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Optical properties of quantum wires: Disorder scattering in the Lloyd model
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The Lloyd model is extended to the exciton problem in quasi-one-dimensional structures to study the
interplay between the Coulomb attraction and disorder scattering. Within this model the averaging and resum-
mation of the locator series can be performed analytically. As an application, the optical absorption in quantum
box wires is investigated. Without electron—hole interaction, fluctuations in the well width lead to an asym-
metric broadening of the minibands with respect to the lower and upper band edges.
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[. INTRODUCTION two-particle quantity and we give an exact solution for the
optical absorption within a two-band model. Section V gives
The optical properties of semiconductors near the bangome analytical and numerical results for QBS’s near the
edge are substantially influenced by the attractive electronfundamental gap and Sec. VI contains our conclusions.
hole interaction which leads to pronounced excitonic lines
and enhanced absorption above the band’gEipese phe- Il. BASICS
nomena become even more pronounced in systems of re- . o . I
duced effective dimensionality such as quantum wells, wires,. Our startlng .p'omt IS th? excitonic contnbuuon to the op-
or dots. In addition, the influence of disorder and impurityfICaI sysce_ptl}]t)zlélty x(w) in a two-band effective mass
scattering increases with decreasing dimension. The lattgPProximation

phenomenon, however, is usually considered phenomeno- 2|devi? 1 R
logically by replacing the light frequency by w+ivy, or x(w)=— J d3rw (r,n)| ,
convoluting the spectrum with an appropriate smoothing €ofl ‘7 ho+t16-Eq|Jo

function of width . 1)

In this article, we investigate the interplay between exci-where the nonresonant part has been negleabedq). Q) is
tonic effects and disorder scattering in quasi-onethe volume of the sample, and,|? is the dipole matrix
dimensional structures, in particular quantum wires whichelement between the valence and conduction band.
possess a periodic step-like modulation along the oney (r,.r,), E,, respectively, denote the electron—hole enve-

dimensional directionjquantum box structure$QBS)] Fig. ~ |ope function and energy, andlabels discrete as well as the
1. Such structures have been proposed as favorite candidaigsntinuous part of the excitonic spectrum

to generate Bloch oscillatiors; other examples are quasi-

one-dimensional molecular crystdls, yet no detailed theo- [Hot Hpt V(Fom P W (o F) = EnW (FasTr).  (2)
retical study of the optical properties has been published. _

The optical properties of one-dimensional systems are excef;, j =e,h denote the electron/hole Hamiltonians ang)
tional as even a small attractive electron—hole interactions the attractive electron—hole Coulomb potential. We as-
leads to a drastic reduction in the oscillator strength at thesume a cylindrical wire of radiuR with an infinite confining
gap energy so that the identification of the gap energy fronpotential and restrict ourselves to the lowest electron/hole

optical absorption data is nontrivial. mini-bands with wave function®;(r)=u(r,);(2). u(r,)

Our paper iSlor.ganized as fqllOWS: SeCtlon ” S-UmmariZGSS radial SymmetriC, nodeless anq(z) denote the wave
the basic description of the optical susceptibility in terms offynction along the wire axis which obeys

the resolvent operator. In Secs. Ill and IV the averaging on
the disordered chain is performed. Within a Wannier repre-
sentation the averaging and resummation of the locator ex-
pansion can be done exactly, providel only the lowest
electron/hole subbands are considered, @d Lorentzian
probability distribution for the disorder averaging is used.
The latter is known as the Lloyd mod€lwhich has been
first used in connection with the calculation of the density of
states in a disorded metal and due to the simplicity in calcu-
lating various averages this model has been found useful by
many other researchers, in particular Refs. 11-25. However,
apart from Hoshino’s work on the electrical conductivity
(CPA, neglecting vertex correctionsll previous applica- FIG. 1. Quasi-one-dimensional quantum-box-structleft) and
tions of the Lloyd model are exclusively restricted to single-sketch of the lowest valence/conduction subbafmiggt). (Not to
particle quantities. Our work extends the Lloyd model to ascale)
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Hj¥i(2)=E;#(2), 3 v=1,2...N, whereN is the number of sites on the chain.
Periodic boundary conditions are implied. Hence,
_ 32 &2
= ) *(n,k) ,(n,K)
H 2m; 572 +Vi(2), @ ~ Vpe.pn Pe:Ph
gpe Ph Ee ,Fh( E) = =

