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Output spectrum of a detector measuring quantum oscillations
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We consider a two-level quantum systégubit) which is continuously measured by a detector, and calcu-
late the spectral density of the detector output. In the weakly coupled case the spectrum exhibits a moderate
peak at the frequency of quantuiiRabi oscillations and a Lorentzian-shape increase of the detector noise at
low frequency. As the coupling increases, the spectrum transforms into a single Lorentzian corresponding to
random jumps between two states. We prove that the Bayesian formalism for the selective evolution of the
density matrix gives the same spectrum as the conventional master equation approach, despite the significant
difference in interpretation. The effects of the detector nonideality and the finite-temperature environment are
also discussed.
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[. INTRODUCTION We show that in the weak-coupling case, when the quan-
tum (Rabj oscillations of the qubit state are only slightly

The long-standing and still controversial problem of perturbed by the detector, the corresponding peak in the
quantum measurements gradually becoming a practical spectral density of the detector current can be up to four
issue due to the development of experimental techniques céimes higher than the noise pedestalso see Ref. 30 As
pable of measurements at the quantum bofseee, e.g. Refs. the coupling increases, the quantum Zeno effeisecomes
2—7). The renewed interest in this subject is caused by théignificant leading to the Lorentzian shape of the spectral
needs of quantum computifigsince the measurement of an density centered at zero frequency. .
entangled and possibly evolving quantum state by a realistic 't iS important to notice that there should be no difference
detector in a realistic environment presents a nontrivial probP&tween the predictions of the conventional approach and the
lem. approach of selective evolution unless the measurement re-

Despite the experimental prdadf the violation of Bell's ~ Sult affects(or somehow seleckshe system evolutiorifor
inequality’ that rejects the idea of hidden variables, the ori-€x@mple, via the feedback loppVe prove this equivalence
gin of the randomness of a quantum measurement reteelt  explicitly for the detector spectral density there is no feed-
problem known as the “wave-function collapgetemains bgck). In spite of the same final result, the interpretations are
controversial. Important insight into this problem was pro-different: in the Bayesian formalism a significant contribu-
vided by the development of the theory of continuous quantion to the spectrum comes from the correlation between the
tum measurement, which generalizes the “orthodox” ¢ase detector noise and the system evolution, while this correla-
of instantaneous measurement. There are two different thedon is absent in the conventional approach. In the paper we
retical approaches. In the first approsdbased on the theory @IS0 discuss the extension of the Bayesian formalism to the
of interaction with a dissipative environmeftthe evolution  case of additional weak interaction of the two-level system
of the density matrix of the measured systemaigraged  With a finite-temperature environmeft.
over a completeensembleof measurements, thus leading to

the deterministic e_quation. This is t_he best-known approach, Il. BAYESIAN FORMALISM
at least in the solid-state community, and so can be called _ _
“conventional.” The other approac¢fi?? (more developed For a two-level quantum system described by the Hamil-

in quantum opticestudies the random evolution of the quan- tonian
tum state during ainglerealization of the measurement, so
that this evolution is conditioned dselected bythe particu- e
lar measurement result. ReceRtty” the latter approach was HOIE(CIcl—c£c2)+ H(cle,+chey) )
introduced in the context of solid-state physics using a deri-
vation based on a simple Bayesian analysis of probabilities . . .

