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Wulff shapes and the critical nucleus for a triangular Ising lattice
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Equilibrium Wulff shapes and interfacial energies of two-dimensional “crystals” on a triangular lattice are
considered. Asymptotic approximations are constructed for both the shapes and energies in fhe>mit
where crystals are close to perfect hexagons, and the Timifl ; (critical temperaturewhere crystals have
near-circular shapes. The intermediate temperature region is studied numerically, and accurate interpolating
approximations are proposed. The relevance of the study to the nucleation problem is discussed.
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I. INTRODUCTION the (111 plane of Cu, as described in Sec. VII.
Another potential application of the results is related to

In 1901 Wulfft showed how to construct a minimum- nucleation from a metastable phase. It is expected that the
energy surfacé" S surface”) that encloses a given volumve ~ Work required to form a nucleus—the key parameter of the
of a crystal, provided one know_g(ﬁ)' the anisotropic inter- nucleation problem—can be obtained from the same equilib-
facial tension as a function af, the normal to the interface. fium Wulff construction:> Once this parameter is evaluated,
This approach formed the basis of the modern understandingvailable semiphenomenological expressions for the nucle-
of real-life shapes of crystallites, with the variety of possi-ation rates can be specified and tested against large-scale
bilities introduced by facets, corners, 8té. Monte Carlo simulations and numerical studies of transfer

Further interest in the Wulff construction came from two- matrices. For a square lattice such comparisons were per-
dimensional Ising systems. While some three-dimensiondiormed earlier*~*" There are no comparative studies for a
featurege.qg., facetsare absent here for all positive tempera- triangular lattice. Monte Carlo simulations of nucleation on
turesT, the possibility of an exact evaluation of temperature-such a lattice were carried out recentMany of the kinetic
dependent anisotropia(n) made such systems exception- aspects of the classical pictdite?’ (e.g., the relation between
ally interesting for analysis. Remarkably, there also exisfucleation and growth, transient nucleation efféctetc)
experimental situations for which a two-dimensional under-2re accurately reproduced in such simulations. However, the
standing is of crucial importance. One can mention two-Unavailability of an explicit simple expression for the surface
dimensional islands on otherwise flat faces of threeenergy of a nucleus prevented a crucial verification of the
dimensional crystal§see, e.g., Refs. 5 and 6 and referenceghermodynamicf the classical approach. In Sec. VI we
therein, absorbed monolayers of surfactahtsgc. evaluate the nucleation parameters, and in Sec. VII give

Applications of rigorous results, however, are often hin-some preliminary results of comparison.
dered by the fact that the Wulff construction provides a gen-
eral prescription h_ow to build aB surface which.may still Il. BACKGROUND
require an appreciable effort before a practical implementa-
tion. Not surprisingly, alternative parametric representations The anisotropic interfacial tension can be obtained either
of the Wulff construction were later developed for two directly (see, e.g., Ref. 33or from its relation to the corre-
dimension8 and for higher dimensiofis® in a coordinate- lation length¢ on a dual latticé”
invariant way. A realization of such approaches for Ising
systems on square or honeycomb lattices can be found, re- (M) =T/£(0) 1)
spectively, in Refs. 11 and 12. Nevertheless, even in the '
parametric representation results are usually given in term
of implicit dependencies, and further work is required both - i -
for an explicit determination of a Wulff shape and for an Unity), andu is a unit vector normal t@. In turn, the cor-

Rere T is the temperaturéBoltzmann constant is taken as

evaluation of the interfacial energies. relation length can be extracted from the asymptote of the
In this paper we extend the results of Ref. 12 for the cas&V0-Spin correlation functiof?
of a triangular lattice, obtaining tH@surface parametrically. __ For lattices with hexagonal symmetry, the dualitgtar-

We also asymptotically examine the limi&—T, and T triangle” relatior?® implies that the original reduced bond
Cc

