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Output spectrum of a detector measuring quantum oscillations
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We consider a two-level quantum system~qubit! which is continuously measured by a detector, and calcu-
late the spectral density of the detector output. In the weakly coupled case the spectrum exhibits a moderate
peak at the frequency of quantum~Rabi! oscillations and a Lorentzian-shape increase of the detector noise at
low frequency. As the coupling increases, the spectrum transforms into a single Lorentzian corresponding to
random jumps between two states. We prove that the Bayesian formalism for the selective evolution of the
density matrix gives the same spectrum as the conventional master equation approach, despite the significant
difference in interpretation. The effects of the detector nonideality and the finite-temperature environment are
also discussed.
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I. INTRODUCTION

The long-standing and still controversial problem
quantum measurements1 is gradually becoming a practica
issue due to the development of experimental techniques
pable of measurements at the quantum border~see, e.g. Refs
2–7!. The renewed interest in this subject is caused by
needs of quantum computing,8 since the measurement of a
entangled and possibly evolving quantum state by a real
detector in a realistic environment presents a nontrivial pr
lem.

Despite the experimental proof2 of the violation of Bell’s
inequality9 that rejects the idea of hidden variables, the o
gin of the randomness of a quantum measurement result~the
problem known as the ‘‘wave-function collapse’’! remains
controversial. Important insight into this problem was pr
vided by the development of the theory of continuous qu
tum measurement, which generalizes the ‘‘orthodox’’ cas10

of instantaneous measurement. There are two different t
retical approaches. In the first approach11 based on the theory
of interaction with a dissipative environment,12 the evolution
of the density matrix of the measured system isaveraged
over a completeensembleof measurements, thus leading
the deterministic equation. This is the best-known approa
at least in the solid-state community, and so can be ca
‘‘conventional.’’ The other approach13–22 ~more developed
in quantum optics! studies the random evolution of the qua
tum state during asingle realization of the measurement, s
that this evolution is conditioned on~selected by! the particu-
lar measurement result. Recently23,24 the latter approach wa
introduced in the context of solid-state physics using a d
vation based on a simple Bayesian analysis of probabilit

In the present paper this Bayesian formalism is applied
a calculation of the spectral density of the detector curr
when a two-level quantum system~qubit! is measured con
tinuously ~Fig. 1!. As a particular example, we consider
double quantum dot occupied by one electron, the locatio
which is measured by a quantum point contact nearby.25,23

Another example of the setup is a single-Cooper-pair b
being measured by a single-electron transistor.26,24,27 One
more possible example is the continuous measuremen
two flux states of a superconducting quantum interfere
device~SQUID! by another inductively coupled SQUID.28,29
0163-1829/2001/63~8!/085312~8!/$15.00 63 0853
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We show that in the weak-coupling case, when the qu
tum ~Rabi! oscillations of the qubit state are only slight
perturbed by the detector, the corresponding peak in
spectral density of the detector current can be up to f
times higher than the noise pedestal~also see Ref. 30!. As
the coupling increases, the quantum Zeno effect31 becomes
significant leading to the Lorentzian shape of the spec
density centered at zero frequency.

It is important to notice that there should be no differen
between the predictions of the conventional approach and
approach of selective evolution unless the measuremen
sult affects~or somehow selects! the system evolution~for
example, via the feedback loop!. We prove this equivalence
explicitly for the detector spectral density~if there is no feed-
back!. In spite of the same final result, the interpretations
different: in the Bayesian formalism a significant contrib
tion to the spectrum comes from the correlation between
detector noise and the system evolution, while this corre
tion is absent in the conventional approach. In the paper
also discuss the extension of the Bayesian formalism to
case of additional weak interaction of the two-level syst
with a finite-temperature environment.30

II. BAYESIAN FORMALISM

For a two-level quantum system described by the Ham
tonian

H05
«

2
~c1

†c12c2
†c2!1H~c1

†c21c2
†c1! ~1!

