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Optical properties of quantum wires: Disorder scattering in the Lloyd model

Christian Fuchs and Ralph v. Baltz
Institut für Theorie der Kondensierten Materie, 76128 Karlsruhe, Germany

~Received 7 September 2000; published 6 February 2001!

The Lloyd model is extended to the exciton problem in quasi-one-dimensional structures to study the
interplay between the Coulomb attraction and disorder scattering. Within this model the averaging and resum-
mation of the locator series can be performed analytically. As an application, the optical absorption in quantum
box wires is investigated. Without electron–hole interaction, fluctuations in the well width lead to an asym-
metric broadening of the minibands with respect to the lower and upper band edges.
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I. INTRODUCTION

The optical properties of semiconductors near the b
edge are substantially influenced by the attractive electr
hole interaction which leads to pronounced excitonic lin
and enhanced absorption above the band gap.1 These phe-
nomena become even more pronounced in systems o
duced effective dimensionality such as quantum wells, wi
or dots. In addition, the influence of disorder and impur
scattering increases with decreasing dimension. The la
phenomenon, however, is usually considered phenom
logically by replacing the light frequencyv by v1 ig, or
convoluting the spectrum with an appropriate smooth
function of widthg.

In this article, we investigate the interplay between ex
tonic effects and disorder scattering in quasi-on
dimensional structures, in particular quantum wires wh
possess a periodic step-like modulation along the o
dimensional direction,@quantum box structures,~QBS!# Fig.
1. Such structures have been proposed as favorite candi
to generate Bloch oscillations,2–4 other examples are quas
one-dimensional molecular crystals,5–9 yet no detailed theo-
retical study of the optical properties has been publish
The optical properties of one-dimensional systems are ex
tional as even a small attractive electron–hole interac
leads to a drastic reduction in the oscillator strength at
gap energy so that the identification of the gap energy fr
optical absorption data is nontrivial.

Our paper is organized as follows: Section II summari
the basic description of the optical susceptibility in terms
the resolvent operator. In Secs. III and IV the averaging
the disordered chain is performed. Within a Wannier rep
sentation the averaging and resummation of the locator
pansion can be done exactly, provided~a! only the lowest
electron/hole subbands are considered, and~b! a Lorentzian
probability distribution for the disorder averaging is use
The latter is known as the Lloyd model,10 which has been
first used in connection with the calculation of the density
states in a disorded metal and due to the simplicity in ca
lating various averages this model has been found usefu
many other researchers, in particular Refs. 11–25. Howe
apart from Hoshino’s work13 on the electrical conductivity
~CPA, neglecting vertex corrections! all previous applica-
tions of the Lloyd model are exclusively restricted to sing
particle quantities. Our work extends the Lloyd model to
0163-1829/2001/63~8!/085318~6!/$15.00 63 0853
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two-particle quantity and we give an exact solution for t
optical absorption within a two-band model. Section V giv
some analytical and numerical results for QBS’s near
fundamental gap and Sec. VI contains our conclusions.

II. BASICS

Our starting point is the excitonic contribution to the o
tical susceptibility x(v) in a two-band effective mas
approximation1,26

x~v!52
2udcvu2

e0V (
n

1

\v1ıd2En
U E

V
d3rWCn~rW,rW !U2

,

~1!

where the nonresonant part has been neglected (v.0). V is
the volume of the sample, andudcvu2 is the dipole matrix
element between the valence and conduction ba
Cn(rWe ,rWh), En , respectively, denote the electron–hole env
lope function and energy, andn labels discrete as well as th
continuous part of the excitonic spectrum,

@He1Hh1V~rWe2rWh!#Cn~rWe,rWh!5EnCn~rWe,rWh!. ~2!