—0 for both Wulff shapes and interfacial energies. Further€M€9Y

we construct elementary interpolating approximations for the

entire temperature region; those are accurate, at worst, to one K=J'IT 2
part in 10. Such approximations can be useful for

experiments® with the triangular lattice formed by atoms on is related to the one on a dual lattice by
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tanhK* = exp( — 2K), 3 Ill. SOME GENERAL EXPRESSIONS

. ) ) ) Using duality relation(3), one can expresa(K) as
with the triangular lattice being dual to the honeycomb one,

and vice versa. 1

The two-spin correlation function is known exactly for a A(K)=————+2sintfK+ 1. (6)
triangular latticé?® With this, the honeycomb interfacial ten- 2 sintPK
sion can be evaluated, and the Wulff construction realized irhe value oK here can be either the reduced bond energy of
a parametric fornt? In polar coordinatesr( 6) the result can the original honeycomb lattice, as in E&), or it can corre-
be expressed implicitly as spond to bond energies of another lattice obtained by deco-

rating a triangular lattice—see next Sec. IV. In both cases the
r " - expressions foo in the two principal directions are given by
cos)—{? sin 0} +cos>’{f sin( 0+ 3

=r(0)=T 2 arccosl{uA_l) (7)
. =r0=T73 2 )
+cosr{% sin( 60— 5” =A, (4) 3

—r(m/2)=2T [2A+3 1 .
with 0,=r(m/2)=2T arccos et (8)

For T— T, the asymptote oA(K) is given by

A=A(K)={(cosh K*)3+ (sinh 2K*)3/sinh K*. (5)
A—3~4(sinkPK —1/2)2. 9

Remarkably, if one evaluates the aM4T) enclosed by The values ofr; ando, rapidly converge to each other and
the curvesr(6) in Eg. (4) three important physical to the value of
characteristics—the polar radi&q ) of an equilibrium sur-
face of a crystal with volumé/, the interfacial tensions in
extremal directions, and the total interfacial energy—can be
evaluated. The equilibrium surface is given by

4
NG

This goes to zero a6.— T, with the slope specified for each
type of lattice by the temperature dependenc&.of
R(O)=r(0)VVIW, One can also construct a more accusgteugh somewhat
less elementajyapproximation for the interfacial tension us-
i.e., just the scaled solution of EG}). This solution has the ing the fact that anisotropy appears only in higher-order
dimension ofo, and for,=I7/61=0,1,...,11 thanterfa- termsinT.—T. If r is isotropic in Eq.(4), this equation can
cial tension in the direction normal to the surface is indeedbe averaged with respect & giving
given byr(6,). The total interfacial free energy of a crystal,

oo(T)~T.—=(sintPK —1/2). (10

G, is proportional toyVW, with a dimension-dependent pro- lolr/T]=A3,
portionality constant? For the two-dimensional case consid- with |, being the modified Bessel function. Since an isotro-
ered, one obtain&=2(VW)"2. pic r coincides witho, the latter is given by
As mentioned, the main goal of this paper is twofold. First
we wish to adjust Eq(4) for the case of a triangular lattice 0'~T|61[A/3]. (11

(which will lead to a different value of\), and to calculate
the resulting interfacial energy of an equilibrium crysta
This will also determine the nucleus in a metastable case.
Second, we intend to obtain asymptotic approximations for
Wulff shape in the limitsT—0 andT— T, which are valid
for both triangular and honeycomb lattices. Understanding
asymptotic limits will allow us to construct accurate interpo- V- A—Y TRANSFORMATION FOR A TRIANGULAR
lating approximations at intermediate temperatures. LATTICE

Naively, one could think that once the interfacial tension
is available for one type of hexagonal lattice, the tension for
the other type is obvious from the duality relations. How- L=J/T. (12)
ever, duality links the subcritical region of one lattice, where i i
the interface exists, to the overcritical region of the other® CONvenient parameter is
with no phase separation. Thus a preliminary transformation _ L 13
(the so-calledA —Y transformatiof’) which links two sub- x=tanf(L), (13
critical lattices is required—see Sec. IV. First, however, wewith criticality achieved at
will introduce a few relations which are applicable for both
lattices. X.=2—/3, L,=0.2746530 ... (14)

| In contrast to Eq(10), where the error is quadratic iR,
—T, the above expression is accurate up ToT)°, at
hich point the anisotropic terms become important, as will
e described in Sec. VA.

