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Accelerated molecular dynamics of rare events using the local boost method
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We present thelocal boost methodfor accelerating molecular-dynamics~MD! simulations of rare-event
processes. To accelerate the dynamics, a bias potential is used to raise the potential energy in regions other than
the transition states. This method reduces the number of MD time steps spent simulating motion in the
potential-energy minima, and allows long-time simulations to be run. Correct equilibrium and dynamical
quantities are achieved by using a time increment based on the principles of importance sampling. Two
different bias potentials are probed. Both bias potentials are based on the potential energies of individual
atoms. In both cases, the bias potential is turned on~off! when the energy of an individual atom is below
~above! a boosting threshold energy. Implementing this method requires only minor modification to a conven-
tional MD code, and the associated computational overhead is negligible. We demonstrate the method by
applying it to the diffusion of atoms on Lennard-Jones fcc~001! and fcc~111! surfaces. Both single and multiple
boosting-threshold energies are employed in these studies. These results show that the local boost method with
multiple-boosting thresholds holds significant promise for application in large-scale MD simulations.

DOI: 10.1103/PhysRevB.63.085403 PACS number~s!: 68.35.Fx, 02.70.Ns, 71.15.Pd, 82.20.Db
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I. INTRODUCTION

A significant challenge in materials simulation is to co
duct long-time simulations, while accurately retainin
atomic-scale detail. A popular approach is molecular dyna
ics ~MD!, which provides accurate information on the deta
of atomic motion. However, MD simulations cannot cu
rently proceed far beyond the nanosecond range. Thus l
time dynamics are inaccessible with this method. In syste
where structural evolution occurs by a series of ‘‘ra
events,’’ the dynamics can be characterized as a sequen
infrequent transitions from one potential-energy minimum
another. For such systems, the long-time dynamical beha
can be simulated as a series of jumps between poten
energy minima. The jump rate is given by transition-st
theory ~TST!1–3 as the flux through a dividing surface th
separates two potential-energy minima. If the TST rates
known accurately, then, in principle, a kinetic Monte Ca
~KMC!4–7 simulation incorporating these rates can be use
reach macroscopic time scales, while retaining reason
dynamical accuracy. However, for many systems it is di
cult to ascertain the locations of all potential-energy mini
and the TST hopping rates between them. This limits
accuracy of the KMC/TST approach.

To overcome the inadequacies of KMC and conventio
MD approaches several recent studies8–13 investigated the
possibility of extending the time scale in MD simulations
systems with rare-event dynamics. The approach in th
studies is to use importance sampling14,15 to estimate dy-
namically the TST escape time for each minimum, as
system evolves via MD simulation. This is possible for sy
tems with rare-event dynamics because the TST escape
is an equilibrium quantity associated with a particular mi
mum and a corresponding transition state. Efficient eva
tion of the TST escape times can be achieved in this w
and the dynamics can be accelerated significantly by m
0163-1829/2001/63~8!/085403~9!/$15.00 63 0854
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orders of magnitude, depending on the potential-energy
face ~PES! and temperature.

In one set of studies, Voter8 showed that it is possible to
accelerate rare-event dynamics by conducting MD simu
tions on a modified PESV8($R%) of the form V8($R%)
5V($R%)1DVb($R%), whereV($R%) is the original PES,
DVb($R%) is the boost potential, and$R% denotes the full set
of Cartesian coordinates for theN particles, $R%
5$R1 , . . . ,RN%. The boost potential is designed to raise t
potential energy near the minima with the constraint that
modified potential match the original one near all TST div
ing surfaces. The energy barriers for escaping the minima
V8($R%) are smaller than onV($R%). Thus, fewer MD steps
are required to escape from a minimum onV8($R%), and the
simulation evolves faster than on the original PES. To m
trajectories onV8($R%) ontoV($R%), each time step receive
a weighting factor to ensure that correct escape times
simulated for the original PES.8 By constraining the potentia
to match the original one near the TST dividing surface, i
ensured that the probabilities of escape from a giv
potential-energy minimum satisfy detailed balance with va
ous adjacent minima.

To construct a boost potential which yields correct eq
librium and time-dependent properties, it is necessary to
certain dynamically when the system is in a minimum or a
transition state. In Voter’s method8 the boost potential de
pends on the smallest eigenvalue of the Hessian matrixH of
second derivatives of the potential energy with respect
atomic positions. This eigenvalue becomes negative ne
transition state and, thus, allows detection of transition sta
However, manipulations ofH add significant computationa
overhead to the simulation. Moreover, as the number of
grees of freedom increases, the probability thatH will have
negative eigenvalues away from the transition state incre
and the method loses its efficiency.