H j , j 5e,h denote the electron/hole Hamiltonians andV(rW)
is the attractive electron–hole Coulomb potential. We
sume a cylindrical wire of radiusR with an infinite confining
potential and restrict ourselves to the lowest electron/h
mini-bands with wave functionsC j (rW)5u(r')c j (z). u(r')
is radial symmetric, nodeless andc j (z) denote the wave
function along the wirez axis which obeys

FIG. 1. Quasi-one-dimensional quantum-box-structure~left! and
sketch of the lowest valence/conduction subbands~right!. ~Not to
scale.!
©2001 The American Physical Society18-1



th
rg
ra
to
n

he
nt

ig.
n
in

ial
-
p

o

n

x

y
a

.

ly

the

e

e
m-
me
that

uc-
be-

gies

ies

er
ator

d to

CHRISTIAN FUCHS AND RALPH V. BALTZ PHYSICAL REVIEW B63 085318
H jc j~z!5Ejc j~z!, ~3!

H j5
2\2

2mj

]2

]z2
1Vj~z!. ~4!

mj are the effective electron/hole masses andVj (z) includes
the band offset as well as the localization energy due to
radial confinement. For a homogeneous wire the ene
spectrum consists of free-electron-like mini-bands with pa
bolic dispersions. These bands will be additionally split in
subbands by the periodic modulation in composition alo
the wire axis. In the following we restrict ourselves to t
lowest electron and hole subbands which are convenie
described in terms of Wannier functionsaj (z2pb), wherep
labels sites andb is the period of the box structure, see F
1. By an appropriate choice of the phases of the Bloch fu
tions c j (k,z) the Wannier functions can be constructed
such a way that they are real, symmetric, and exponent
localized.27 Furthermore, the Wannier functions of the low
est hole and electron subbands both have the same even
ity,

Cn~ze,zh!5 (
pe ,ph

cpe ,ph

(n) ae~ze2peb!ah~zh2phb!, ~5!

(
p̄e ,p̄h

Hpephp̄ep̄h
c p̄ep̄h

(n)
5Encpeph

(n) . ~6!

Within a next neighbor approximation the matrix elements
the exciton HamiltonianH5He1Hh1V read

Hpephp̄ep̄h
5dphp̄h

H pep̄e

e
1dpep̄e

H php̄h

h
1Vpephp̄ep̄h

, ~7!

H p,p̄
( j )

5D p,p̄
( j )

1N p,p̄
( j ) , ~8!

D p,p̄
( j )

5dp,p̄e0
( j ) , ~9!

N p,p̄
( j )

5t1
( j )$d p̄,p111dp,p̄11%. ~10!

e0
( j ) ,t1

( j ) , respectively, denote the on-site energies and tra
fer elements between neighboring wells andVpephp̄ep̄h

'V(pe2ph)dpep̄e
dphp̄h

is the electron–hole Coulomb matri
element.

To calculate the optical absorption we rewrite Eq.~1! in
terms of the resolvent operatorG(Ẽ),

x~\v!}2(
p,p̄

Gp,p,p̄,p̄~\v1ıd!, ~11!

G~Ẽ!5~Ẽ2H!21, ~12!

whereẼ5E1ıd, d.0.
Without disorder, the electron-hole wave function obe

the Bloch theorem and, hence, it can be labeled by a w
numberk52pk/N, k50,61, . . .6N/2,

cpe1n,ph1n
(n,k) 5eıkbncpe ,ph

(n,k) . ~13!
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n51,2 . . .N, whereN is the number of sites on the chain
Periodic boundary conditions are implied. Hence,

Gpe ,ph ,p̄e ,p̄h
~Ẽ!5(

n,k

cpe ,ph
* (n,k)c p̄e ,p̄h

(n,k)

Ẽ2En,k

5Gpe1n,ph1n,p̄e1n,p̄h1n~Ẽ!. ~14!

Furthermore, onlyk50 statescpe ,ph

(n,k50)5fpe2ph

(n) contribute

to the optical absorption

(
p,p̄

Gp,p,p̄,p̄~Ẽ!5N(
p

Gp,p,0,0~Ẽ!5N(
n

f0*
(n)f0

(n)

Ẽ2En

5NG00~Ẽ!. ~15!

The k50 states are translational invariant and effective
describe a single particle in an external potential

~ t1
h1t1

e!~f r 11
(n) 1f r 21

(n) !1~e0
h1e0

e!f r
(n)1Vrf r

(n)5Enf r
(n) ,

r PZ. ~16!