- éwheres is the energy asymmetry ard is the tunneling
a calculation of the spectral density of the detector curren?.trength’ the evolution of !ts de'nsny mat”pii due to con-
when a two-level quantum systefqubit) is measured con- tinuous nff?ssz%rforgem s given in the conventional
tinuously (Fig. 1). As a particular example, we consider a approachi-12252630%hy the equations
double quantum dot occupied by one electron, the location of
which is measured by a quantum point contact ne&ty. :
Another example of the setup is a single-Cooper-pair box, P11~ —Z%Im P12, putpa=1 2
being measured by a single-electron transi§téf:?” One
more possible example is the continuous measurement of
two flux states of a superconducting quantum interference : :IE +|E( —py)—T &)
device(SQUID) by another inductively coupled SQUIt§:2° P12= 15 P12 I AP P2 P1z:
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1. unperturbed quantum oscillationdn particular, this condi-
qubit detector 70> tion requires the detector to be “weakly responding'l |
<lq, which allows us to use the linear-response approxima-
FIG. 1. Schematic of a qubit continuously measured by a detection.
tor with output signal (t). Averaging of Eqs(4) and (5) over all possible measure-
ment resultgfi.e., over random contributiog(t)] reduces
where the dephasing rafedue to measurement depends onthem to Egs(2) and (3). Note that the stochastic equations
the type of the detector uséd>26:30:33-35 are written in Stratonovich form, which preserves the usual
Equations(2) and (3) describe the averaged evolution. In calculus rules, while averaging would be easier infdtom 3°
contrast, to analyze the single measurement process we neEduations(4)—(6) in I1to form (which looks quite different
the selective(conditiona) evolution of p;; which in the for the casee=y=0, were also obtained in Ref. 17 using a

Bayesian formalism is described by equatfons different technique. In order to avoid confusion between two
forms of stochastic equations, let us write the exact solutions
: H 2Al of Egs.(4) and(5) in the caseH=0:
pu= -2 Mpit “pupd 101, (g O E @ ANIO
pu(7) _p1(0)  [1(1) =11 ]°=[1(n)=I5]°
. & H Al D pal0) & S/ . (D)
P12:|5912+'z(911_l722)_ §(P11_P22)[|(t)_|0] P22 P22
1/2
X P12~ VP12, (5 )= 0 eIET/f{M e 7 8
plZ( ) plZ( ) pl]_(o) pzz(o) ’ ( )

where I(t) is the detector currenfsee Fig. 1 l,=(l4
+1,)/2, I, andl, are the average currents corresponding t

two localized states of the qubikl =1,—I (note the differ- equations is quite clear: Eq7) is the classical Bayes for-

ent sign in the definition “S‘?d in Ref. 23and S, is the ._mula which should remain valid in the quantum céateH
low-frequency spectral density of the detector shot n0|se:0) because of the correspondence principle, while (Ey.

.(Wh'Ch IS assumeq to b? constant in the freque_ncy range oJhows that the dephasing is due only to the interaction with
interest and practically independent of the qubit Statbe extra environmentnot due to the measurement itgelictu-

detector nonideality is described by the dephasing contribu- :
tion y=I"—(A1)%/4S,=0 due to interaction with “pure en- ally, Egs.(7) and(8) are more basic than Eq#t) and (5),

) ., g and were directly used in the derivation of Ref. 23. In the
vironment .(Wh'Ch doe52 not affect the de_ztector curr)enq caseH #0 the analytical solution is not available, so numeri-
particular, sincd™ = (Al)“/4S, for symmetric quantum point cal calculations are necessary
contact(see Refs. 25, 5, 30 and B33t represents an ideal '
detecto?® =1, wherep=1— y/T is the ideality factor. In
contrast, the single-electron transistor in a typical operation lll. WEAK COUPLING
point is a significantly nonideal detectoj=<1.23263%¢(Actu- Using Eqs.(4)—(6) and the Monte—Carlo methdgimilar

ally, for(?“.sri]ngle-elecj[trodn transitstor kE@ gaflfn be furfthe;h to Ref. 23, we can calculate in a straightforward way the
improve ,ft?]wever, ! toes 2?1 rga Slg ! ert()ance %r Iespectral densityS,(w) of the detector current(t). Solid
purposes ot the present P?‘F)e. esQ can e8an.| €4l Jines in Fig. 2 show the results of such calculations for the
detector when its sensitivity is quantum limit&%® Since ideal detector,=1, and weak coupling between the qubit
the typical output signal from the SQUID is the voltagmt and the detectory= 0.1, wherew=7 (A1)2/8S,H (a is eight

the curreni, this requires a minor modification of the formal- . -
ism; thus in this paper we do not consider the SQUID cas%'rmeS less than the paramet@introduced in Ref. 28 One

%herel_(q-)sflfgl(t) dt. The physical meaning of these

explicitly, even though all the results can be easily translated= 3¢ that in the symmetric cases0, the peak at the
explicrtly, 9 y equency of quantum oscillations is four times higher than
into SQUID language.