In more recent studies, Voter improved on his origin
method. One of these studies focused on constructing
©2001 The American Physical Society03-1
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boost potential without computingH.9 Here DVb($R%) is
constructed from the two lowest eigenvalues ofH, which
are found using only the gradient of the potential energ9

This method requires some advance knowledge of the PE
order to be effective. Another method~‘‘parallel replica’’!
was also developed by Voter,10 in which parallel computa-
tion is used to extend the time scale in the MD simulation
a small infrequent-event system. By integrating a replica
the system independently on each processor, observatio
the first transition can be accelerated, and the method giv
correct transition-time distribution.

The approach of redefining the potential to obtain T
rate constants with MD has been used in previo
studies.11,16To study structural transitions in macromolecu
systems, Grubmu¨ller11 developed an elaborate MD schem
called ‘‘conformational flooding.’’ In this approach, confo
mational transitions in macromolecules are accelerated
the addition of a ‘‘flooding’’ potential into the Hamiltonian
of the system, which in turn reduces the free-energy bar
heights. More recently, Steineret al.12 developed a simple
boost potential in which the boosted potential energy is c
stant and equal to a fixed boost value if the potential ene
falls below the boost value. In this method, Hessian mani
lations are not performed. However, such a method is o
effective for systems with a few degrees of freedom beca
fluctuations in the potential energy obfuscate transition st
as the number of degrees of freedom increases. We rec
introduced a simple boost potential which, with the prop
e
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choice of a boost parameter, guarantees that accurate
escape times can be obtained with large acceleration to
dynamics.13 In our method, similar to that of Steineret al.,12

the potential energy is boosted when it is lower than a fix
boosting threshold. We employed a smoothing function
ensure that the PES is continuous in the force from
boosted to the unboosted region. We showed that
smoothing function can also influence the boost in simu
tions of diffusion on a two-dimensional model PES.13 In this
paper, we extend and generalize our method to systems
taining large numbers of atoms. In this method, which
denote as thelocal boost method, the boost is based on th
potential energies of individual atoms. The method can
implemented with a single boosting threshold or with m
tiple boosting thresholds, to achieve greater efficiency
simulations of systems containing many different types
potential-energy minima. Below, we describe this meth
and demonstrate its application.

II. MODEL AND METHOD

We are interested in a system ofN particles that resides in
a multidimensional potential-energy well~stateA) at a coor-
dinatex($R%,$P%), where$R% and$P% represent generalize
coordinates and momenta, respectively. The rate cons
kTST

A→ for escape from the potential-energy well~stateA) is
given by the canonical, ensemble-average flux exit
through the boundary to stateA,8
kTST
A→5

E E ẋdA~x!QA~x!exp@2bK~$P%!#exp@2bV~$R%!#d$R%d$P%

E E exp@2bK~$P%!#exp@2bV~$R%!#d$P%d$R%

, ~1!
e
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es-

es-

ll

r
of
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where ‘‘• ’’ represents a time derivative,K is the kinetic en-
ergy, V is the potential energy,b51/kBT, dA(x) is a Dirac
delta function applicable at the boundary to stateA, and
QA(x) is unity when the system is in stateA, and zero oth-
erwise. In MD simulations, we naturally obtain th
ensemble-average escape time, which is the reciprocal o
1, as the system evolves from minimum to minimum. Ho
ever, prohibitively many time steps must be spent to acc
the transition states and, as a result, only limited dynam
evolution occurs.

In the local boost method~as in Voter’s method8! the
average escape time is accelerated through a bias pote
DVb($R%), which is added to the original potential energy
the systemV($R%). The biased PESV8($R%) has the form

V8~$R%!5V~$R%!1DVb~$R%!. ~2!

The bias potentialDVb is designed to increase the potent
energy when the system is far from a transition state~thereby
decreasing the number of MD steps necessary to reach
q.
-
ss
al

tial

l

he

transition state!, and to preserve the original potential in th
vicinity of a transition state. This latter feature is necess
so that a detailed balance is maintained among different
cape rates from various potential-energy minima. We inv
tigated two possible forms forDVb($R%). In one of the ver-
sions investigated,DVb($R%) has the form

DVb~$R%!5Vmax~$R%!S 12S~$R%!