m; are the effective electron/hole masses ®i(t) includes nk o E—Enk
the band offset as well as the localization energy due to the -G — = (B (14)
radial confinement. For a homogeneous wire the energy Pet viPpt Pt VPt vl =/

spectrum consists of free-electron-like mini-bands with para
bolic dispersions. These bands will be additionally split into . .
subbands by the periodic modulation in composition along® the optical absorption

the wire axis. In the following we restrict ourselves to the 520 (0
lowest electron and hole subbands which are conveniently N =N _ 0 0
described in terms of Wannier functioag(z— pb), wherep pE% 9p.p.0.0(E) sz 9p.p0oE) N}n: E-E,
labels sites anth is the period of the box structure, see Fig. 3

1. By an appropriate choice of the phases of the Bloch func- =NGyy(E). (15
tions ¢;(k,z) the Wannier functions can be constructed in
such a way that they are real, symmetric, and exponentiall
localized?’ Furthermore, the Wannier functions of the low-
est hole and electron subbands both have the same even pa

Furthermore, onlyk=0 stateswgr;"ﬁo) = ¢g;), p, contribute

he k=0 states are translational invariant and effectively
escribe a single particle in an external potential

r_
A+t (A1 + bV ) + (0 + €)W +V, M =E (",

ity,
reZz. (16)
W(Ze,2n)= 2 lr//g;),phae(ze_ peb)an(zn—ppb), (5 - . . . .
Pe:Ph G, 1(E) is the corresponding Green function which obeys the
Dyson equation
) e ()
EEEh HowpenPon = Enppy: ©) G=Gq+G,VG. (17)
e
Within a next neighbor approximation the matrix elements of30ldface symbols denote matricés, is the Green function
the exciton Hamiltoniarf{ =+ H"+ V read for V,=0, andV is a diagonal matrixV,,,=V, &, . The

formal solution of Eq(17) is obtained by matrix inversion
. —a,€ 40 —
Hoppan= Opw L pp T Ope  pypn T Voo (1)

e G=(1—-GyV) 1G,. (18
Hg,);:Dg,);JrN f)')g ®) In addition to the attractive electron—hole interaction we
_ _ shall consider fluctuations in the on-site energigss well
DS)F: Spp€d) (99  as in the transfer elements between adjacent wells of the
’ Kronig—Penny potential. Such fluctuations arise from com-
N;J’)E:tgl){é‘aml_{_ o1} (10) positional and structural disorder of the wire and we assume

o that these fluctuations preserve the radial symmetry so that
ed) 1), respectively, denote the on-site energies and trangmixing of higher subbands will not be important.
fer elements between neighboring wells am;ep

hPePh
~V(Pe=Ph) 3y ,5p,p, IS the electron—hole Coulomb matrix lll. BARRIER FLUCTUATIONS
element. _ _ . _ Fluctuation in the barrier thickness leads to coupled fluc-
To calculate the optical absorption we rewrite Ef).in tations in the on-site energies and the transfer elements be-
terms of the resolvent operatg(E), tween sites) andq+ 1 (nondiagonal disordgrin particular,
we consider a correlated linear chag?ge of the on-site energies
_ _ as mentioned by John and SchreityeFor the lowest sub-
x(hw) pE; Goppphit10), 1 bandt, is negative, thus, corrections to the on-site energies
and hopping element have the same sign, Egs aAt, a
G(E)=(E-H) 4 (120 >0. (The coupling of diagonal and nondiagonal disorder
will be essential to guarantee the convergence of the locator
whereE=E+16, §>0. expansion and nonnegative absorptidfor simplicity, fluc-