~where « is the energy asymmetry andH is the tunneling
strength!, the evolution of its density matrixr i j due to con-
tinuous measurement is given in the conventio
approach11,12,25,26,30,32by the equations

ṙ11522
H

\
Im r12, r111r2251, ~2!

ṙ125ı
«

\
r121ı

H

\
~r112r22!2Gr12, ~3!
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ALEXANDER N. KOROTKOV PHYSICAL REVIEW B 63 085312
where the dephasing rateG due to measurement depends
the type of the detector used.5,25,26,30,33–35

Equations~2! and ~3! describe the averaged evolution.
contrast, to analyze the single measurement process we
the selective~conditional! evolution of r i j which in the
Bayesian formalism is described by equations23

ṙ11522
H

\
Im r121

2DI

S0
r11r22@ I ~ t !2I 0#, ~4!

ṙ125ı
«

\
r121ı

H

\
~r112r22!2

DI

S0
~r112r22!@ I ~ t !2I 0#

3r122gr12, ~5!

where I (t) is the detector current~see Fig. 1!, I 05(I 1
1I2)/2, I 1 and I 2 are the average currents corresponding
two localized states of the qubit,DI 5I 12I 2 ~note the differ-
ent sign in the definition used in Ref. 23!, and S0 is the
low-frequency spectral density of the detector shot no
~which is assumed to be constant in the frequency rang
interest and practically independent of the qubit state!. The
detector nonideality is described by the dephasing contr
tion g5G2(DI )2/4S0>0 due to interaction with ‘‘pure en
vironment’’ ~which does not affect the detector current!. In
particular, sinceG5(DI )2/4S0 for symmetric quantum poin
contact~see Refs. 25, 5, 30 and 33!, it represents an idea
detector,23 h51, whereh512g/G is the ideality factor. In
contrast, the single-electron transistor in a typical opera
point is a significantly nonideal detector,h!1.23,26,36~Actu-
ally, for a single-electron transistor Eq.~5! can be further
improved24; however, it does not make a difference for t
purposes of the present paper.! The SQUID can be an idea
detector when its sensitivity is quantum limited.37,38 Since
the typical output signal from the SQUID is the voltage~not
the current!, this requires a minor modification of the forma
ism; thus in this paper we do not consider the SQUID c
explicitly, even though all the results can be easily transla
into SQUID language.

Equations~4! and ~5! allow us to calculate the evolutio
of r i j if the detector outputI (t) is known from the experi-
ment. In order to simulate the measurement we need
replacement23

I ~ t !2I 05DI ~r112r22!/21j~ t !, ~6!

where the random processj(t) has zero average an
‘‘white’’ spectral densitySj5S0.

Note that in order to consider the detector as a device w
classical output signal, Eqs.~4! and ~5! essentially use the
Markov approximation and assume that the typical freque
of the internal detector evolution~on the order ofS0 /e2

;I 0 /e) is much higher than the typical frequency max(V,G)
of r i j evolution ~hereV[A4H21«2/\ is the frequency of

FIG. 1. Schematic of a qubit continuously measured by a de
tor with output signalI (t).
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unperturbed quantum oscillations!. In particular, this condi-
tion requires the detector to be ‘‘weakly responding,’’uDI u
!I 0, which allows us to use the linear-response approxim
tion.

Averaging of Eqs.~4! and ~5! over all possible measure
ment results@i.e., over random contributionj(t)# reduces
them to Eqs.~2! and ~3!. Note that the stochastic equation
are written in Stratonovich form, which preserves the us
calculus rules, while averaging would be easier in Itoˆ form.39

Equations~4!–~6! in Itô form ~which looks quite different!
for the case«5g50, were also obtained in Ref. 17 using
different technique. In order to avoid confusion between t
forms of stochastic equations, let us write the exact soluti
of Eqs.~4! and ~5! in the caseH50:

r11~t!

r22~t!
5

r11~0!

r22~0!
expF @ Ī ~t!2I 1#22@ Ī ~t!2I 2#2

S0 /t
G , ~7!