S~$R%! D , ~3!

where Vmax($R%) is the maximum potential energy of a
individual particles, i.e.,

Vmax~$R%!5max@Vi~$R%!#, i 51, . . . ,N, ~4!

where i denotes a specific particle, andN is the number of
particles in the system. The functionS($R%) ensures that the
bias potential turns smoothly on~off! when the system is fa
from ~near to! a transition state. To gauge the proximity
the system to a transition state, we also rely on the value
single-particle energies: ifVmax is below a preset boosting
3-2
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thresholdVb , then S($R%).1, and the potential energy i
boosted17; if Vmax lies above Vb , then S($R%)51 and
V8($R%)5V($R%). To uphold the detailed-balance criterio
Vb should be lower than the maximum single-particle ene
when the system is at its lowest-energy transition state.
fining DV($R%)5Vb2Vmax($R%), S($R%) has the form

S~$R%!511Q~DV! f ~DV!. ~5!

HereQ(x) is a standard step function, such thatQ51 when
x>0, andQ50 otherwise. The step function turns the boo
on ~off! below ~above! the boosting threshold. The functio
f (DV) is included to ensure a smooth variation in the pot
tial energy and continuity in the forces from the boosted
the unboosted regions of the PES. This function has the f

f ~DV!5
c exp~2g/DV!

11exp~2g/DV!
, ~6!

wherec andg are tunable parameters that should not sign
cantly influence the dynamics.13

A second form that we investigated forDVb($R%) is
given by

DVb~$R%!5DVmin~$R%!g~DVmin!, ~7!

where DVmin($R%) is the minimum-energy difference be
tween a single-particle potential energy and a boosti
threshold energy. For a single boosting-threshold ene
DVmin is equal toDV, as defined for Eq.~5!. As we will
demonstrate below, Eq.~7! can also be adapted for multipl
boosting-threshold energies to increase the efficiency
large-scale simulations of systems containing many differ
types of minima. The functiong(DVmin) has the form

g~DVmin!5Q~DVmin!S c~DVmin!
n

11c~DVmin!
nD , ~8!

whereQ is a standard step function, as described above,
c andn are parameters.

For both forms of the bias potential presented above,
instantaneous force acting on a particlei residing on the
boosted PESV8($R%) can be calculated from Eq.~2! for the
desired form ofDVb . This requires the addition of a few
lines to a conventional MD code, and the resulting com
tational overhead is negligible. It should be noted that si
the local boost method islocal, the forces will only be modi-
fied for the ‘‘boosted’’ particle@i.e., the particle withVmax in
Eq. ~3! or DVmin in Eq. ~7!#, and for particles within the
potential cutoff of the ‘‘boosted’’ particle.

To illustrate the bias potentials employed here, we cal
lated the boosted PES for a one-dimensional potentialV(x)
522.02cos(px). In Fig. 1, we show the modified PES fo
the bias potential given by Eq.~3! with the smoothing func-
tion of Eq. ~6!. Although all potential energies belowVb are
altered to some extent, the parametersc and g control the
properties of the boost. Figure 1~a! shows the influence ofg
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on the boosted PES. Wheng is large~i.e., g51 and 2!, the
boost is conservative, and the shape of the boosted PE
similar to the shape of the original one. For aggressive bo
ing, such as withg50.1, subwells are created nearV(x)
5Vb . Another way to control the boost is to varyc. Figure
1~b! shows that larger values ofc give larger boosts. As for
g, more aggressive boosting~larger c) creates additiona
subwells in the PES. From Fig. 1~c!, we see that for fixedg
andc, the shapes of the boosted PES’s are similar, and
Vb controls the amount of boost. Although it is not appare

FIG. 1. Biased potentialsV8(x) for the potentialV(x)522.0
2cos(px). The biased potentials are obtained using Eq.~3!. We
show the influence of~a! g for c51.0 andVb521.5, ~b! c for g
51.0 andVb521.5, and~c! Vb for g51.0 andc51.0 on the
boosted PES. The original PES is shown bold in each figure.
3-3
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WANG, PAL, AND FICHTHORN PHYSICAL REVIEW B63 085403
from the figures, all the boosted PES’s are continuous in
force asDV(x)→01.

All of the PES’s shown in Fig. 1 satisfy the criterion8 that
the boosted potential must be the same as the original
the transition-state region. Although this is an important c
terion to be satisfied in achieving detailed balance, there
more subtle issues in choosing an appropriate boosting
tential. In dynamical simulations, for example, the value
the ensemble-average escape time can be reduced
transition-state recrossing. It is known20,21 that the extent to
which this phenomenon occurs depends on the shape o

