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Accelerated molecular dynamics of rare events using the local boost method
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We present thdocal boost methodor accelerating molecular-dynami¢MD) simulations of rare-event
processes. To accelerate the dynamics, a bias potential is used to raise the potential energy in regions other than
the transition states. This method reduces the number of MD time steps spent simulating motion in the
potential-energy minima, and allows long-time simulations to be run. Correct equilibrium and dynamical
quantities are achieved by using a time increment based on the principles of importance sampling. Two
different bias potentials are probed. Both bias potentials are based on the potential energies of individual
atoms. In both cases, the bias potential is turnedaff) when the energy of an individual atom is below
(above a boosting threshold energy. Implementing this method requires only minor modification to a conven-
tional MD code, and the associated computational overhead is negligible. We demonstrate the method by
applying it to the diffusion of atoms on Lennard-Joneg®0d) and fcg111) surfaces. Both single and multiple
boosting-threshold energies are employed in these studies. These results show that the local boost method with
multiple-boosting thresholds holds significant promise for application in large-scale MD simulations.
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[. INTRODUCTION orders of magnitude, depending on the potential-energy sur-
face (PES and temperature.

A significant challenge in materials simulation is to con-  In one set of studies, Votéshowed that it is possible to
duct long-time simulations, while accurately retaining accelerate rare-event dynamics by conducting MD simula-
atomic-scale detail. A popular approach is molecular dynamtions on a modified PES/'({R}) of the form V'({R})
ics (MD), which provides accurate information on the details=V({R}) + AV,({R}), whereV({R}) is the original PES,
of atomic motion. However, MD simulations cannot cur- AVp({R}) is the boost potential, andR} denotes the full set
rently proceed far beyond the nanosecond range. Thus longf Cartesian coordinates for theN particles, {R}
time dynamics are inaccessible with this method. In system& {Ru1. - - . Rn}. The boost potential is designed to raise the
where structural evolution occurs by a series of urarepote_n.tial energy near the minima_ with the constraint thqt .the
events,” the dynamics can be characterized as a sequence 'gpdified potential match the original one near all TST divid-
infrequent transitions from one potential-energy minimum to/"9 surfaces. The energy barriers for escaping the minima on
another. For such systems, the long-time dynamical behaviof ({R}) are smaller than oW ({R}). Thus, fewer MD steps

can be simulated as a series of jumps between potentiaﬁ‘*—re required to escape from a minimum@({R}), and the

energy minima. The jump rate is given by transition-states'mUIat'on evolves faster than on the original PES. To map

theory (TST)' =3 as the flux through a dividing surface that traJe(:_tor:|gs O;V (iR} ontoV({R&), each time step receives
separates two potential-energy minima. If the TST rates arg, Ve!9 ting factor to ensure that correct escape times are

. gy Lo Simulated for the original PE$By constraining the potential
known accurately, then, in principle, a kinetic Monte Carlo

47 A . to match the original one near the TST dividing surface, it is
(KMC)*~"simulation incorporating these rates can be used Qnsured that the probabilities of escape from a given

reach macroscopic time scales, while retaining reasonablg,ontial-energy minimum satisfy detailed balance with vari-
dynamical accuracy. However, for many systems it is diffi- 5 adjacent minima.

