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Reduction of electron tunneling current due to lateral variation of the wave function
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Electron tunneling in solids is usually envisioned in terms of a simple barrier model based on free electrons
tunneling through a region of homogeneous potential. We point out that this model neglects the variation of the
wave function in the plane of the interface and show that oscillations of the wave function parallel to the
interface increase its rate of decay perpendicular to the interface. This simple observation has important
implications for spin-dependent tunneling and may explain wisyefectrons” seem to tunnel much more
readily than ‘d electrons.”
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I. INTRODUCTION rent is carried predominantly by majority electrons. This is

Recently there has been much interest in tunneling bet_rue even for cases such as nickel and cobalt in which the

. L minority density of states is an order of magnitude larger
tween ferromagnetic electrod&g’ This interest has been fo- Y y 9 9

: than that of the majority.
cused on the dependence of the tunneling current on the rela- Some variations of the tunneling theory attempt to avoid

tive alignment of the moments of the electrodes on oppositg ., inconsistency by defining a “tunneling density of

sides of the barrier. This dependence arises because electrafigtes. Although the tunneling density of states is identical
in the two spin channels in a ferromagnet show differenq the density of states in the case of free electrons, for real
tunneling rates through the barrier. In trying to understandmaterials the concept is difficult to define. Presumably, it is
this difference in the tunneling rates, one important questioRhat part of the density of states that is necessary to make the
that has arisen concerns the relative rates of tunneling byheory agree with experiment. However, the use of such a
“s” and "“d” electrons, i.e., those Bloch electrons with concept fails to explain why part of the density of states
symmetries that are best described kg ‘or ** d” orbitals. participates in tunneling and other parts, presumably includ-
Most tunneling theorié€ for this type of system predict ing the typically large ‘" density of states at the Fermi
that the tunneling rate is proportional to the product of theenergy for minority spins do not.
densities of states of the two electrodes on either side of the Electron tunneling in solids is usually envisioned and
barrier. Experiments, however, are not consistent with thisnodeled in terms of a simple barrier model in which free
prediction. In cases in which the spin polarization of theelectrons are incident on a simple repulsive step potential
tunneling current has been determined by tunneling intdFig. 1). The transmission probability as a function of trans-
superconductorS,it has so far been the case that the ob-verse electron momentum for this type of barrier can be cal-
served tunneling spectrum indicates that the tunneling cureulated simply and is given By

16k, K2k exp(2xd)
T(kp)= 5 5 5 (1)
{k(ky+ky)[1+exp2xd) ]+ {(x°—kiko)[1—exp(2xd)]}
|
where d is the barrier thickness. The quantitids,, k,, The tunneling conductance can be calculated directly

and « are given by k;=\(2m/A%)(E—V,)—k?, k, from the transmission probability®

=\(2mM/A%)(E-V,) —ki and k= \(2m/#%)(Vg—E) +kf. )

The reflection probabilityR, is 1—T. For most tunneling G:e_ > T(ky). (3)
situations, exp(2d) is much greater than unity. In this limit, h I

we find thatT is given by

Thus, if we consider Bloch electrons incident on a simple
step barrier, it would appear naively that there could be only

2 _ a single decay rate for a given value kf. That is, the
T(k) = 16Ky 7kpexp( — 2xd) ) (2)  tunneling current should decay with the barrier thickneiss,
[k(ky+ ko) ]2+ (k2= kikp)? as expt-2«d) where k= 1/(2m/A%)(V—E)+ k. In previ-

0163-1829/2001/63)/0924024)/$15.00 63 092402-1 ©2001 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B 63 092402

v, DOS for Fe(100)lvacuumiFe(100) for k;=0
105 £ Qg *“-~+.__+\
1010 ﬂ?iAZ dn Toegde b oo+ o+ 4
g 10  £3n
Vi v, O qp20f Bpupo %o
1025 Bpran, %
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ous papers;~“however, we have emphasized different wave il 2 0 0 B
function symmetries in the electrodes and showed that they 0 2 4 6 8 10 12 14 16 18 20
lead to different decay rates in the barrier layer due to the Layer Number

fact that each symmetry will have a minimum decay rate FIG. 2. Calculated Density of StatetDOS for k=0
corresponding to that of the slowest decaying complex en; . Fé(106)|vacuun1|Fe(100). The DOS is calculated I using

ergy band in the barrier layer with that symmetry. The phySI'scattering boundary conditions with Bloch waves incident from

cal effect,.that d|ffgrer)t types of Bloch states decay at dlffer-the left. Vacuum is approximated here by a spatially homogene-
ent rates in a barrier is, however, much more general.