FIG. 2. Biased potentialsV8(x) for the potentialV(x)522.0
2cos(px). The biased potentials are obtained using Eq.~7!. We
show the influence of~a! c for n51.0 andVb521.5, ~b! n for c
52.0 andVb521.5, and~c! Vb for n51.0 andc51.0 on the
boosted PES. The original PES is shown bold in each figure.
08540
e

ar
-
re
o-
f
by

he

PES. The general guideline for choosing a biased PES is
yet well determined. However, for at least the one rea
discussed above, we feel that surface shapes that are
drastically different than the original PES are good choic
For example, the biased PES withc51.0, g52.0, andVb
521.5 @Fig. 1~a!# retains the shape of the original PES, a
is most likely acceptable. However, the potential withc
55.0, g51.0, andVb521.5 @Fig. 1~b!# should probably be
avoided, unless its effects are carefully determined for a p
ticular application. Actually, in our previous study,13 we
found that accurate results can be obtained from a PES
artificial subwells. One factor governing the accuracy in t
case is the stiffness of the modified PES. The stiffness
flects the magnitude of the gradients on the PES, with lar
gradients producing a more stiff PES. The functionS($R%)
@cf. Eq. ~5!# determines the stiffness of the PES when a p
ticle enters the region where its energy is less than the bo
ing threshold energy. In most applications, it is safe to ha
a relatively soft biased PES compared to the original P
since this can prevent numerical instability, reduce the in
ence of subwells, and limit a quick exit of a particle to a
adjacent state by reflection from the biased PES.

One drawback when the smoothing function given by E
~6! is used in Eq.~3! is that the PES loses its original shap
and develops subwells when the potential energy is increa
significantly above its original value. To remedy this pro
lem, we consider a second form forDVb($R%), given by Eq.
~7!. It can be easily shown that whenn<1, c can take on any
positive value without generating artificial subwells in th
biased PES. Under these conditions, the biased PES bec
flatter as c increases, as shown in Fig. 2~a!. For n.1,
subwells can still be avoided withc<@(n21)DVmin

n #21, as
shown in Fig. 2~b!. The influence ofVb for fixed c andn is
shown in Fig. 2~c!. It can be seen that changing this para
eter in Eq.~7! has a similar effect on the PES as it does
the bias potential given by Eq.~3! @cf., Fig. 1~c!#.

In addition to having a well-defined parameter space
which subwells can be avoided, the bias potential given
Eq. ~7! has the beneficial property that it is a function
energy differences. This feature can be contrasted to Eq.~3!,
which deals with specific particle energies. By incorporati
energy differences, the boosting function in Eq.~7! becomes
virtually independent of the minimum it is boosting. This
because the PES is generally expected to be harmonic n
minimum. Thus the parameters associated with this boos
function ~i.e., the parameters whose effect we demonstra
in Fig. 2! should be transferrable to a wide variety of sy
tems. In contrast, one generally needs to apply different
ues of the boosting parameters in Eq.~6! for different
minima when using the bias potential given by Eq.~3!. Be-
cause of its relative ease of transferability among vario
potential-energy minima, the bias potential given by Eq.~7!
is more easily adapted to include multiple-boosting thre
olds, as we will demonstrate below.

When accelerated MD simulations are run on a modifi
PESV8, it is important to ensure that equilibrium averag
of static and dynamical quantities onV8 map directly to
those onV. Using importance sampling techniques,14,15 the
TST rate constant in Eq.~1! can be expressed as
3-4
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kTST
A→5

E E ẋdA~x!QA~x!w~b,$R%!exp@2bK~$P%!#exp@2bV8~$R%!#d$R%d$P%

E E w~b,$R%!exp@2bK~$P%!#exp@2bV8~$R%!#d$P%d$R%

, ~9!
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where the weighting functionw(b,$R%) is given by

w~b,$R%!5exp~b~V82V!!. ~10!

The weighting function is defined so that the averages gi
by Eqs.~1! and~9! are equal. This function determines ho
much weight is assigned to each configuration that can
reached by boosting toV8($R%), so that the weighted aver
ages correspond to time averages onV($R%). Using Eq.~2!,
this weight can also be written as

w~b,$R%!5exp~bDVb!, ~11!

where DVb($R%) is given by Eqs.~3! and ~7! for the two
different forms probed here. To obtain correct time and
semble averages, the boosted time incrementDt8($R%) is
given by

Dt8~$R%!5w~b,$R%!Dt, ~12!

where Dt is the MD simulation time step. As in Voter’
method,8 time evolves in a coarse-grained manner and
comes a statistical property. Therefore, corr
thermodynamic-average escape times are obtained on
the limit of long times.