cult to ascertain the locations of all potential-energy minima  Tq construct a boost potential which yields correct equi-
and the TST hopping rates between them. This limits theibrium and time-dependent properties, it is necessary to as-
accuracy of the KMC/TST approach. certain dynamically when the system is in a minimum or at a
To overcome the inadequacies of KMC and conventionatransition state. In Voter's methbdhe boost potential de-
MD approaches several recent stulfiéd investigated the pends on the smallest eigenvalue of the Hessian madriaf
possibility of extending the time scale in MD simulations of second derivatives of the potential energy with respect to
systems with rare-event dynamics. The approach in thesgtomic positions. This eigenvalue becomes negative near a
studies is to use importance samplihitf to estimate dy- transition state and, thus, allows detection of transition states.
namically the TST escape time for each minimum, as thédowever, manipulations o add significant computational
system evolves via MD simulation. This is possible for sys-overhead to the simulation. Moreover, as the number of de-
tems with rare-event dynamics because the TST escape tinggees of freedom increases, the probability th&will have
is an equilibrium quantity associated with a particular mini- negative eigenvalues away from the transition state increases
mum and a corresponding transition state. Efficient evaluaand the method loses its efficiency.
tion of the TST escape times can be achieved in this way, In more recent studies, Voter improved on his original
and the dynamics can be accelerated significantly by mangnethod. One of these studies focused on constructing the
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boost potential without computing¢.® Here AVy({R}) is  choice of a boost parameter, guarantees that accurate TST
constructed from the two lowest eigenvalues?df which  €scape times can be obtained with large acceleration to the
are found using only the gradient of the potential enérgy.dynamics:In our method, similar to that of Steinet al,*?
This method requires some advance knowledge of the PES ifie potential energy is boosted when it is lower than a fixed
order to be effective. Another methdtiparallel replica”) ~ boosting threshold. We employed a smoothing function to
was also developed by Votét,in which parallel computa- ensure that the PES is continuous in the force from the
tion is used to extend the time scale in the MD simulation ofboosted to the unboosted region. We showed that the
a small infrequent-event system. By integrating a replica osmoothing function can also influence the boost in simula-
the system independently on each processor, observation #ens of diffusion on a two-dimensional model PESn this
the first transition can be accelerated, and the method givesR@per, we extend and generalize our method to systems con-
correct transition-time distribution. taining large numbers of atoms. In this method, which we
The approach of redefining the potential to obtain TSTdenote as théocal boost methadthe boost is based on the
rate constants with MD has been used in previougootential energies of individual atoms. The method can be
studiest**To study structural transitions in macromolecular implemented with a single boosting threshold or with mul-
systems, Grubriler'! developed an elaborate MD schemetiple boosting thresholds, to achieve greater efficiency in
called “conformational flooding.” In this approach, confor- simulations of systems containing many different types of
mational transitions in macromolecules are accelerated bjotential-energy minima. Below, we describe this method
the addition of a “flooding” potential into the Hamiltonian and demonstrate its application.
of the system, which in turn reduces the free-energy barrier
heights. More recently, Steinat al!? developed a simple Il. MODEL AND METHOD
boost potential in which the boosted potential energy is con-
stant and equal to a fixed boost value if the potential energy We are interested in a systemNfarticles that resides in
falls below the boost value. In this method, Hessian manipua multidimensional potential-energy wedtateA) at a coor-
lations are not performed. However, such a method is onlginatex({R},{P}), where{R} and{P} represent generalized
effective for systems with a few degrees of freedom becauseoordinates and momenta, respectively. The rate constant
fluctuations in the potential energy obfuscate transition statelsﬁgT for escape from the potential-energy wédtateA) is
as the number of degrees of freedom increases. We recentljven by the canonical, ensemble-average flux exiting
introduced a simple boost potential which, with the properthrough the boundary to stafe®

| [ xor000a0ent - s (P Iext - svi{R) 10iRa(P)
Krs= , (6]
| [ exit—prupiient - pvirapiaiR)

where “-” represents a time derivativéS is the kinetic en-  transition statg and to preserve the original potential in the
ergy, V is the potential energy3=1/kgT, da(x) is a Dirac  vicinity of a transition state. This latter feature is necessary
delta function applicable at the boundary to stéteand so that a detailed balance is maintained among different es-
0 A(x) is unity when the system is in stafe and zero oth- cape rates from various potential-energy minima. We inves-
erwise. In MD simulations, we naturally obtain the tigated two possible forms fakV({R}). In one of the ver-
ensemble-average escape time, which is the reciprocal of Egions investigatedd V,({R}) has the form
1, as the system evolves from minimum to minimum. How-
ever, prohibitively many time steps must be spent to access AVL({RV) =V R 1-S({R})
the transition states and, as a result, only limited dynamical b({RD=Vmad{R}) S({R})
evolution occurs. . ) )
In the local boost methodas in Voter's methdd the  Where Vina({R}) is the maximum potential energy of all
average escape time is accelerated through a bias potentlgflividual particles i.e.,
AVy({R}), which is added to the original potential energy of

, ()

the systenV({R}). The biased PE¥’({R}) has the form Vmad{R)=ma{Vi({Rp)], i=1,... N, @)
wherei denotes a specific particle, atdis the number of
V'({R})=V{R})+AV,({R}). (2)  particles in the system. The functi®{{R}) ensures that the

bias potential turns smoothly doff) when the system is far
The bias potentialV,, is designed to increase the potential from (near tQ a transition state. To gauge the proximity of
energy when the system is far from a transition sttitereby  the system to a transition state, we also rely on the values of
decreasing the number of MD steps necessary to reach tisngle-particle energies: ¥, iS below a preset boosting
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thresholdV,, then S({R})>1, and the potential energy is
boosted’; if V.. lies aboveV,, then S({R})=1 and
V'({R})=V({R}). To uphold the detailed-balance criterion,
V}, should be lower than the maximum single-particle energy
when the system is at its lowest-energy transition state. De-
fining AVH{R}) =Vp—Vmal{R}), S({R}) has the form

SER})=1+0O(AV)f(AV). (5

Here®(x) is a standard step function, such tiat 1 when
x=0, and® =0 otherwise. The step function turns the boost
on (off) below (above the boosting threshold. The function
f(AV) is included to ensure a smooth variation in the poten-
tial energy and continuity in the forces from the boosted to
the unboosted regions of the PES. This function has the form

cexp—y/AV)

fav)= 1+exp—y/AV)’

(6)
wherec and y are tunable parameters that should not signifi-
cantly influence the dynamics.

