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Reduction of electron tunneling current due to lateral variation of the wave function
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Electron tunneling in solids is usually envisioned in terms of a simple barrier model based on free electrons
tunneling through a region of homogeneous potential. We point out that this model neglects the variation of the
wave function in the plane of the interface and show that oscillations of the wave function parallel to the
interface increase its rate of decay perpendicular to the interface. This simple observation has important
implications for spin-dependent tunneling and may explain why ‘‘s electrons’’ seem to tunnel much more
readily than ‘‘d electrons.’’
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I. INTRODUCTION

Recently there has been much interest in tunneling
tween ferromagnetic electrodes.1–4 This interest has been fo
cused on the dependence of the tunneling current on the
tive alignment of the moments of the electrodes on oppo
sides of the barrier. This dependence arises because elec
in the two spin channels in a ferromagnet show differ
tunneling rates through the barrier. In trying to understa
this difference in the tunneling rates, one important ques
that has arisen concerns the relative rates of tunneling
‘‘ s’’ and ‘‘ d’’ electrons, i.e., those Bloch electrons wit
symmetries that are best described by ‘‘s’’ or ‘‘ d’’ orbitals.

Most tunneling theories5,6 for this type of system predic
that the tunneling rate is proportional to the product of
densities of states of the two electrodes on either side of
barrier. Experiments, however, are not consistent with
prediction. In cases in which the spin polarization of t
tunneling current has been determined by tunneling i
superconductors,7 it has so far been the case that the o
served tunneling spectrum indicates that the tunneling
,
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rent is carried predominantly by majority electrons. This
true even for cases such as nickel and cobalt in which
minority density of states is an order of magnitude larg
than that of the majority.

Some variations of the tunneling theory attempt to av
such inconsistency by defining a ‘‘tunneling density
states.’’ Although the tunneling density of states is identi
to the density of states in the case of free electrons, for
materials the concept is difficult to define. Presumably, i
that part of the density of states that is necessary to make
theory agree with experiment. However, the use of suc
concept fails to explain why part of the density of stat
participates in tunneling and other parts, presumably incl
ing the typically large ‘‘d’’ density of states at the Ferm
energy for minority spins do not.

Electron tunneling in solids is usually envisioned a
modeled in terms of a simple barrier model in which fr
electrons are incident on a simple repulsive step poten
~Fig. 1!. The transmission probability as a function of tran
verse electron momentum for this type of barrier can be c
culated simply and is given by8
T~ki!5
16k1k2k2exp~2kd!

$k~k11k2!@11exp~2kd!#%21$~k22k1k2!@12exp~2kd!#%2
~1!
ctly

le
nly

,

where d is the barrier thickness. The quantities,k1 , k2,
and k are given by k15A(2m/\2)(E2V1)2ki

2, k2

5A(2m/\2)(E2V2)2ki
2 and k5A(2m/\2)(VB2E)1ki

2.
The reflection probability,R, is 12T. For most tunneling
situations, exp(2kd) is much greater than unity. In this limit
we find thatT is given by

T~ki!5
16k1k2k2exp~22kd!

@k~k11k2!#21~k22k1k2!2
. ~2!
The tunneling conductance can be calculated dire
from the transmission probability9,10

G5
e2

h (
ki

T~ki!. ~3!

Thus, if we consider Bloch electrons incident on a simp
step barrier, it would appear naively that there could be o
a single decay rate for a given value ofki . That is, the
tunneling current should decay with the barrier thicknessd,
as exp(22kd) where k5A(2m/\2)(V2E)1ki

2. In previ-
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ous papers,11,12however, we have emphasized different wa
function symmetries in the electrodes and showed that t
lead to different decay rates in the barrier layer due to
fact that each symmetry will have a minimum decay r
corresponding to that of the slowest decaying complex
ergy band in the barrier layer with that symmetry. The phy
cal effect, that different types of Bloch states decay at diff
ent rates in a barrier is, however, much more general.

The basic physical reason that the different Bloch sta
decay at different rates in the barrier is that they have dif
ent amounts of curvature in the plane parallel to the in
faces. The free-electron model fails to describe this aspec
real metals because it does not include spatial variation
the lateral directions~other than those associated with t
lateral components of the wave vector,ki). Consider the
simple barrier model with a homogeneous barrierV. If the
wave function in the electrode is more realistic than that o
free electron, it may have oscillations in the plane paralle
the interface even whenki50. As we show below, thes
oscillations will increase the decay rate perpendicular to
interface.