At this point, it is important to stress certain aspects of
local boost method. In particular, the use of single-parti
energies is central to this method. These energies are e
defined in semiempirical potentials, such as Lennard-Jo
embedded-atom method,18 Stillinger-Weber,19 etc., which
are currently suitable for large-scale MD simulations. Imp
mentation of the local boost method inab initio MD simu-
lations would require one to define individual atom energ
in these simulations, which is not typically done. Our a
proach can be contrasted to aglobal approach involving the
total potential energy. For such a boosting scheme,
method would only be efficient for systems with a few d
grees of freedom. This is because fluctuations in the t
potential energy obfuscate transition states. In an appro
based on the potential energies of individual atoms, the p
imity of each atom to a transition state is estimated, elim
nating the fluctuation problem in a global approach. The c
struction of the potential-energy bias functions in Eqs.~3!
and ~7! ensures that the potential energy is boosted loca
where a transition is likely to occur. Because we alter
potential energy locally, it is unlikely that the system will b
perturbed significantly by the bias potential. Thus the acc
erated dynamical behavior of the system should faithfu
represent what could be achieved in anunacceleratedMD
simulation, if such a simulation could be run to long enou
times.

A second aspect of the local boost method is that on
required to select appropriate boosting-threshold energ
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By implementing this criterion for detecting the proximity o
the system to a transition state, we avoid the computatio
overhead associated with diagonalizing the Hessian ma
that is implicit in Voter’s method.8 However, one has to
choose boosting-threshold energies that are~i! sufficiently
above the values of single-particle energies when the sys
is at a minimum~so that the dynamics are accelerated!; and
~ii ! below the single-particle energies when the system is
transition state~so that the detailed-balance criterion is u
held!. If the minimum-energy configurations of a system c
be ascertained~this is often the case, for example, in cryst
growth!, then it is possible, based on a knowledge of t
energies of the minima, to choose boosting-threshold e
gies that can be refined during trial simulation runs prior t
production run.

To demonstrate various aspects of the local boost meth
we applied it to the diffusion of Lennard-Jones~6-12! atoms
on Lennard-Jones fcc~001! and fcc~111! surfaces. The
Lennard-Jones potential employed here is truncated
shifted to zero at a distance of 2.5s, wheres is the length
parameter. We use the value of the bulk lattice constant f
Lennard-Jones solid, which is given bya0'1.54s.22 To
model the fcc~100! and fcc~111! substrates, we use slabs th
are seven atomic layers thick in thez direction @perpendicu-
lar to the~001! or ~111! surface normal#, with 50 @fcc~001!#
or 70 @fcc~111!# atoms per layer to satisfy the minimum
image convention. We apply periodic boundary conditions
the x and y directions. The bottom three layers are fixed
their equilibrium crystal-lattice positions, and the four
layer is used as a heat bath. To integrate the equation
motion, we used the velocity Verlet23 algorithm for the top
three layers and the Gaussian thermostat method23,24together
with a scheme proposed by Brown and Clarke25 for the heat-
bath layer. The dimensionless time stepDt!50.0023129
5Dt/(s2m/e)1/2, wheres ande are the length and energ
parameters for the Lennard-Jones potential, andm is the
mass of the atoms. For example, if we choose to model p
num, s52.543 Å, e50.679 eV;22 and Dt'1 fs. The
simulation system is rigorously equilibrated before each p
duction run by continuously checking the average tempe
ture, the temperature fluctuation, and the velocity distrib
tion.

The tracer-diffusion coefficientD of the adatom is calcu-
lated in two different ways. In the first of these, we used
Einstein equation, in whichD is given by

D5 lim
t→`

^DR2&
2dt

, ~13!

whereDR25@R(t)2R(0)#2, ^•••& denotes an ensemble av
erage, andd52 is the dimensionality of the surface. Th
3-5
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average value ofD is estimated by converting the trajectori
into DR2(t) vs t curves, and averaging over their slope
This procedure is adequate for the higher temperatu
where the mobility is the largest and good statistics could
accumulated. However, for the lower temperatures, the a
tom spends long time periods vibrating in the potenti
energy minima, and its random walk between various bi
ing sites may not always reach the diffusive regime. For
lower temperatures, we exploit the fact that surface diffus
is a rare-event process, in whichD is given by

D5
l2nkTST

2d
, ~14!

wherel is the hopping distance which is the distance b
tween nearest-neighbor minima in the systems studied h
n is the number of nearest-neighbor minima, andkTST is the
TST escape rate, given by Eq.~1!. Implicit in Eq. ~14! is the
assumption that diffusion occurs via nearest-neighbor ho
and that transition-state recrossing does not occur. This i
excellent assumption for the systems studied here, as d
sion coefficients obtained via Eqs.~13! and ~14! are fully
consistent. To estimateD using Eq.~14!, we obtained the
average ofnkTST from the average of simulated residen
times of an atom in a binding site.

