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Nonequilibrium theory of scanning tunneling spectroscopy via adsorbate resonances:
Nonmagnetic and Kondo impurities
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~Received 5 June 2000; revised manuscript received 22 September 2000; published 1 February 2001!

We report on a fully nonequilibrium theory of scanning tunneling microscopy~STM! through resonances
induced by impurity atoms adsorbed on metal surfaces. The theory takes into account the effect of tunneling
current and finite bias on the system, and is valid for arbitrary intra-adsorbate electron correlation strength. It
is thus applicable to recent STM experiments on Kondo impurities. We discuss the finite-temperature effects
and the consequences of atomic scale resolution of the STM for the spectral property of such systems. We find
that the tip position affects the resonance line shapes in two ways. As a function of the distance from the
surface, the line shapes vary due to the different extents of the adsorbate and metal wave functions into the
vacuum. However, we do not expect large variations in line shapes unless tunneling into the tightly bound
adsorbate states is considerable, or nonequilibrium effects are significant. As a function of the lateral tip
position, line shapes should not change significantly on length scales ofRi<10 Å under typical experimental
conditions when the electrons tunnel into the perturbed bulk conduction states hybridized with the outer shell
sp adsorbate orbitals. Tunneling into surfaces states on~111! surfaces of noble metals should be important for
an observation of resonance at larger distances~.10 Å!, and oscillatory variations in the line shape should
develop. This long-range behavior was not resolved in recent experiments with Kondo impurities. The tem-
perature dependence of the Kondo resonance cannot be deduced directly from the differential conductance, as
the thermal broadening of the tip Fermi surface produces qualitatively similar effects of comparable and larger
magnitudes. A careful deconvolution is necessary to extract the temperature dependence of the Kondo reso-
nance. The finite-bias current-induced nonequilibrium effects in tunneling through Kondo impurities should
produce a characteristic broadening of the resonance in the case of strong hybridization of the discrete state
with the STM tip.

DOI: 10.1103/PhysRevB.63.085404 PACS number~s!: 68.37.Ef, 72.10.Fk
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I. INTRODUCTION

A considerable body of experience and wisdom within
area of solid-state tunneling phenomenon was built
throughout tunneling’s ‘‘golden era of the sixties.’’ It wa
during this period that many of the defining fundamen
ideas, basic theoretical strategies and methodologies,
broad scope of applications for tunnel structures were
realized. A general introduction to many of these achie
ments can be found in a number of comprehens
volumes,1–3 and in the Nobel lectures of Esaki, Giaver, a
Josephson, who were awarded the 1973 Nobel Prize in P
ics for ‘‘their ~independent! discoveries regarding tunnelin
phenomena in solids.’’4 It is against this background tha
astounding achievements in contemporary tunneling stu
utilizing the single-atom spatial resolution of the scann
tunneling microscope ~STM! are most meaningfully
considered.5–10 One phenomenon of key interest here whi
was first considered in the ‘‘golden era’’ is that of impurit
adsorbate-assisted elastic tunneling. Two bodies of work
particularly relevant to the present study. The first is
recognition by Appelbaumet al. of the possible role of the
Kondo effect11–13 in determining certain current-voltag
characteristics~e.g., ‘‘zero-bias anomalies’’! of metal-oxide-
metal tunnel junctions containing localized paramagnetic
purity states near the metal-oxide interfaces.14 Second are the
resonance tunneling studies involving valence electronic
els of single atoms adsorbed on metal surfaces, as prob
63 0854
e
p

l
nd
st
-
e

s-

es

re
e

-

v-
in

a field emission microscope configured for energy analy
~thus enabling electron spectroscopy! of the field-emitted
electrons.15–17Many years later, useful parallels between t
theory of single atom-resonance tunneling developed in
‘‘golden era’’ and the theory of the STM, in the single-atom
tip limit, were unambiguously established.18 Further discus-
sion of these issues from the past will be offered through
the text, when appropriate.

The basis for continuing interest and excitement
impurity/adsorbate-assisted tunneling is that the transpare
of tunnel junctions can be dramatically enhanced by the p
ence of states localized within the barrier when they are
resonance with the tunneling electrons. Tunneling throu
such states is, for example, the origin of the conducta
fluctuations quantum dots exhibit in the Coulom
blockade.19 The tunneling probability in the presence of
‘‘barrier’’ state is proportional to the spectral density pr
duced by the hybridization of a localized state with the co
duction electrons, and in many situations the current is gi
by the Breit-Wigner formula

I}
G2

~v2e0!21~G/2!2 . ~1.1!

HereG is the width of the resonance produced by the hybr
ization with the conduction electrons in the right and le
leads, ande0 is the energy of the local state. The value ofG
depends on the height and width of the barrier potential
tween the central region and the leads.
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Recently, enhancements in the zero-bias conductanc
quantum dots due to the Kondo effect have been observe20

It was shown earlier that (dI/dV), the zero-bias differentia
conductance, is proportional to the Fermi-level density
states of the Kondo resonance on the quantum dot. Simila
the Kondo resonance was spectroscopically observed
single magnetic impurities adsorbed on metal surfaces u
the STM.21,22 However in the case of spectroscopic ST
experiments, the resonance at the Fermi level appears to
an asymmetric shape and cannot be interpreted simpl
terms of the local density of states of the impurity ato
Rather, the electron tunneling current—being a coher
quantum effect—is a result of interference between com
ing tunneling channels, as will soon be detailed. Unlike in
quantum dot, where the tunneling can take place with ap
ciable magnitude only through the quantum dot region,
apparent tunneling current from the STM tip to the surfa
can either go through the resonance localized on the impu
or directly into the conduction states of the surface. The d
tinction between the conduction and local states will be d
cussed later. The notion that the tunneling conductanc
proportional to the local density of states near the STM
must then be modified.

In addition to its most common use for observing a
determining atomic geometrical structure at surfaces,
STM is used as a sensitive probe of surface electronic st
ture. Various theoretical approaches to STM conducta
employ the tunneling Hamiltonian introduced by Bardee23

and golden-rule-type expressions in which under certain l
iting conditions of practical interest the STM conductance
indeed determined by the surface density of electronic st
near the STM tip.24,25 Tersoff and Hamann24 developed a
widely used model of the scanning tunneling microscope
includes three dimensionality and the spatial resolution
the tip.

The generic problem of a discrete state interacting wit
continuum of states arises in many different areas of phy
and chemistry.26 In condensed-matter physics a frequen
occurring realization is the electronic state of an impur
atom immersed within a host lattice.27,28 In the case of mag-
netic impurities, the interaction gives rise to nontrivial ph
nomena such as the Kondo effect.11–13

Within the context of atomic physics, Fano discussed
lated effects, as they might appear on observable absorp
line shapes or resonant electron scattering cross sec
which are due to the configuration interaction~CI! that
couples a discrete two-electron excited atomic state wit
continuum of ionization states.29,30 While the ‘‘natural’’ line
shape of the resonance is Lorentzian, when studied by
periments in which an external probe interacts with the s
tem, the resonance can appear to have an asymmetric
shape. Such line shapes are referred to as Fano resona
Fano found that an asymmetry in absorption line shape
due to interference between the excitation or decay into
mixed discrete and continuum states which both couple
the external probe. If the coupling between the probe
continuum is expressed in terms of an energy-indepen
matrix elementtc , and the interaction between the probe a
the localized state~which has already been diluted by admi
08540
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ture into the continuum! by the matrix elementt̃ a , then the
line shape detected has the form

I}
@q12~v2e0!/G#2

11@2~v2e0!/G#2 , ~1.2!

where q[ t̃ a /(2pVtc), with V being the hybridization~or
CI! matrix element between the local state and the c
tinuum. The latter coupling results in the discrete state
quiring a widthG52prsV

2 (rs is the density of continuum
states!.

In the present paper, we consider the problem of a d
crete state embedded in a continuum, using a probe suc
the STM that has an atomic scale spatial resolution. T
work was motivated by recent STM experiments involvi
single Kondo impurities.21,22 The resonance observed in th
conductance was interpreted by the authors in terms of
Fano interference. The fit of the resonance to the F
formula21—generalized to the case where intra-atomic Co
lomb interaction on the impurity is taken into account—w
based on the assumption that tunneling into an Ander
impurity can be extended to include tunneling into the co
tinuum in a straightforward way. Upon further consideratio
it appears that this generalization of the Fano result to
case of STM conductance is not as straightforward as
presumed. In the present paper we obtain a more com
cated expression than the elementary Fano formula,
which accounts for the correct asymptotic behavior for la
tip-impurity separation. In particular, when the dependen
of the probe’s distance from the local state is properly
cluded, then observable consequences of the local-state
mixture with the conduction electrons show the corre
asymptotic long-range behavior in the large tip-to-impuri
separation limit, as they obviously should.

The difference between the Fano line shape and the re
obtained here is due to the different nature of the probe in
‘‘multicenter’’ STM configuration ~one ‘‘center’’ on the
impurity/discrete state, the other on the STM tip/probe! com-
pared with the ‘‘single-site’’ atomic physics processe
While Fano was concerned with light absorption or electr
scattering, where the system under study was always a
probe’s focus, the outcome of STM experiments must
pend upon the variable spatial position of the probe~tip! with
respect to the discrete state under investigation. Put ano
way, for the atomic physics applications considered by Fa
both the discrete state coupled to the continuum and the
tially excited decaying or autoionizing state~the ‘‘probe’’
state in our STM language! are atomic states spatially loca
ized at the same site by the same atomic central potentia
contrast, the S~scanning! in STM assures that the tip, an
hence the initial excited state, can be independently loca
with respect to the position of the ‘‘discrete state coupled
the continuum,’’ and it is this extra degree of freedom th
enriches the potential information content in STM line-sha
analysis, but also requires a much more detailed theore
treatment than merely fitting the atomic physics Fano l
shape@Eq. ~1.2!# to position-dependent STM spectra. Th
will be expanded upon in depth later. This realization de
4-2
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onstrates the importance and crucial need for considering
measurement process in quantum-mechanical observatio

The structure of the paper is as follows. In Sec. II, w
introduce the model of the system, and discuss our appr
mations. In Sec. III and the supporting appendixes, we
velop the general nonequilibrium theory of STM tunneli
current and conductance in the presence of an adsorb
induced resonance. In Sec. IV, we illustrate the predicti
and consequences of our theory on two models for the
sorbate: the nonmagnetic and Kondo models.

II. MODEL AND APPROXIMATIONS

Models of scanning tunneling microscopy are abundan
the literature of the last two decades, and standard t
exist.7–10 We approach the problem as a nonequilibrium p
cess, and discuss the corrections to the Tersoff-Ham
formulation.24 Our intent is to develop a theory under gene
and self-consistent assumptions that accurately captures
of the qualitative aspects involved, and do so in a way t
make extensions to more realistic calculations forma
straightforward. We focus on tunneling through adsorb
resonances. Throughout this paper, we adopt the conven
that the energies are measured with respect to the respe
Fermi levels of the substrate and tip unless specified ot
wise, and set\51. When the tip is biased, we explicitly shi
the tip energies.

A. Model of the studied system

We consider a system which consists of a clean meta
surface with a single impurity atom adsorbed on it. The ST
will be used to study the system by means of tunnel
through a resonance produced by an electronic state o
impurity, such as the 5f orbital of Ce/Ag~111! ~Ref. 22! or
3d orbital in Co/Au~111!.21 Unless otherwise noted, w
place the origin of the coordinate system at a point on
surface of the metal directly below the adsorbate. This me
that the position of the impurity isR05(0,0,Z0). The system
without the probe is described by the degenerate Ande
Hamiltonian

Hs~R0!5(
a

e0~R0!ca
†ca1 (

a.a8
U~R0!nana81(

ka
ekcka

† cka

1(
ka

$Vka~R0!cka
† ca1H.c.%. ~2.1!

Heree0 is the energy of the impurity statecs(r ), which we
assume may be a multiplet of states described collectively
the quantum numbera[(ms). In the simplest case,a cor-
responds to the spins, but it may also include the orbita
degeneracy (m) in more complicated cases. In this paper,
discuss at most spin-degenerate states witha5s andN52
~degeneracy!. By ca

† we denote the creation operator for th
state.ek is the conduction-band state energy—independ
of s in the absence of magnetic field—withcka

† being the
creation operator for the corresponding Bloch state w
symmetry~spin! a common with the impurity state, andVka
is the matrix element for hybridization between the impur
08540
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and conduction states. The second term in Eq.~2.1! corre-
sponds to the intra-atomic Coulomb interaction betwe
electrons in the impurity stateca . If the renormalized energy
e0 lies within the conduction band, the bound state broad
into a resonance which in the wide-band limit with whic
U50, has a Lorentzian shape@Eq. ~1.1!#.