Gr , r̄(Ẽ) is the corresponding Green function which obeys
Dyson equation

G5G01G0VG. ~17!

Boldface symbols denote matrices,G0 is the Green function
for Vr50, andV is a diagonal matrix,Vrr 85Vrd rr 8 . The
formal solution of Eq.~17! is obtained by matrix inversion

G5~1ÀG0V!21G0 . ~18!

In addition to the attractive electron–hole interaction w
shall consider fluctuations in the on-site energiese0 as well
as in the transfer elementst1 between adjacent wells of th
Kronig–Penny potential. Such fluctuations arise from co
positional and structural disorder of the wire and we assu
that these fluctuations preserve the radial symmetry so
mixing of higher subbands will not be important.

III. BARRIER FLUCTUATIONS

Fluctuation in the barrier thickness leads to coupled fl
tuations in the on-site energies and the transfer elements
tween sitesq andq11 ~nondiagonal disorder!. In particular,
we consider a correlated linear change of the on-site ener
as mentioned by John and Schreiber.12 For the lowest sub-
bandt1 is negative, thus, corrections to the on-site energ
and hopping element have the same sign, i.e.,eq5aDt, a
.0. ~The coupling of diagonal and nondiagonal disord
will be essential to guarantee the convergence of the loc
expansion and nonnegative absorption.! For simplicity, fluc-
tuations in the electron and hole parameters are assume
be independent so that the Hamiltonians Eq.~7! are replaced
by

D p,p̄
( j )

5e0
( j )1a ( j )Dtp,p11

( j ) 1a ( j )Dtp,p21
( j ) , ~19!
8-2
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N p,p̄
( j )

5d p̄,p11$t1
( j )1Dt p̄,p11

( j )
%1dp,p̄11$t1

( j )1Dtp,p̄11
( j )

%.
~20!

In matrix notationH5D1N1V, whereD,N include
electron and hole parts. To perform the disorder averag
the locator expansion of the resolvent will be used28

G~Ẽ!5 (
n50

`

G(n)~Ẽ!, ~21!

G(n)~Ẽ!5
1

Ẽ2D FM 1

Ẽ2DG n

, ~22!

whereM5N1V. As D is a diagonal matrix, we have
(n>2)

G pephp̄ep̄h

(0)
~Ẽ!5

dpepe
d p̄hp̄h

Ẽ2Dpephpeph

, ~23!

G pephp̄ep̄h

(1)
~Ẽ!5

1

Ẽ2Dpephpeph

Mpephp̄ep̄h

Ẽ2Dp̄ep̄hp̄ep̄h

, ~24!
th

08531
g

G pephp̄ep̄h

(n)
~Ẽ!5 (

pe
1ph

1
••• (

pe
(n21)ph

(n21)

1

Ẽ2Dpephpeph

3
Mpephp

e
(1)p

h
(1)

Ẽ2Dp
e
(1)p

h
(1)p

e
(1)p

h
(1)

Mp
e
(1)p

h
(1)p

e
(2)p

h
(2)

Ẽ2Dp
e
(2)p

h
(2)p

e
(2)p

h
(2)
•••

3
Mp

e
(n22)p

h
(n22)p

e
(n21)p

h
(n21)

Ẽ2Dp
e
(n21)p

h
(n21)p

e
(n21)p

h
(n21)

3
Mp

e
(n21)p

h
(n21)p̄ep̄h

Ẽ2Dp̄ep̄hp̄ep̄h

. ~25!

Next, the disorder averaging will be performed term
term. Concerning the factors

Mpephp̄ep̄h

Ẽ2Dp̄ep̄hp̄ep̄h

~26!

four cases must be distinguished.
(1) (pe5 p̄e, ph5 p̄h):

Mpephp̄ep̄h

Ẽ2Dp̄ep̄hp̄ep̄h

5
Vp̄ep̄hp̄ep̄h

Ẽ2e0
e2e0

h2ae$Dt p̄e ,p̄e11
e

1Dt p̄e21,p̄e

e
%2ah$Dt p̄h ,p̄h11

h
1Dt p̄h21,p̄h

h
%
. ~27!