A second form that we investigated faxVy({R}) is
given by

AVp({R} =AVnin({RDY(AViin), @)

where AV,in({R}) is the minimum-energy difference be-
tween a single-particle potential energy and a boosting-
threshold energy. For a single boosting-threshold energy,
AVin IS equal toAV, as defined for Eq(5). As we will
demonstrate below, E@7) can also be adapted for multiple
boosting-threshold energies to increase the efficiency in
large-scale simulations of systems containing many different
types of minima. The functiog(AV,,,) has the form

C(Avmin)n

1+c(AVpin)" ®

9(AVpin) =0 (AVpin)

where® is a standard step function, as described above, and
c andn are parameters.

For both forms of the bias potential presented above, the
instantaneous force acting on a parti¢cleesiding on the
boosted PEY’ ({R}) can be calculated from E¢R) for the
desired form ofAV,. This requires the addition of a few
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FIG. 1. Biased potential¥’(x) for the potentialV(x)=—2.0

—cos@x). The biased potentials are obtained using B). We
show the influence ofa) y for c=1.0 andV,=—1.5, (b) c for y
=1.0 andV,

1.5, and(c) V, for y=1.0 andc=1.0 on the

lines to a conventional MD code, and the resulting COMPUp0sted PES. The original PES is shown bold in each figure.

tational overhead is negligible. It should be noted that since
the local boost method iscal, the forces will only be modi-

fied for the “boosted” particldi.e., the particle withV,xin 0N

Eq. (3) or AV, in Eq. (7)], and for particles within the boost is conservative, and the shape of the boosted PES is
similar to the shape of the original one. For aggressive boost-

potential cutoff of the “boosted” patrticle.

the boosted PES. Whenis large(i.e., y=1 and 3, the

To illustrate the bias potentials employed here, we calcuing, such as withy=0.1, subwells are created ne¥(x)

lated the boosted PES for a one-dimensional potekfja)

=V}, . Another way to control the boost is to vacy Figure

1(b) shows that larger values ofgive larger boosts. As for

v, more aggressive boostindarger c) creates additional
subwells in the PES. From Fig(dQ, we see that for fixed
andc, the shapes of the boosted PES’s are similar, and that
V|, controls the amount of boost. Although it is not apparent

2.0—cos@X). In Fig. 1, we show the modified PES for
the bias potential given by E¢3) with the smoothing func-
tion of Eq.(6). Although all potential energies below, are
altered to some extent, the parameterand y control the
properties of the boost. Figurédl shows the influence of
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FIG. 2. Biased potential¥’(x) for the potentialV(x)=—2.0
—cos(x). The biased potentials are obtained using &Y. We
show the influence ofa) ¢ for n=1.0 andV,=—1.5, (b) n for c
=2.0 andV,=-1.5, and(c) V,, for n=1.0 andc=1.0 on the
boosted PES. The original PES is shown bold in each figure.
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PES. The general guideline for choosing a biased PES is not
yet well determined. However, for at least the one reason
discussed above, we feel that surface shapes that are not
drastically different than the original PES are good choices.
For example, the biased PES witk1.0, y=2.0, andV,
=—1.5[Fig. 1(a)] retains the shape of the original PES, and
is most likely acceptable. However, the potential with
=5.0, y=1.0, andV,= —1.5[Fig. 1(b)] should probably be
avoided, unless its effects are carefully determined for a par-
ticular application. Actually, in our previous study,we
found that accurate results can be obtained from a PES with
artificial subwells. One factor governing the accuracy in this
case is the stiffness of the modified PES. The stiffness re-
flects the magnitude of the gradients on the PES, with larger
gradients producing a more stiff PES. The funct8fR})

[cf. Eq.(5)] determines the stiffness of the PES when a par-
ticle enters the region where its energy is less than the boost-
ing threshold energy. In most applications, it is safe to have
a relatively soft biased PES compared to the original PES,
since this can prevent numerical instability, reduce the influ-
ence of subwells, and limit a quick exit of a particle to an
adjacent state by reflection from the biased PES.

One drawback when the smoothing function given by Eq.
(6) is used in Eq(3) is that the PES loses its original shape
and develops subwells when the potential energy is increased
significantly above its original value. To remedy this prob-
lem, we consider a second form fav,({R}), given by Eq.

(7). It can be easily shown that whers< 1, c can take on any
positive value without generating artificial subwells in the
biased PES. Under these conditions, the biased PES becomes
flatter asc increases, as shown in Fig(a2 For n>1,
subwells can still be avoided witt<[(n—1)AVy, 171, as
shown in Fig. 2b). The influence oV, for fixed c andn is
shown in Fig. Zc). It can be seen that changing this param-
eter in Eq.(7) has a similar effect on the PES as it does for
the bias potential given by E@3) [cf., Fig. 1(c)].