B. Interaction of the system with the STM tip

When the STM tip is brought near the impurity, electro
can tunnel between the tip and the adsorbate state. This
ation is expressed by adding an interaction term to
Hamiltonian:

Hat~Rt ,R0!5(
pa

$tap~Rt ,R0!ca
†cp1H.c.%. ~2.2!

The tip states are denoted by subscriptp. The transfer matrix
tap depends on the position of both the adsorbateZ0 and the
tip Rt[(Ri ,Zt), referenced to a common origin.

If the STM coupled only to a discrete state with trans
amplitudeta then the conductance would, in the wide-ba
limit ( tap[ta , independent ofp!, be determined by

G}utau2
G

~v2e0!21~G/2!2 , ~2.3!

and the conductance would thus be directly related to
impurity density of states. This is reminiscent of the defini
characteristics from field emission resonance tunneling sp
troscopy, in which tunneling from the substrate to vacuum
disproportionately smaller than that from ‘‘good
adsorbates.15–17,31However, since in the STM geometry tun
neling directly between the tip and the metal surface can
comparable to~or in excess of! that between the tip and th
impurity, the conductance exhibits a more complex behav
than that of a simple impurity local density of states. We ta
such processes into account through

Hst~Rt!5(
pk

$tkp~Rt!ck
†cp1H.c.%, ~2.4!

where the tunneling matrix elementtkp depends on the posi
tion of the tipRt .

C. Model of the STM tip

An important property of the tip is its spatial resolutio
as discussed in great detail by many.6,18,24,32–34We will con-
sider the tip to be well defined and terminated by a sin
atom through which the tunneling predominantly takes pla
This is thes-wave model of Tersoff and Hamann;24 see Fig.
1. The important features are the following:~a! the tip
Hamiltonian is

Ht5(
p

epcp
†cp , ~2.5!

wherecp
† creates an electron in the statecp(r ) with energy

ep measured from the Fermi level of the tipeFt ; ~b! when
the tip is positioned near the surface, tunneling into and
4-3
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of a statecp can take place;~c! the states are filled up to th
chemical potentialeFt controlled by the bias;~d! the tip
states are characterized by a density of statesr t(v); and~e!
the asymptotic form of the tip eigenstatecp in the vacuum
region extending toward the metal surface is characterize
the atomic orbital of the apex atom. The wave functioncp
can be found based on simple physical arguments with
solving the complete problem. Iff t is the work function of
the tip andk t[A2mt* (f t2ep), then, following Tersoff and
Hamann,

cp~r !}Rek tR
exp~2k tr !

r
, ~2.6!

whereR is the radius of curvature of the tip about its cent
which is located at the origin of this ‘‘tip-defining’’ coordi
nate system. While Eq.~2.6! represents an ‘‘s-wave tip,’’
more generallycp would carry whatever symmetry was po
sessed by the relevant atomic orbital centered at the
apex.10,18,32The wave-function tail, controlled byk, depends
on the bias and tip-surface separation. Both factors mo
the height of the vacuum barrier, and hence the effec
work functionf determiningk. These modifications can b
essentially included by renormalizing the wave-function ta
and the densities of states by position- and energy-depen
factors via the tunneling matrix elements. We discuss
tunneling matrix elements next.

D. Approximations for the tunneling matrix elements

An important role in our formulation is played by th
tunneling~hybridization! matrix elementsVka , tap , and tkp
since they include the dependence on electronic structure
the tip and adsorbate position.

We begin with the discussion of the matrix elementsVka
and tkp that contain the metal wave functionsck(r ). They
have the form

Mkl~Rl !5E d3r ck* ~r !vsl~r ;R!c l~r2Rl !, ~2.7!

wherevsl is the potential representing the mutual interact
of the two systems. The wave functionck(r ) is a Bloch state
of the unperturbed metal, andc l(r2Rl) is the wave function

FIG. 1. Schematic picture of the STM.
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~in the coordinate system of the metal! of the adsorbate stat
a in the case ofVka or the tip wave function in the case o
tkp . Matrix elements of this type have been the focus
intense study in the context of charge transfer processe
surfaces.35–40

The energiesek of the metal electrons are written in term
of the perpendicular and parallel components asek[ekz

1eki
. We follow the convention thateki

is measured from

the bottom of the two-dimensional band andekz
is measured

with respect toeFs . For example, for the jellium model we
write ekz5kz

2/2ms* 2D and eki
5ki

2/2ms* , where (2D) is
the energy of the bottom of the band with respect to
Fermi level. The Bloch states can generally be written in
relevant region outside the metal as

cnk~r !5e2knszunki
~r,z!eiki•r, ~2.8!

where n is the band index,unki
(r,z) is a function weakly

dependent onz outside the surface and periodic inr, the
electron coordinate in the plane of the surface. This form
equally valid for the metal band-gap surface states that h
come to seem ubiquitous to STM studies on~111! noble
metal surfaces.

For jellium, unki
(r ) is constant, and the metal states a

then simply plane waves along the surface with expon
tially decaying amplitude into the vacuum. Herekns

5A2ms* (fs2enkz
)5A2ms* (fs2enk1enki

), with m* the

metal electron effective mass~number! andfs the height of
the tunneling barrier for a Fermi-level electron. For bias vo
ages much smaller than the work function,fs is equal to the
metal work function. We omit the band indexn in the rest of
the paper. We also definelv

215A2ms* (fs2v), where the
energy factor (fs2v) represents the effective tunneling p
tential barrier for an electron with energyv. For small bias
voltages,v'0, and we can replacelv , which depends
weakly on energy in this range, by its Fermi level val
~[l!.

The integrand of the matrix elements@Eq. ~2.7!# is well
localized outside the surface where the Bloch states ar
the form of Eq.~2.8!. We can shift its arguments and ap
proximate the matrix elements byMkl(Rl).M0ck* (Rl),
whereM0 is the overlap integral, defined in Eq.~2.7!, that
contains the dependence of the matrix element on the s
metry of the atomic orbitals near the tip. We then writeVka
as

Vka~R0!.Va~Z0!ck* ~0!, ~2.9!

whereVa(Z0)5V0e2Z0 /l. In the case of the tip-to-surfac
tunneling matrix elementtkp it is convenient to isolate the
k-independent part of itsz dependence defined astc(Zt)
5t0e2Zt /l, and write the matrix element in the form

tkp~Rt!5tc~Zt!e
Zt /lck* ~Rt!. ~2.10!

We note that thes-wave tip-to-surface tunneling matrix ele
ment tkp was shown by Tersoff and Hamann24 under quite
general assumptions to assume the form of Eq.~2.10! with
4-4
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the tip wave function given by Eq.~2.6!, which indicates that
our simple qualitative arguments are supported by a m
detailed analysis.

The tip-to-impurity matrix element

tap~Rt ,R0!5E d3r cp* ~r2Rt!vat~r ;Rt ,R0!ca~r2R0!

~2.11!

depends on the position of both the adsorbate (Z0) and the
tip (Rt). Since tunneling from the tip takes place predom
nantly through the apex atom, the matrix elementtap will
reflect the symmetry and spatial dependence of the st
localized on the adsorbate and in the tip apex. Withcp and
ca appearing in Eq.~2.11!, both atomiclike functions in the
relevant region of overlap centered respectively on the
and on the adatom, in a broad sensetap is similar to a com-
mon two-center hybridization/hopping integral defining t
binding in a diatomic molecule.41,42 Based on this analogy
from quantum chemistry,tap given by Eq.~2.11! should take
the form

tap~Rt ,Z0!'tae2uRt2Z0 î zu/a[ta~Rt ,Z0!. ~2.12!

Here a21'@k t1A2m(fs2e0)# is an effective decay con
stant evaluated for states at the Fermi level of the tip;uRt

2Z0 î zu5ARi
21(Zt2Z0)2 is the tip-to-atom separation, a

depicted in Fig. 1, whereRi is the parallel component ofRt .
The decay constantk t depends on the energy of the tip sta
(ep), but this dependence is very weak for small biases c
sidered here and we neglect it. In this case, the matrix
ment is well approximated by thep-independent form
ta(Rt ,Z0). The matrix elementta may be taken as real.

III. NONEQUILIBRIUM THEORY OF THE TUNNELING
CURRENT AND DIFFERENTIAL CONDUCTANCE

The tunneling between the adsorbate-metal complex a
biased tip is a nonequilibrium process. Although in this p
per we frequently make the assumption that the tip-sys
interaction is weak enough so that local equilibrium is ma
tained to a good approximation, the assumption is less v
when the tip is near the surface. For this reason, we dev
our theory of the tunneling process within th
Keldysh-Kadanoff43,44 framework for the nonequilibrium
Green’s functions, and discuss the nonequilibrium corr
tions.

A. General expression for the tunneling current in terms of
nonequilibrium Green’s functions

We define the tunneling current as the flow of electro
through a closed surface around the tip. It is expresse
terms of the continuity equation as

I 52eK dnt~ t !

dt L , ~3.1!

wherent5(pcp
†cp is the number operator for the tip ele

trons, and the brackets signify the ensemble average, w
in the local equilibrium case is the thermal average over
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tip states. The time derivative is found from the Schro¨dinger
equation of the total Hamiltonian of the tip-substrat
adsorbate systemH tot5Hs1Ht1Hat1Hst. Since the number
operator commutes withHs and Ht , the only contribution
comes from the interaction termsHat andHst , and the cur-
rent is

I 5
2e

\
ImH(

kp
tkp^ck

†~ t !cp~ t !&1(
ap

tap^ca
†~ t !cp~ t !&J ,

~3.2!

where we omitted the arguments intkp and tap for conve-
nience, and used the relationtap5tpa* andtkp5tpk* . We write
the arguments explicitly only when we wish to emphas
their dependence. We define the time loop Green’s fu
tions Gpa(t,t8)52 i ^TCcp(t)ca

†(t8)& and Gpk(t,t8)
52 i ^TCcp(t)ck

†(t8)&, where TC orders the times along a
contour C in the complex time plane. The contour can
taken to be the Kadanoff-Baym contour,44 the Keldysh
contour,43 or a more general choice. The discussion of no
equilibrium Green’s function is available in standard boo
and review articles,44–46 and we refer the reader to thes
references for further details. Our notation follows close
that of the more detailed discussion in Ref. 47. In the pres
paper, we are mainly interested in the steady-state tunne
current~time independent!, and therefore we work with the
Fourier transformed quantities in frequency rather than ti
space. The current can be written as

I 5
2e

h
Im E

2`

`

dvH(
kp

tkpGpk
, ~v!1(

ap
tapGpa

, ~v!J ,

~3.3!

where Gpk
, (v) and Gpa

, (v) are the Fourier transforms o
Gpk

, (t,t8)5^ck
†(t8)cp(t)& and Gpa

, (t,t8)5^ca
†(t8)cp(t)&—

the analytic pieces on the real-time axis of the Green’s fu
tions introduced above. Equivalently, the current may be c
culated from^(dns /dt)1(dna /dt)&. It is easy to see tha
this approach also leads to Eq.~3.2!.

The problem of finding the current thus reduces to find
the ‘‘lesser’’ Green’s functionsGpa

, and Gpk
, . This is done

using the equation of motion method for the time-order
Green’s functions in Appendix B.

We substitute solution~B4! and ~B9! for Gpa and Gpk
from Appendix A into Eq.~3.3!, and write the tunneling
current in the form

I 5
2e

h
Im E

2`

`

dv(
pp8

$Gpp8
R

~v!Tp8p
,

~v!

1Gpp8
,

~v!T p8p
A

~v!%, ~3.4!

where theTpp8(Rt ,R0 ,v) matrix for scattering of the tip
electrons from the adsorbate-metal complex is defined b

Tpp85(
k

tpkGk
0tkp81(

a
t̃ paGaS tap81(

k
ṼakGk

0tkp8D ,

~3.5!

with
4-5
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Ṽka5Vka1(
p

tkpGp
0tpa ~3.6!

and

t̃ pa5tpa1(
k

tpkGk
0Vka , ~3.7!

the hybridization and tunneling matrix elements for the a
sorbate modified by the tip-substrate interaction. The ma
Tpp8 incorporates the properties of the tip as well as
adsorbate into the expression for current. We discuss
physical meaning more in Sec. III B.