Assume for simplicity that the boundary conditions at t
edge of the barrier can be matched with the separable f
c(x,y,z)5f(x,y)exp(2kz). Then, the decay perpendicula
to the barrier (ki50) will be given by

k25
2m

\2
~VB2E!2

^fuS ]2

]x2
1

]2

]y2D uf&

^fuf&
. ~4!

Because the variation off is assumed to be oscillatory, th
second term above must be positive and correlate with
number of nodes off(x,y).

Thus the additional curvature of the wave function in t
plane parallel to the interface causes an increase in the ra
decay perpendicular to the interface~just as a nonzero valu
of ki would!. In this picture, the role of symmetry is to de
termine the number of nodes of the wave function in
plane of the interface. This translates into curvature in t
plane which affects the decay rate. States that are prima
s-like will have little of this curvature,p-like states will have
more andd-like states will typically have even more. For th
reason, we argue that our result that the nature of the sta
the electrode influences its decay rate in the barrier is q
general. Most of thed-derived states, in particular, will b

FIG. 1. Free electrons incident on a simple barrier.
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disadvantaged in penetrating the barrier because of t
higher curvature due to additional nodes in the plane para
to the barrier.

Because the notion of multiple decay rates in a spatia
homogeneous barrier layer may seem counterintuitive,
calculated the decay into the barrier of the density of sta
for each band at the Fermi energy of Fe~100!. The density of
states was calculated with boundary conditions in wh
there is a unit flux of incident electrons in a single Blo
state on one side~left side in this case! plus reflected elec-
trons on the same side~left! and transmitted electrons on th
opposite side~right!. These boundary conditions yield a de
sity of states that decays in the barrier from left to right.

For this calculation we chose the barrier height relative
the Fermi energy to be approximately equal to the wo
function in order to be an approximate representation of t
neling through vacuum. The calculation employed the la
Korringa Kohn Rostoker~LKKR ! technique to calculate the
electronic structure and density of states.13 This calculation
must be approached with care when using a technique~such
as the LKKR! that employs an atomic sphere approximati
~ASA!. The ASA is not bad for atoms, but it does not pr
vide a very accurate representation of the vacuum becau
attempts to represent a constant barrier potential as a su
spherical potentials each having a magnitude of about
Hartree~13.6 eV!. In order to better represent the homog
neous vacuum potential, all potentials were recalculated r
tive to a potential zero equal to the vacuum level. This giv
a perfectly homogeneous vacuum at the expense of
creased accuracy for the Fe bands.

The results displayed in Fig. 2 show three decay ra
The majority D1 state~which containss,p, and d compo-
nents with 1,z, and 2z22x22y2 symmetries, respectively!
decays ask5A(2m/\2)(V2E), exactly as expected for th
simple barrier model. The other states, however, decay m
rapidly. The minorityD2 (d character,x22y2 symmetry!

FIG. 2. Calculated Density of States~DOS! for ki50
for Fe~100!uvacuumuFe~100!. The DOS is calculated using
scattering boundary conditions with Bloch waves incident fro
the left. Vacuum is approximated here by a spatially homoge
ous barrier. The straight lines have slopes given
22A(2m/\2)(V2EF)1g2 as described in the text. The momen
of the two iron electrodes are assumed to be aligned.
2-2
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and all of theD5 states (p andd components withx, y, xz,

and yz symmetries! decay ask5A(2m/\2)(V2E)1g1
2,

where g152p/a for a square lattice of lattice constanta.
The majority and minorityD28 states that haved character
and xy symmetry decay ask5A(2m/\2)(V2E)1g2

2 with
g25A2(2p/a). g1 andg2 are simply the magnitudes of th
first two reciprocal lattice vectors of the two-dimension
~2D! lattice parallel to the interfaces.

The D1 state has no node in thexy plane forki50. On
the other hand, theD5 states on a two-dimensional squa
lattice have one node per unit cell, with a period ofa
in either thex or the y direction, which corresponds to
wave vector of g1. Thus taking linear combinations o
the four plane waves with magnitudeg1 , exp(6i2px/a),
exp(6i2py/a), we can construct functions withD5 symme-
try, sin(2px/a),sin(2py/a). We can also use them to con
struct a wave functions withD2 symmetry, cos(2px/a)
2cos(2py/a). Finally, we can use linear combinations
the plane waves associated with the four reciprocal lat
vectors of magnitudeg2 , exp(6i2px/a6i2py/a), to con-
struct a wave function withD28 symmetry, cos(2px/a
12py/a)2cos(2px/a22py/a).