~2! (pe5 p̄e, phÞ p̄h)

Mpephp̄ep̄h

Ẽ2Dp̄ep̄hp̄ep̄h

5
Vpephpep̄h

1d p̄h ,ph11$t1
h1Dtph ,ph11

h %1dph ,p̄h11$t1
h1Dt p̄h ,p̄h11

h
%

Ẽ2e0
e2e0

h2ae$Dt p̄e ,p̄e11
e

1Dt p̄e21,p̄e

e
%2ah$Dt p̄h ,p̄h11

h
1Dt p̄h21,p̄h

h
%
. ~28!

~3! (peÞ p̄e, ph5 p̄h)

Mpephp̄ep̄h

Ẽ2Dp̄ep̄hp̄ep̄h

5
Vpephp̄eph

1d p̄e ,pe11$t1
e1Dtpe ,pe11

e %1dpe ,p̄e11$t1
e1Dt p̄e ,p̄e11

e
%

Ẽ2e0
e2e0

h2ae$Dt p̄e ,p̄e11
e

1Dt p̄e21,p̄e

e
%2ah$Dt p̄h ,p̄h11

h
1Dt p̄h21,p̄h

h
%
. ~29!
a

ed
~4! (peÞ p̄e, phÞ p̄h) analogous to case~1!.
The averaging procedure requires the evaluation of

following multiple integrals

^G pephp̄ep̄h

(n)
~Ẽ!&5E

2`

`

dDt12
e . . . dDtN1

e dDt12
h . . . dDtN1

h P

3~Dt12
e ,ge! . . . P~DtN1

e ,ge!P

3~Dt12
h ,gh! . . . P~DtN1

h ,gh!G pephp̄ep̄h

(n)

3~Ẽ,Dt12
e , . . . ,DtN1

e ,Dt12
h , . . . ,DtN1

h !,

~30!
e
whereP(D,g) is the probability distribution function on the
disorder configurations. In the Lloyd model this function is
Lorentzian

P~D,g!5
g

p

1

D21g2
, ~31!

whereg parametrizes the width of the distribution.
The integrations in Eq.~30! will be performed step by

step in the indicated sequence. In Eqs.~23!–~25! each factor
is a holomorphic function ofDt12

h in the lower complex plane
including the real axis, in addition, this function is bound
8-3
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CHRISTIAN FUCHS AND RALPH V. BALTZ PHYSICAL REVIEW B63 085318
if ahÞ0. Thus, the averaging can be performed by cont
integration closing the integration path in the lowerDt12

h

plane where Eq.~31! has a first-order pole. This just leads
a replacement ofDt12

h by 2ıgh. Further integrations follow
the same reasoning. Hence, the resummation of the loc
series is trivially possible and, as a result, we obtain

Ḡª^G~Ẽ!&5~Ẽ2H̄!21. ~32!

H is an effective Hamiltonian where the electron/hole pa
of Eq. ~7! are replaced by

H̄p,p̄
( j )

5dp,p̄~e0
( j )22ıg ( j )a ( j )!

1~dp,p̄111d p̄,p11!~ t1
( j )2ıg ( j )!. ~33!

Thus, the influence of barrier disorder is captured by
resolvent of the pure wire wheree0

( j ) ,t1
( j ) are replaced by

complex parametersē0
( j )5e0

( j )22ıg ( j )a ( j ), t̄ 1
( j )5t1

( j )2ıg ( j ).
Although, Eq.~33! is no longer hermitian, eigenstates ex
and, moreover, these are of the same form as for the
wire, in particular the eigenvalues are

E( j )~k!5 ē0
( j )12 t̄ 1

( j ) cos~kb!. ~34!