B. Tunneling current at large tip-surface separation

We define the equilibrium tunneling current as the lar
tip-surface separation limit of Eq.~3.4! when the tip and the
adsorbate-substrate complex are each in local equilibri
This is equivalent to keeping only the lowest-order terms
tkp and tpa . In our formalism, this is achieved by replacin
G̃pp8→Gp

0dpp8 in Eq. ~3.4! and Ṽka→Vka in Tpp8 , and by
using the fluctuation-dissipation relation Gi

,(v)
5 f i(v)r i(v). The subscripti stands for the tip (t), adsor-
bate (a), and metal (s), respectively. The adsorbate is
equilibrium with the metal, i.e.,f a(v)5 f s(v). The matrix
Tpp8 is expressed entirely in terms of the Green’s functio
of the system and the tunneling matrix elementstpk andtpa .
Since these matrix elements reflect the symmetry of the a
atom wave function, but are only weakly dependent onp on
the energy scale of the resonance width, the matrixTpp8 will
also have this property. We therefore make an additio
assumption that(pGp

0Tpp;((pGp
0)Tt , where

Tt5(
k

tpkGk
0tkp1(

a
t̃ paGat̃ ap ~3.8!

is only a function of the atomic tip orbital independent ofp.
We define a tip-specific quantity observable by the ST
which is related to the local density of states

r̃sat~Rt ,R0 ;v!52
1

p
Im Tt

R~Rt ,R0 ;v!, ~3.9!

and write the equilibrium currentI eq(Rt ,R0 ,V) as

I eq5
2e

h E
2`

`

dv@ f t~v8!2 f s~v!#r t~v8!r̃sat~v!,

~3.10!

wherer t is the density of tip states andv85v2eV, with V
being the bias voltage. This equation is easily related to
ditional formulations given in terms of an integral product
an electron ‘‘supply function’’ multiplied by a tunneling o
transmission probability1–3,15,17when it is realized thatr̃sat,
as defined here, already contains within it factors (}utu2)
representing the role of the tunneling probability.

This expression has a form similar to the standard tun
ing theories which express the current as a product of
local densities of states of the two systems evaluated
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common point and a difference in the corresponding Fe
functions. Kawasaka and co-workers,48,49 who studied the
STM current through a Kondo resonance, used as a sta
point of their considerations the Tersoff-Haman
expression24

I eq}E dv@ f t~v8!2 f s~v!#r t~v8!rsa~Rt ,v! ~3.11!

according to which the current at zero temperature is rela
to the local density of states~LDOS! of the adsorbate plus
metal electronsrsa(Rt ,v) at the position of the tip, where
the local density of states is

rsa~Rt ,v!52
1

p
Im^RtuGR~v!uRt&. ~3.12!

The LDOS is expressed in terms of unperturbed metal
adsorbate states by inserting(kuk&^ku1ua&^au('1) on both
sides ofG in Eq. ~3.12!. This is strictly valid only for or-
thogonal orbitals,̂auk&50. The four resulting terms, propor
tional to Ga , Gka , Gak , andGkk8 , reflect the fact that the
LDOS includes both adsorbate and metal states perturbe
their mutual interaction. Inserting this expansion into E
~3.12! gives, forrsa(Rt ,v),

rsa52
1

p
ImH(a

ucau2Ga
R1(

ka
ckGka

R ca8* 1(
ka

caGak
R ck*

1(
kk8

ck8Gk8k
R ck* J , ~3.13!

where the wave functions are evaluated atRt .
Comparison of Eqs.~3.13! and~3.11! and~3.8! and~3.10!

shows the difference between our equilibrium limit and t
transfer Hamiltonian method.2,23 The tunneling current and
differential conductance in the equilibrium limit provides in
formation aboutr̃sat—a local density of states modified b
the tunneling matrix elements—rather than the LDOS. In
case when the tunneling takes place into distinct orbitals w
different symmetry,r̃sat can be rather different fromrsa and
the statement that the STM is a measure of local densit
states must be understood in this context.

We now evaluater̃sat in Eq. ~3.10!, and write the equilib-
rium current using approximations~2.9!, ~2.10!, and ~2.12!
for the tunneling matrix elements. We note that the appro
mations do not require any specification of the substrate e
tronic structure. The final form of the current allows a d
cussion of the tunneling resonances in terms of the w
established Fano line shapes.

We introduce quantities in terms of which the current
expressed. First, we define the ‘‘bulk’’ density of states
the substrate and the tip asrs(v)5(kd(v2ek) and r t(v)
5(pd(v2ep). The impurity width without the STM tip is
defined as

Gaŝ R0 ,v&52prs~v!Va
2~R0!. ~3.14!
4-6
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The adsorbate perturbation on the local density of cond
tion states at some lateral position between the tip and
adsorbate is discussed in terms of the unperturbed subs
Green’s function

G0
1~r ,r 8;v!5(

k

ck~r !ck* ~r 8!

v2ek1 ih
. ~3.15!

We define two dimensionless quantities related to the
and imaginary parts of the Green’s function

L~R,v!5eZ/l
ReG0

1~R,0;v!

prs~v!
~3.16!

and

g~R,v!52eZ/l
Im G0

1~R,0;v!

prs~v!
. ~3.17!

These two functions carry the information about both
spatial extent of the metal electron perturbation at arbitrarR
in the surface region due to a localized perturbation atRi

50, and also the spatial resolution of the tip, as we will s
later. We have included the exponential factoreZ/l in defi-
nitions ~3.16!, ~3.17!, and ~3.18! because we explicitly take
thek-independent part of the exponential dependence on
sition to be part of the tunneling matrix elementsVa(Z0),
ta(Rt ,Z0), and tc(Zt). We postpone further discussion o
G0

1(r ,r 8,v) to Sec. III E.
Finally, we define a dimensionless quantity as the norm

ized density of the substrate states at a positionR above the
metal surface:

n~R,v!5e2Z/l
rs~R,v!

rs~v!
52e2Z/l

Im G0
1~R,R;v!

prs~v!
.

~3.18!

The tunneling currentI 0 into a clean metal is given by th
first term in Eq.~3.8!. The currentI 0 for small bias (V/fs
!1) can be written with the above definitions in a famili
form

I 0~Rt ,V!5
2e

h E
2`

`

dv r t~v8!

3@ f t~v8!2 f s~v!#rs~v!ptc
2~Rt!n~Rt ;v!.

~3.19!

Here, f s(v) and f t(v) are the substrate and STM tip Ferm
functions, respectively, andv85v2eV. The tip and sub-
strate are assumed to have common chemical potentiaeFs
5eFt50 at zero biaseV50, and we adopt the convention o
measuring the energies in the substrate-adsorbate com
and in the tip from their respective Fermi levels at finite bi
The biasV is measured with respect toeFs and is defined as
positive when the chemical potential of the tipeFt is raised.
The functionsrs andr t are the substrate and tip densities
states, respectively.

The equilibrium current in the presence of the adsorbat
written by expressingr̃sat with the notation and approxima
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tions that lead to Eq.~3.19!. We define a modified matrix
element t̃ a(Rt ,R0 ;v) for tunneling from the tip to the ad
sorbate state as

t̃ a5ta1ptcrsLVa . ~3.20!

The second term represents a coherent process of tip
surface tunneling, through-surface propagation, and surf
to-adsorbate hopping. This is completely isomorphic w
Fano’s coupling of an excited state~here the tip state!, with
the originally discrete state ‘‘modified by admixture of stat
of the continuum.’’ The reader is enthusiastically directed
Fano’s original paper for further enlightenment on this poi

We introduce the Fano29 parameterq(Rt ,R0 ;v) as

q5
t̃ a

ptcVars
. ~3.21!

We will see later that this definition ofq makes the expres
sion for differential conductance formally equivalent to t
Fano formula in certain limits. It is now rather straightfo
ward to evaluater̃sat using Eqs.~3.8! and~3.9! in Eq. ~3.10!.
After rearranging the terms, we write the curre
I eq(Rt ,R0 ,v) in the presence of the adsorbate resonance

I eq~Rt ,R0 ,V!5
2e

h E
2`

`

dv r t~v8!

3@ f t~v8!2 f s~v!#rs~v!ptc
2~r t!

3Y~Rt ,R0 ,v!, ~3.22!

with

Y5n1(
a

Gas

2
$~g22q2!Im Ga

R12qg ReGa
R%.

~3.23!

In our approximation, the localized nature of the tip and t
adsorbate enters through the position dependence
ta(Rt ,Z0) and the substrate Green’s functionG0

1(Rt,0;v).
The matrix elementta gives an exponentially decreasing am
plitude with increasing tip-adsorbate distance, and the s
strate Green’s function gives decreasing amplitude due to
phase difference between electrons entering~or leaving! the
surface at the adsorbate site and leaving~or entering! at (Ri ,
z50), and also due to the exponential decay of the tip wa
function with increasingki . We note that, in the wide-ban
limit for the substrate and with the tip near the surface ab
the adsorbate,t̃ a'ta , since in this limit ReG1 and thusL
vanish.

Finally it follows from Eq. ~3.22! that the tunneling cur-
rent I eq is independent of temperature ifr t , rs , and
Y(R0 ,Rt ,v) are independent of energy in the relevant e
ergy range. Ifrs shows a structure on the scale of the te
peratureT while r t is constant, the current will depend on th
temperature of the tip only. The same is true forG, the dif-
ferential conductance.
4-7
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C. Differential conductance in the limit of large
tip-surface separation

The differential conductance is obtained directly from E
~3.22! by differentiating it with respect to the bias, i.e.,G
5dI/dV. We do this here under the assumption that the b
voltage is varied across a sufficiently narrow range so
the density of tip states may be taken to be constant. Un
these assumptions the differential conductanceGeq is

Geq~Rt ,R0 ,V!5
2e2

h E
2`

`

dv r t~v8!

3S 2
] f t~v8!

]v D rs~v!ptc
2~Rt!Y~Rt ,R0 ;v!,

~3.24!

and, for the clean metal,

G0~Rt ,V!5
2e2

h E
2`

`

dv r t~v8!

3S 2
] f t~v8!

]v D rs~v!ptc
2~Rt!n~Rt ,v!.

~3.25!

These expressions neglect any changes to the tunneling
rier from the finite bias voltage. When these approximatio
are not justified, the conductance must be obtained by dif
entiating the expressions for the current@Eqs. ~3.22! and
~3.19!#. This is always the case forI tot of Sec. III B when
nonequilibrium effects are important.

D. Nonequilibrium effects at stronger tip-surface coupling

We now generalize Eq.~3.22! for the equilibrium tunnel-
ing current—obtained in the lowest order intap and tkp—by
including nonequilibrium effects. The general problem
tunneling for arbitrary relative strength between the tunn
ing amplitudestap and tkp and the hybridization matrixVak
and for finite bias is formulated in Eq.~3.4!, but the expres-
sion is quite complicated to evaluate in practice. In a typi
STM experiment, the tunneling matrix elementstap and tkp
are much smaller thanVak . We can expect the nonequilib
rium effects to be important when, at small separations,
magnitude of the two tunneling matrix elements is no
negligible fraction ofuVaku. However, we can always safel
assume thatutaku andutapu are smaller thanuVaku in the STM
experiments under all realistic conditions.

Therefore we make additional simplifications which a
justified by these relations. First of all, we replaceṼak by
Vak inside Eqs.~3.5! and~A5!. We neglect the modification
to the tip and substrate wave functions, i.e., replaceG̃kk8 by
dkk8Gk

0 andG̃pp8 by dpp8Gp
0. We also neglect any deviation

from thermal electronic distribution in the substrate and
i.e., we assume the validity of the fluctuation-dissipati
theorem for the tip and substrate Green’s functions. On
other hand, when the tip-adsorbate coupling is not neglig
with respect to the adsorbate-metal hybridization, the cur
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into the resonance can be large enough to produce a sig
cant nonequilibrium electronic population on the adsorba
since the time scales for electron dissipation from the re
nance into the metal and tip, respectively, are comparable
this case, the fluctuation-dissipation theoremGa

,5 f sra is no
longer valid for the adsorbate Green’s function, and we m
use the full nonequilibriumGa

,(v) instead off s(v)ra(v) in
Eq. ~3.22!.

Under these assumptions, we find it convenient to w
the total current with the nonequilibrium effects asI tot5Ieq
1dI non, whereI eq is formally given by Eq.~3.22! anddI non
is

dI non52
2e

h (
a
E

2`

`

dv p2r trs
2tc

2V0
2

3~ f s Im Ga
R1pGa

,!~q21g2!, ~3.26!

where all adsorbate and substrate densities and Green’s
tions are evaluated at energyv and r t at v85v2eV. We
omitted the spatial arguments for simplicity. The bias dep
dence enters through the self-consistent solution of the
sorbate spectral densityra(v)52(1/p)Im Ga

R(v) and the
‘‘lesser’’ Green’s functionGa

,(v). In the case of a nonin-
teracting system (U50), the spectral density does not d
pend on the bias and the only nonequilibrium~finite bias!
effect is given by the difference between the equilibriu
Ga,eq

, (v)5 f s(v)ra(v) and the nonequilibrium density o
occupied statesGa

,(v), as featured indI non.
On the other hand, the spectral densityra(v) of Kondo

systems itself depends on the bias. This means thatI eq also
contains nonequilibrium effects, and is different from t
equilibrium current despite the subscript ‘‘eq’’ and its ide
tical form. The effect of bias on the spectral function d
pends on the tip hybridization with the discrete impur
level, and is similar to that of temperature foreV<TK where
it broadens the Kondo resonance. At larger biases the br
ening increases further, and a second peak may develo
the Fermi level of the tip, depending on the strength of
adsorbate-to-tip hybridizationGat52pr tta

2 compared to
Gas52prsVa

2 for the relevant impurity orbital.50,51 In Fig. 2,
for different bias voltages we show the spectral function a
electron occupation of the resonance for a model Kondo s
tem with Gat equal to;10% of Gas and under an additiona
assumption thatutkpu!utapu. The model will be discussed in
more detail in Sec. IV B.