r12~t!5r12~0! eı«t/\F r11~t! r22~t!

r11~0! r22~0!G
1/2

e2gt, ~8!

where Ī (t)[t21*0
t I (t) dt. The physical meaning of thes

equations is quite clear: Eq.~7! is the classical Bayes for
mula which should remain valid in the quantum case~at H
50) because of the correspondence principle, while Eq.~8!
shows that the dephasing is due only to the interaction w
extra environment~not due to the measurement itself!. Actu-
ally, Eqs.~7! and ~8! are more basic than Eqs.~4! and ~5!,
and were directly used in the derivation of Ref. 23. In t
caseHÞ0 the analytical solution is not available, so nume
cal calculations are necessary.

III. WEAK COUPLING

Using Eqs.~4!–~6! and the Monte–Carlo method~similar
to Ref. 23!, we can calculate in a straightforward way th
spectral densitySI(v) of the detector currentI (t). Solid
lines in Fig. 2 show the results of such calculations for t
ideal detector,h51, and weak coupling between the qub
and the detector,a50.1, wherea[\(DI )2/8S0H(a is eight
times less than the parameterC introduced in Ref. 23!. One
can see that in the symmetric case,«50, the peak at the
frequency of quantum oscillations is four times higher th
the noise pedestal,SI(V)55S0 while the peak width is de-
termined by the coupling strengtha ~see Fig. 5 below!. In
the asymmetric case,«Þ0, the peak height decreases~Fig.
2!, while the additional Lorentzian-shape increase ofSI(v)
appears at low frequencies. The origin of this low-frequen
feature is the slow fluctuation of the asymmetry ofr11 oscil-
lations ~Fig. 3!. In case«50 the amplitude ofr11 oscilla-
tions is maximal@see the thick line in Fig. 4~a!#, hence there
is no such asymmetry and the low-frequency feature is
sent, while the spectral peak at the frequency of quan
oscillation is maximally high.

In order to understand the factor 4 for the maximum pe
height, let us consider the casesa!1, «50, and h51.
Then the selective evolution can be written as the quan
oscillations with slowly fluctuating phasew(t):

c-
2-2
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z~ t ![r11~ t !2r22~ t !5cosf~ t !, f5Vt1w~ t !, ~9!

r125~ ı/2!sinf~ t ! ~10!

~the state becomes pure23 after an initial transient period
sinceh51, while the real part ofr12 decays because of«
50). From Eqs.~4! and ~6! we obtain the random phas
dynamics:

ẇ52sinf
DI

S0
Fcosf

DI

2
1j~ t !G . ~11!

Since (DI )2/2S0!V, we can neglect the first term in th
square brackets and average the second contribution ovf

that leads to the white spectrum ofẇ: Sẇ(v)5(DI )2/2S0.
Then the correlation function Kz(t)[^z(t)z(t1t)&
can be calculated as Kz(t)5cos(Vt)^cosDw(t)&/2
5cos(Vt)exp@2(DI)2t/8S0#/2 and the spectral densit

FIG. 2. Spectral densitySI(v) of the detector current for wea
coupling (a50.1) of an ideal detector (h51) with a two-level
system («/H50, 1, and 2!. The results of Monte Carlo calculation
using the Bayesian formalism are shown by solid lines, while
dashed lines~which practically coincide with solid lines! are calcu-
lated using the master equation approach.

FIG. 3. A particular realization of the evolution ofr11(t) due to
continuous measurement for«/H51, a50.1 andh51. Note the
fluctuation of both the phase and the asymmetry of oscillations
08531
Sz(v)[2*2`
` Kz(t)exp(ıvt)dt has a peak in the vicinity of

the oscillation frequency,uv2Vu!V:

Sz~v!5
8S0

~DI !2

1

11@8S0~v2V!/~DI !2#2
. ~12!