. . i ous barrier. The straight lines have slopes given by
The basic physical reason that the different Bloch states_z\/(Zm/ﬁz)(V_EF)Jrgz as described in the text. The moments

decay at different rates in the barrier is that they have differys ihe two iron electrodes are assumed to be aligned.

ent amounts of curvature in the plane parallel to the inter-

faces. The free-electron model fails to describe this aspect of ) ) . .
real metals because it does not include spatial variations ifiS2dvantaged in penetrating the barrier because of their
the lateral directiongother than those associated with the higher curvature due to additional nodes in the plane parallel

lateral components of the wave vectds). Consider the to the barrier. . . : .
simple barrier model with a homogeneous barkerf the Because the notion of multiple decay rates in a spatially

wave function in the electrode is more realistic than that of 4'0M0geneous barrier layer may seem counterintuitive, we
free electron, it may have oscillations in the plane parallel tF@/culated the decay into the barrier of the density of states
the interface even wheh”:o. As we show below, these for each band at the Fermi energy of E@0). The density of

oscillations will increase the decay rate perpendicular to th&ates was calculated with boundary conditions in which
interface. there is a unlt_flux ofl|nC|.dent_eIectrons in a single Bloch
Assume for simplicity that the boundary conditions at theState on one siddeft side in this caseplus reflected elec-

edge of the barrier can be matched with the separable forffons on the same sideeft) and transmitted electrons on the
W(x,y,2) = B(x,y)exp(—«2). Then, the decay perpendicular opposite siddright). These boundary conditions yield a den-
to the barrier k= 0) will be given by sity of states that decays in the barrier from left to right.

For this calculation we chose the barrier height relative to
the Fermi energy to be approximately equal to the work

2P function in order to be an approximate representation of tun-
<¢|(_+_2) | ) neling through vacuum. The calculation employed the layer
, 2m axs ay Korringa Kohn Rostoke(LKKR) technique to calculate the
K _ﬁ(VB E) ) : 4 electronic structure and density of statéshis calculation

must be approached with care when using a technigueh

as the LKKR that employs an atomic sphere approximation
Because the variation ap is assumed to be oscillatory, the (ASA). The ASA is not bad for atoms, but it does not pro-
second term above must be positive and correlate with theide a very accurate representation of the vacuum because it
number of nodes of(Xx,y). attempts to represent a constant barrier potential as a sum of

Thus the additional curvature of the wave function in thespherical potentials each having a magnitude of about 0.5

plane parallel to the interface causes an increase in the rate bfartree(13.6 €\). In order to better represent the homoge-
decay perpendicular to the interfagast as a nonzero value neous vacuum potential, all potentials were recalculated rela-
of kj would). In this picture, the role of symmetry is to de- tive to a potential zero equal to the vacuum level. This gives
termine the number of nodes of the wave function in thea perfectly homogeneous vacuum at the expense of de-
plane of the interface. This translates into curvature in thisreased accuracy for the Fe bands.
plane which affects the decay rate. States that are primarily The results displayed in Fig. 2 show three decay rates.
s-like will have little of this curvaturep-like states will have The majority A, state (which containss,p, andd compo-
more andi-like states will typically have even more. For this nents with 1z, and 2*—x*—y? symmetries, respectively
reason, we argue that our result that the nature of the state decays ax= J(2m/%%)(V—E), exactly as expected for the
the electrode influences its decay rate in the barrier is quiteimple barrier model. The other states, however, decay more
general. Most of thel-derived states, in particular, will be rapidly. The minorityA, (d characterx?—y? symmetry
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and all of theA5 states p andd Components W|th(, Y, Xz, DOS for Fe(100)|vacuumIFe(100) for kx=0.036, ky=0018
. _ 2 _ 2 T T T T T T T T T

and yz symmetries decay asK—.\/(Zm/ﬁ ).(V E)+97, 1MW Band 1

whereg,=2mx/a for a square lattice of lattice constaat kv ey

The majority and minorityA,, states that havd character

andxy symmetry decay ag=\/(2m/%2)(V—E)+g5 with 10° |

0,=2(2m/a). g; andg, are simply the magnitudes of the ., Fe

first two reciprocal lattice vectors of the two-dimensional 8 4410 [ -
(2D) lattice parallel to the interfaces. vacuum  Cwe] e

The A, state has no node in they plane forkj=0. On
the other hand, théj states on a two-dimensional square
lattice have one node per unit cell, with a period af
in either thex or they direction, which corresponds to a 10720 L . . s . . . . .
wave vector ofg,. Thus taking linear combinations of 2 4 6 8 10 12 14 16 18
the four plane waves with magnitudg,, exp(+i2mx/a), Layer Number

exp(*i2my/a), we can construct functions withs symme- FIG. 3. Calculated DOS fok,#0 for Fe(100|vacuuniFe(100

try, sin(2mx/a),sin(2myla). We can also use them to con- for a Bloch state that has, symmetry ak;=0. These calculations
struct a wave functions withA, symmetry, cos(zx/a)  employ the same boundary conditions as Fig. 2.