E. Substrate Green’s functionG0
¿ and perturbation of the

conduction electrons: jellium surface

There are two ways in which the adsorbate state affe
the tunneling conductance:~a! direct tunneling into the dis-
crete state; and~B! perturbation of the conduction electro
states by the discrete state, which consequently contribute
the tip-to-continuum tunneling current. Therefore, the pr
ence of an impurity on the surface can be sensed spe
scopically even if the direct tunneling into the resonance
negligible as is the case, for instance, of Ce/Ag~111!.22 Both
contributions drop off with increasing tip-adsorbate sepa
4-8
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tion. The direct tunneling into the resonance is controlled
tap(Rt ,Z0), which is a function of the overlap between th
tip and adsorbate wave function, and thus decays expo
tially with the distance. The perturbation of the continuu
also vanishes at large distances from the adsorbate. How
its spatial extent shows a more complicated behavior,
depends on the details of the electronic structure of the s
strate in resonance with the broadened discrete state. Its
sition dependence enters through the Green’s func
G0

1(Rt,0;v). We note that the imaginary partg appears ex-
plicitly in the expression for the conductance@Eq. ~3.24!#,
while the real partL enters the definition oft̃ a .

We consider a simple approximation forG0
1 based on the

assumption that in the relevant surface region the sur
corrugations are smoothed out~jellium model! and both the
Bloch and/or surface stateck @Eq. ~2.8!# are given by

ck~r !}e2kszeiki•r. ~3.27!

The states with the smallestks have the longest tail into the
vacuum region, and thus will be the most important ones
the tunneling process. These are the states with the sma
eki

. It is then reasonable to representks in terms of the

Taylor expansion around the minimum ofeki
, with ek equal

to the bias. In most cases, it is reasonable to replaceek by its
Fermi-level value. We expandeki

around its minimum as

eki
'ki

2/2m* , and writeks5l211lki
2/2 plus higher-order

terms which we neglect. We then write

ck~r !'e2z/le2lzki
2/2eiki•r. ~3.28!

As we will show later, the second exponentiale2lZtki
2/2 is a

measure of the tunneling current carryingki , the property
that gives the STM tip its spatial resolution, and the th
exponentialeiki•Ri controls the dependence of the tunneli
current on the lateral tip position.

FIG. 2. The spectral functionra(v) and the occupied density o
states of a model Kondo system as a function of bias voltag
small metal-tip separation given byGat50.1Gas . ~a! Equilibrium,
~b!–~d! finite bias. Bold line, electron population; solid thin, spe
tral density; dotted line, equilibrium spectral density.
08540
y

n-

er,
d
b-
o-
n

ce

n
est

With this approximation for Bloch states in the surfa
region the substrate Green’s function@Eq. ~3.15!# is

G0
1~Rt,0;v!5e2Zt /l(

k

e2lZtki
2/2eiki•Riuck~0!u2

v2ek1 ih
.

~3.29!

For the bulk band state propagation, it is easy to sh
using Eq.~3.17!, that

g~Rt ,v!5E
0

1

dx J0~kvRiA12x2!e2lZtkv
2

~12x2!/2

~3.30!

and

L~Rt ,v!5
1

prs~v!
PE

0

2D

de rs~e!
g~Rt ,e!

v2e
, ~3.31!

whereJ0 is the zeroth-order Bessel function andkv is the
wave vector of the substrate state of energyv. The normal-
ized density of~STM-accessible! conduction statesn(Zt) a
distanceZt from the surface is

n~Zt ,v!5E
0

1

dx e2lZtkv
2

~12x2!. ~3.32!

In calculatingL, g, andn, we assumed a jelliumlike disper
sion relationv5kv

2 /2m* , and used a parabolic density o
statesrs(v)512v2/D2. The incompatibility of the density
of states with the dispersion relation is not important for t
purpose of demonstrating the important band-structure
fects at this level of simplification.

Although expressions~3.30!–~3.32! are valid for a very
simple model of the surface, we believe they contain
most important features of more realistic bulk electron
structures. At largeZt , the dominant contribution to the in
tegral in g comes from small values of the argumenty in
J0(y). In this case, we use the mean value theorem to w

Eq. ~3.30! as g(Rt ,v)5J0( k̄Ri)e2lZtk̄
2/2, where k̄5akv

with aP(0,1). Clearly,a→0 as Zt→` and g(Rt ,v) is
independent of the lateral tip position. Since at the same t
L→0 and ta→0, the STM has no spatial resolution in th
limit. As the tip moves closer to the surface the spatial re
lution increases. In the limitZt50, the integral in Eq.~3.30!
can be evaluated, andg(Rt ,v)5 j 0(kvRi), where j 0 is the
spherical Bessel function of zeroth order.

As our estimates forta(Ri) andg(Rt) indicate, the direct
tunneling matrix elementta(Ri) falls off much more rapidly
with Ri than doesg. This is due to the limited spatial exten
of the tightly bound impurity orbital. Therefore, the relativ
importance of tunneling into the perturbed continuum
likely to increase with the tip-adsorbate separation. Usin
simple model forG1, we show the typical length scales i
Fig. 3~a!. We plot ta ~bold solid line! parametrized asta
}e2Ri /a and normalized to one forRi50 together withg
evaluated at three different positionsZt above the surface
and withkv51.2 Å21. The exponential fall-off for conduc-
tion states at the Fermi level with work functions in the ran

at
4-9
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4–5 eV can be characterized byl50.9 Å. The tightly bound
discrete state will have a larger decay constant and we
rametrize it bya50.75 Å. Clearly,g decays much slowe
than ta at small tip-surface separations, but the difference
fall-off becomes smaller with increasingZt . We also see by
comparison with the Bessel functionJ0(kFRi) ~light dotted
line! that the spatial frequency decreases with increasingZt
and the oscillations eventually disappear entirely. This is
to the fact that smallerk-vectors have larger weight in th
tunneling at greaterZt @see integral~3.30!#. The real partL,
shown in Fig. 3~c! for the samek vector, has a similar be
havior. However, being a Hilbert transform of the imagina
part, the nodes inL appear at the positions of local extrem
of g, and vice versa. As we will see later, this property lea
to significant variations in the line shape withRi if it sur-
vives in the real electronic structure. Our results suggest
this is possible only at smallZt .

The panels Figs. 3~b! and 3~d! show the same as Figs
3~a! and 3~c!, but for a smaller wave vectorkv50.6 Å21.
Comparison between the right and left thus demonstrates
strong dependence of the substrate Green’s function on
wave vector itself, not just the productkvRi . The two most
significant features are that, with decreasingkv , ~1! the fre-
quency and damping of the oscillations withRi decrease, and
~2! the dependence onZt weakens. In comparing the tw
different energies, we assumed that the damping constal
~i.e., the tunneling barrier! is identical in the two cases. Thi
would be the case in metals with identical work functions
states at the Fermi energy, in one of which the bottom of
band were closer to the Fermi level~smallerkv). We note
that kv51.2 Å21 corresponds to an energyv55 eV in the
middle of the parabolic band with our parametrizatio

FIG. 3. ~a! and ~b! show the typical spatial dependence of t
tunneling matrix elementta ~bold! and of the substrate Green
function G1 for the jellium model evaluated atkv51.2 Å21 ~left
panels! andkv50.6 Å21 ~right panels! for differentZt . We param-
etrize ta}e2Ri/a, with a50.75 Å. Also shown is the Bessel func
tion J0(kvRi) for the samekv , i.e., g of a surface state withkv .
The lower panels~c! and~d! showL, and the upper panels~a! and
~b! showg, J0 , and ta . The comparison for the two wave vecto
assumes identical barriers~damping constantl!.
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Therefore, the value ofL(Rt50)50 at this energy, but is
negative for smaller energies, e.g., forkv50.6 Å21, since in
this case there are more high-energy continuum states re
ling the discrete state downward than low-energy sta
pushing it up. We also see that the value ofL at Ri50 can
change sign withZt depending on the energyv. We note
that, sinceL enters the expression forq, the Fano parameter
could also be negative and the asymmetry of the resona
line shape could be reversed.

F. Electronic structure effects and the surface states on„111…
noble metals

In Sec. III E we introduced a simple model ofG1 based
on the unperturbed jellium surface. In general, a more re
istic behavior ofG1 can be obtained from electronic stru
ture calculations. Here we qualitatively discuss the electro
structure effects with special attention to the~111! surfaces
of noble metals frequently used in STM studies.

It is well known that~111! surfaces of noble metals con
tain Shockley surface states inside the projected tw
dimensional band gap that forms on these surfaces.52,53 Both
the surface state and bulk wave function are given by
same general expression@Eq. ~2.8!# outside of the metal sur
face. However, their overall degree of localization at the s
face is determined by the position ofess, the surface-state
eigenvalue, with respect to the band-gap edges. All ot
things being equal, the most localized surface state oc
wheness is at midgap. Asessmoves toward either band edg
the extension of the evanescent oscillatory tail of the surfa
state wave function into the bulk increases, ultimately b
coming identical to a periodic Bloch function wheness hits
the band edge. From elementary normalization consid
ations, surface-state extension into the bulk and amplitud
the surface, as reflected in the scale factor~or normalization
constant! for the surface state tails@Eq. ~3.27!# extending
into vacuum, are intimately related; a greater populat
within the bulk means a lesser population in the surfa
region.54,55 This surface-state delocalization into the bulk a
lows for the local density of bulk states at the surface
greatly exceed that of the surface states, in which case
relative importance of the surface state in the tunneling c
rent will be small near the surface.54 However, its impor-
tance increases with increasing distance from the surf
because bulk states with shorter wave-function tails
eliminated from the tunneling. The surface state accounts
about 50% of the total signal in typical STM tunnel junctio
in Au~111!,56,57and is known to be responsible for the inte
ference effects observed on these surfaces near edges
impurities and in quantum corrals.58–62 It will also play a
disproportionately important role in the resonance tunnel
at a large lateral tip-adsorbate distance, because its cont
tion to G0

1 does not decay as quickly as that for the bu
states.

We see the different behavior of the bulk and the surfa
states in the STM when we consider the propagatorG0

1 for
the Shockley state. This is again given by Eq.~3.29!. How-
4-10
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ever, thek sum now only extends over the two-dimension
~2D! wave vectorki . Assuming parabolic dispersion for th
surface state,g is given by

g~Rt ,v!5J0~kvRi!e2lZtkv
2 /2, ~3.33!

and

L~Rt ,v!5
1

prs~v!
E

0

2D

de rs~e!
g~Rt ,e!

v2e
, ~3.34!

where, as before,kv is the 2D wave vector of the substra
state corresponding to energyv. The contribution of the
Shockley state to the normalized density of conduction st
n(Zt) is given by

n~Zt ,v!5e2lZtkv
2
. ~3.35!

The propagatorG0
1 for the surface state is thus essentia

equal to the Bessel functionJ0(kvRi) weighted by the expo-

nentiale2lZtkv
2 /2. Therefore, the oscillations are not damp

with increasingZt and only their overall amplitude is dimin
ished. Since the surface state on the noble metal surf
~111! have a shortkF;0.15– 0.2 Å21, its propagator will
have a much longer spatial extent than that of the bulk sta
The corresponding oscillations thus have a spatial perio
about ten times that of the Bessel functionJ0 in Fig. 3~a!, in
agreement with the experimental observation of DOS os
lations.

It is also known56 that the spectral weight of the surfac
state decreases near surface imperfections. We expec
same to be true near the adsorbate. While we have expli
taken into account the interaction of the conduction sta
with the discrete statea through the adsorbate Green’s fun
tion Ga , all other adsorbate-metal interactions, such as
tential scattering of the conduction electrons from the ads
bate and hybridization of the outer-shell adsorbate electro
states with the conduction electrons, are neglected in
model. In principle, these ‘‘residual’’ adsorbate-metal inte
actions can be included by modifyingG1 andtkp . Although
a realistic calculation of the system electronic structure
necessary to see the effect of the adsorbate on the beh
of G1 around the adsorbate, we believe that it will not pr
duce an oscillatory behavior inG1. In a typical metal, sev-
eral bands with anisotropic dispersion relationsek contribute
to G1, giving rise to more complicated behavior. This w
further reduce any oscillatory behavior seen in Fig. 3.