Without disorder, the electron-hole wave function obeystuations in the electron and hole parameters are assumed to
the Bloch theorem and, hence, it can be labeled by a wavke independent so that the Hamiltonians &g.are replaced

numberk=2m«/N, k=0,%£1,...%=N/2, by
K _ v k i i ; i i i
¢E)2+)V:Ph+1’_ g'kb ¢S;gh (13 DS)E: EE)J)-I— a(J)Atgy)erl-l— a(J)Atgy)p,l, (19
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(0) (i .
NU= 55t + Aty s, o e+ Al

In matrix notation H=D+AN+V, where D,N include

electron and hole parts. To perform the disorder averaging

the locator expansion of the resolvent will be 1ed

9(E>=go G"(E),

(21)
GM(E)==x ~1 n (22
E-D E-D|’

where M=N+V. As D is a diagonal matrix, we have
(n=2)
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1
(n - -

gpephpeph( ) E (n—;(n—l) E—D
Pe Pp

1
peph PePhPePh

MpppPpP MpLpp@p(?)

E—=Dpipmpip E—Dp@p@)p2)p(2)

,/\/lp‘(en— 2)pr1n—2)pén— 1)p(hn— 1)
X

E— Dpén—1)pr1n—1)p(en—1)p§1n—1)

Mpn-1)pn-1), 1
Xf—}:‘. (25)
E=Dppppery

Next, the disorder averaging will be performed term by

¢ (E)= M (23  term. Conceming the factors
PePhPePn E - .
o e S— (26)
ol Mo gy B~ Drapan
o E_Dpephpep“ E- PePHPePh four cases must be distinguished.
(1) (Pe=Pe; Ph=Pn):
Mo ppepr _ Vol .
E Dy E- - e oA o FAL - oMAll  PAC Y
(2) (Pe=Pe: Ph# Pr)
Moppipern Vot oottt ALy o b+ 8y, 5aftl+ Atﬁ o
E_Daeﬁ,ajh Bl e{At_ F+1+At% o~ ah{At_ H+1+At5—1p}. G
(3) (Pe#Pe; Pr=Pr)
Mo eprpern Voorpapn T Opg per t{ti T AL o q}+ 8y, 3+1{ti+mg Pt 1) 29
E- Dy, E- - eb- oAl - FAL_J- oAl TAC ) (29

(4) (Pe# Pe, Ph# Pr) analogous to casd).

whereP(A,y) is the probability distribution function on the

The averaging procedure requires the evaluation of théisorder Configurations. In the Lloyd model this function is a

following multiple integrals
(G5 o5 (B))= f dAtS,. . . dAtS,dALY, . . dALD,P
X (At5,,9°) .. . P(At{,,Y®P
X(Ath, ") .. PR NG oo

AtRy),
(30

X (E,AtS,, ... AtS,Ath, ..

Lorentzian

(31)

wherey parametrizes the width of the distribution.

The integrations in Eq(30) will be performed step by
step in the indicated sequence. In E(@3)—(25) each factor
is a holomorphic function oAstrl‘2 in the lower complex plane
including the real axis, in addition, this function is bounded
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if a"#0. Thus, the averaging can be performed by contour Using the locator expansion Eq&1),(22) with D re-
integration closing the integration path in the Iowﬁt*l‘z placed byB the matrix elements of the resolvent become
plane where Eq(31) has a first-order pole. This just leads to (N=2)

a replacement ozlkt*l‘2 by —14". Further integrations follow

the same reasoning. Hence, the resummation of the locator O pPePr

e . . . (0) _
series is trivially possible and, as a result, we obtain G ~Opp =, (37)
P PR E (A, +ady)