Consider a triangular lattice with a reduced bond energy
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[note that this value is linked to the value df; 4
=arctanh(14{3) by the duality relatioh

“Decoration” of a triangular lattice consists of placing an
additional spin in the center of each triangleA” ), and
connecting it with the surrounding three spins with new 2
bonds K, giving “Y” patterns which form a honeycomb
lattice?® (The A—Y transformation was briefly mentioned
by Onsager, and further examined by WanffjerThe re-
quirement of equivalence of partition functions on both lat-
tices leads to the relation

X
tanh’-Kz—z. (15)
1+X+X ol

There are certain subtle questions as to what exactly happer
to the interface upon this transformation in a general ¢ase,
but no difficulties are expected for isotropic ferromagnetic

bonds considered in the present work. Di— P o 2 .
The new honeycomb lattice is subcritical, i.€>K_, if
the original triangular lattice is beloW, . From Eqgs(6) and FIG. 1. The exact Wulif shapésolid lineg from T=0 (outside
(15), one obtains hexagom to T=0.9T, (inner circlg in increments of 0.I.. Areas
under these shapes correspond W J?=ma3/J>—see Fig.
2x (1_X)2 2—and determine the interfacial energy. Two elementary

A(L)= +1. (16) approximations—Eq(29) (dashed and Eqgs.(26) and (31) (dotted
(1_X)2 2X line)—are shown for T<0.3T,. Equation (29—the high-

temperature approximation—blends in with exact shapesT at

This relation should be used fak in Eq. (4) in order to i L
describe the triangular lattice. The expanded path to the rezgr'g; {ntcv?triozvatiznﬂggagi ;E?rox'mat'@qs' (26) and (31)]
= . c-

sult (of which the present work is only a small pacan be
summarized as follows: One starts with a low-temperature ) ] o ]
(subcritica) triangular lattice with bonds; the A—Y trans-  (8), which bracketoe(;. Anisotropy which is due to the dif-
formation gives a low-temperature honeycomb lattice withference betweemr; and o, indeed vanishes quickly near
bondsK; the duality relation links this lattice to a high- Tc. and we examine this in more detail below.
temperature triangular lattice with bonds*. Finally, the

known correlation function for the latter lattice allows one to -

- o ) . . A. Limit T-T,
evaluate the anisotropic interfacial tension and to realize the . o
WAulff construction. As T becomes close td., A(L), approaches its mini-

mumA(L;), with an asymptote
V. WULFF SHAPES AND ENERGIES

The scaled Wulff shapes(0)/J obtained from Eqs(4)
and (16) at various temperatures are shown in Fig. 1.TAt 4 = [a 1
=0 the shape is a perfect hexagon which rather quickly h
changes to an almost ideal circle upon the increase of tem
perature; analytical and numerical reasons for the rapid dis:§ 5r i
appearance of anisotropy will become apparent shortly. é
Due to symmetry, the area can be calculated as kS
g 2 effective — AN E
=6 .g x-direction ----- \\
w=6 | "r(o7do. an ° g T spplociecaeh
0 low-T approximation ----— N
1 \\ .
To characteriz&V we will introduce an “effective” tension
Teff™ W/ﬂ-, (18) O0 012 014 0?6 018 . 1

which coincides with the actual interfacial tension in the iso- reduced temperature