. . the noise pedesta§ (1) =55, while the peak width is de-
quatlons(4) and (5) allow us to calculate the eVOIUt'c.m termined by the coupling strengila (see Fig. 5 beloy In
of p;; if the detector output(t) is known from the experi- . . .
] . the asymmetric case,# 0, the peak height decreasdsg.
ment. In order to simulate the measurement we need th ; e . .
’ZJ), while the additional Lorentzian-shape increaseSdfw)
replacemerit , > .
appears at low frequencies. The origin of this low-frequency
(1) =1 o= Al(pyy— po) 12+ E(1), (6) fea_lture is the slow fluctuation of the a§ymmetrypqi osql—
lations (Fig. 3). In casee=0 the amplitude ofp,; oscilla-
where the random procesg(t) has zero average and tions is maximalsee the thick line in Fig.@)], hence there
“white” spectral densityS;=S. is no such asymmetry and the low-frequency feature is ab-
Note that in order to consider the detector as a device witlkent, while the spectral peak at the frequency of quantum
classical output signal, Eq$4) and (5) essentially use the oscillation is maximally high.
Markov approximation and assume that the typical frequency In order to understand the factor 4 for the maximum peak
of the internal detector evolutiofon the order ofS,/e? height, let us consider the cases<l, =0, and n=1.
~1g/e) is much higher than the typical frequency m@x()  Then the selective evolution can be written as the quantum
of pj; evolution (here ()= VAHZ+&?I1 is the frequency of oscillations with slowly fluctuating phase(t):

085312-2



OUTPUT SPECTRUM OF A DETECTOR MEASURING . ..

6 1 1 1 1 I i 1 1 1 ' 1 1 1 L b} 1. 1 1
5 - a=0.1 L
4 n=1 L
4 — _ |
& e/H=0
~ y 1 r
3 3 L
) 2
5] B L
2 L
1
0 T T T T l T T T T I T T T T I T T T T
0.0 0.5 1.0 1.5 2.0
®/Q

FIG. 2. Spectral densit$ (w) of the detector current for weak
coupling (@=0.1) of an ideal detector7{=1) with a two-level
system ¢/H=0, 1, and 2. The results of Monte Carlo calculations
using the Bayesian formalism are shown by solid lines, while th
dashed lineswhich practically coincide with solid lingesare calcu-
lated using the master equation approach.

z(t)=pas(t) — poat) =cose(t), ¢=Qt+e(t), (9)

p12=(1/2)sin¢(t)

(the state becomes pdreafter an initial transient period
since =1, while the real part op,, decays because af

=0). From Egs.(4) and (6) we obtain the random phase
dynamics:

(10

ﬂ
So

Since (A1)%/2S,<Q, we can neglect the first term in the

= —sing (12)

Al
cos¢>? + g(t)}.

square brackets and average the second contributiongover

that leads to the white spectrum of Sq'p(w):(AI)Z/ZSO.
Then the correlation function K,(7)=(z(t)z(t+ 7))
can be calculated as K,(7)=cos)7){cosA¢(7))/2
=cos(Qn)exd —(Al)?785,]/2 and the spectral density

1.0 T S B T N B T T U R
- ’\ 8:H -
& 0.5 =
0.0 LA B A A S S B B B NS SN A B B BN N
0 5 10 15

tQ/2n

FIG. 3. A particular realization of the evolution pf,(t) due to
continuous measurement fefH=1, «=0.1 andn»=1. Note the
fluctuation of both the phase and the asymmetry of oscillations.
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FIG. 4. A particular realization gb, evolution (thick line) and
the corresponding detector outpuft) (thin solid, dotted, and
dashed lingsaveraged using rectangular windows with different
time constantsr,. (a8) Weak-coupling caseq=0.1. (b) Strong-
coupling case@=5.