Since the importance of the direct tunneling into t
tightly bound impurity orbitala relative to the tunneling into
the metal should be weak, and decreases with increasingRi ,
it is useful to study the asymptotic behavior of the cond
tanceG in the limit ta50. This is equivalent to replacing th
Fano parameter q(Rt ,R0 ;v) by L(Rt ;v) inside
Y(Rt ,R0 ;v), @Eq. ~3.23!# in the expression for conductanc
It then follows that, if the oscillations inG1 persist, the line
shape should change withRi and antiresonances should for
at positions whereL2.g2. Using G15prse

2Z/l(L2 ig)
and
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Im$G1~Rt ,R0!Ga
RG1~R0 ,Rt!%

52p2rs
2e22Zt /l$~g22L2!Im Ga

R12Lg ReGa
R%,

~3.36!

we can writeDGeq[Geq2G0 at zero temperature by replac
ing @2] f (v)/]v# by d(v2V), and usingtc(Z)5t0e2Z/l

as

DGeq~V!52
2e2

h
t0
2r t~0!Va

2

3Im$G1~Rt ,R0 ;V!Ga
R~V!G1~R0 ,Rt ;V!%.

~3.37!

We see that the resonance in the conductance is a result
interference between different conduction states scatte
resonantly from the impurity. Whether the resonance can
observed at large distances~> 20 Å! depends on the spectra
weight of the surface state and on its hybridization (;Va

2)
with the impurity orbitala ~usuallyd or f !. Interesting spatial
effects may be realized in system with suitable bound
conditions. We believe that Eigler’s quantum mirage of t
Kondo resonance inside the elliptical corral falls into th
category.63

IV. DISCUSSION AND EXAMPLES

Equations~3.22! and ~3.24! were derived under rathe
general assumptions. They are suitable as a starting poin
numerical investigations given the necessary input from e
tronic structure calculations. In the rest of the paper, we d
cuss the implications of our theory for several specific ca
of interest. In all of these cases we use our simple model
G1 based on the jellium surface and the DOS given
rs(v)5r t(v)512v2/D2, with D55 eV the band half-
width. In order to eliminate the exponential fall-off in th
tunneling conductance with the tip-surface separation and
background distortions, we plot the normalized change
conductance due to the additional impurity defined as

DGeq~V![h@Geq~V!2G0~V!#/@2pe2r t~0!tc
2#, ~4.1!

whereGeq is given by Eq.~3.24! andG0 by Eq. ~3.25!. This
is equivalent to replacingY by DY5Y2n in the expression
for G.

Although we were motivated by the experimental obs
vation of the Kondo resonance,21,22 we discuss many of the
tunneling properties on a simple noninteracting model. W
do this primarily because most of the STM observable ch
acteristics of the Fano resonance are common to the si
particle and Kondo resonances, despite the difference in
cesses that give rise to the two resonances. We wish to p
out these general features on a model that is conceptuall
simpler and more familiar to the surface science commun
than the Kondo model, and emphasize that the resona
can also be observed in systems with nonmagnetic impur
with a tightly bound orbital near the Fermi level. Finally, th
connection with Fano result and the consequences of
4-11
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spatial resolution of the STM become more transparent w
the same noninteracting Anderson Hamiltonian is used.

A. Noninteracting adsorbate

We begin our discussion with an adsorbate-metal sys
described by the noninteracting Anderson model (U50).
The impurity resonance is characterized by its energye0 and
the widthGas . The retarded Green’s functionGa

R(v) for the
adsorbate state is

Ga
R5~v2e02ReSa1 iGas/2!21, ~4.2!

whereGas(Z0 ,v) is defined in Eq.~3.14! and ReSa(Z0,v)
5P(kuVak(Z0)u2(v2ek)

21 is the real part of the self
energy for the noninteracting Anderson model@not to be
confused with the real part of the substrate Green’s func
L given in Eq.~3.16!#. Following Fano, we now define th
dimensionless energy parametere(R0 ,v) by

e5
2~v2e02ReSa!

Gas
. ~4.3!

We neglect all nonequilibrium effects, since they a
likely to be insignificant for the noninteracting system und
most experimentally realizable conditions. The different
conductance, in lowest order intc and ta , is given by Eq.
~3.24!, whereY for the noninteracting system takes the for

Y[Y05n1
q22g212egq

11e2 . ~4.4!

All terms are evaluated at energyv and at the appropriate tip
position. We note thatY0(0,0,v)[Y00, characterizing the
unphysical case of the STM tip in contact with the surface
the position of the adsorbate~embedded in the surface!, has
the analytic form obtained by Fano,

Y005
~q1e!2

11e2 , ~4.5!

although the inherent energy dependence ofq @through
L~v!# could distort the pure Fano character of the line sha
even for this ‘‘almost atomic physics’’ STM example.

1. Line-shape dependence on electronic structure and on th
relative strength of ta and tc

We first show~Fig. 4! the dependence ofDGeq on the ratio
(ta /tc) for Rt50 and a resonance at the Fermi level. T
solid line corresponds to a resonance at the center of a p
bolic band~symmetric around its center!, i.e.,e055 eV from
the bottom of the band, and the dashed line corresponds
resonance ate052 eV from the bottom of the band. The tw
energies correspond to the band energyek with wave vector
k51.2 Å21 and k50.6 Å21 in our jellium model~Fig. 3!.
The resonance width isGas50.2 eV in both cases. At zer
temperature, from Eqs.~3.24! and ~4.4! we write

Geq~V!5
2e2

h
rs~V!pr t~0!tc

2Y0~V!. ~4.6!
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In order to make connection with the Fano result, we plot
conductance for a small tip-metal separation with the
above the adsorbate (Rt50). The line shapeY0 is then given
by the Fano formula@Eq. ~4.5!#. The plotted quantity
DGeq(V) in Fig. 4 is then given by

DGeq~V!5rs~V!S ~q1e!2

11e2 21D . ~4.7!

The Fano parameterq depends not only on the rati
(ta /tc), but also on the energy and electronic structure.
see this most clearly in the first panel, whereta50. The
resonance placed at the center of the band produces a
metric dip in DG characteristic ofq50, whereas the reso
nance ate052 eV has an asymmetric line shape due to
negative contribution fromL to q ~see Fig. 3!. Its line shape
actually becomes symmetric at a finite value ofta . The value
of ta inside each panel is given in units oftc . The inset in the
upper panel shows the model density of conduction sta
rs , and the lower panel inset shows the spectral funct
ra52(1/p)Im Ga

R ~solid line! and ReGa
R/p ~dotted line! for

the level at the center of the band.
As the strength of the direct tunnelingta increases with

respect totc , the resonance develops its characteristic asy
metric shape and, eventually, at largeta /tc@1 it acquires a
shape nearly indistinguishable from that of the impur
spectral functionra(v). With increasing tip-adsorbate sep
ration, the signal from the resonance must disappear as
the tunneling elementta and G1(Rt ,v) tend to zero. The
differential conductance is then determined by the density

FIG. 4. Differential conductanceDGeq as a function of the
strength of the direct tunneling matrixta ~in units of tc). The model
parametrization is given in the text. The two curves correspond
two different impurity level energiese055 eV ~solid line! and 2 eV
~dashed line! from the bottom of a symmetric band 10 eV wide. Th
two insets show the model density of statesrs for the conduction
electrons~upper panel! and the imaginary~solid! and real~dashed!
parts ofGa(v) ~lower panel!.
4-12
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states of the clean surface. This property is not present in
Fano expression. We now discuss this behavior.

2. Line-shape dependence on the tip-surface separation

Using the same model system as in Sec. III, with
resonance at the center of the band (e055 eV from the bot-
tom of the band!, we demonstrate the dependence onZt
~with Ri50) in Fig. 5. We make the following model for th
tunneling matrix elementta(Rt ,R0) and tc(Rt). The expo-
nential fall-off of the metal and adsorbate wave functions
controlled by different decay constants. The adsorbate s
ca is tightly bound, especially for the narrow resonances
interest here. The conduction electron wave functions, on
other hand, typically belong to the outers or p orbitals and
have longer tails into the vacuum. As a consequence,
ratio ta /tc , and thus also the Fano parameterq, changes with
Zt . In order to incorporate this property, we use the ma
elements@Eq. ~2.12!# and tc5t0e2Zt/l, where a50.75 Å,
l'0.9 Å, t0525 meV, andta50.1tc at Zt52 Å. Under
these conditions, theq parameter tends to zero with increa
ing Zt .

Figure 5~a! shows the normalizedDGeq for this model.
The line shape undergoes only moderate changes withZt
within the experimentally relevant range. We expect this
be a general property. In order to understand the beha
we discuss the line-shape dependence on the tip-sur
separation conceptually in terms of two contributions:~1!
different decay constants for the discreteca and metalck
states at the Fermi level, and~2! different decay constants fo
metal states ateFs with differentki . We separate the observ
able consequences of these two effects in Figs. 5~b! and 5~c!.
The first contribution produces changes inq due to the

FIG. 5. Differential conductanceDGeq vs. Zt for a model de-
scribed in the text.~a! The complete dependence on the tip distan
Zt . ~b! assumesZt50 inside G1, and thus neglects the wave
vector-dependent effects.~c! is the same as~a! but with ta50, i.e.,
it only includes the effect of decreasing spatial sensitivity incor
rated through the substrate Green’s functionG1. The vertical scale
is arbitrary, but identical in all panels.
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changing relative strength betweenta and tc . We demon-
strate this in Fig. 5~b! where only this contribution is taken
into account by settingg5n51 andL50 in Eq.~4.4!. This
limit does not correspond to a real situation and does not l
to the correctZt→` limit. It is shown here merely as an
example of the contribution@Eq. ~1!# to theZt dependence of
the tunneling conductance. With our parametrization, t
case is identical withq changing fromq'0.8 atZt53 Å to
q'0.2 at Zt59 Å. As Zt increases further,q→0 and the
resonance becomes symmetric. However, we see that
normalized conductanceDGeq does not vanish in the limit
Zt→`.

Figure 5~c! takes the second contribution@Eq. ~2!#
into account while leaving out the first one. We cho
ta50, which would be the case if there were no dire
tunneling into the discrete state. In this limit, any changes
the line shape are a consequence of the varying weight
different ki metal states play in the tunneling at differe
Zt’s. This occurs because theki50 metal wave functions
given by Eq. ~3.28! have the greatest extension into th
vacuum, and as a result the spatial resolution of the tip
creases. Therefore, the signature of the resonance inG de-
creases even after normalization of the current for differ
Zt as the ratioDY/n→0 with Zt→`. Figure 5~a! shows the
combined effect of the contribution, and represents reali
conditions. It accounts correctly for the changing line sha
as well as its disappearance. We again emphasize that
alistic band structure is desirable for making quantitat
statements.

It is clear that the line-shape dependence onZt will
be observable only if it can be studied over a reasona
large range ofZt , limited by the experimental resolutio
and detection capabilities. Since our model is based
realistic parametrization, we expect the behavior shown
Fig. 5 to serve as a guide for order of magnitude estima
for the spectral dependence onZt . The direct effect of the
STM tip on the system, and thus also on the line shap
is not taken into account here. This issue is discussed
Sec. IV B 3.

3. Line-shape dependence on the lateral tip position

As we discussed in Sec. III E, the resonance line sh
depends on the relation between the spatial dependenc
the direct tunneling and the propagation of the adsorb
induced perturbation through the metal. Figure 3 shows
direct tunneling into the resonance (ta) is expected to fall off
faster than the perturbation. Therefore, at largeRi , the line
shape will be given by theta50 limit conductance. We
show the dependence ofDGeq on Ri in Fig. 6. We do this
again for the model described in Sec. IV A 1~Fig. 5! with
ta50 and a resonance at the center of the band, i.e.e0
55 eV from the bottom of the band, which corresponds
kv51.2 Å21 in Fig. 3. The solid line corresponds toZt
55 Å, and the dashed line toZt50 Å.

The unphysical case ofZt50 ~dashed line! is shown to
emphasize the possible consequence of the oscillation
G0

1 displayed in Fig. 3. We chose the lateral tip positions

e

-
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M. PLIHAL AND J. W. GADZUK PHYSICAL REVIEW B 63 085404
the figure to coincide with the nodes and zeros ofL, andg to
show the dramatic changes in the line shape withRi due to
the oscillations inL and g. Since the spatial decay of th
oscillations is small atZt50, the sequence of resonances a
antiresonances appear in the rangeRiP(0,10) Å. The
possibility for such antiresonances is discussed implic
in the work of Kawasakaet al.,49 and explicitly by Schiller
and Hershfield.64 However, this behavior is not observe
in the experiments by Madhavanet al.21 and Li et al.22

due to the smoothing of the electronic structure w
increasing distance from the surface that we discusse
Sec. III E.