tropic high-temperature region. Otherwisg,¢; corresponds FIG. 2. Exact values for the reduced “effective” interfacial ten-
to an equivalent surface tension of a circular droplet withsjon, ¢o;,/J (solid line). The anisotropic tensions in the principal
area and energy identical to those of an anisotropic crystaljirections are indicated by short- and long-dashed lines, and ap-
The values otrq¢; are shown in Fig. 2 by solid lines together proximations foro.¢s given by Egs.(30) and (33) are shown by
with anisotropic interfacial tensions given by EqZ) and  dotted and dash-dotted lines, respectively.
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A—3~36(L—L¢)2 (19) 8(0)=—In(1+e 83 | g|<1. 27)
This gives the interfacial tension—radii of smaller circles in Despite the restrictions o, this expression is sufficient to
Fig. 1—as evaluate the corrections to the area. Indeed, the main contri-
bution to the integral in Eq(17) comes from the regiod
oo(T)~433(1=TITy). (200 =0(1/L), which is well within the region of applicability of

. Eq. (27). Switching to a “stretched variable” @./+/3, and

diug[’ lower temperatures we define a dimensionless ra-using the identity
0
with )
one obtains
p(T)=2VAI3=1~a(T)IT,, (22 o272 T2
ar
determining the leading isotropic term négy. Wo—W(T)~ N J?=151.0776397- -J2<T—) .
Cc

Expanding the left-hand side of E@) to the sixth power

in p. (the first term where the anisotropy appeaand solv- (28)
ing the resulting equation iteratively, one obtains Despite the exponential closeness 0f) to ry(6) in almost
1 ; any direction, corrections %/, are quadratic in temperature,
reflecting the “chop off” of sharp corners in Fig. {in this
p2(0.T)=po(T)?= 75pc(T)*+ g 2gPe(T° g P P 9. U

context, note that corrections triﬁ) in principal directions

1 are, respectively, linear or exponentially smallTinwith the
NI OPC(T)GCOS(6¢)- (23) resulting modification of theverall interfacial energy of a

576 crystal having an intermediate quadratic dependénée.

Here, strictly speaking, an exact value pf in Eq. (22) similar quad_ratic correcf[ion, with a different proportionality

rather than its asymptote should be used to ensure the acc‘EPr?Stalgt derived numerically, was also observed for a square

racy of higher-order terms in the isotropic part. An excep-lattice; where an explicit integral expression o¥(T)

tionally minor anisotropy, even fqs., of the order of unity through eII|pt_|c functions is availabfé.In the present study

should be noted. In principle, E@3) can be used for evalu- the constant in E¢28) could be evaluated analytically, con-

ating S shapes at intermediate temperatuies, not only in firming, in a sense, the advantage of implicit parametric rep-

the strict asymptotic limjt although a less rigorous but prac- "€sentations.

tically more convenientand accurateapproximation will be

constructed in Sec. V C. C. Intermediate temperatures

In the high-temperature region we introduce the approxi-
B. Limit T—0 mation

Let us introduce an auxiliary function o (T +0oo(T)  ay(T)—ay(T)

. . . 0, T)= + COs 64,
m( ) =max|sing|,|sin( 0+ =/3)|,|sin( 6— m/3)|}, r( ) 2 2 08
(24 (29
so that with the anisotropic part suggested by the expansion near
T.. This expression is exact in the directions of extreima,
ro(6)=43/m(8) (25  =1#/6/=0,1,...,11, at any temperature. Otherwise, it cor-

. P : rectly describes the location of tl&surface for temperatures
describes the zero-temperature hexagon in Fig. 1 with AN .oid as 02,—see Fig. 1. On the “experimental” level of

area accuracy the agreement is reasonable even at;0.how-
Wo=32\/§\]2- ever, the low-temperature approximation, which will be de-
scribed below, is more adequate and more accurate here.
When considering the case of>0, care should be taken In approximation(29) the anisotropic term does not con-

sincery(#) is nonanalytic. The major modification comes fribute to the area, andk; is given by
from the disappearance of sharp corners—see Fig. 1—and in o1(T)+0o(T)
this section we will use the ideas of singular perturbations in Oorf(T)~ A
order to evaluate the corresponding reduction in the area. 2