S(w)=2[7%_K,(7)expliwr)dr has a peak in the vicinity of
the oscillation frequencyw—Q|<Q:
_ 85 1

(A2 1+[8Sy(w—Q)/(A1)2]%

The detector current is given by E@), so its spectral den-
sity consists of three contributions,

S(w)

(12

Al? Al
S(w)=S+ TSz(w)Jr 7[ng(w)+82g(w)], (13

where the last contribution originates from the correlation
between thep;; evolution and the detector noisgt). To
calculate the correlation functiorK,(7)=(&(t)z(t+ 7))
for >0, we need to take into account the phase shift
de=—sin ¢AIS§1§(t)dt during even an infinitesimally small
time durationdt, since the amplitude of the stochastic func-
tion £(t) grows with the time-scale decreasé(t)2dt
=Sy/2. Using trigonometric formulas and linear expansion
in de, we obtain (&(t)cod@(t)+dp+Qr+Ae(n)])
=AIS, H&(t)2dt)(sin (t)sin ¢(t) + Qr])(cosAe(7)) and fi-
nally K ,(7) = Al cosQuexf —(Al)?7/8S,]/4. After Fourier
transformation one finds that the correlation betweéé¢n
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TN S R S S L ously not the case. Actually, the detector current shows nei-
ther clear harmonic nor rectangular signal distinguishable
from the intrinsic noise contribution. Figurdal shows the
simulation ofp4; evolution (thick line) together with the de-
tector current (t). Sincel (t) contains white noise, it neces-
sarily requires some averaging. Thin solid, dotted, and
dashed lines show the detector current averaged with differ-
ent time constants,: 7,Q2/27=0.3, 1, and 3, respectively.
For weak averaging the signal is too noisy, while for strong
averaging individual oscillation periods cannot be resolved
either, so quantum oscillations can never be obsedied
rectly by a continuous measuremdmiithough they can be

—
W

$1(0)/S,
- s
1 1 (] ] 1 1 1 1 | 1 1 I3 1 I 1

LI B N N L S e B B ) B

0 L e L e e mm calculatedusing Egs.(4) and (5)]. This unobservability is
0.0 0.5 1.0 L5 - 20  revealed in the relatively low peak height of the spectral
0/Q density of the detector current.

IV. ARBITRARY COUPLING

The situation changes as the coupling between the detec-
tor and qubit increasesy=1. The strong influence of mea-
surement destroys quantum oscillations, and the quantum
Zeno effect! develops, so that for>1 the qubit performs
random jumps between two localized stafese Fig. 4b)].

In this case the properly averaged detector current follows
the evolution of the qubit rather welhowever, the unsuc-
cessful tunneling “attempts” still cannot be directly re-
solved, and the spectral density oft) can in principle be
calculated using the classical theory of telegraph nUise,
leading to the Lorentzian shape $f w). Figure %a) shows

the gradual transformation of the spectral density with the
increase of the coupling for a symmetric qubite =0, and

FIG. 5. The detector current spectral densfiyw) for p=1 an ideal detectory=1. The results for an asymmetric qubit,
and different couplingr with (a) symmetric €=0) and(b) asym- &/H=1, are shown in Fig. ®).
metric (e/H=1) qubits. The curves in Fig. 5, as well as the dashed curves in Fig.

2, are calculated using a natural extension of the conven-
andz(t) brings exactly the same contribution to the detectortional master equation approach, which gives the same re-
spectral densitysee Eq(13)] as the term due ta(t) evolu-  sults for the detector spectral density as the Bayesian formal-

0.0 0.5 1.0 15 2.0
o/Q

tion, so that ism (we will prove this latey. In the conventional approach
we assume no correlation between the detector noise and the
45, qubit evolution[the last two terms in Eq(13) are absent
Si(w)=Sp+ (14

1+[880(w—Q)/(AI)2]2' while the correlation functiorK;(7) should be calculated
consideringz(t) not as an ordinary function but as an opera-