In fact we would not expect the dramatic variations in li
shape withRi reported by Schiller and Hershfield64 to be
observed. The reason is apparent from the behavior ofG1 as
a function ofZt ~Fig. 3!. As the distance from the tip to th
surface increases, the oscillations are destroyed by the
creasing weight of the lower frequency~small ki) compo-
nents at largerZt interfering destructively with those give
by kv . For kv51.2 Å21, the oscillations are effectively
damped whenZt>5 Å, and the shape of the resonance do
not change significantly as shown by the bold line in Fig.
We expect that band-structure effects will suppress the o
lations even further.

We also find that the spatial extent of the resonance
the spectrum should decrease as the STM is retrac
as long as the signal is due to the bulk states.
Zt50 Å, the resonance is still visible atRi;10 Å but
only to about Ri;4 Å at Zt55 Å. This is a somewha
shorter distance than that found experimentally
Co/Au~111! and Ce/Ag~111!.21,22 Although the Fermi
wave vectorkF'1.2 Å21 used in Fig. 6 is close to the
free-electron value ofkF for the noble metals, the
disagreement is not surprising since we made no real atte

FIG. 6. The normalized differential conductanceDGeq as a func-
tion of the lateral tip positionRi for the same model as in Fig. 5
Zt55 Å ~solid line! andZt50 Å ~dotted line!. The contribution of
the surface states toG0

1 is not included here.
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at realistic electronic structure description. Smaller values
kF would increase the spatial extent as would smaller val
of Zt andl.

Interestingly, theZt50 ~dotted line! line shape progres
sion shown in Fig. 6 is qualitatively similar to the famil
of line shapes that would be expected from surfa
state propagation, but withRi , the lateral tip-adatom sepa
ration rescaled upward by nearly an order of magnitu
This claim is based on the qualitative similarity betwe
the bulk G0

1 at Zt50 and the surfaceG0
1 . The

bulk g(Ri ,eF)5 j 0(kFRi) ~the dashed curve in Fig. 3!
at Zt50 and the analogous surface stateg(Ri ,eF)
5J0(kFRi) ~dotted curve in Fig. 3! both exhibit long-range
oscilla-tions, unlike the bulk state atZt>5 Å. However,
sincekF;0.1– 0.2 Å21 for the surface-state band,J0(kFRi)
shown in Fig. 3~a! for kF51.2 Å21 should be plotted
with this smallerkF when referring to actual noble meta
surface state bands, in which case the observa
Ri-dependent line-shape evolution in Fig. 6 would still
representative, but withRi rescaled by the factor 1.2/0.1
58. From this it is easy to appreciate that the drama
line-shape variations will occur mainly at very large late
separations.

B. Tunneling into Kondo resonance

In Sec. IV A, we discussed the STM conductance
tunneling through a noninteracting impurity@U50 in
Hamiltonian ~2.1!#, frequently referred to as the resona
level model~RLM!. We now turn to the case of magnet
impurities and tunneling through a Kondo resonan
We begin with the case of a weak tip-metal couplin
However, for the Kondo systems this assumption
more restrictive than for the RLM, and, for this reason, w
later take advantage of our nonequilibrium approach
account for the direct effect of the tip on the impuri
spectral density, while still neglecting the tip’s effect on t
metal states.

1. Conceptual and theoretical approach

Since our earlier derivation of the current an
conductance is valid for arbitrary interaction@UÞ0 in
Eq. ~2.1!#, the final results@Eqs. ~3.22! and ~3.24!# also
hold in the Kondo and mixed-valent regimes of th
Anderson model ~i.e., U@D). The properties of the
adsorbate enter through the Green’s functionGa . The
problem is thus reduced to finding the one-electron Gree
function Ga .

However, we first consider the tunneling for a spin-1
2 (a

[s) impurity in the Kondo limit, (eFs2e0)@G and (e0
2eFs1U)@G. The Kondo resonance has a very sm
weight, and is due to spin fluctuations. The possible tunn
ing channels in this case are shown in Fig. 7 as processe~1!
and ~3!. The system can be described by the Kondo Ham
tonian in this limit
4-14
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Hs~Z0!5(
ks

ekcks
† cks1(

ps
epcps

† cps

1(
kps

$tkp~Rt!cks
† cps1H.c.}

1Js (
kk8ss8

~cks
† sss8ck8s8!•S

1Jt (
pp8ss8

~cps
† sss8cp8s8!•S

1Jst (
kpss8

$~cks
† sss8cps8!•S1H.c.%, ~4.8!

where the first three terms were also present in the t
Hamiltonian introduced in Sec. II and describe the unp
turbed metal and tip states and the coupling between the
The remaining terms give rise to spin fluctuations in t
presence of the magnetic impurity. The terms with couplin
Js andJt correspond to the exchange interaction of the lo
spin with the substrate and tip electrons, respectively.
last term (Jst) corresponds to the effective tip-substrate e
change interaction in which charge is transported betw
the tip and the surface. This Hamiltonian can be obtain
from H tot of Sec. II using the Schrieffer-Wolf transformatio
which relatesJs , Jt , andJst to Va andta . For the symmetric
Anderson model, Js54Va

2/U, Jst54taVa /U, and Jt

54ta
2/U. Using the continuity equation~3.1!, the current is

I 5
2e

\
ImH(kps

tkp^cks
† cps&1Jst (

kpss8
^cks

† sss8cps8•S&

1Jt (
pp8ss8

^cps
† sss8cp8s8•S&J . ~4.9!

The first term is identical with the first term in Eq.~3.3!. In
the lowest order of the tip-system couplings (tkp ,Jst ,Jt), the
third term does not contribute. The first term corresponds
the direct tip-substrate tunneling channel—process~1! in
Fig. 7—which includes the scattering of conduction ele
trons from the local moment. The second term correspo

FIG. 7. Possible scattering channels for an electron tunne
from tip to metal through a magnetic impurity adsorbed on
surface.
08540
al
r-
o.

s
l
e
-
n
d

to

-
ds

to the direct tunneling into the magnetic impurity—proce
~3! in Fig. 7. We note that the spin-flip scattering that giv
rise to the Kondo effect is a higher-order process. In low
order, channel~1! and the spin-flip component of~3! do not
give rise to interference because the final states have di
ent spin states. The lowest spin-flip process that does in
fere with ~1! is of second order inJ and proportional to
JsJst .

In the limit of large tip-metal separation, equivalent to t
condition (Js@Jst@Jt), the third term in Eq.~4.9!, as well
as higher-order contributions fromJst , are neglected, and a
other exchange processes are included in principle. Thi
equivalent to assuming that the state of the metal-adsor
system is determined only byJs , and is unaffected by the
presence of the tip. Theoretically, the problem then redu
to finding the spectral properties of the system without
tip and using them in the expansion for tunneling via the t
terms in Eq.~4.9!.

As the system parameters move away from the Kon
limit—that is either e0 shifts toward eFs or U becomes
smaller—valence fluctuations appear. The Kondo resona
is then due to both the spin and charge fluctuations. T
separate energy scale due to the spin fluctuations event
disappears in the mixed-valent regime, and the Kondo p
merges with the broad resonance centered ate0 . In the in-
termediate regime, where both charge and spin fluctuat
coexist on the impurity, another tunneling channel exis
This channel is denoted by~2! in Fig. 7. It also includes the
contribution from higher-order nonflip processes similar
~3!. We study the system in this regime with the Hamiltoni
defined in Sec. II.

We adopt the slave-boson technique of Coleman,65 and
find the adsorbate Green’s function using the noncross
approximation~NCA!.13 Following the theory of Sec. III, the
final expression for current in Eq.~3.4! is valid, as well as all
the consequent steps and approximation in Sec. III. We in
the solution for the Green’s functionGa of the (U5`) in-
teracting system in Eq.~3.24!. This is equivalent to including
the three tunneling channels in Fig. 7 to lowest order in
tip-system couplings. We now turn to the discussion of
results based on this approach.

2. Results for large tip-substrate separation

In order to model Co/Au~111!, studied both
experimentally21 and theoretically,49 we choose a parametri
zation that gives the Kondo temperatureTK'70 K appropri-
ate for the system. Our simplified model has degeneracN
52 with no orbital degeneracy, bandwidth 2D510 eV, and
an adsorbate level ate050.75 eV with a width 2G51 eV
~the width of a multiplet with an occupied level isNG rather
than G!. We show the corresponding spectral function a
the real part ofGa in the inset of Fig. 8.

Figure 8 shows the spectral properties of the system u
DGeq over the whole energy range of the conduction ba
and for different values ofq at the Fermi level. The spectrum
contains information about the broad resonance ate0
50.75 eV below the Fermi level, as well as the promine
feature due to the Kondo resonance at zero bias. We s
the large bias voltage results only for completeness, since
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M. PLIHAL AND J. W. GADZUK PHYSICAL REVIEW B 63 085404
do not expect the STM experiments to be able to prov
spectroscopic information about the system over the wh
energy range shown.

The resonance line shapes in both Co/Au~111! and Ce/
Ag~111! correspond to small values ofq. Madhavanet al.21

fitted the observed resonances to Fano line shapes wiq
;0.7. Our best fit would give approximately the same va
of q. In the case of Ce/Ag~111!, the observed feature is a
almost symmetric antiresonance corresponding toq;0. Due
to the contribution from the substrate electronic structure
q, its value cannot be directly used to make quantitat
statements about the relative strength of the tunneling
the discrete stated ( f ) with respect to that into the con
tinuum. However, in agreement with Liet al.22 and Lang,66

we conclude that the STM probes mostly thesp wave func-
tions and the tunneling into thef orbital is rather weak at the
tip-adsorbate distances used in the Ce/Ag~111! experiment.
The resonance is mostly the result of interference betw
conduction electrons scattering from the impurity. The lar
value of q in Co/Au~111! indicates a stronger contributio
from the coupling of the STM to thed orbital. This is ex-
pected because the 3d orbital is not as tightly bound.

The recent work of Kawasaka and co-workers48,49 deals
with the spatial and spectroscopic profiles of the Kondo re
nance. They began with the Tersoff-Hamann24 expression for
the current@Eq. ~3.11!#, and used the local density of stat
given by Eq.~3.13!. They inserted the self-energy correctio
in the Green’s functionGa due to the intra-adsorbate Cou
lomb correlations using perturbation theory (T.TK) and
Yamada’s expansion inU (T,TK) to study the temperatur
dependence in the whole temperature range. They negle
the additional temperature effects due to the Fermi surf
broadening, replacing (2] f /]v) by the delta function, and
evaluated the conductance at the tip bias.

FIG. 8. The spectral line shape for a model Kondo system
scribed in the text over a large bias range that includes tunne
into the broad resonance at 0.75 eV below the Fermi level. E
panel corresponds to differentq(eFs) at the Fermi level.
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One of the main conclusions of their work49 is that the
calculated temperature dependence of the resonance in
differential conductance is indicative of the temperature
pendence of the Kondo resonance itself. They showed res
at the experimentally relevant low temperatures for C
Au~111! and Ce/Ag~111! in the range of temperatures (T
<0.1TK). They found a rather weak temperature depe
dence, due entirely to the temperature dependence of
spectral functionra . It is qualitatively the same as, and com
parable in magnitude with, that found in Fig. 9~b!, where the
spectral function is independent of temperature and the t
perature dependence inDGeq is the consequence of th
Fermi-surface broadening in the STM tip. Therefore, a ca
ful deconvolution is necessary even at these low temp
tures to extract information about the temperature dep
dence of the Kondo resonance. The other possibility is
eliminate variations in the Fermi-surface broadening of
tip.

We show the temperature dependence for a Kondo sys
in Fig. 9. Since the validity of our approximation is limite
to temperatures of orderTK and higher, we show our result
only in this temperature range. Figure 9~c! shows the tem-
perature dependence one would observe with the tip aT
50 K and with a varying substrate temperature, i.e., wh
only the temperature dependence of the spectral functio
taken into account. Figure 9~b! assumes the substrate is at
constant temperatureT5TK , which determines the shape o
the Kondo resonance, while the tip temperature is varied.
see that the two contributions produce a very similar bro
ening of the Fano resonance. Only a close look can unco
the difference. Figure 9~a! shows the combined effect whe
the tip and substrate are kept at a common temperature.

-
g
h

FIG. 9. Temperature dependence of the tunneling conducta
through the Kondo resonance.~a! The total dependence includes th
temperature dependence in the spectral function and the Fe
surface broadening.~b! Temperature dependence due to the Fer
level broadening, and with a spectral function given by itsT'TK

value for all temperatures.~c! Temperature dependence of only th
spectral function, without the Fermi-surface broadening~replaced
by a delta function!.
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viously, it would be difficult to determine the contributio
from the broadening of the Kondo resonance.