In addition to having a well-defined parameter space in
which subwells can be avoided, the bias potential given by
Eqg. (7) has the beneficial property that it is a function of
energy differences. This feature can be contrasted tq3tg.
which deals with specific particle energies. By incorporating
energy differences, the boosting function in Eg). becomes
virtually independent of the minimum it is boosting. This is
because the PES is generally expected to be harmonic near a
minimum. Thus the parameters associated with this boosting
function (i.e., the parameters whose effect we demonstrated
in Fig. 2 should be transferrable to a wide variety of sys-
tems. In contrast, one generally needs to apply different val-

from the figures, all the boosted PES's are continuous in thees of the boosting parameters in E@) for different

force asAV(x)—0*.

All of the PES'’s shown in Fig. 1 satisfy the criterfothat

minima when using the bias potential given by E8). Be-
cause of its relative ease of transferability among various

the boosted potential must be the same as the original negotential-energy minima, the bias potential given by &q.
the transition-state region. Although this is an important cri-is more easily adapted to include multiple-boosting thresh-
terion to be satisfied in achieving detailed balance, there arelds, as we will demonstrate below.

more subtle issues in choosing an appropriate boosting po- When accelerated MD simulations are run on a modified
tential. In dynamical simulations, for example, the value of PESV’, it is important to ensure that equilibrium averages
the ensemble-average escape time can be reduced by static and dynamical quantities oW map directly to

transition-state recrossing. It is knof#f* that the extent to

those onV. Using importance sampling techniqués? the

which this phenomenon occurs depends on the shape of tHeST rate constant in Eq1l) can be expressed as
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| [ xor000a0mis Ry exit - iciPhlexi — BV (R Td(RyaP)
krsT= : ©)
| [ wis.impext - iiphiext - v (rD 1d(PIIR)

where the weighting functiow(3,{R}) is given by By implementing this criterion for detecting the proximity of
the system to a transition state, we avoid the computational
wW(B,{R}) =exp(B(V'—V)). (100 overhead associated with diagonalizing the Hessian matrix

The weighting function is defined so that the averages givef{1at is implicit in Voter's method. However, one has to

by Egs.(1) and(9) are equal. This function determines how cN00Se boosting-threshold energies that @resufficiently
much weight is assigned to each configuration that can bébove the values of single-particle energies when the system

reached by boosting ta’ ({R}), so that the weighted aver- Is at a minimum(so that the dynamics are acceleratexhd

: ; ii) below the single-particle energies when the system is at a
ages correspond to time averagesw{fiR}). Using Eq.(2), ( ~ i DTN
this weight can also be written as transition statgso that the detailed-balance criterion is up-

held. If the minimum-energy configurations of a system can
w(B,{R})=exp BAV}), (11) be ascertaine(this is often the case, for example, in crystal
o growth), then it is possible, based on a knowledge of the
where AVy({R}) is given by Egs(3) and (7) for the two  energies of the minima, to choose boosting-threshold ener-
different forms probed here. To obtain correct time and enyjes that can be refined during trial simulation runs prior to a
sgmble averages, the boosted time incremetf({R}) is  production run.
given by To demonstrate various aspects of the local boost method,
, we applied it to the diffusion of Lennard-Jon@s12) atoms
AU ({RP)=w(B.{RDAL, (12) on Lennard-Jones f¢@01) and fcg111) surfaces. The
where At is the MD simulation time step. As in Voter's Lennard-Jones potential employed here is truncated and
method® time evolves in a coarse-grained manner and beshifted to zero at a distance of Z5whereo is the length
comes a statistical property. Therefore, correctParameter. We use the value of the bulk lattice constant for a
thermodynamic-average escape times are obtained only #ennard-Jones solid, which is given y~1.54s.%> To
the limit of long times. model the fc€100 and fcg111) substrates, we use slabs that
At this point, it is important to stress certain aspects of theare seven atomic layers thick in tegirection[perpendicu-
local boost method. In particular, the use of single-particldar to the(001) or (111) surface normd) with 50 [fcc(001)]
energies is central to this method. These energies are easfy 70 [fcc(111)] atoms per layer to satisfy the minimum-
defined in semiempirical potentials, such as Lennard-Jone$§nage convention. We apply periodic boundary conditions in
embedded-atom methd8, Stillinger-Weber'® etc., which the x andy directions. The bottom three layers are fixed to
are currently suitable for large-scale MD simulations. Imple-their equilibrium crystal-lattice positions, and the fourth
mentation of the local boost method &b initio MD simu-  layer is used as a heat bath. To integrate the equations of
lations would require one to define individual atom energiegnotion, we used the velocity Verfétalgorithm for the top
in these simulations, which is not typically done. Our ap-three layers and the Gaussian thermostat méfrfdtbgether
proach can be contrasted tabal approach involving the With a scheme proposed by Brown and Cl&der the heat-
total potential energy. For such a boosting scheme, th&ath layer. The dimensionless time stap*=0.0023129
method would only be efficient for systems with a few de-=At/(a?m/€)*? wheres and e are the length and energy
grees of freedom. This is because fluctuations in the totgparameters for the Lennard-Jones potential, ands the
potential energy obfuscate transition states. In an approadhass of the atoms. For example, if we choose to model plati-
based on the potential energies of individual atoms, the proxaum, c=2.543 A, ¢=0.679 eV?* and At~1 fs. The
imity of each atom to a transition state is estimated, elimi-simulation system is rigorously equilibrated before each pro-
nating the fluctuation problem in a global approach. The conduction run by continuously checking the average tempera-
struction of the potential-energy bias functions in E¢®. ture, the temperature fluctuation, and the velocity distribu-
and (7) ensures that the potential energy is boosted locallytion.
where a transition is likely to occur. Because we alter the The tracer-diffusion coefficier®d of the adatom is calcu-
potential energy locally, it is unlikely that the system will be lated in two different ways. In the first of these, we used the
perturbed significantly by the bias potential. Thus the accelEinstein equation, in whicb is given by
erated dynamical behavior of the system should faithfully