We look for a correction

, T=0.2T, (30

with a relative error less than 18. The error rapidly de-
FO)=r(0)(1+5(0)/AL). 26 creases with the increase of temperaturg, as suggested by
(6)=ro(6)( (6)/aL) (26) Fig. 2. At 0.5T, for example, Eq(30) deviates from the

From Eq.(4) and the low-temperature asymptote AfL), exact value ofrq1;=2.91280 by less than one part in 0

one has The Bessel-function approximatidieq. (11)] can also be
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used for an evaluation afss; however, Eq(30) is slightly  This locates the maximum &G(V), and the corresponding
more accurate, and being an elementary function looks morealue
attractive for applications.

At lower temperatures we construct an interpolating ap- G =AG(V,)=0e(mV,)"? (36)
proximation for5(6) in Eq. (26) determines the barrier to nucleation, as discussed by Gibbs.
- |sin(6)|/m(6)~1 |sin(0-+ m/3)|/m(6)— 1 Evaluation of the nucleation rate requires a specification
o(6) InL(2A) (2A) of the spin-flip dynamics, which is not part of the present
+(2A)lsin@=a/3)l/m(6)~17 (31  work. However, on this stage certain conclusions on appli-
, cability of some standard nucleation approaches can already
with be made, and this will be briefly discussed in Sec. VII.
2A~exp(4L). (32)

VII. DISCUSSION
Equation(31) coincides with Eq(27) in the appropriate lim-
its, but has no restrictions if.

It can be used when plotting the low-temperature Wulf
shapes for a triangular latti¢eee Fig. 1. The approximation
is very accurate up to 0T2 . Remarkably, even at O3 one
still obtain a reasonable, near circular shapath minor
dimples, the birthmarks of zero-temperature corjess-
though Eq.(29) works better here, completely blending in
with the exact result in the scale of the figure.

The low-temperature expression fog;; follows from Eq.

In the present work exact equilibrium Wulff shapes were
sconstructed for a triangular Ising lattice. The shapes bear
strong qualitative similarities to the case of a honeycomb

lattice 12 changing from a perfect hexagon B0 to a per-
fect circle neafT.. Quantitatively, however, the temperature
dependence is different for each of these lattices.

Asymptotic analysis of exact expressions was performed

nearT=0 andT=T,., and accurate elementary approxima-
tions were constructed for the entire temperature region. This

(28), part of the study can be potentially useful for applications.
For example, experimental studies of islands on a

32,3\ 2 72 (T\2 Cu(111) surfacé fall into the low-temperature asymptotic
aeff(T)zJ<—> [ - %<3) } region. There does not yet exist a uniform opinion on the

. values of J for this system, but if one accepts

T)\2 J~0.16 eV—one of the values used in the above paper—
1—1.362886~-(—) , (33 one obtainsT,~0.58 eV. This is between 18 and 22 times

Te . .
larger than experimental temperatures used in Ref. 5. Even
and is shown by dash-dotted lines in Fig. 2. The error in thevith uncertainties inJ, there is little doubt that the ratio of
regionT<0.2T, also does not exceed 18 and the equation T/T. is small, and the observed islandse indeed close to
becomes exact foF— 0. Thus the two proposed approxima- hexagons. o
tions,[Eqs.(30) and(33)] cover the entire region of tempera- ~ From Egs.(25), (26), and(31) (also see Fig. /Lt follows

ol

tures from zero tdr. that the only observable effect at smai0 could be the
erosion of sharp corners of the hexagon, again in qualitative
V1. RELATION TO THE NUCLEATION PROBLEM agreement with observations in Ref. 5. Otherwise, the faces

of a two-dimensional crystal remain practically flat or, more
Consider a small positive fielth and spins originally  rigorously, exponentially close to flat. Correction to the in-
pointing in the “wrong” direction. The free-energy change terfacial energy is quadratic in temperature, and for such low
associated with formation of a large domain of properly ori-T the asymptotic expressidiq. 33] is expected to be very