The detector current is given by Eq.~6!, so its spectral den-
sity consists of three contributions,

SI~v!5S01
DI 2

4
Sz~v!1

DI

2
@Sjz~v!1Szj~v!#, ~13!

where the last contribution originates from the correlation
between ther i j evolution and the detector noisej(t). To
calculate the correlation functionKjz(t)[^j(t)z(t1t)&
for t.0, we need to take into account the phase shift
dw52sinfDIS0

21j(t)dt during even an infinitesimally small
time durationdt, since the amplitude of the stochastic func-
tion j(t) grows with the time-scale decrease,j(t)2dt
5S0/2. Using trigonometric formulas and linear expansion
in dw, we obtain ^j(t)cos@f(t)1df1Vt1Dw(t)#&
5DIS0

21^j(t)2dt&^sinf(t)sin@f(t)1Vt#&^cosDw(t)& and fi-
nally Kjz(t)5DI cos(Vt)exp@2(DI)2t/8S0#/4. After Fourier
transformation one finds that the correlation betweenj(t)

e

FIG. 4. A particular realization ofr11 evolution~thick line! and
the corresponding detector outputI (t) ~thin solid, dotted, and
dashed lines! averaged using rectangular windows with different
time constantsta . ~a! Weak-coupling case,a50.1. ~b! Strong-
coupling case,a55.
2-3
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ALEXANDER N. KOROTKOV PHYSICAL REVIEW B 63 085312
andz(t) brings exactly the same contribution to the detect
spectral density@see Eq.~13!# as the term due toz(t) evolu-
tion, so that

SI~v!5S01
4S0

11@8S0~v2V!/~DI !2#2
. ~14!

Thus the peak corresponding to quantum oscillations is fo
times higher than the noise background, while its full widt
at half height is equal to (DI )2/4S05aV ~the same peak
width was calculated in Ref. 40!. The integral under the
peak,

E
0

`

@S~v!2S0#
dv

2p
5

~DI !2

4
, ~15!

has an obvious relation to the average square of the dete
current variation due to oscillations in the measured syste
Note, however, that this integral is twice as large as o
would expect from the classical harmonic signal, since on
half of the spectral peak height comes from a nonclassi
correlation between the qubit evolution and the detec
noise. Classically, Eq.~15! would be easily understood if the
signal was not harmonic but rectangularlike, which is obv

FIG. 5. The detector current spectral densitySI(v) for h51
and different couplinga with ~a! symmetric («50) and~b! asym-
metric («/H51) qubits.
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ously not the case. Actually, the detector current shows
ther clear harmonic nor rectangular signal distinguisha
from the intrinsic noise contribution. Figure 4~a! shows the
simulation ofr11 evolution~thick line! together with the de-
tector currentI (t). SinceI (t) contains white noise, it neces
sarily requires some averaging. Thin solid, dotted, a
dashed lines show the detector current averaged with dif
ent time constantsta : taV/2p50.3, 1, and 3, respectively
For weak averaging the signal is too noisy, while for stro
averaging individual oscillation periods cannot be resolv
either, so quantum oscillations can never be observeddi-
rectly by a continuous measurement@although they can be
calculatedusing Eqs.~4! and ~5!#. This unobservability is
revealed in the relatively low peak height of the spect
density of the detector current.

IV. ARBITRARY COUPLING

The situation changes as the coupling between the de
tor and qubit increases,a*1. The strong influence of mea
surement destroys quantum oscillations, and the quan
Zeno effect31 develops, so that fora@1 the qubit performs
random jumps between two localized states@see Fig. 4~b!#.
In this case the properly averaged detector current follo
the evolution of the qubit rather well~however, the unsuc-
cessful tunneling ‘‘attempts’’ still cannot be directly re
solved!, and the spectral density ofI (t) can in principle be
calculated using the classical theory of telegraph nois41

leading to the Lorentzian shape ofSI(v). Figure 5~a! shows
the gradual transformation of the spectral density with
increase of the couplinga for a symmetric qubit,«50, and
an ideal detector,h51. The results for an asymmetric qub
«/H51, are shown in Fig. 5~b!.