represent what could be achieved in @macceleratedMD D— Iim<AR2> (13)
simulation, if such a simulation could be run to long enough e 2dt 7
times.

A second aspect of the local boost method is that one isvhereAR?=[R(t)—R(0)]?, (- - -) denotes an ensemble av-
required to select appropriate boosting-threshold energiesrage, andd=2 is the dimensionality of the surface. The
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107 - different simulations: one set of points is froomboosted
O No boost MD simulations, two sets are obtained in accelerated MD
10% A AV, from Eq. (3) - subwells B simulations using the bias potential in £§), and one set of
3 © AV, from Eq. (7) points is obtained in accelerated MD simulations using the
1077 O AV, from Eq. (3) - no subwells | | bias potential given by Eq7). The two sets of results using
104 - the bias potential in Eq(3) are obtained with the boosting
parameters \{,= —3.35%, ¢=0.5, y=0.78), which pro-
107 1 duces a biased PES with the same shape as the original, and
with (Vp=-—3.35%, ¢=0.5, y=0.05), which produces
D* 10° subwells in the PE$similar to those shown in Fig.(&) with
. v=0.1]. The set of results using the bias potential in E).
107 7 is obtained with the boosting parameteks, € —3.104, ¢
10% 4 =2.18,n=1.0), which produces a biased PES with the same
shape as the original. It should be noted that the maximum
102 - energy of a single particléhe adatommat the transition state
in this system is—2.854, and the maximum energy of a
1070 single particlethe adatomat the minimum is—4.356. To
» obtain the various diffusion coefficients shown in Fig. 3,
104 T T T T T — averages are computed over 5-15 runs ranging in length
4 6 8 10 12 14 16 from 5-10 million time steps. Generally, the largest number
1/T* of runs and the longest runs are needed to obtain good sta-

tistics for the lowest temperatures probed in each set of re-

FIG. 3. Arrhenius plot of dimensionless tracer-diffusion coeffi- |ts. From Fig. 3, we see that the different, tracer-diffusion
cientsD” (as defined in the texbbtained via Eqst13) and(14) vs - coefficients agree well with one another, and all exhibit
dimensionless reciprocal temperaturé (as defined in the tekxt  Arrnenius behavior. In addition. the slope of a line fit

Resé":\jgre. Shlovt\(n for u.nbiaéed '\fD SiT”""‘tid;ql,Jazesanc? é)i' through all the points yields an activation barrier Bf

ased Mb simuiations using ‘93) (r_|ang es angd cire e)san_ g =(1.48+£0.02)¢, which is in good agreement with the static

(7) (diamond$. The solid line is a fit through all data points ob- | fE = | simulati he ad d

tained for biased PES with both Ed8) and (7). value ofE4= 1'506.' For a. Slm.u a.tlons.’ the adatom ‘.:on ucts
hops between neighboring binding sites. We confirmed that

average value dD is estimated by converting the trajectories the d_|str|but|_on of r_eS|denc_e times of ada‘_O”_‘S n b|nd|_ng
sites is consistent with a Poisson process. Similar to our find-

into AR?(t) vs t curves, and averaging over their slopes.’ ; . ) . .
This procedure is adequate for the higher temperatureings in a previous stud}’ the introduction of subwells into

where the mobility is the largest and good statistics could b he modified PES does not lead to any appreciable deviations

tom spends long time periods vibrating in the potential-

L . : .~ MD simulation.
energy minima, and its random walk between various bind Of central interest is the extent to which the local boost

ing sites may not always reach the diffusive regime. For the ; . . )
lower temperatures, we exploit the fact that surface diffusior{“e.thOd can accelerate MD simulations. This can be charac
erized by the boodh, where

is a rare-event process, in whi€his given by

Nnkrst 1 &

=g (14) b= 55 2, At (15
where \ is the hopping distance which is the distance be-
tween nearest-neighbor minima in the systems studied her#&hereAt; for time stepi is given by Eq(12), At is the MD
n is the number of nearest-neighbor minima, mgT is the time step, anah is the number of MD steps. The boost indi-
TST escape rate, given by E@). Implicit in Eq. (14) is the ~ cates the times that can be reached in boosted MD simula-
assumption that diffusion occurs via nearest-neighbor hopgions relative to times irunboostedMD simulations. Note
and that transition-state recrossing does not occur. This is dhat in anunboostedVD simulation, the boost is unity. In
excellent assumption for the systems studied here, as difflFig- 4, we show the average boosts as a function of dimen-
sion coefficients obtained via Eqél3) and (14) are fully ~ sionless temperatureT{=kgT/e) obtained from the three
consistent. To estimat® using Eq.(14), we obtained the boosted simulations shown in Fig. 3. For all three data sets,