For t1
( j ),0 the lower/upper band edges are atkb50/p so

that the complex electron/hole energies are distributed
tween e022ut1u22ıg(a11) and e012ut1u22ıg(a21).
The parametera must be restricted toa>1 for both elec-
trons and holes, otherwise there will be energies with a p
tive imaginary part, i.e., the Green function will have pol
in the upper energy plane which would violate causality.
addition, the optical absorption would become negative
some part of the spectrum. Note, that the correlated fluc
tions in the diagonal/nondiagonal disorder will not simp
lead to a Lorentzian smoothening of the absorption spectr
In particular, fora51 the correlated shift of the on-site en
ergies and transfer elements exactly cancel at the upper
edge so that the square root singularity of the density
states survives if electron–hole interaction is omitted.

IV. WELL FLUCTUATIONS

Fluctuations in the well sections predominantly lead
fluctuations in the on-site energieseq . For convenience
fluctuations in the hopping elements will be omitted, ho
ever, a correlation of the electron/hole energies will be
tained:Dp

h5aDp
e , a'me /mh.0 ~diagonal disorder!.

To perform the disorder averaging a regrouping of
Hamitonian asH5B1M is necessary, where

Mpephp̄ep̄h
5d p̄hph

$d p̄epe
e0

e1t1
e~d p̄e ,pe111d p̄e ,pe21!%

1d p̄epe
$d p̄hph

e0
h1t1

h~d p̄h ,ph111d p̄h ,ph21!%

1Vpephp̄ep̄h
, ~35!

Bpephp̄ep̄h
5d p̄hph

Dph

h 1d p̄epe
Dpe

e . ~36!
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Using the locator expansion Eqs.~21!,~22! with D re-
placed byB the matrix elements of the resolvent becom
(n>2)

G pep̄e

(0) dphp̄h
5

dpephp̄ep̄h

Ẽ2~Dpe
1aDph

!
, ~37!

G pephp̄ep̄h

(1)
5

1

Ẽ2~Dpe
1aDph

!

Mpephp̄ep̄h

Ẽ2~D p̄e
1aD p̄h

!
, ~38!

G p
e
1,p

h
1,p̄e ,p̄h

(n)
5 (

pe
1,ph

1
••• (

pe
n21,ph

n21

1

Ẽ2~Dpe
1aDph

!

3
Mpephp

e
1p

h
1

Ẽ2~Dp
e
11aDp

h
1!

Mp
e
1p

h
1p

e
2p

h
2

Ẽ2~Dp
e
21aDp

h
2!
•••

3
Mp

e
n22p

h
n22p

e
n21p

h
n21

Ẽ2~Dp
e
n211aDp

h
n21!

Mp
e
n21p

h
n21p̄ep̄h

Ẽ2~D p̄e
1aD p̄h

!
.

~39!

The disorder averaging ofG is done along the same route a
before

ḠªE
2`

`

dD1•••dDNP~D1 ,g!•••P~DN ,g!G pephp̄ep̄h

(n)

3~Ẽ,D1 , . . . ,DN ,!. ~40!

As a result, we obtain

Ḡ~Ẽ!ª^G~Ẽ!&5~E1ı~11a!g2M!21. ~41!

Thus, with respect to the pure system, diagonal disorder
leads to the replacement ofE5\v by the complex quantity
E→E1ı(11a)g, which leads to the expected Lorentzia
broadening of the optical absorption spectrum.

V. APPLICATIONS

The Green function of the noninteracting pure wire is w
known from textbooks, e.g., Economou.29 In a sligthly re-
written form which is suitable for the analytic continuation
complexT05 ē0

e1 ē0
h , T15 t̄ 1

e1 t̄ 1
h , (RT1,0), it reads

Glm
(0)~Ẽ!5

r1
u l 2mu~Ẽ!

A~Ẽ2T0!224T1
2

, ~42!

where

r1~Ẽ!5„Ẽ2T02A~Ẽ2T0!224T1
2
…/~2T1!. ~43!

Ax denotes the square root whose imaginary part has
same sign asI x, see Eqs.~33!,~41!.
8-4
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First, we consider a local electron—hole interaction,Vr
5V0d r ,0 , V0,0. In this case Eq.~17! can be solved analyti
cally

G00~Ẽ!5
G00

0 ~Ẽ!