For the case ofkiÞ0, the symmetry of the Bloch state
and of the decaying evanescent states that they coup
becomes more complicated. The wave function in the bar
region that joins to the incident plus reflected Bloch wave
the left can be expanded in terms of reciprocal lattice vec
in the form11

c~r,z!5(
g

cgei (ki1g)•r2A2m

\2 (VB2E)1(ki1g)2z. ~5!

Here r is a vector in thexy plane and we have taken th
limit of a thick barrier so that growing evanescent waves
excluded.

For ki50, the coefficients,cg must be such that the de
caying wave function in the barrier region can match
Bloch states maintaining the proper symmetry as explai
above. Because of this symmetry requirement only Blo
states withD1 symmetry can couple to decaying waves th
contain theg50 reciprocal lattice vector in their expansio
For kiÞ0, however, the states in the barrier will typical
consist of a linear combination of different reciprocal latti
vectors decaying at different rates. For a relatively thick b
rier the component with the slowest decay rate, typically t
corresponding to theg50 reciprocal lattice vector, will be
the last one surviving so that in that sense, for an arbitr
point in the 2D Brillouin zone there will ultimately be
single decay rate.

The transmission coefficient for thick barriers will the
depend on the magnitude of theg50 coefficient of the wave
function expansion in Eq.~5!. Note that this component o
the wave function corresponds to a probability dens
P(r,z)5uc(r,z)u2 that is constant in thexy plane. Coeffi-
cients for the wave function in the barrier withgÞ0 will be
necessary for the probability density to join continuously
that of the metal.
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Even whenki is nonzero, thed component of the wave
function with nodes in thexy plane will generate only very
small contributions to theg50 expansion coefficients. Thi
means that thed DOS will decay very rapidly in the first few
layers of the barrier and that the contribution to the transm
sion of Bloch states that haved-derived oscillations in thexy
plane will typically be several orders of magnitude smal
than those Bloch states that do not have such oscillatio
This is illustrated in Figs. 3 and 4 which show the DOS f
the same boundary conditions as Fig. 2. In this case, h
ever,ki5(0.036,0.018) and we show the angular moment
decomposition of the DOS. In the barrier, the angular m
mentum decomposition is performed around fictitious si
that would form a continuation of the bcc Fe~100! lattice.
Figure 3 shows the DOS for the continuation of the major
D1 band atki5(0,0) to ki5(0.036,0.018). The calculate
DOS is essentially unchanged for this Bloch state which d
not have rapid oscillations in thexy plane. The DOS for the
other Bloch states is, however, affected by the loss of sy
metry as is shown in Fig. 4. There is an initial rapid decay
the DOS as the parts of the wave function that have in-pl

FIG. 3. Calculated DOS forkiÞ0 for Fe~100!uvacuumuFe~100!
for a Bloch state that hasD1 symmetry atki50. These calculations
employ the same boundary conditions as Fig. 2.

FIG. 4. Calculated DOS forkiÞ0 for Fe~100!uvacuumuFe~100!
for a Bloch state that has nog50 component atki50. These cal-
culations employ the same boundary conditions as Figs. 2 and
2-3
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BRIEF REPORTS PHYSICAL REVIEW B 63 092402
oscillations decay according to Eq.~5! with gÞ0. After
those terms are gone there is a small residual componen
decays at the rate given by Eq.~5! with g50.

In the case of a real barrier layer, formed from an insu
tor such as Al2O3, similar arguments regarding the dec
rate apply. The Bloch states in the metal couple to decay
states of appropriate symmetry and the corresponding d
rates determined by complex bands of the barrier which
no longer simple plane waves. The characteristic decay r
calculated for iron electrodes with MgO barrier layers agre
exactly with those predicted by the imaginary value of t
wave vector of the state of appropriate symmetry in
barrier.12

In summary, we have shown that the lateral variation
wave functions can dramatically change the rate at wh
they decay in a barrier. Specifically we show that the de
rate is determined by the symmetry of the Bloch states in
xy plane, in particular the number of nodes of the wa
function in a unit cell. This understanding points toward po
sible directions for designing materials with electronic stru
.
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tures optimized to produce greater contrast between the
spin channels in spin-dependent tunneling.

It should be noted for completeness thatd-derived states
suffer an additional disadvantage in tunneling through a b
rier. Their band velocity is typically lower than that of free
electronlike states. Since the transmission coefficient that
ters the Landauer formula is flux conserving, it incorpora
a factor ofvz , the component of the band velocity perpe
dicular to the interface, compared to the density of sta
plotted in Figs. 2–4. We note that Mazin has emphasized
importance of the band velocity perpendicular to the int
face when interpreting tunneling and Andreev reflection.14,15
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