Thus the peak corresponding to quantum oscillations is foufy; Then the calculation c(fi(t+ r)i(t)) can be essentially

times higher than the noise background, while its full width. . . -
at half r?eight is equal toﬁ(l)2/48?)=a9 (the same peak interpreted as follows. The firgin time) operatorz(t) col-

. . ; lapses the qubit into one of two eigenstates which correspond
width was calculated in Ref. 40The integral under the to localized states, then during timethe qubit performs the

peak, evolution described by conventional equatid@s and (3),
% do (Al)? and finally the second operatpft + 7) gives the probability
. [S(w)=Sol5—=—— (19 for the qubit to be measured in one of two localized states.

(Of course, this procedure can be done purely formdlly,
has an obvious relation to the average square of the detectafithout any interpretatiof Note that there is complete sym-
current variation due to oscillations in the measured systenmmetry between states 1 and 2 evendetO (in particular, in
Note, however, that this integral is twice as large as onehe stationary statp;,= p,,= 1/2), so the evolution after the
would expect from the classical harmonic signal, since onefirst collapse can be started from any localized state leading
half of the spectral peak height comes from a nonclassicab the same contribution to the correlation function. In this
correlation between the qubit evolution and the detectoway we obviously obtairK;(7) = p11(7) — pox(7) Where p;;
noise. Classically, Eq15) would be easily understood if the is the solution of Eqs(2) and(3) with the initial conditions
signal was not harmonic but rectangularlike, which is obvi-p;;(0)=1 andp;,(0)=0.
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For the symmetric qubite =0, these equations can be oscillations. This difference exactly compensates for the ab-

easily solved analytically, and finally we obtain sence of the correlation terms in H4.3) in the conventional
approach.
Q2(A1)?T Let us prove explicitly that the two approaches give the
S(w)=Sp+ (16)  same result fo§(w) in a general case. In order to calculate

2 2\2 2 2
(0" =05+ o K¢, (7) for >0 using the Bayesian formalism, let us first
where T'= 7 1(A1)%/4S,=an Q. This equation obvi- average the produé(ty)z(to+ 7) over randomg(t) during a
ously transforms into Eq14) for =1 anda<1. Note that  time periodt,<t<to+ 7, fixing the same conditions at
for weak coupling with a nonideal detectop<1 and =to. Then we can use conventional equati¢@s and (3)
an '<1, the peak height of () is equal to 4S,, while  [regarded as Eqs4)—(6) averaged over randor(t)] with
the linewidth a7~ Q) of the peak isy ! times wider than the initial conditionp;;(to+0)= pj; (to) +dp;;, where
for the ideal detector. As the coupling increases, the line-

—Ala-l 2
width grows and the oscillation frequency decre&%es, .. dz=AlS, 11-2°(to)] &(to)dt, (18)
=QO[1-(a/l2)?)Y?. The transition into the overdamped .

regime occurs atez~ 1>2, while the peaklike feature dis- dp1o=— Al So Z(to) p1ato) £(to)dt (19

appears aty '>\2. For ap '>2 the spectral density (for simplicity we will refer toz=py,— p,p as a component
consists of two Lorentziang w; ,=I'/2% (I'?/4-Q%)"] pij). Since the sign of(to) is arbitrary and averaged
centered at zero frequency, with the negative sign angyolution equations are linear, we need only fluctuating con-
Sma"er amp“tud@z of the second LorentZian, which has a tribution to plj(t0+ O) and, henCE, can forma”y assume that
higher cutoff frequency:Az/A;=—w;/w,. In the case the evolution starts from;;(to+0)=dp;; (note that we can
an '>1, which corresponds to the well-developed quan-orget the conditionp;,+ p»,=1 and use onlyz and p15).

tum Zeno effect,S(w) — S, has a purely Lorentzian shape ysing the relatioré(to)2dt=S,/2 and the evolution linearity,