average ofnkyst from the average of simulated residencethe boost increases as the temperature decrease3.” At
times of an atom in a binding site. =0.21, the highest temperature probkdanges from 3 to 7,

while for T*=0.0625, the lowest temperature probed to ex-
hibit sufficient adatom mobility to compute a diffusion coef-
ficient, boosts on the order of 1@an be achieved. In effect,

Figure 3 shows an Arrhenius plot of dimensionless tracerboosts of such magnitude extend the time scale of acceler-
diffusion coefficientdD*=D/(o?e/m)*? obtained from four ated MD simulations into the ms regime.

Ill. RESULTS
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FIG. 4. Arrhenius plot of the boost obtained from Eq(15) as
a function of dimensionless reciprocal temperaflitéas defined in
the texj for biased MD simulations using E) (triangles, circles
and Eq.(7) (diamonds$. The lines are intended to guide the eye.

Distance (b)

FIG. 5. Schematic depicting the PES in two possible scenarios

From Egs.(11) and(12), it can be seen that the boosted when multiple rate processes occur. (&, we show two one-
time step increases exponentially with increasthghereby dimensional sections of the PES for two rate processes occurring in

making large boosts possible at low temperatures. Also, irﬁ’ﬁ;alfjei#ef’:g:t':(atzévgfoigz‘;vei Zgre]-g::rgs:'isr:ostﬂei'zﬁ]tl)a;évr:gc(z)va”_
systems with larger depths of the potential wells, the value%e ’Iowest-energy transition states are indicat ed. by t. '

of AV}, can be larger, which, in turn, will result in greater
boosts[cf., Eq. (11)]. We also see from Eq11) that the picted in(a), the system evolves via two parallel rate pro-
slopes in Fig. 4 reflect the average bias potertidl, given  cesses, and ifb) various minima are encountered in a serial
to the adatom by the different boosting functions. In all casesnanner. It is likely that dynamical evolution in complex sys-
studied here, the average/,, is less thare and smaller than tems occurs via some combination of parallel and serial rate
the diffusion barrier. Thus, as the temperature drops, adatoprocesses. Considering accelerated MD simulations of dy-
mobility declines more rapidly than the boost increases. Innamics on these surfaces, it is clear that withsiagle
deed, we observed almost no adatom mobility in our simuboosting-threshold energy, the local boost method will not be
lations at temperatures lower thd=0.0625, even with effective. In(a) the dynamics will not be boosted at all be-
boosts of around #§ at T*=0.0375. The largest boosts can cause there will always be a particle with an energy above
be obtained using the bias potential in E8).for a PES with  the lowest transition-state energy, and(b) the dynamics
subwells. In this case, the PES becomes convex near theill only be boosted when the system is near the lowest-
minimum/[cf., Fig. @), y=0.1], andAV,, is large compared energy minimum. By introducing multiple boosting-
to the cases for which the biased PES retains the shape of thiereshold energies corresponding to various minima, the ef-
original one. The large boosts obtained at low temperaturefectiveness of the Local Boost method can be improved. We
are highly conducive to long-time simulations. demonstrate this in a simple example.

In the examples presented above, we introduced the local We consider two different versions of the scenario pre-
boost method, and demonstrated its accuracy for simplesented in Fig. 5 for our example. In the first, we consider two
model systems. However, we believe that the most signifiparticles diffusing in parallel: one on the Lennard-Jones
cant applications for accelerated MD simulations will be forfcc(111) surface described above, and one on a modified
complex systems containing many different types of minimaLennard-Jones f¢001) surface. We add a constant to the
and transition states. Thus it is desirable to extend th@otential energy for the Lennard-Jones(@@l) surface, such
method to more complex systems. For this purpose, we inthat the single-particle minimum and transition-state energies
troduce multiple boosting thresholds into the method. Theare 0.644 and 2.14@, respectively. Note that the diffusion-
need for multiple boosting-threshold energies is demonenergy barrier on the modified f@1) surface is the same
strated in Fig. 5, where we depict two uniform one-as in our example abovef. Fig. 3. For the fc§111) sur-
dimensional sections of a multidimensional PE and a  face, the single-particle minimum and transition-state ener-
one-dimensional, heterogeneous PH®. In the PES de- gies are—3.522 and—4.122, respectively, while the TST
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diffusion barrier is 0.6. Our second example also involves

7
particles diffusing in parallel—this time both particles dif- 10 3 : :
fuse on fc€001) surfaces—one on the Lennard-Jones ] —o— Single Pamc_le
fcc(001) surface described above, and one on the modified  1¢° - —+— Parallel particles

Lennard-Jones f¢601) surface described above. Although
our examples have not been constructed to explicitly repre-
sent actual physical systems, one could anticipate this gen
eral scenario to occur for two adatoms diffusing on different
facets of a polycrystalline solid surface.