The curves in Fig. 5, as well as the dashed curves in F
2, are calculated using a natural extension of the conv
tional master equation approach, which gives the same
sults for the detector spectral density as the Bayesian form
ism ~we will prove this later!. In the conventional approac
we assume no correlation between the detector noise an
qubit evolution@the last two terms in Eq.~13! are absent#
while the correlation functionKẑ(t) should be calculated
consideringz(t) not as an ordinary function but as an oper
tor. Then the calculation of̂ẑ(t1t) ẑ(t)& can be essentially
interpreted as follows. The first~in time! operatorẑ(t) col-
lapses the qubit into one of two eigenstates which corresp
to localized states, then during timet the qubit performs the
evolution described by conventional equations~2! and ~3!,
and finally the second operatorẑ(t1t) gives the probability
for the qubit to be measured in one of two localized stat
~Of course, this procedure can be done purely formally30

without any interpretation.! Note that there is complete sym
metry between states 1 and 2 even for«Þ0 ~in particular, in
the stationary stater115r2251/2), so the evolution after the
first collapse can be started from any localized state lead
to the same contribution to the correlation function. In th
way we obviously obtainKẑ(t)5r11(t)2r22(t) wherer i i
is the solution of Eqs.~2! and ~3! with the initial conditions
r11(0)51 andr12(0)50.
2-4
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OUTPUT SPECTRUM OF A DETECTOR MEASURING . . . PHYSICAL REVIEW B63 085312
For the symmetric qubit,«50, these equations can b
easily solved analytically, and finally we obtain

SI~v!5S01
V2~DI !2G

~v22V2!21G2v2
, ~16!

where G5h21(DI )2/4S05ah21V. This equation obvi-
ously transforms into Eq.~14! for h51 anda!1. Note that
for weak coupling with a nonideal detector,h,1 and
ah21!1, the peak height ofSI(v) is equal to 4hS0, while
the linewidthah21V of the peak ish21 times wider than
for the ideal detector. As the coupling increases, the li
width grows and the oscillation frequency decreases40: vosc
5V@12(a/2h)2)1/2]. The transition into the overdampe
regime occurs atah21.2, while the peaklike feature dis
appears atah21.A2. For ah21.2 the spectral density
consists of two Lorentzians@v1,25G/27(G2/42V2)1/2#
centered at zero frequency, with the negative sign
smaller amplitudeA2 of the second Lorentzian, which has
higher cutoff frequency:A2 /A152v1 /v2. In the case
ah21@1, which corresponds to the well-developed qua
tum Zeno effect,SI(v)2S0 has a purely Lorentzian shap
(DI )2v1/(v21v1

2) with v15V2/G5Vh/a.
For the asymmetric qubit,«Þ0, the spectral density ca

in principle also be calculated analytically but the expr
sions would be too lengthy, and it is simpler to use numer
solution of Eqs.~2! and ~3!. The analytical formula for the
weak-coupling limit is

SI~v!5S01
hS0«2/H2

11~v\2V2/4H2G!2

1
4hS0~11«2/2H2!21

11@~v2V!/G~122H2/\2V2!#2
. ~17!

The spectral peak and the low-frequency Lorentzian beco
wider with the coupling increase, sinceG5ah21V, and for
u«/Hu,1/A2 the overdamped regime starts fromG5G1,
where G1,2

2 5(V2/2a)@b7(b224a)1/2#, b[1/4227a2/4
19a/2, anda[«2/(4H21«2). At G.G2 the dynamics for-
mally returns to the underdamped regime; however, the p
linewidth is much larger than the frequency, and soSI(v) is
monotonic. Foru«/Hu.1/A2 the overdamped regime doe
not occur. In both cases in the limit of largeG the spectral
density has an almost Lorentzian shape, with the cutoff
quencyv154H2/\2G.

One can check that the spectral densities given by E
~16! and~17! satisfy the integral condition@Eq. ~15!#, which
remains valid for arbitrary parametersa, «/H, and h, be-
cause of the equationKI(10)5(DI /2)2.