—cos(2ry/a). Finally, we can use linear combinations of
the plane waves associated with the four reciprocal lattice gyep whenk; is nonzero, thel component of the wave
vectors of magnitudeg,, exp(ti2mx/ati2myla), 10 con-  fynction with nodes in they plane will generate only very
struct a wave function withA;, symmetry, cos(@xa  small contributions to the=0 expansion coefficients. This
+2myla)—cos(2rd/a—2myla). means that thd DOS will decay very rapidly in the first few
For the case ok;#0, the symmetry of the Bloch states |ayers of the barrier and that the contribution to the transmis-
and of the decaying evanescent states that they couple {go, of Bloch states that haekderived oscillations in they
becomes more complicated. The wave function in the barriepane will typically be several orders of magnitude smaller
region that joins to the incident plus reflected Bloch wave onhan those Bloch states that do not have such oscillations.
fche left can be expanded in terms of reciprocal lattice vectorsyis is illustrated in Figs. 3 and 4 which show the DOS for
in the form'! the same boundary conditions as Fig. 2. In this case, how-
ever,k;=(0.036,0.018) and we show the angular momentum

_ o 5 decomposition of the DOS. In the barrier, the angular mo-
W(p,2)=2, cyel®it 9P \7z(VeB) (9% (5 mentum decomposition is performed around fictitious sites
9 that would form a continuation of the bcc B0 lattice.

Figure 3 shows the DOS for the continuation of the majority

Here p is a vector in thexy plane and we have taken the A; band atk;=(0,0) to k;=(0.036,0.018). The calculated
limit of a thick barrier so that growing evanescent waves arédOS is essentially unchanged for this Bloch state which does

excluded. not have rapid oscillations in they plane. The DOS for the
For kj=0, the coefficients¢cy must be such that the de- other Bloch states is, however, affected by the loss of sym-
caying wave function in the barrier region can match tometry as is shown in Fig. 4. There is an initial rapid decay of
Bloch states maintaining the proper symmetry as explainethe DOS as the parts of the wave function that have in-plane

above. Because of this symmetry requirement only Bloch

10|

states withA; symmetry can couple to decaying waves that DOS for Fe(100)lvacuumiFe(100) for k=0.036, k,=0.018
contain theg=0 reciprocal lattice vector in their expansion. . . . . . . ;
For k;#0, however, the states in the barrier will typically 1% Band 2

consist of a linear combination of different reciprocal lattice
vectors decaying at different rates. For a relatively thick bar-
rier the component with the slowest decay rate, typically that
corresponding to thg=0 reciprocal lattice vector, will be o
the last one surviving so that in that sense, for an arbitrary8 1010 [
point in the 2D Brillouin zone there will ultimately be a
single decay rate.

The transmission coefficient for thick barriers will then
depend on the magnitude of tge=0 coefficient of the wave
function expansion in Eq5). Note that this component of 10%0
the wave function corresponds to a probability density,
P(p,2)=|¢(p,2)|? that is constant in thay plane. Coeffi-

ForgBorrer sl N\
10° [
Fe

1018 |

2 4 6 8 10 12 14 16 18
Layer Number

cients for the wave functiqh in the .barrie.r yvig#o_will be FIG. 4. Calculated DOS fok# 0 for Fe(100)|vacuuniFe(100)
necessary for the probability density to join continuously tofor a Bloch state that has rgp=0 component ak;=0. These cal-
that of the metal. culations employ the same boundary conditions as Figs. 2 and 3.

092402-3



BRIEF REPORTS PHYSICAL REVIEW B 63 092402

oscillations decay according to E@5) with g#0. After  tures optimized to produce greater contrast between the two
those terms are gone there is a small residual component thgin channels in spin-dependent tunneling.
decays at the rate given by E@) with g=0. It should be noted for completeness tladerived states

In the case of a real barrier layer, formed from an insula-Suffer an additional disadvantage in tunneling through a bar-

tor such as AlO,, similar arguments regarding the decay "€r- Their band velocity is typically lower than that of free-
rate apply Tﬁée éloch states ?n the metalgcoupﬁ]a to decayi3r/1 lectronlike states. Since the transmission coefficient that en-

. . rs the Landauer formula is flux conserving, it incorporates
states of appropriate symmetry and the corresponding dec@’factor ofv,, the component of the band velocity perpen-

rates determined by complex bands of the barrier which argjcyar to the interface, compared to the density of states
no longer simple plane waves. The characteristic decay ratsiotted in Figs. 2—4. We note that Mazin has emphasized the
calculated for iron electrodes with MgO barrier layers agreedmportance of the band velocity perpendicular to the inter-
exactly with those predicted by the imaginary value of theface when interpreting tunneling and Andreev reflectibtr.
wave vector of the state of appropriate symmetry in the

barrierl? Work at Oak Ridge was sponsored by the Defense Ad-

In summary, we have shown that the lateral variation of2"ced Research Projects Agency and by the Office of Basic

. . .~ Energy Sciences, Division of Materials Sciences of the
wave functions can dramatically change the rate at which; g “Hanartment of Energy. Oak Ridge National Laboratory
they decay in a barrier. Specifically we show that the decayg operated by UT-Battelle, LLC, for the U.S. Department
rate is determined by the symmetry of the Bloch states in thef Energy under Contract No. DE-AC05-000R22725.
Xy plane, in particular the number of nodes of the wavej.M.M. acknowledges support from the Oak Ridge Institute
function in a unit cell. This understanding points toward pos-for Science and Education and DARPA Grant No.
sible directions for designing materials with electronic struc-MDA 972-97-1-003.
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