In both systems described above, the dynamics would not®
be accelerated at all with a single boosting-threshold energyg
because one single-particle energy will always exceed the
lowest-energy transition state. By incorporating multiple
boosting-threshold energies, we have a chance to accelerat
the dynamics. We use two threshold energies in each ex-
ample to implement this protocol. For the (001)/fcc(111)
system, we us&y, ;=1.896 [fcc(00D] andVy, ,= —3.722%
[fcc(111)]. We useVy, 1= —3.104 andV,, ,=1.896 for the
fcc(00D)/fcc(001) system. For all systems, we employ the T T T T

(b)

VESLERILLLLL N R L B ) B L O L e AL R0

T I T T

T
same boosting parameters as those in the simulations o 4 6 8 10 12 14 16 18 20
single-atom diffusior(cf. Fig. 3). Parallel MD simulations of 1/T*
particle diffusion on the two surfaces are run for each sys- . .
tem. At each time step, we determine/,,,;,, considering FIG. 6. Arrhenius plot of the boot obtained from Eq(15) as

the boosting thresholds for both minima, as described belovg function of dimensionless reciprocal temperafliteas defined in
Eq. (7). We find for the fcé00)/fcc(111) system that, for all  the tex} for biased MD simulations using E§?) for a single par-
temperatures at which an appreciable boost can be achievethIe (open diamongsand for two particles diffusing in parallel in
the boost is almost always based on theatively) shallow e f€d001/fcc(001) system described in the teitiled diamonds.
minimum associated with the f€tl1) surface. For the tem- The lines are intended to guide the eye.

peratures probed, this boost is significantly less than thgiven that the system is boosted awd>1 [cf. Eq. (11)].
boosts we observe for diffusion of a single atom on thewhen we boost parallel rate processes the overall bbost
fcc(001) surface(cf. Fig. 4). Over the time scales that can be declines for two reasons. First, there is a higher probability
probed in these simulations, we observe appreciable motiofhat the potential energy of any single atom will exceed the
of the particle on the fdd11) surface. However, as would be boosting threshold in a given time step, &gl declines.
expected for the time scales that we can probe at low temsecond, when the system is boosted, the bobgt.() is
peratures in these simulations with several million timejess because the highest atom potential energy is more likely
steps, the particle on the f@31) surface remains almost tg fall close to a boosting threshold. To characterize the con-
totally localized in a single minimum. We believe that our triputions of these factors to the decline of the boost for the
observation here is a general feature inherent in acceleratehrallel particles, we obtaineBlpy,s; and bpes; from both
MD simulation methods, such as the local boost method anghe single-particle and parallel-particle simulations using Eq.
the method by Votér when such methods are properly ap- (7) for the boostPy ;IS given byPy,os=M/n , wherem
plied to rate processes occurring in parallel, the “fast” pro- is the number of times the system is boosted ouh ®D
cess (with the largest TST rate constant) will determine th&teps. KnowingPy,,,s; and the overall boosb, we obtain
magnitude of the boost. ~ bpoost from EQq. (16). We find thatPy,,s; for parallel par-
Our second example of the {@01)/fcc(00D) system is  ticles is much the same as that for the single particle—
more interesting. Since the TST rate constants are the sang@viations are less than 6% over the temperatures probed.
for diffusion on both surfaces, the boost alternates randomlyyitferences betweeb,,,; for a single particle and for two
between the two particles. Although the biased PES in thigarg|lel particles are more significant, and it is evident that
study is very similar to that used for the study of single-atomy,e gecrease in this quantity governs the decline in the over-
diffusion on the fc01) surface, the overall boost, shown 4| poost for the fc00D/fcc(001) system. Note that when

for different temperatures in Fig. 6, is about half that in theine number of parallel particles increases, bBif,. and

single-particle simulations. This illustrates a second featur%boost are expected to approach zero.

of the local boost method applied to parallel rate processes.™ |, Fig. 7, we show an Arrhenius plot of the diffusion
To understand this feature, we recognize that the overallyefficients for the fo@01)/fcc(001) parallel particles. For

boost given by Eq(15) can be expressed as comparison, we also include the diffusion coefficients of a
single particle, boosted via E¢¢) and shown in Fig. 3. We
b= (1~ Phoos? + PboosPboosts (16)  see that the diffusion coefficients coincide very well with one