V. EQUIVALENCE OF TWO APPROACHES

Comparing two derivations ofSI(v) in the casesa!1,
h51, and «50, we see thatKẑ(t) is twice as large as
Kz(t) because in the conventional approach the evolu
always starts from the localized state, while in the Bayes
approach it starts from an arbitrary phase of the quan
08531
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oscillations. This difference exactly compensates for the
sence of the correlation terms in Eq.~13! in the conventional
approach.

Let us prove explicitly that the two approaches give t
same result forSI(v) in a general case. In order to calcula
Kjz(t) for t.0 using the Bayesian formalism, let us fir
average the productj(t0)z(t01t) over randomj(t) during a
time period t0,t,t01t, fixing the same conditions att
5t0. Then we can use conventional equations~2! and ~3!
@regarded as Eqs.~4!–~6! averaged over randomj(t)# with
the initial conditionr i j (t010)5r i j (t0)1dr i j , where

dz5DI S0
21@12z2~ t0!# j~ t0!dt, ~18!

dr1252DI S0
21z~ t0! r12~ t0!j~ t0!dt ~19!

~for simplicity we will refer toz[r112r22 as a componen
of r i j ). Since the sign ofj(t0) is arbitrary and averaged
evolution equations are linear, we need only fluctuating c
tribution to r i j (t010) and, hence, can formally assume th
the evolution starts fromr i j (t010)5dr i j ~note that we can
forget the conditionr111r2251 and use onlyz and r12).
Using the relationj(t0)2dt5S0/2 and the evolution linearity,
we can formally write

Kjz~t!5~DI /2!^z̃~ t01t!&, ~20!

where r̃ i j satisfies Eqs.~2! and ~3! with z̃(t0)512z(t0)2

and r̃12(t0)52z(t0)r12(t0), and the averaging over th
initial conditions att5t0 should still be done later. Before
this let us perform a similar formal trick forKz(t),
representing it aŝz̃(t01t)&, where the evolution starts from
z̃(t0)5z(t0)2 and r̃12(t0)5z(t0)r12(t0). Now combining
two terms in the detector current correlation functionKI(t)
[ ^ I (t0) I (t01t)& 2 ^ I &2 5 (DI /2)2Kz(t) 1 (DI /2)Kjz(t)
~heret.0), we see that it can be written as (DI /2)2^z̃(t0

1t)&, where z̃(t0)51 and r̃12(t0)50. Thus we have ex-
actly arrived at an expression of the conventional approa
in which the evolution always starts from the localized sta
regardless of the actual quantum state att5t0. This proof is
obviously valid for arbitrarya, h, and«/H. Despite obtain-
ing the same result in the two approaches, the interpretat
are quite different, since the Bayesian approach allows u
follow the qubit evolution during the measurement proce
while the conventional approach gives only the average c
acteristics.

VI. FINITE-TEMPERATURE ENVIRONMENT

In this section we will discuss how to introduce a finit
temperature environment into Eqs.~4!–~6! of the Bayesian
formalism. Note that so far there has been complete sym
try between states 1 and 2 even for a finite-energy differe
«, while the finite-temperature effects would be expected
lead to different average populations of these states. S
symmetry requires an implicit assumption that the typi
energy in the detector~voltage or temperature! is much
larger than the energies involved in the qubit dynamics.
the absence of temperature in the formalism does not m
2-5
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ALEXANDER N. KOROTKOV PHYSICAL REVIEW B 63 085312
that it is zero or very large, but just that temperature effe
are not important. Now let us assume that, in addition to
detector, the qubit is coupled to an additional finit
temperature environment, which creates an asymmetry
tween states 1 and 2 when«Þ0.

While the case of finite coupling of a two-level syste
with an environment presents a difficult problem,12 the
weak-coupling limit can be treated in a simple way. In t
standard method42 it is described by the equations

ṙ1152g1~r112pst!, r111r2251, ~21!