(A %w4/(0®+ wf) with 0;=0%T=0Q7la. we can formally write
For the asymmetric qubig+# 0, the spectral density can
in principle also be calculated analytically but the expres- ng(T)Z(A|/2)<~Z(to+ ), (20

sions would be too lengthy, and it is simpler to use numerical _ o L ,
solution of Egs.(2) and (3). The analytical formula for the where p;; satisfies Eqs(2) and (3) with z(tp) =1—2(to)

weak-coupling limit is and pyo(to) = — z(to) p1o(to), and the averaging over the
initial conditions att=t, should still be done later. Before
7Soe?/H? this let us perform a similar formal trick foiK,(7),
S(0)=Spt 1+ (wh2Q2/4H7T)? representing it aéz(to+ 7)), where the evolution starts from
Z(to) =2(to)? and piy(te)=2z(to)p1ato). Now combining
47So(1+&%2H%) 71 1 two terms in the detector current correlation functkoy(7)
1+[(w—Q)/T(1-2HY%202)]?’ @D = (1 (to) 1(tg+ M) — (1)2= (A/2)2K(7) + (A/2) K gy(7)

(here 7>0), we see that it can be written aAI(/2)2<~z(tO

§ 7)), whereZ(ty)=1 andp;,(to)=0. Thus we have ex-
actly arrived at an expression of the conventional approach,
Y s - U n ) in which the evolution always starts from the localized state,
where F1,2_(Qzlza)[2b+(2b —4a)'?],  b=1/4-27a%4 regardless of the actual quantum staté=at,. This proof is
+9a/2, anda=¢°/(4H"+¢%). AtI'>T'; the dynamics for-  opyiously valid for arbitrarye, 7, ande/H. Despite obtain-
mally returns to the underdamped regime; however, the peajig the same result in the two approaches, the interpretations
linewidth is much larger than the frequency, andSptw) is  are quite different, since the Bayesian approach allows us to
monotonic. For|e/H|>1/\2 the overdamped regime does foliow the qubit evolution during the measurement process,

not occur. In both cases in the limit of lardethe spectral  yhile the conventional approach gives only the average char-
density has an almost Lorentzian shape, with the cutoff fregcteristics.

quencyw;=4H?/#°T .
One can check that the spectral densities given by Egs.
(16) and(17) satisfy the integral conditiofEq. (15)], which

The spectral peak and the low-frequency Lorentzian becom
wider with the coupling increase, sinfe= a7~ (2, and for
|e/H|<1/y2 the overdamped regime starts frof=1"y,

VI. FINITE-TEMPERATURE ENVIRONMENT

remains valid for arbitrary parametess ¢/H, and 7, be- In this section we will discuss how to introduce a finite-
cause of the equatiol,(+0)=(A1/2). temperature environment into Eqgl)—(6) of the Bayesian
formalism. Note that so far there has been complete symme-
V. EQUIVALENCE OF TWO APPROACHES try be'wveen s.ta.tes 1 and 2 even for a finite-energy difference
e, while the finite-temperature effects would be expected to
Comparing two derivations db (w) in the casesy<1, lead to different average populations of these states. Such

n=1, ande=0, we see thaK;(7) is twice as large as symmetry requires an implicit assumption that the typical
K,(7) because in the conventional approach the evolutiorenergy in the detectofvoltage or temperatuyeis much
always starts from the localized state, while in the Bayesiamarger than the energies involved in the qubit dynamics. So
approach it starts from an arbitrary phase of the quantunthe absence of temperature in the formalism does not mean
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that it is zero or very large, but just that temperature effects Now let us show that we obtain the sarg(7) in the
are not important. Now let us assume that, in addition to thextension of the conventional approach. With the probability

detector, the qubit is coupled to an additional finite-(1+ z.)/2 the first operatoz(to) localizes the qubit into
temperature environment, which creates an asymmetry begtate 1. Then the initial state for the homogeneous equations
tween states 1 and 2 when-0. is Z(to) = 1 — zs; and pro(to) = — prast. With the probability