ented spins with voluméarea V is given by accurate. This can be helpful for further interpretation of
o experimental data.
AG(V)=2(VW)™*=2hJVk. (34 The potential importance of discreteness effétfmite-

size” effect$) at low temperatures should be noted, how-
ever. Applicability of the aforementioned correction requires
a large number of atoms lost from corners, which could be a
nontrivial requirement even ifi—the number of atoms in a
k=—x(T), two-dimensional crystal—is very large. One estimates the
V3 loss from each corner as ®ET/T,)?; this falls in the inter-

and x(T) is the equilibrium magnetizatiéh (the values of val between 4 and 14 atoms for 4608< 9000 reported in

however, are extremely close to unity anywhere awa)Ref' 5. Discreteness effects for such small numbers are pos-
#bm T)) ' sible, and the quadratign temperaturgcorrection to inter-
o) . e i :
With the effective interfacial tensioor.ss defined above, facial energy, which is valid strictly fon—c, should be

" A treated with care.
the critical volume is given by If the islands are so small that discreteness changes the

zero-temperature energy itself, “clusters” rather than Wulff-
(35) shaped droplets should be considered. For a square Ising
lattice this was recognized by Neves and Schonnfdmmd

Here k(T) is the equilibrium density of up-spins in a trian-
gular lattice,

2
TOff

 4h232k2

*
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the role of such clusters in low-temperature nucleation relarly to the better studied case of a square laftic& but
ceived further attention in Refs. 30 and 17. There are nanore simulation data are required for any definite conclu-
equivalent studies for hexagonal lattices. sions.

The obtained high-temperature approximations for the
Waullf shapes and energies can be relevant to the analysis of APPENDIX: HONEYCOMB LATTICE
large-scale simulations of nucleation and growth of islands
in Ising systems. Higher temperature is usually selected in All of the above expressions which do not yet specify the
such simulations in order to ensure detectable nucleatiofemperature dependence but contain only the funotiin)
rates. The nucleus here is a practically circular droplet, witiare valid for the honeycomb case as well, wAliL) re-
the interfacial tension accurately given by an elementanplaced byA(K) from Egs.(2) and(6). SpecifyingA(K), for
equation(30) [or by Eq.(11)]; input of the small anisotropy T— T one obtains:
to the shape of a crystal can be estimated from (E6) or hon
(23). oc (T)~4J' (1-T/T,) (A1)

Results obtained in Sec. VI for the free energy of forma-% ote a somewhat unexpected integer value of the lope

is asymptote determings in the high-temperature expan-
on [Eq. (23)]. The intermediate approximations for the
Wuife shapes and energieEgs. (29) and (30)] still can be

tion of a nucleus can be used to specify parameters in sever.
mainstream nucleation theories, after which they can b%i
tested against simulation data. For example, one can no
estim.ate the nu_cleation r%? or cluster_ distributi(_)ns in th%sed with appropriate values 8(K) in Egs.(7) and (8).
cIa_ssu:aI nucleatlpn theolr%/ when applied to a triangular The low-temperature approximation for the Wulff shape
lattice. Those estimations can be compared with data of RefS given by Eq.(31) with

18 (simulations atT=0.82T.), and the comparison allows '

one to rule out the classical theory at this temperature since it A(K)~e? /2.

predicts unrealistically small slopes for both the field-

dependent nucleation rate and the size-dependent distribérom the analysis for the triangular case, switching from
tions. This could be an important conclusion, even if negalow- to high-temperature approximatiofwith errors in en-
tive, due to an extraordinary status of that theory inergies less then 1G) should be done arounéi=120. This
understanding the nucleation phenomena. More recertorresponds to 0.24 in the honeycomb case, compared to
approache8™3* seem to work more accurately here, simi- 0.2T, in the case of a triangular lattice.
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