12V0G00
0 ~Ẽ!

. ~44!

Without disorder~i.e., real T0 ,T1) the optical absorption
x25I x of a wire becomes

x2~\v!5
uWu2

2puT1u
A12v82

v0
2112v82

, uv8u,1, ~45!

x2~\v!5
uWu2

2uT1u
v0

A11v0
2
d~v81A11v0

2!, v8,21,

~46!

wherev85(\v2T0)/(2uT1u), v05uV0 /(2T1)u. W contains
the interband dipole matrix element and an overlap integ
between Wannier functions. A similar result has been
tained by Ishidaet al.7 Note that\v is measured with re-
spect to the gap energyEg of the homogeneous wire, Fig. 1

For a quantum wire we have to replace the thr
dimensional Coulomb potential by the envelope avera
potential which can be approximated quite well by1

FIG. 2. Optical absorption of the noninteracting electron–h
system with varying barrier disorder.ae5ah51.1. Energies are
given in units of one half of the transition band width, lower ba
edge is atv8521.

FIG. 3. Optical absorption of the pure wire with variation of th
local electron–hole interaction. Energy scales as in Fig. 2.
08531
al
-

-
d

V~z!52
e2

4pe0ē

1

uzu1bR
, ~47!

where R is the wire radius,b'0.3, and ē is an average
dielectric constant. For a GaAs-based wire of radiusR
550 Å , V(0)'20.1 eV which is approximately the ful
electron–hole transition bandwidth 4uT1u, hencev0'0.5.

To solve the Dyson equation Eq.~17! the effective exci-
ton potential Eq.~47! is truncated to a finite range,Vr
5V(rb)50, ur u.s. Then, the optical absorption, Eq.~12!,
is obtained numerically by solving a (2s11)-dimensional
linear set of equations forGl0(Ẽ), l 52s, . . . ,s. Figures
2–6 display various examples for the perfect and disorde
wire.

VI. CONCLUSIONS

The optical absorption in a quasi-one-dimensional sys
sensitivly depends on both the electron–hole interaction
the disorder scattering. Diagonal disorder just results i
Lorentzian smearing of the optical lines, whereas correla
diagonal/off-diagonal disorder is different: The broadening
stronger at the lower than at the upper band edge, Fig
However, the shape of the absorption spectrum is drastic
changed even by a tiny electron–hole interaction: The div

e FIG. 4. Optical absorption with varying electron–hole intera
tion. Fixed barrier disorder,ae5ah51.1, ge5gh50.025. Energy
scales as in Fig. 2.

FIG. 5. Optical absorption with varying electron–hole intera
tion. Fixed well disorder, (11a)g50.1. Energy scales as in Fig. 2
8-5
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gences at the band edges are completely removed so tha
identification of the gap is a nontrivial problem in quasi-on
dimensional semiconductors, Figs. 3–5. For a lo
electron–hole interaction there is only but a single exci
bound state, Fig. 3, whereas the~truncated! Coulomb poten-

FIG. 6. Optical absorption with varying ranges of the truncated
electron–hole Coulomb interaction,v051. Fixed well disorder.
ae5ah51.25, ge5gh50.005. Energy scales as in Fig. 2.
d

v.

08531
the
-
l

n

tial leads to an additional pronounced spike near the gap
an oscillatory structure within the absorption band, Fig.
These structures are insensitive with respect to the type
disorder.

Our approach is based on the locator expansion of
Green function~von Neumann series! whose convergence i
rarely established in general. A more rigorous treatme
however, shows that Eq.~33! is indeed correct ifa.1.30 For
0,a,1, Eq. ~33! leads to a negative absorption in som
part of the spectrum which is definitively incorrect. It seem
that the Lloyd model cannot be formulated for purely non
agonal disorder, i.e.,a50. A similar problem is known for
the extension of the CPA to nondiagonal disorder,31 but it
may be also due to the pathological Lorentzian probabi
distribution, Eq.~31!, of the Lloyd model.
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