another, which indicates the accuracy of the local boost
wherePy0s;is the probability that the system is boosted in method when multiple boosting thresholds are used. Al-
a given time step, anbl,,,5¢iS the average value of the boost though here we apply the local boost method to simple
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1 of energy minima. Boosting-threshold energies can be se-
102 L lected based on the energies of particles in minima and/or
o Single particle can be dynamically adjusted during a trial run. This proce-
102 4 A Parallel-Particle 1 i dure should allow for accurate and efficient simulation of
v Parallel-Particle 2 many different types of rate processses in materials.
10 4 -
. : IV. SUMMARY AND CONCLUSIONS
D* 10 : In summary, we presented the local boost method to ac-
10° L celerate MD simulations of rare events. In this method, a bias
E potential is used to raise the potential energy near potential-
107 L energy minima, so that the dynamics are accelerated. The
£ bias potential is turned ofoff) when the potential-energies
10°% L of all atoms are below(above preset, boosting-threshold
E values. This feature allows the method to be implemented
107 i with minor modification to a conventional MD code and
E minimal computational overhead. Using principles of impor-
1070 [ tance sampling, we related temporal evolution on the biased
4', é é 1'0 1'2 1'4 1'6 PES to that on the original one, and demonstrated that this

can be correctly done in some examples of adatom diffusion
1/7* on Lennard-Jones fcc surfaces. In these studies, boosts of
over 1C could be achieved, and we discussed how the boost
for a particular system depends on the depth of the potential-
dimensionless reciprocal temperaturé (as defined in the tekt energy minima as well as the temperatu_re. We,demonStrf”ued
Results are shown for biased MD simulations using &g.for a how the me,tho‘?' can be implemented with mUIt'pI_e'bQOSt'ng
single particle(diamonds and for each of the two particles diffus- thresholds in simple examples of the parallel diffusion of
ing in parallel in the fcé001)/fcc(001) system described in the text @datoms on Lennard-Jones fcc surfaces. Here we found and
(triangles, inverted trianglésThe solid line is a fit through all data discussed that the “fast” atom with the largest TST rate
points obtained for the single-particle case. constant should determine the overall boost. Our results
show that the local boost method with multiple boosting
examples in which transition-state energies are known, théhresholds holds significant promise for application in large-
method could be extended to more complex systems, igcale MD simulations.
which transition-state energies are not knosvpriori. This
is because thg single-pfart_icle energy i; a function of a limited ACKNOWLEDGMENTS
number of neighbors within the potential cutoff distance. For
many systems, the number of ways that atoms are arranged This research was supported by NSF Grant No. DMR-
locally around a single atom is limited, and so is the numbe®617122.

FIG. 7. Arrhenius plot of dimensionless tracer-diffusion coeffi-
cientsD* (as defined in the texbbtained via Eqs(13) and(14) vs

IR. Marcelin, Ann. Phys(N.Y.) 3, 120(1915. 18E K. Grimmelmann, J.C. Tully, and E. Helfand, J. Chem. Phys.
2E. Wigner, Z. Phys. Chem. Abt. B9, 203(1932. 74, 5300(1981).

iH- Eyring, J. Chem. Phys3, 107 (1939. "Note that the formalism is useful as long\as..({R})<0. Since,
H.C. Kang, and W.H. Weinberg, J. Chem. Ph§8, 2824(1989. for many problems in condensed-phase systams) is gener-

SK.A. Fichthorn and W.H. Weinberg, J. Chem. Ph@&, 1090

ally satisfied(or can be imposedthe method can be used sat-
isfactorily.

18\.S. Daw and M.I. Baskes, Phys. Rev. L0, 1285(1983.

19F H. Stillinger and T.A. Weber, Phys. Rev. 3, 5262(1985.

20p E. Sanders, and A.E. DePristo, Surf. Sci. L&64 L169
(1992.

213.M. Cohen and A.F. Voter, Surf. S813 439 (1994).

22C. Kittel, Introduction to Solid-State Physicéth Ed. (Wiley,

(1991).
8H. Metiu, Y.-T. Lu, and Z. Zhang, Scienc@55, 1088(1992.
"AF. Voter, Phys. Rev. B4, 6819(1986.
8A.F. Voter, J. Chem. Phy4.06, 4665(1997.
9A.F. Voter, Phys. Rev. LetfZ8, 3908(1997).
10A.F. Voter, Phys. Rev. B57, R13985(1998.
11H. Grubmiler, Phys. Rev. B52, 2893(1995.
12M.M. Steiner, P.-A. Genilloud, and J.W. Wilkins, Phys. Rev. B

57, 10 236(1998. Singapore, 1991
135, pal and K.A. Fichthorn, Chem. Eng.7#, 77 (1999, Z3M. P. Allen and D. J. Tildesleycomputer Simulations of Liquids
1N. Metropolis, A. Rosenbluth, M. Rosenbluth, M. Teller, and E. ’s (Clarendon, Oxford 1989

Teller, J. Chem. Phy1, 1087(1953. D.J. Evans, J. Chem. Phy#3, 3297(1983.

15G.M. Torrie, and J.P. Valleau, J. Comput. Phgs, 187(1977.  >°D. Brown and J.H.R. Clarke, Mol. Phy§1, 1243(1984.

085403-9