In addition to the temperature effects just discussed,
wasaka and co-workers48,49 also predicted the existence o
weak, long-range oscillations in the current as a function
the lateral tip position. The particular long-wavelength, lon
range character of these predicted oscillations is a co
quence of their assumption that the tip-to-metal tunnel
takes place into the surface states of the~111! noble metal
surfaces. The observed resonances21,22 are at variance with
these expectations. On the other hand, the limited sp
extent of the resonance observed at lateral tip positions u
10 Å is consistent with the rapid spatial decay determined
the bulk G0

1 . No significant changes in the resonance li
shape are expected on this length scale~see the discussion in
Sec. III F, and Fig. 6!. The surface state would, however, b
responsible for line-shape variations on larger length sc
of order 20 Å. The fact that no resonance is observed at s
a distance from the impurity indicates that the surface-s
contribution is indeed weak. Since Friedel oscillations ha
been observed over long tip-impurity separations, we beli
that a weak tunneling resonance most likely persists in
conductance over comparable distances, but more sens
experiments are necessary. In this case, changes in the
shape withRi are expected. However, unlike Schiller an
Hershfield,64 we do not expect variations in the line sha
due to the dominant contribution from the bulk states on
length scale of<5 Å, as discussed in Sec. IV A 3.

3. Nonequilibrium and hybridization effects at small
tip-substrate separation

In typical STM experiments, the tip-substrate separat
can be varied from the point of contact where the tunnel
resistanceR is a few 100 kV to distances whereR;1 GV.
Experimental constraints limit the STM usefulness to
near-Fermi-level spectroscopy—especially at sm
Zt—because of exponentially increasing tunneling curre
with bias. However, it is likely to be possible to investiga
the Kondo resonance—which only requires biases of the
der of;10 meV—with very small tip-adsorbate separation
It is therefore useful to analyze the physical consequence
the small tip-metal separation on the resonance in tunne
conductance.

In this case, nonequilibrium effects, as well as the t
adsorbate interaction, become important in the spectrosc
of Kondo systems. First of all, asGat increases and become
a significant fraction ofGas at small distances, the tip
adsorbate hybridization will contribute to the widthG of the
resonance and to the renormalization of the levele0 . As a
result, the Kondo temperature, which depends sensitively
G ande0 , will change. This could be particularly importan
for systems with very low bulkTK , such as Fe/Au withTK
;1 K. The Kondo temperature for an impurity adsorbed
the surface of the metal is even lower than its bulkTK be-
cause the lower coordination number for the adsorb
makes the widthG narrower. IfTK!T, the Kondo resonance
will not be observed. In certain systems and in the rig
temperature regime, it may be possible for the Kondo re
nance to reappear at smaller tip-adsorbate distance as a
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of the increased hybridization. This could also be achiev
by incorporating the adsorbate into the top surface layer.
recent study of transition-metal impurities at the surface
gold67 did not find any sign of the Kondo effect in V, Cr
Mn, or Fe. We believe that, in the case of iron, this is due
the low TK , and may be an example of a candidate syst
for the conditions discussed here. On the other hand,
smaller impurity-metal hybridization at the surface can le
to magnetic behavior for systems which are nonmagneti
the bulk, such as Ni/Cu. There is a possibility for observi
the transition between magnetic and nonmagnetic beha
on a single system induced either by embedding or by
proximity of the STM tip.

We show an example of the changingTK with hybridiza-
tion in Fig. 10, where the spectral functionra(v) is plotted
at zero bias as a function of the partial widthGat , i.e., the
tip-metal separation for a model system. We chooseD
55 eV, Gas50.25 eV, ea521 eV, and T530 K. The
Kondo temperature for this model in the limitta50, is TK
;30 mK, much smaller than the temperatureT. Therefore,
the Kondo resonance in the spectral function is very we
When the tip is brought closer to the adsorbate, the Kon
resonance acquires more spectral weight as the Kondo
perature increases toTK;100 mK at Gat50.01Gas , TK
;0.2 K at Gat50.04Gas , and TK;1.5 K at Gat50.25Gas .
Based on the justifications in Appendix A, we neglected
effect of the direct metal-tip interaction on the spectral fun
tion, and treat the effect of the tip as another hybridizat
channel for the impurity state.

The effect of varying hybridization—due either to th
presence of the STM tip or to embedding or changing
environment of the adsorbate—on the tunneling resona
depends on the relation betweenTK and T. For instance,
when TK!T, increased hybridization would produce stro

FIG. 10. The spectral functionra(v) at zero bias as a function
of the tip-substrate separation~defined in terms ofGat). Dotted line,
occupied density of states; bold line, spectral density of states.
4-17
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M. PLIHAL AND J. W. GADZUK PHYSICAL REVIEW B 63 085404
ger~sharper! tunneling resonance of the same width since
spectral weight in the Kondo resonance increases while
width remains almost constant untilTK;T. Also, the experi-
mental resolution is limited by temperature in this regim
When, on the other handTK>T, additional hybridization
would not only increase the spectral weight in the Kon
resonance but also its width. The two cases should thu
distinguishable experimentally from each other and from
possible line-shape variations withZt as a result of changing
q.

The second important effect of the strong tip-adsorb
interaction is the breakdown of equilibrium relations at fin
bias such as the fluctuation-dissipation theoremG,(v)
5 f (v)ra(v), which consequently cannot be used in der
ing the expression for the current@Eq. ~3.22!#. This is true in
general because the electron occupation of the tip, metal,
adsorbate electrons will no longer be thermal, i.e., will not
given by f t(v) and f s(v) but rather will be characterized b
a nonequilibrium distribution produced by the injected tun
electrons. The differential conductance is no longer prop
tional to the local density of states, and cannot be obtai
using Eq.~3.24!. In Kondo systems, the hot electrons n
only modify the electronic distribution on the impurity, bu
also modify the Kondo resonance itself.

This is shown Fig. 2, where the spectral function a
density of occupied states is plotted at selected bias volta
in the limit of utpku!utpau. The impurity has a resonance
e0521 eV below the Fermi level, and a total widthG
50.5 eV produced by hybridization with both the tip an
substrate with partial widths ofGat50.1Gas . The tempera-
ture is of the order ofTK in this example. We see that th
Kondo resonance broadens even more with increasing b
This is due to the increase in the rate of incoherent scatte
by ;eVa /T—an effect similar to temperature. At the sam
time, the electron occupation develops a nonthermal pro
due to the large tip-adsorbate current. This is particula
visible for negative biases where the density of states
larger. Figure 2~a! shows the equilibrium spectral functio
~dotted line! and the electron population on the resonan
~solid bold line!. The equilibrium spectral density is show
~dotted line! in all panels. In addition, the spectral dens
~solid line! and occupation~bold solid line! are shown for the
biases indicated in the figure by the labeled arrow. If
coupling to the tip were comparable with the metal-adsorb
hybridization, a double-peak structure would develop. T
was predicted by Wingreen and Meir50 in the context of the
nonequilibrium Kondo effect in quantum dots, also discus
in Ref. 68. We see the onset of the double peak structur
Figs. 2~b!–2~d!, where a small cusp develops at the chemi
potential of the tip. In summary, the bias has a signific
effect on the spectral density even whenGat;0.1Gas .

We show the tunneling current~right! and the correspond
ing differential conductance~left! in Fig. 11 for this model of
Kondo impurity and for the STM geometry defined byGat
50.1Gas and utpku!utpau. The panels correspond toq50.6,
1.2, and 2.4, respectively. The current on the right is cal
lated usingI tot5Ieq1dI non of Sec. III D, with dI non given by
Eq. ~3.26!. The differential conductanceGtot on the left is
obtained by differentiating the results displayed on the rig
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It cannot be calculated from the expressions in the text, si
the dependence ofra(v) and Ga

,(v) on the bias voltage
modifies the contributions to the current in a wide ener
range, andGtot is not related in simple terms to the properti
at the Fermi level of the tip. We compareI tot and Gtot
~circles! with I eq andGeq ~solid!. The equilibrium quantities
were obtained in the lowest order intap andtkp , and with the
equilibrium Ga of Fig. 2~a!.

We see that the broadening and disappearance of
Kondo resonance with increasing bias at strong tip-adsor
coupling is weakened in the nonequilibrium calculation
Gtot , because the contributiondI non compensates partially fo
the spectral function effect. The most consistent effect on
line shape for various values ofq is the suppression of the
resonance maximum, and as a consequence of this the
shape has a more symmetric appearance. This behavi
qualitatively different from both the hybridization effect an
that of the changing Fano parameterq—due to different de-
cay constant of the impurity and metal states. Although
dependence of the tunneling resonance on the tip-subs
separationZt will contain all three contributions, the hybrid
ization and nonequilibrium contributions should only be im
portant at extremely small tip-adsorbate separations.
variations inq should not be important as it depends on t
difference of the wave-function tails, and the two remaini
contributions should leave distinguishable signatures in
tunneling resonance. It remains to be seen if the nonequ
rium condition play an important role in the tunneling b
tween the STM tip and the Kondo impurity.

Finally, we note that the limitutpku!utpau discussed here
in connection with the nonequilibrium effects is not appr
priate for the recent STM experiments, wheretpa is likely
much weaker thantpk , even though the importance oftpa
will increase relative totpk with decreasingZt . We will
address the more general case in a future work.

FIG. 11. Differential conductance~left! and current~right! for a
Kondo system defined in the text and with the spectral funct
displayed in Fig. 2. The solid line is a calculation at lowest order
tkp and tap , and with an equilibrium spectral function of Fig. 2
Circles correspond to the nonequilibriumGtot5dItot /dV and I tot for
Gat50.1Gas . Each row corresponds to a given value ofq at the
Fermi level.
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V. CONCLUSIONS

We used the Keldysh-Kadanoff method to study the sp
troscopic features of adsorbate resonances in the STM
neling experiments. The central results of our theory are
general expression for the current@Eq. ~3.4!# to all orders in
the tunneling matrix elements and its equilibrium limit@Eq.
~3.10!#. Both are valid for arbitrary intra-adsorbate electr
correlations, and thus apply to both noninteracting (U50),
as well as magnetic~largeU! systems. The discussion of th
Fano resonances is based on additional approximations
the tunneling and hybridization matrix elements that lead
expressions~3.22! for the tunneling current and Eq.~3.24!
for differential conductance in the lowest order in the tip-
system tunneling matrix elementsta and tc , i.e., at a large
tip-surface separation, and the nonequilibrium correction
the current in Eq.~3.26!.

In the equilibrium limit, our theory of the tunneling cur
rent and conductance differs from the standard theorie
STM, in that the dependence on LDOS is replaced b
tip-specific quantity related to the LDOS@Eq. ~3.9!#. The
current is expressed entirely in terms of the adsorb
Green’s functionGa

R , the tip density of states, the tunnelin
matrix elements, and the substrate Green’s function.
used the formulation to study the resonance line shape
function of temperature, tip-substrate separation, and lat
tip position. We summarize our findings as follows.

~1! The role of impurity state resonances in tunneling c
be discussed in terms of two limiting cases. When dir
tunneling across the barrier is weak, the resonance within
barrier provides an additional tunneling channel and can
nificantly enhance the tunneling current. This is the case
quantum dots in Coulomb blockade regime. If on the ot
hand, the tunneling into the continuum is strong, the pr
ence of an ‘‘impurity’’ state could suppress the tunneli
current due to the additional scattering of the conduct
electrons in the metal from the impurity, i.e., increased re
tance. The tunneling into the Kondo resonance in the rec
STM experiments seems to be closer to the latter limit.

~2! The information about electron correlations and t
Kondo resonance enters the tunneling problem through
impurity Green’s functionGa while the position dependenc
of the conductance is controlled by the electronic structure
the metal.

~3! The spatial decay of the observed Fano resonanc
the recent experiments21,22 is consistent with the conclusio
that tunneling into the bulk conduction and hybridizedsp
impurity states gives rise to most of the signal. The abse
of any observable resonance at distances larger than;10 Å
suggests that the contribution from the surface state
Au~111! and Ag~111! to the resonant tunneling is not impo
tant in these experiments. However, the surface states
important in special cases, as indicated by the recent co
experiments63 in which the contribution of the surface stat
is enhanced by scattering from the walls of the corral.

~4! At large Zt , tunneling into conduction states withki

having the smallest parallel component corresponding to
ergy v5ek'

1eki
is strongly favored. This leads to the di

appearance of the current oscillation vs the lateral tip p
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tion due to tunneling into the bulk states which shou
otherwise be observed with period of about 1–2 Å~corre-
sponding to the bulkkF) for typical experimental conditions
Therefore, no oscillations in the line shape should be
served on this length scale for typical tip-surface separat
The occurrence of an antiresonance with tip position at c
tain neighboring sites predicted by Schiller and Hershfiel64

has its origin in these oscillations. It is a result of a simplifi
model for the surface electronic structure and we believe
unphysical. The small current oscillations predicted by K
wasaka et al.49 assumed that the surface states are
important in the spatial dependence of the resonance w
seems to contradict the experimental results. We believe
surface state should be important at larger distances sinc
the ~111! noble metal surfaceskF;0.15– 0.2 Å21 and the
corresponding period of oscillations is about 20 Å~as ob-
served experimentally as Friedel oscillations!. We expect
changes in the resonance line shapes with this spatial pe
if the contribution is from the surface state and if the sign
ture of the resonance is detectable at such distances.