While the case of finite coupling of a two-level system . ~ N
with an environment presents a difficult problétthe (1~ Zs0/2 the evolution starts from state 2, iKty)=—1

weak-coupling limit can be treated in a simple way. In the — Zst andﬁl_z(to)= ~p12st- Adding two contributions with
standard methdd it is described by the equations opposite signs we see again that far>0, K(7)
. =(AI1/2)%z(ty+ 7), wherez can be found as a solution of
Pr+=—vilpss—Pst)y Pistp__=1, (21 Egs. (2) and (3) modified by Egs.(23) and (24) without
inhomogeneous terms, with the initial conditiafty) =1

pi-=1Qpi_—Yopi_, (220 —Z2 andpyo(te) = — Zgp1ps:- Thus the correlation function
K,(7) and, hence, the spectral densBy ) coincide in the
two approaches.

It is technically simpler to consider the averaged evolu-
tion in the diagonal basis rather than in the basis of localized
states [for this purpose we need to translate the term
—I'p4, from Eq. (3) into the diagonal basis, and add it into
Egs.(21) and(22)]. So, to calculate the correlation function
q(g(r) analytically, we start the evolution from one of the
localized states, then consider the averaged evolution in the
diagonal basigneglecting the rapidly oscillating terms due

which are written in the diagonal bagis+" corresponds to

the ground stade The temperatur@ determines the station-
ary occupatiorps,=[ 1+ exp(—#/T)] ! of the ground state,
and the relaxation rates obey inequdfity,/2< y,<Q.

If the coupling of the qubit with the detector is also weak,
an <1, the evolution due to an extra finite-temperature
environment can be simply added to the evolution due t
measurement. For this purpose E@l) and(22) should be
translated into the basis of localized states, so the terms

—(A2+.+ B2 — 12 — v A(1/2— to measuremejtand make the second projection onto local-
(A 72)(Pua )= 7Al Ps) ized states at=r. Finally we obtain the resultalso see
+AB(y1—v2)Repyy, (23 Ref. 30
where S (o) SO+(A|)2 2 , 1
w)= -z
A=c/hQ, B=2H/AQ, ' W 4202 Y1+ (wiw,)?
should be added into E¢4) for p;;, and the terms N 2(Al)%H? 1 25
202 _ 2’
—(A%y,+B%y;) Repio+ AB(p11—p2d) (v1— 72)/2 Woi 2% 1+ [ (0= 2)/Wo]
where
+¥1B(12=ps) —1y2Imp1p (24
. . 1 x9)
should be added into E¢) for p;,. The same terms should z _Z tanH — 26)
U RO 2 2()2 2T ) (
obviously be added into Eq&2) and(3) for the conventional 1+4HT/y,/°Q
approach[Of course, this generalization is purely phenom-
enological and is limited to the weak coupling regime, so the 4TH?
effect of Egs.(23) and (24) can be considered only at the W= 71+ 7202 (27
timescale longer than oscillation peripd.
In the generalized case it is still possible to prove that the I 5
results of the Bayesian formalism for the detector current Wo=yo+ = 1+ © ) (28)
spectral density§,(w) exactly coincide with the results of 2 h20?
the conventional approach. The essential difference from the _ o
proof above is nonzero stationary solutiobg(pips) Of Let us emphasize that the effect of a finite-temperature

modified equationg2) and (3) when pg#1/2. It is conve- environment is not generally equivalent to the nonideality of
nient to consider homogeneous evolution equatiomsh  the detector described by finitein Eq. (5). As an example,
pe=1/2), simply shiftingz(t) and p;,(t) by the stationary in the case of extra environment the right-hand part of Eq.
values. Using the same idea as in the proof above, we cadd for the spectral integral should be multiplied by the
show that in the Bayesian approakh(r) for 7>0 can be factor 1-25,, which disappearsz{;=0) only if T=% or
written as (1/2)%(Z(ty+ 1)), wherep;; satisfies homoge- ~9: _ o
neous modified equationg?) and (3) with ~z(t0)=1 Comparing Eqs(25) and(lj), one can see that within the