III. RESULTS

Figure 3 shows an Arrhenius plot of dimensionless trac
diffusion coefficientsD!5D/(s2e/m)1/2 obtained from four

FIG. 3. Arrhenius plot of dimensionless tracer-diffusion coe
cientsD! ~as defined in the text! obtained via Eqs.~13! and~14! vs
dimensionless reciprocal temperatureT! ~as defined in the text!.
Results are shown for unbiased MD simulations~squares! and bi-
ased MD simulations using Eq.~3! ~triangles and circles! and Eq.
~7! ~diamonds!. The solid line is a fit through all data points ob
tained for biased PES with both Eqs.~3! and ~7!.
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different simulations: one set of points is fromunboosted
MD simulations, two sets are obtained in accelerated M
simulations using the bias potential in Eq.~3!, and one set of
points is obtained in accelerated MD simulations using
bias potential given by Eq.~7!. The two sets of results usin
the bias potential in Eq.~3! are obtained with the boostin
parameters (Vb523.355e, c50.5, g50.78), which pro-
duces a biased PES with the same shape as the original
with (Vb523.355e, c50.5, g50.05), which produces
subwells in the PES@similar to those shown in Fig. 1~a! with
g50.1#. The set of results using the bias potential in Eq.~7!
is obtained with the boosting parameters (Vb523.104e, c
52.18,n51.0), which produces a biased PES with the sa
shape as the original. It should be noted that the maxim
energy of a single particle~the adatom! at the transition state
in this system is22.854e, and the maximum energy of
single particle~the adatom! at the minimum is24.356e. To
obtain the various diffusion coefficients shown in Fig.
averages are computed over 5–15 runs ranging in len
from 5–10 million time steps. Generally, the largest numb
of runs and the longest runs are needed to obtain good
tistics for the lowest temperatures probed in each set of
sults. From Fig. 3, we see that the different, tracer-diffus
coefficients agree well with one another, and all exhi
Arrhenius behavior. In addition, the slope of a line
through all the points yields an activation barrier ofEd
5(1.4860.02)e, which is in good agreement with the stat
value ofEd51.50e. For all simulations, the adatom conduc
hops between neighboring binding sites. We confirmed t
the distribution of residence times of adatoms in bindi
sites is consistent with a Poisson process. Similar to our fi
ings in a previous study,13 the introduction of subwells into
the modified PES does not lead to any appreciable deviat
of the diffusion coefficients attainable in accelerated M
simulations from the correct results obtained in an unbia
MD simulation.

Of central interest is the extent to which the local boo
method can accelerate MD simulations. This can be cha
terized by the boostb, where

b5
1

nDt (
i 51

n

Dt i8 , ~15!

whereDt i8 for time stepi is given by Eq.~12!, Dt is the MD
time step, andn is the number of MD steps. The boost ind
cates the times that can be reached in boosted MD sim
tions relative to times inunboostedMD simulations. Note
that in anunboostedMD simulation, the boost is unity. In
Fig. 4, we show the average boosts as a function of dim
sionless temperature (T!5kBT/e) obtained from the three
boosted simulations shown in Fig. 3. For all three data s
the boost increases as the temperature decreases. AT!

50.21, the highest temperature probed,b ranges from 3 to 7,
while for T!50.0625, the lowest temperature probed to e
hibit sufficient adatom mobility to compute a diffusion coe
ficient, boosts on the order of 105 can be achieved. In effect
boosts of such magnitude extend the time scale of acce
ated MD simulations into the ms regime.
3-6
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From Eqs.~11! and ~12!, it can be seen that the booste
time step increases exponentially with increasingb, thereby
making large boosts possible at low temperatures. Also
systems with larger depths of the potential wells, the val
of DVb can be larger, which, in turn, will result in greate
boosts@cf., Eq. ~11!#. We also see from Eq.~11! that the
slopes in Fig. 4 reflect the average bias potentialDVb given
to the adatom by the different boosting functions. In all ca
studied here, the averageDVb is less thane and smaller than
the diffusion barrier. Thus, as the temperature drops, ada
mobility declines more rapidly than the boost increases.
deed, we observed almost no adatom mobility in our sim
lations at temperatures lower thanT!50.0625, even with
boosts of around 1010 at T!50.0375. The largest boosts ca
be obtained using the bias potential in Eq.~3! for a PES with
subwells. In this case, the PES becomes convex near
minimum@cf., Fig. 1~a!, g50.1#, andDVb is large compared
to the cases for which the biased PES retains the shape o
original one. The large boosts obtained at low temperatu
are highly conducive to long-time simulations.