G:=(9(E))=(E-H) " (32
. . . . (1) 1 Mpephgeah
H is an effective Hamiltonian where the electron/hole parts G ———=_ — , (39
of Eq. (7) are replaced by PPl E—(Ap +ady) E—(Ap +adp)
) j i) i
HL=5,5 ) — 2151 ) o 1
_ () () G DL Pk pepn 2 =
+(5p,p+1+63p+1)(t1 —ly ). (33) ehe pé,pﬁ pgfl,pﬂfl E_(Ape+aAph)
Thus, the influence of barrier disorder is captured by the M p plpt YRR
resolvent of the pure wire wherel)) t{) are replaced by X — eheth ethe™h ..
complex parameters{)) =€) — 21y oW, tP=t{)— 1,0, E—(Apttalpt) E—(Apz+aldp)
Although, Eq.(33) is no longer hermitian, eigenstates exist
and, moreover, these are of the same form as for the pure Mpn-2gn-2pn-1p0-1 - Mpn=1pn-1p 5
LT X ; X — _ _
wire, in particular the eigenvalues are E—(Ap 1+ ady 1) E—(Ap +ady)
e h e h
ED k)= el +2t0) cogkb). (34) (39)

For t)<0 the lower/upper band edges arekét=0/7 so  The disorder averaging @ is done along the same route as
that the complex electron/hole energies are distributed beefore

tween ey—2|t;| —21y(a+1) and ey+ 2|ty —21y(a—1).

The parameterr must be restricted tae=1 for both elec-
trons and holes, otherwise there will be energies with a posi-
tive imaginary part, i.e., the Green function will have poles 5
in the upper energy plane which would violate causality. In X(E,Aq, ... ANy (40
addition, the optical absorption would become negative in )

some part of the spectrum. Note, that the correlated fluctug®s @ result, we obtain

tions in the diagonal/nondiagonal disorder will not simply . ~

lead to a Lorentzian smoothening of the absorption spectrum. G(E)=(G(E))=(E+1(1+a)y— M) L. (41

In particular, fora=1 the correlated shift of the on-site en- ) ) ) )
ergies and transfer elements exactly cancel at the upper bardd@Uus, with respect to the pure system, diagonal disorder just
edge so that the square root singularity of the density ofeads to the replacement Bf=%w by the complex quantity

states survives if electron—hole interaction is omitted. E—E+1(1+a)y, which leads to the expected Lorentzian
broadening of the optical absorption spectrum.

é:: f—ochl' o dANP(All’Y) T P(AN’Y)QEJZ)PhBeEh

IV. WELL FLUCTUATIONS
V. APPLICATIONS
Fluctuations in the well sections predominantly lead to _ _ ) o
fluctuations in the on-site energieg,. For convenience, The Green function of the noninteracting pure wire is well
fluctuations in the hopping elements will be omitted, how-known from textbooks, e.g., Econom&lin a sligthly re-
ever, a correlation of the electron/hole energies will be reWritten form which is suitable for the analytic continuation to

tained:Afl= @AS, a~m,/m,>0 (diagonal disorder complexTo=e§+ep, Ti=t5+t], (RT;<0), it reads
To perform the disorder averaging a regrouping of the
Hamitonian asH =B+ M is necessary, where - Pl ~M(E)
(0) —
Glm(E)_ \/~—221 (42)
Mpephﬁeﬁﬁ 5P_hph{ é;epeég-i-ti( 5p_e,pe+1+ %e,pef 1)} (E=To)"— 411
h +h where
+ é;epe{ 5Ehphfo+t1( 5Eh,ph+1+ 5Eh,ph— D}
Vobrpern (35) p1(E)=E-To~ V(E-To)*~4TD/(2T). (43
o h e JX denotes the square root whose imaginary part has the
B PePhPePn ™ 55hPhAPhJr %epeAPe' (36) same sign ag x, see Eqs(33),(41).
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[ N — ' ' 4

X (@) (arb. units)
[&)]
X, (@) (arb. units)

FIG. 2. Optical absorption of the noninteracting electron—hole  F|G. 4. Optical absorption with varying electron—hole interac-
system with varying barrier disorden®=a"=1.1. Energies are tion. Fixed barrier disorderg®= a"=1.1, y°=+"=0.025. Energy
given in units of one half of the transition band width, lower band scales as in Fig. 2.
edge is atw'=—1.