ṙ125ıVr122g2r12 , ~22!

which are written in the diagonal basis~‘‘ 1’’ corresponds to
the ground state!. The temperatureT determines the station
ary occupationpst5@11exp(2\V/T)#21 of the ground state
and the relaxation rates obey inequality42 g1/2<g2!V.

If the coupling of the qubit with the detector is also wea
ah21!1, the evolution due to an extra finite-temperatu
environment can be simply added to the evolution due
measurement. For this purpose Eqs.~21! and~22! should be
translated into the basis of localized states, so the terms

2~A2g11B2g2!~r1121/2!2g1A~1/22pst!

1AB~g12g2!Rer12, ~23!

where

A[«/\V, B[2H/\V,

should be added into Eq.~4! for ṙ11, and the terms

2~A2g21B2g1! Rer121AB~r112r22!~g12g2!/2

1g1B~1/22pst!2ıg2 Im r12 ~24!

should be added into Eq.~5! for ṙ12. The same terms shoul
obviously be added into Eqs.~2! and~3! for the conventional
approach.@Of course, this generalization is purely pheno
enological and is limited to the weak coupling regime, so
effect of Eqs.~23! and ~24! can be considered only at th
timescale longer than oscillation period.#

In the generalized case it is still possible to prove that
results of the Bayesian formalism for the detector curr
spectral densitySI(v) exactly coincide with the results o
the conventional approach. The essential difference from
proof above is nonzero stationary solution (zst ,r12,st) of
modified equations~2! and ~3! when pstÞ1/2. It is conve-
nient to consider homogeneous evolution equations~with
pst51/2), simply shiftingz(t) and r12(t) by the stationary
values. Using the same idea as in the proof above, we
show that in the Bayesian approachKI(t) for t.0 can be
written as (DI /2)2^z̃(t01t)&, where r̃ i j satisfies homoge
neous modified equations~2! and ~3! with z̃(t0)51
22zstz(t0)1zst

2 and r̃12(t0)52z(t0)r12,st2zstr12(t0)
1zstr12,st . After the averaging over initial states these init
conditions can be replaced withz̃(t0)512zst

2 and r̃12(t0)
52zstr12,st .
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Now let us show that we obtain the sameKI(t) in the
extension of the conventional approach. With the probabi
(11zst)/2 the first operatorẑ(t0) localizes the qubit into
state 1. Then the initial state for the homogeneous equat
is z̃(t0)512zst and r̃12(t0)52r12,st . With the probability
(12zst)/2 the evolution starts from state 2, i.e.z̃(t0)521
2zst and r̃12(t0)52r12,st . Adding two contributions with
opposite signs we see again that fort.0, KI(t)
5(DI /2)2z̃(t01t), where z̃ can be found as a solution o
Eqs. ~2! and ~3! modified by Eqs.~23! and ~24! without
inhomogeneous terms, with the initial conditionz̃(t0)51
2zst

2 and r̃12(t0)52zstr12,st . Thus the correlation function
KI(t) and, hence, the spectral densitySI(v) coincide in the
two approaches.

It is technically simpler to consider the averaged evo
tion in the diagonal basis rather than in the basis of locali
states @for this purpose we need to translate the te
2Gr12 from Eq. ~3! into the diagonal basis, and add it int
Eqs.~21! and ~22!#. So, to calculate the correlation functio
Kẑ(t) analytically, we start the evolution from one of th
localized states, then consider the averaged evolution in
diagonal basis~neglecting the rapidly oscillating terms du
to measurement!, and make the second projection onto loc
ized states att5t. Finally we obtain the result~also see
Ref. 30!

SI~v!5S01
~DI !2

Wt
F «2

\2V2
2zst

2 G 1

11~w/Wt!
2

1
2~DI !2H2

W0\2V2

1

11@~v2V!/W0#2
, ~25!

where

zst5
«

\V

1

114H2G/g1\2V2
tanhS \V

2T D , ~26!