) ~ accuracy of the weak-coupling approximation the change of
—2z4z(to) 2y and  pip(to) = —2Z(to) p1osi— ZswiAto) S (w) due to an extra environment can be reduced to the
+Zsp 125t - After the averaging over initial states th~ese initial detector nonidealityp<1 in two cases. fe/H|<1, then
conditions can be replaced witt{ty) = 1—z§t and p1(to) Egs.(25) and(17) coincide at an arbitrary temperatufeor
= —Zgp1ost- 7=(1+27y,/aQ) L. For an asymmetric qubite/H|=1,
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quantum jumps. This results in a transition from the peaklike
spectral density to the Lorentzian shapesdfw). The maxi-

mal height of the peak at the frequency of quantum oscilla-
tion is shown to be four times the shot noise pedestal. The
analytical results are given by Eq44)—(17) and(25), while

for arbitrary parameters numerical calculations are neces-
sary.

In the simple case of weak coupling between a symmetric
qubit and an ideal detector, the height of the spectral peak is
twice as high as the classical result for a harmonic signal. In
the Bayesian approach this is explained by the significant
2y,=y,(1+e22H?) correlation between the detector noise and the evolution of
T=H the measured system due to quantum back-action. In con-
0 L e T trast, in the conventional approach this fact is a consequence

00 03 1o 1.5 of the discrete eigenvalues of tfzeoperator, which corre-
o/ sponds to the magnitude measured by the dete@tonther
FIG. 6. Spectral densit$, (w) for the nonideal detectadashed ~ Words, this operator “collapses” the system into one of two
lines), and for the case of the ideal detector and weak extra couplingigenstates, and this is why the averaged product of two
with the finite-temperature environmefft=H (solid lines. operators is twice as large as that for a classical harmonic
signal) So, even though the results 8 w) coincide in two
the equivalence is possible only at high temperatufies, approaches, the interpretations are significantly different,

= s AN

y=Q@ Do (1+e24H232

P MR (T SN Y ST R R R B S
LI N A N B B S B B B B

g
o

>}, and requires conditions since the “abrupt” collapse is replaced in the Bayesian ap-
o proach by a “continuous” collapse related to a noisy detec-
¥2= y1(1+e/2H)/2, (29 tor output.

It is important to notice that the Bayesian formalism al-
lows us to monitor thephaseof quantum oscillations con-
tinuously. This makes it possible to tune the phase using the
feedback control of the qubit parameters. If the real-time
calculations using Eq94) and (5) and fast feedback loop
were available in an experimerithe typical bandwidth
Do , should be larger thal'); then the random diffusion of the
(solid liney. The ratesy, and y, are chosgn according to oscillation phase could be eliminated, and the qubit could
Egs. (29) and (30). For th_e symmetric qubitz =0, the re- . “stay fresh” for a very long time. The suppression of qubit
sults of two models practically coincide. In contrast, the SO“ddephasing using the feedback control of the tunneling

and dashed lines fos =2H significantly differ from each  gyrengthH was confirmed by Monte Carlo simulations. The
other at low frequencies, while the spectral peakoat(Q is  gjimination of the phase diffusion gives rise tasgunction
fitted quite well. peak in the detector spectral densByw) at the frequency
Q). A detailed analysis of this situation is beyond the scope
VIl. CONCLUSION of the present paper.

Using both Bayesian and conventional approaches, we
have calculated the spectral dens8y ) of the detector
current when a two-level quantum systeoubit) is mea- The author thanks D. V. Averin, J. E. Lukens, and K. K.
sured continuously. Depending on the coupling strengthl.ikharev for fruitful discussions. The work was partly sup-
there is a gradual transition from quantum oscillations toported by AFOSR.

7 =1+ (1+¢&%/14H?)%?y, [ aQ). (30)

Figure 6 shows the numerically calculated spectral den
sity S;(w) of the detector current for a nonideal detectgr,
=0.5(dashed lines and for an ideal detector but extra cou-
pling of the qubit to the environment at temperatdre H
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