIONS

The c↔t phase transition of pure stoichiometric zircon
has been studied from different theoretical perspectiv
Both symmetry arguments and the lattice-dynamical anal
suggested that this transformation might be second orde
the 0-K perfectt structure, the primary order parameterd has

FIG. 13. Free-energy profiles projected along the ord
parameter direction̂00d& for cubic and tetragonal cells below an
above the transition temperature.
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a clear definition in terms of the displacement of the oxyg
atoms away from their centrosymmetric position, which d
fine a zone-boundary phononX2

2 . But the same definition
cannot be directly applied to a finite temperature atomic c
figuration. Instead, we defined the more general macrosc
thermodynamic variable as an ensemble average of the
placements of the O atoms projected onto theX2

2 zone-
boundary phonon coordinate. The corresponding freque
of vibration was then calculated directly from the MD sim
lations by applying standard statistical-mechanics te
niques.

The temperature evolution of both the equilibrium ord
parameterd and of the corresponding frequencyn was then
followed during the MD run. The results of these simulatio
have been interpreted with the Landau theory: the criti
exponent of 0.35 fitted to the results is between the extre
values of 0.5 and 0.25 corresponding to a second-order p
transition and to a tricritical phase transition.

ApproachingTc from the field of stability of thet phase,
the order parameterd gradually decreases up to very near t
transition point, as in a displacive second-order phase tra
formation. In a temperature window aboutTc , the large fluc-
tuations of the order parameter degrade the quality of
averages achievable from MD simulations, but we were a
to observen2 decreasing linearly withT by some 70%. In
contrast to the prediction of the Landau theory, no incre
of that frequency in the field of stability of thec phase was
observed. At high temperatures the dynamics of the oxy
sublattice revealed a high degree of mobility of the anio
and a low correlation between their motion along theX2

2

vibrational mode.
In order to clarify these observations, we calculated

free energy surfaces relating the two structures at differ
temperatures, combining constrained MD simulations a
the thermodynamic integration technique. These calculati
showed that the high-temperature stability of thec structure
is due to the entropic contributionTDS and not to a variation
of the internal energy profile. Moreover, we showed that
energy surfaces of thec phase are highly anharmonic, no
only at the transition temperature, but also well aboveTc .
This confirms and may explain in terms of thermodynam
quantities the absence of the optical modes of vibration
the experimental spectra of Liuet al.,51 and the postulated
uncorrelated ‘‘fluidlike’’ motion of the oxygens about the
centrosymmetric position. Similarly, the experimentally o
served increase of the ionic conductivity and the ‘‘structu
phenomenon’’ mentioned by Aldebert and Traverse6 may
possibly be connected with the soft dynamics of the oxyg
sublattice caused by the flat energy surfaces.

Our analysis revealed the peculiar character of thec↔t
transformation in zirconia. ApproachingTc from below, the
variation of the free-energy surfaces seems to support
thesis of at→c displacive second-order phase transition. O
the contrary, approachingTc from above, it is not possible to
follow the softening of a particular phonon mode. The e
tropic termTDS eliminates the double well in the free en
ergy, and frees the atoms to move along that mode with
an energy cost and without a well-defined vibrational f

-
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FABRIS, PAXTON, AND FINNIS PHYSICAL REVIEW B63 094101
quency. This is more akin to the high-temperature phas
an order-disorder phase transformation.
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