Wt5g11
4GH2

\2V2
, ~27!

W05g21
G

2 S 11
«2

\2V2D . ~28!

Let us emphasize that the effect of a finite-temperat
environment is not generally equivalent to the nonideality
the detector described by finiteg in Eq. ~5!. As an example,
in the case of extra environment the right-hand part of E
~15! for the spectral integral should be multiplied by th
factor 12zst

2 , which disappears (zst50) only if T5` or «
50.

Comparing Eqs.~25! and~17!, one can see that within th
accuracy of the weak-coupling approximation the change
SI(v) due to an extra environment can be reduced to
detector nonidealityh,1 in two cases. Ifu«/Hu!1, then
Eqs.~25! and~17! coincide at an arbitrary temperatureT for
h5(112g2 /aV)21. For an asymmetric qubit,u«/Hu*1,
2-6
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the equivalence is possible only at high temperaturesT
@\V, and requires conditions

g25g1~11«2/2H2!/2, ~29!

h21511~11«2/4H2!3/2g1 /aV. ~30!

Figure 6 shows the numerically calculated spectral d
sity SI(v) of the detector current for a nonideal detector,h
50.5 ~dashed lines!, and for an ideal detector but extra co
pling of the qubit to the environment at temperatureT5H
~solid lines!. The ratesg1 and g2 are chosen according t
Eqs. ~29! and ~30!. For the symmetric qubit,«50, the re-
sults of two models practically coincide. In contrast, the so
and dashed lines for«52H significantly differ from each
other at low frequencies, while the spectral peak atv;V is
fitted quite well.

VII. CONCLUSION

Using both Bayesian and conventional approaches,
have calculated the spectral densitySI(v) of the detector
current when a two-level quantum system~qubit! is mea-
sured continuously. Depending on the coupling streng
there is a gradual transition from quantum oscillations

FIG. 6. Spectral densitySI(v) for the nonideal detector~dashed
lines!, and for the case of the ideal detector and weak extra coup
with the finite-temperature environment,T5H ~solid lines!.
i
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quantum jumps. This results in a transition from the peakl
spectral density to the Lorentzian shape ofSI(v). The maxi-
mal height of the peak at the frequency of quantum osci
tion is shown to be four times the shot noise pedestal. T
analytical results are given by Eqs.~14!–~17! and~25!, while
for arbitrary parameters numerical calculations are nec
sary.

In the simple case of weak coupling between a symme
qubit and an ideal detector, the height of the spectral pea
twice as high as the classical result for a harmonic signal
the Bayesian approach this is explained by the signific
correlation between the detector noise and the evolution
the measured system due to quantum back-action. In c
trast, in the conventional approach this fact is a conseque
of the discrete eigenvalues of theẑ operator, which corre-
sponds to the magnitude measured by the detector.~In other
words, this operator ‘‘collapses’’ the system into one of tw
eigenstates, and this is why the averaged product of
operators is twice as large as that for a classical harmo
signal.! So, even though the results forSI(v) coincide in two
approaches, the interpretations are significantly differe
since the ‘‘abrupt’’ collapse is replaced in the Bayesian a
proach by a ‘‘continuous’’ collapse related to a noisy dete
tor output.

It is important to notice that the Bayesian formalism a
lows us to monitor thephaseof quantum oscillations con
tinuously. This makes it possible to tune the phase using
feedback control of the qubit parameters. If the real-tim
calculations using Eqs.~4! and ~5! and fast feedback loop
were available in an experiment~the typical bandwidth
should be larger thanG); then the random diffusion of the
oscillation phase could be eliminated, and the qubit co
‘‘stay fresh’’ for a very long time. The suppression of qub
dephasing using the feedback control of the tunnel
strengthH was confirmed by Monte Carlo simulations. Th
elimination of the phase diffusion gives rise to ad-function
peak in the detector spectral densitySI(v) at the frequency
V. A detailed analysis of this situation is beyond the sco
of the present paper.
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