In the examples presented above, we introduced the l
boost method, and demonstrated its accuracy for sim
model systems. However, we believe that the most sign
cant applications for accelerated MD simulations will be
complex systems containing many different types of mini
and transition states. Thus it is desirable to extend
method to more complex systems. For this purpose, we
troduce multiple boosting thresholds into the method. T
need for multiple boosting-threshold energies is dem
strated in Fig. 5, where we depict two uniform on
dimensional sections of a multidimensional PES~a! and a
one-dimensional, heterogeneous PES~b!. In the PES de-

FIG. 4. Arrhenius plot of the boostb obtained from Eq.~15! as
a function of dimensionless reciprocal temperatureT! ~as defined in
the text! for biased MD simulations using Eq.~3! ~triangles, circles!
and Eq.~7! ~diamonds!. The lines are intended to guide the eye.
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picted in ~a!, the system evolves via two parallel rate pr
cesses, and in~b! various minima are encountered in a ser
manner. It is likely that dynamical evolution in complex sy
tems occurs via some combination of parallel and serial
processes. Considering accelerated MD simulations of
namics on these surfaces, it is clear that with asingle
boosting-threshold energy, the local boost method will not
effective. In ~a! the dynamics will not be boosted at all be
cause there will always be a particle with an energy ab
the lowest transition-state energy, and in~b! the dynamics
will only be boosted when the system is near the lowe
energy minimum. By introducing multiple boosting
threshold energies corresponding to various minima, the
fectiveness of the Local Boost method can be improved.
demonstrate this in a simple example.

We consider two different versions of the scenario p
sented in Fig. 5 for our example. In the first, we consider t
particles diffusing in parallel: one on the Lennard-Jon
fcc~111! surface described above, and one on a modifi
Lennard-Jones fcc~001! surface. We add a constant to th
potential energy for the Lennard-Jones fcc~001! surface, such
that the single-particle minimum and transition-state energ
are 0.644e and 2.146e, respectively. Note that the diffusion
energy barrier on the modified fcc~001! surface is the same
as in our example above~cf. Fig. 3!. For the fcc~111! sur-
face, the single-particle minimum and transition-state en
gies are23.522e and24.122e, respectively, while the TST

FIG. 5. Schematic depicting the PES in two possible scena
when multiple rate processes occur. In~a!, we show two one-
dimensional sections of the PES for two rate processes occurrin
parallel, and in~b! we show a one-dimensional PES on which va
ous, different rate processes can occur in series. In both~a! and~b!,
the lowest-energy transition states are indicated by ‡.
3-7
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diffusion barrier is 0.6e. Our second example also involve
particles diffusing in parallel—this time both particles d
fuse on fcc~001! surfaces—one on the Lennard-Jon
fcc~001! surface described above, and one on the modi
Lennard-Jones fcc~001! surface described above. Althoug
our examples have not been constructed to explicitly rep
sent actual physical systems, one could anticipate this g
eral scenario to occur for two adatoms diffusing on differe
facets of a polycrystalline solid surface.

In both systems described above, the dynamics would
be accelerated at all with a single boosting-threshold ene
because one single-particle energy will always exceed
lowest-energy transition state. By incorporating multip
boosting-threshold energies, we have a chance to accel
the dynamics. We use two threshold energies in each
ample to implement this protocol. For the fcc~001!/fcc~111!
system, we useVb,151.896e @fcc~001!# andVb,2523.722e
@fcc~111!#. We useVb,1523.104e andVb,251.896e for the
fcc~001!/fcc~001! system. For all systems, we employ th
same boosting parameters as those in the simulation
single-atom diffusion~cf. Fig. 3!. Parallel MD simulations of
particle diffusion on the two surfaces are run for each s
tem. At each time step, we determineDVmin , considering
the boosting thresholds for both minima, as described be
Eq. ~7!. We find for the fcc~001!/fcc~111! system that, for all
temperatures at which an appreciable boost can be achie
the boost is almost always based on the~relatively! shallow
minimum associated with the fcc~111! surface. For the tem
peratures probed, this boost is significantly less than
boosts we observe for diffusion of a single atom on
fcc~001! surface~cf. Fig. 4!. Over the time scales that can b
probed in these simulations, we observe appreciable mo
of the particle on the fcc~111! surface. However, as would b
expected for the time scales that we can probe at low t
peratures in these simulations with several million tim
steps, the particle on the fcc~001! surface remains almos
totally localized in a single minimum. We believe that o
observation here is a general feature inherent in acceler
MD simulation methods, such as the local boost method
the method by Voter8: when such methods are properly a
plied to rate processes occurring in parallel, the ‘‘fast’’ pro
cess (with the largest TST rate constant) will determine
magnitude of the boost.