~5! From the line shapes observed in Co/Au~111! and Ce/
Ag~111!, we conclude that the direct tunneling into the d
crete ~d or f ! state is quite weak—stronger in Co/Au~111!.
This confirms that the STM is mostly a probe of the deloc
izedsp states and couples only weakly to the tightly boundd
or f orbitals at typical tip-surface separations. Therefore,
dominant process giving rise to the resonance line shap
the tip-to-metal tunneling and interference between cond
tion electrons scattering from the local moment.

~6! The temperature dependence in differential cond
tance does not reflect only the temperature dependence o
Kondo resonance, but also includes the effect of Fer
surface broadening~mostly of the tip!. The two contributions
are of the same order of magnitude, and qualitatively ind
tinguishable. Therefore, the temperature dependence in
differential conductance cannot be used directly to ma
conclusions about the temperature dependence of the r
nance without controlling the tip Fermi-surface broaden
or without deconvolution.

~7! At small tip-surface separations, nonequilibrium e
fects as well as the additional tip-adsorbate hybridizat
may play an important role—especially in Kondo system
The main effect of the finite bias voltage in this case is
broaden the Kondo resonance and produce a nonequilib
electron population on the adsorbate. The observed F
resonance in differential conductance also broadens an
maximum is suppressed. The effect of the tunneling curr
on the Kondo resonance should thus leave a character
dependence of the line shape onZt .

Note added. Since the submission of this manuscript w
have learned of related work by U´ jsághy et al.69
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APPENDIX A: ADSORBATE GREEN’S FUNCTION

An important quantity in the theory of tunneling curre
through adsorbate resonances is the adsorbate Green’s
tion Ga . Using the equation-of-motion method, we find t
expression forGa defined as the Fourier transform of

Ga~ t,t8!52 i ^TCca~ t !ca
†~ t8!&. ~A1!

We do this for the case of arbitrarily strong coupling b
tween the tip and the adsorbate, with the intent of describ
the nonequilibrium effects at finite bias. However, in th
paper we consider the effect of the direct tip-metal inter
tion on Ga to be weak, and neglect it. Extension to the f
description will be considered in future work. We believe t
approximations adopted here capture the most impor
nonequilibrium effects.

We discuss both the noninteracting (U50) and interact-
ing (U5`) models. Since the solution in both limits for th
adsorbate-metal interaction is well known, we limit our d
cussion to issues specific to the addition of the biased
and refer the reader to standard texts for details. TheU
5`) model is solved using the slave-boson technique
the NCA. In this approach a pseudofermion is introduced
the transformationca→cab† in the Hamiltonian~2.1!, where
b† is the creation operator for the slave boson. This elim
nates the interaction termU from the Hamiltonian as dis
cussed by Coleman.65

The time-ordering operatorTC orders the time according
to their position on contour in the complex time plane.45 It is
important to note that equations must first be solved in
complex time domain, and then analytically continued to
real axis. The analytic continuation is performed before
Fourier transform, so we must be careful about how we d
with the Fourier transformed equations. Here we discuss
equations of motion satisfied by the Fourier transforms of
time-ordered Green’s functions, and only summarize
rules for analytic continuation at the end of this append
All Green’s functions and self-energies in the following e
pressions are function of frequencyv, and, therefore, we
omit their argument to simplify the notation.

The Green’s function for the impurity stateGa can be
written in a standard way,

Ga5~v2e02Sa!21, ~A2!

using the self-energySa(Rt ,Z0 ;v). The solution forGa is
thus reduced to findingSa . We first treat a closed-shell or
nonmagnetic open-shell (Vka@U) adsorbate for which elec
tron correlations can be neglected. We begin by conside
the tip-substrate system without the adsorbate. We de
G̃kk8 andG̃pp8 in analogy withGa @Eq. ~A1!# as the Green’s
functions of the metal and tip states, respectively, in the
sence of the adsorbate. These are not identical with
Green’s functionsGkk8 and Gpp8 for the full system intro-
duced in Appendix B. The bare metal-tip system is descri
by the Hamiltonian of Sec. II withe05U5tap5Vak[0. Us-
ing the equations of motion, we can write
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~v2ek!G̃kk85dkk81(
k9

Skk9G̃k9k8 ~A3!

and

~v2ep!G̃pp85dpp81(
p9

Spp9G̃p9p8 ~A4!

where the self-energies areSkk85(ptkpGp
0tpk8 and Spp8

5(ktpkGk
0tkp8 and Gk

05(v2ek1 ihk)
21 and Gp

05(v2ep

1 ihp)21 are the Green’s functions for the clean metal a
tip, respectively, without their mutual interaction. The sol
tions for G̃kk8 and G̃pp8 can be formally written as the in
verse ofDkk85dkk8(v2ek)2Skk8 and Dpp85dpp8(v2ep)
2Spp8 . We also define the adsorbate-metal and adsorb
tip hybridization matrices modified by the tip-substrate int
action as Ṽka5Vka1(ptkpGp

0tpa and t̃ pa5tpa

1(ktpkGk
0Vka . With these definitions and withG̃kk8 and

G̃pp8 obtained through Eqs.~A3! and ~A4!, the solution for
the noninteractingSa is formally given by

Sa5(
kk8

VakG̃kk8Ṽk8a1(
pp8

tapG̃pp8 t̃ p8a . ~A5!

The evolution of the self-energySa is rather complicated in
the general case of strong tip-to-substrate coupling. We p
ceed with formulation of the general nonequilibrium theo
for the tunneling current using this self energy~Sec. III A!
and then we discuss two limiting cases:~a! the equilibrium
limit utkpu, utapu!uVkau ~Sec. III B! in which case the secon
term in Eq.~A5! is neglected, andṼka andG̃kk8 are replaced
by Vka and Gk

0dkk8 ; and ~b! the nonequilibrium case unde
the assumptionutkpu!utapu;uVkau, in which case we keep
both terms in Eq.~A5! and replaceṼka , t̃ ap , G̃kk8 , and
G̃pp8 by Vka , tap , Gk

0dkk8 , and Gp
0dpp8 . Section IV B 3

deals with tunneling through a Kondo impurity in this limi
Case~b! includes the effect of the increased hybridization
the discrete state due to the tip presence and the ons
nonequilibrium population on the adsorbate at finite bias

In order to study these corrections in limit~b!, (utpk

u!utpau;uVkau), we replace the Green’s functionsG̃kk8 and
G̃pp8 by the noninteracting ones, i.e.,G̃kk85dkk8Gk

0 and

G̃pp85dpp8Gp
0 and the modifiedṼka and t̃ pa by Vka andtpa .

The self-energySa then simplifies to

Sa
05(

k
uVaku2Gk

01(
p

utapu2Gp
0. ~A6!

The largest source of error in writing the approximate s
energy is the neglect of the possibly significant interferen
effects at largertkp as a result of the phase difference b
tween t̃ pa andtpa . It is always reasonable to replaceṼka by
Vka , as long as the adsorbate is on the surface rather tha
the STM tip. This general case will be the topic of a futu
study. If the tip distance from the adsorbate is much lar
than the adsorbate-metal separation, so thattap!Vak , the
self-energy is well described by the first term only. In such
4-20
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case, the STM does not strongly modify the studied syst
It is then reasonable to characterize the system without
presence of the STM tip, and then consider the tunneling

Finally, we discuss the Green’s functionGa in limit ~b!
for a Kondo impurity which is likely to show stronger de
pendence on the bias and tip interaction. We find the n
equilibrium Green’s functionGa under the same assumptio
that lead toSa

0 for the noninteracting Anderson Hamiltonia
We solve the interacting system in the limit ofU5` using
the NCA approximation. The self-energy is not a simple s
of the two contributions from the metal and tip as it was t
case in the noninteracting system, because the occupatio
the resonance is limited to one electron and the hybridiza
is now correlated—formally through the slave boson Gree
function B(v). The two coupled equations are solved se
consistently.

APPENDIX B: EQUATIONS OF MOTION
FOR Gpk AND Gpa

In this appendix, we find the solution for ((kptkpGpk
1(aptapGpa) entering the expression for the tunneling cu
rent @Eq. ~3.3!# for the general case of arbitrary tip-syste
coupling. Ultimately, the interesting regime in connecti
with typical STM experiments is one in whichtkp ,tap
,Vak . However, we want to be able, in principle, to stu
the system when the coupling of the STM tip to the syst
and the tunneling current are strong. This creates nonequ
rium occupation on the adsorbate resonance and modifie
spectroscopic properties of the system. We therefore proc
by deriving the most general expression valid for arbitra
coupling strengthtkp and tap , and discuss an approximatio
~b! that allows us to take into account the most import
nonequilibrium effects as described in Appendix A. For th
purpose we introduce the Green’s functionGpa(v), Gpk(v),
Gkk8(v), Gpp8(v), andGka(v) as the Fourier transform o

Gi j ~ t,t8!52 i ^TCci~ t !cj
†~ t8!&. ~B1!

We now turn to the equations of motion for the Green
functions relevant for the tunneling current. The followin
expressions are valid for arbitrary interactionUÞ0, and the
nature of the intra-adsorbate interactions are contained f
in the solution forGa discussed in Appendix A. The firs
term in the current@Eq. ~3.3!# contains the tip-adsorbat
propagator which satisfies

~v2ep!Gpa5tpaGa1(
k

tpkGka . ~B2!

This is expressed in terms ofGa , already solved within a
given approximation in Appendix A through Eq.~A2!, and in
terms of the metal-adsorbate Green’s function

~v2ek!Gka5VkaGa1(
p

tkpGpa . ~B3!

The last two equations are coupled and need to be so
self-consistently. We do this by substituting Eq.~B3! for Gka
08540
.
e

n-

of
n

’s
-

b-
the
ed
y

t

lly

ed

in Eq. ~B2!, and vice versa. The solutions are then expres
in terms ofGa , G̃pp8 , and t̃ pa discussed in Appendix A as

Gpa5(
p8

G̃pp8 t̃ p8aGa . ~B4!

We will also need the solution forGak . The tip-induced
correction toVka contributes to the phase ofVka , as well as
its magnitude, and could thus affect the line shape sign
cantly in the strong-coupling limit. But it should be particu
larly weak whentkp ,tpa!Vka , and it will be safe to ignore
it. We write

Gak5Ga(
k8

Ṽak8G̃k8k . ~B5!

The second term in Eq.~B3! is negligible when the tip-
adsorbate separation is much larger than the adsorbate-m
separation. Neglecting this term is equivalent to replac
G̃pp8→Gp

0dpp8 in Eq. ~B4! and G̃kk8→Gk
0dkk8 and Vka

→Vka in Eq. ~B5!. The tip-adsorbate Green’s functionGpa is
then expressed entirely in terms ofGa and the unperturbed
conduction electron Green’s functions.

The second term in Eq.~3.3! contains the tip-metal propa
gatorGpk , which satisfies

~v2ep!Gpk5(
a

tpaGak1(
k8

tpk8Gk8k . ~B6!

It is expressed in terms ofGak @Eq. ~B5!# discussed in the
previous paragraph, and in terms ofGk8k , the Green’s func-
tion for the substrate conduction electrons

~v2ek8!Gk8k5dkk81(
a

Vk8aGak1(
p

tk8pGpk .

~B7!

We see thatGkk8 couples toGpk @Eq. ~B6!#, and also toGak

@Eq. ~B5!#, already solved in terms ofGa andG̃kk8 . The last
two equations can be solved self-consistently to give

Gk8k5G̃k8k1 (
k1k2

G̃k8k1
Ṽak1

GaṼk2aG̃k2k ~B8!

and

Gpk5(
p8

G̃pp8S tp8k1(
ak8

t̃ p8aGaṼak1DGk
0. ~B9!

For the purpose of analytic continuation, it is important
keep track of the order in which the Green’s functions app
in the product in the above equations. The equilibrium lim
of the theory is achieved by neglecting the last term in E
~B7! along with the equivalent approximations forGa and
Gak discussed above. This removes the self-consistency
quirement and neglects the effect of the tip on the subst
conduction electrons, but not on the tunneling current. T
solution forGkk8 is then identical to that of the system with
out the tip.
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The rules for writing the expression for the ‘‘lesser’’ an
retarded functions in the frequency space can be summa
as follows.44–46,26If the time-ordered Green’s functionA(v)
is given in terms of the product of propagators,

A~v!5B~v!¯Z~v!; ~B10!

then
.

-

te
J.

py

y

ate

h-

. S

ett

08540
ed
AR~A!5BR~A!

¯ZR~A! ~B11!

and

A:5¯1BR
¯C:

¯ZA1¯ . ~B12!

We refer the reader to Haug and Jauho46 for details.
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