2
First, we consider a local electron—hole interactidfy, € 1

. . V()=———=r %5
=V, 0, Vo<O0. In this case Eq(17) can be solved analyti- Amege 12|+ BR
cally

(47)

where R is the wire radius,3~0.3, ande is an average

GYE) dielectric constant. For a GaAs-based wire of radiis

— = (449  =50A, V(0)~—0.1 eV which is approximately the full
1-VoGoo(E) electron—hole transition bandwidti®|, hencev,~0.5.

Without disorder(i.e., real T,,T;) the optical absorption To solve the Dyson equation E€L7) the effective exci-

GolE)=

x»=7 x of a wire becomes ton potential Eq.(47) is truncated to a finite rangey,
=V(rb)=0, |r|>s. Then, the optical absorption, E¢L2),
W2 Jl1-w'? , is obtained numerically by solving a $2 1)-dimensional
xaho)= 27T 024+ 1— 0’2 l0'|<1, (49 jinear set of equations foB,o(E), I|=—s, ... s. Figures
0 2-6 display various examples for the perfect and disordered
x2(fiw)= 5= S +V1+0vf), o'<-1,
2|T1| V1+U(2) VI. CONCLUSIONS
(46)
. The optical absorption in a quasi-one-dimensional system
whereo' = (hw—To)/(2|T4]), vo=|Vo/(2T1)|. W contains b : g 4

ensitivly depends on both the electron—hole interaction and
he disorder scattering. Diagonal disorder just results in a
Lorentzian smearing of the optical lines, whereas correlated

. . 7 . .
tained by Ishidaet al.” Note thatfiw is measured with re-  yiaq0nal/off-diagonal disorder is different: The broadening is
spect to the gap enerdy, of the homogeneous wire, Fig. 1. gyonger at the lower than at the upper band edge, Fig. 2.

For a quantum wire we have to replace the threey,ever, the shape of the absorption spectrum is drastically

dimensional Coulomb potential by the envelope averagedyanged even by a tiny electron—hole interaction: The diver-
potential which can be approximated quite welf by

the interband dipole matrix element and an overlap integr
between Wannier functions. A similar result has been ob

4

10 T

X,(@) (arb. units)
X (@) (arb. units)
no

0 R N A 0
15 -1.0 -0.5 0.0

FIG. 3. Optical absorption of the pure wire with variation of the  FIG. 5. Optical absorption with varying electron—hole interac-
local electron—hole interaction. Energy scales as in Fig. 2. tion. Fixed well disorder, (* «) y=0.1. Energy scales as in Fig. 2.
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I L tial leads to an additional pronounced spike near the gap and
| an oscillatory structure within the absorption band, Fig. 6.

These structures are insensitive with respect to the type of
disorder.

Our approach is based on the locator expansion of the
Green function(von Neumann seri¢svhose convergence is
. rarely established in general. A more rigorous treatment,
however, shows that E¢33) is indeed correct ifv>1.° For
0<a<1, Eq. (33 leads to a negative absorption in some
part of the spectrum which is definitively incorrect. It seems
that the Lloyd model cannot be formulated for purely nondi-
agonal disorder, i.eq=0. A similar problem is known for
the extension of the CPA to nondiagonal disortfebut it

FIG. 6. Optical absorption with varying rangef the truncated May be also due to the pathological Lorentzian probability
electron—hole Coulomb interactiomy=1. Fixed well disorder. distribution, Eq.(31), of the Lloyd model.
a®=a"=1.25, y°=y"=0.005. Energy scales as in Fig. 2.

n
T

(arb. units)

X2 (@)
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