Our second example of the fcc~001!/fcc~001! system is
more interesting. Since the TST rate constants are the s
for diffusion on both surfaces, the boost alternates rando
between the two particles. Although the biased PES in
study is very similar to that used for the study of single-at
diffusion on the fcc~001! surface, the overall boost, show
for different temperatures in Fig. 6, is about half that in t
single-particle simulations. This illustrates a second feat
of the local boost method applied to parallel rate proces
To understand this feature, we recognize that the ove
boost given by Eq.~15! can be expressed as

b5~12Pboost!1Pboostbboost, ~16!

wherePboost is the probability that the system is boosted
a given time step, andbboost is the average value of the boo
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given that the system is boosted andw.1 @cf. Eq. ~11!#.
When we boost parallel rate processes the overall boob
declines for two reasons. First, there is a higher probab
that the potential energy of any single atom will exceed
boosting threshold in a given time step, andPboost declines.
Second, when the system is boosted, the boost (bboost) is
less because the highest atom potential energy is more li
to fall close to a boosting threshold. To characterize the c
tributions of these factors to the decline of the boost for
parallel particles, we obtainedPboost and bboost from both
the single-particle and parallel-particle simulations using E
~7! for the boost.Pboost is given byPboost5m/n , wherem
is the number of times the system is boosted out ofn MD
steps. KnowingPboost and the overall boostb, we obtain
bboost from Eq. ~16!. We find thatPboost for parallel par-
ticles is much the same as that for the single particle
deviations are less than 6% over the temperatures pro
Differences betweenbboost for a single particle and for two
parallel particles are more significant, and it is evident t
the decrease in this quantity governs the decline in the o
all boost for the fcc~001!/fcc~001! system. Note that when
the number of parallel particles increases, bothPboost and
bboost are expected to approach zero.

In Fig. 7, we show an Arrhenius plot of the diffusio
coefficients for the fcc~001!/fcc~001! parallel particles. For
comparison, we also include the diffusion coefficients o
single particle, boosted via Eq.~7! and shown in Fig. 3. We
see that the diffusion coefficients coincide very well with o
another, which indicates the accuracy of the local bo
method when multiple boosting thresholds are used.
though here we apply the local boost method to sim

FIG. 6. Arrhenius plot of the boostb obtained from Eq.~15! as
a function of dimensionless reciprocal temperatureT! ~as defined in
the text! for biased MD simulations using Eq.~7! for a single par-
ticle ~open diamonds! and for two particles diffusing in parallel in
the fcc~001!/fcc~001! system described in the text~filled diamonds!.
The lines are intended to guide the eye.
3-8
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examples in which transition-state energies are known,
method could be extended to more complex systems
which transition-state energies are not knowna priori. This
is because the single-particle energy is a function of a lim
number of neighbors within the potential cutoff distance. F
many systems, the number of ways that atoms are arran
locally around a single atom is limited, and so is the num

FIG. 7. Arrhenius plot of dimensionless tracer-diffusion coe
cientsD! ~as defined in the text! obtained via Eqs.~13! and~14! vs
dimensionless reciprocal temperatureT! ~as defined in the text!.
Results are shown for biased MD simulations using Eq.~7! for a
single particle~diamonds! and for each of the two particles diffus
ing in parallel in the fcc~001!/fcc~001! system described in the tex
~triangles, inverted triangles!. The solid line is a fit through all data
points obtained for the single-particle case.
B
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of energy minima. Boosting-threshold energies can be
lected based on the energies of particles in minima an
can be dynamically adjusted during a trial run. This proc
dure should allow for accurate and efficient simulation
many different types of rate processses in materials.

IV. SUMMARY AND CONCLUSIONS

In summary, we presented the local boost method to
celerate MD simulations of rare events. In this method, a b
potential is used to raise the potential energy near poten
energy minima, so that the dynamics are accelerated.
bias potential is turned on~off! when the potential-energie
of all atoms are below~above! preset, boosting-threshol
values. This feature allows the method to be implemen
with minor modification to a conventional MD code an
minimal computational overhead. Using principles of impo
tance sampling, we related temporal evolution on the bia
PES to that on the original one, and demonstrated that
can be correctly done in some examples of adatom diffus
on Lennard-Jones fcc surfaces. In these studies, boos
over 105 could be achieved, and we discussed how the bo
for a particular system depends on the depth of the poten
energy minima as well as the temperature. We demonstr
how the method can be implemented with multiple-boost
thresholds in simple examples of the parallel diffusion
adatoms on Lennard-Jones fcc surfaces. Here we found
discussed that the ‘‘fast’’ atom with the largest TST ra
constant should determine the overall boost. Our res
show that the local boost method with multiple boosti
thresholds holds significant promise for application in larg
scale MD simulations.
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