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Quantum gates that temporarily increase singlet-triplet splitting in order to swap electronic spins in coupled
guantum dots lead inevitably to a finite double-occupancy probability for both dots. By solving the time-
dependent Schdinger equation for a coupled dot model, we demonstrate that this does not necessarily lead to
guantum computation errors. Instead, the coupled dot ground state evolves quasiadiabatically for typical
system parameters so that the double-occupancy probability at the completion of swapping is negligibly small.
We introduce a measure of entanglement that explicitly takes into account the possibilty of double occupancies
and provides a necessary and sufficient criterion for entangled states.
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I. INTRODUCTION swapping process does not lead to processing errors, pro-

vided that the double occupancies are sufficiently suppressed

In the past several years there has been a great deal when the swapping of spin states is completed. The principle
interest in possible physical realizations of quantum computpurpose of the present paper is to illustrate this basic feature

ing bits and operationsAmong the various proposals, solid within the Hund-Mulliken description of a quantum dot hy-

state systems are particularly attractive since they are morgrogen molecule. We will see that, in a system of identical
easily integrated into large quantum networks. In particulardots, the time evolution of this system can be reduced to the
semiconductor nanostructures that use the spin.degree pfoblem of a pseudospin half in a time-dependent pseudo-
freedom of the electrofigrather than their chargéor infor-  magnetic field. In particular, the question of whether double

mation processing are of special interest since they can takg.cpancies are a severe obstacle for swap operations in the
advantage Qf thg} comparatively long spin coherence times iauantum dot system is equivalent to the question of how
such materials- _ , close the pseudospin dynamics is to its adiabatic limit.
A key challenge is the construction of systems composedimple numerical studies presented in Sec. IV show that the
of two coupled quantum dots that can be coupled to performysedospin has an approximately adiabatic time evolution
swap operationgfsy, i.e., unitary two-qubit operations that o 5 ramarkably broad range of coupling ramp times. It turns
interchange the spin statequbity of the electrons on the ¢ that this behavior holds even if the inversion symmetry

B - p 2 : ; . .
two dots?®~*°By combining the “square rootl/gy,of such  ajong thex axis connecting the dots is brokée.g., in the

a swap with other isolated-qubit manipulations, one can CoNnpresence of an electric field
struct a quantum XOR gate. A quantum XOR gate, along A secondary purpose of this work is to introduce a
with isolated-qubit operations, has been shown to be sufficoordinate-independent measure of entanglement appropriate
cient for the implementation of any quantum algorithin. for the Hilbert space of the above system. This quantity pro-
Hence, a practical and reliable realization of a swap gatgides a necessary and sufficient criterion for the entangle-
would be an important step towards the fabrication of ament of quantum states. It differs from other entanglement
solid-state quantum computer. criteria proposed in the literatufein so far as it takes into
The swap operation of electron spin states in a double dofccount states with double occupancies. This generalizes the
system can be realized in principle by turning on a time-typjcal situation of Einstein-Podolsky-Rosen experiments.
dependent exchange coupling between the spins as a “sourgge expect this measure of entanglement to be useful in the
of entanglement.” In practice the exchange interaction isheoretical study of coupled quantum doter similar

provided by singlet-triplet splitting in a double dot, which is quantum-confined nanostructuresndependent of the par-
always accompanied by a finite interdot electron tunnelingijcular model considered here.

amplitude.

In a recent work, Das Sarma and co-worRéPsempha-
sized that exchange interactions in the range of interest are Il THE MODEL
accompanied by a substantial probability, during the swap '
operation, that both electrons will be on the same dot. In this We consider a system of two electrons in two laterally
paper we demonstrate that, contrary to naive expectationspupled quantum dots. The experimental motivation for the
these virtual double occupancies wilbt, under circum- model described below has been discussed elseh®re.
stances typically envisioned, lead to an important increase ihlere, we just summarize its basic features.
guantum computing error®ouble occupancy is not a fatal The Hamiltonian is given b§{=T+ C, whereC denotes
problem for quantum dot based quantum computing wittthe Coulomb repulsion between the electrons ahd
spins. The occurrence of double occupancigsring the  =ZX;_;h; is the one-particle part with
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The one-particle Hamiltoniah; describes electron dynamics
confined to thexy plane in a perpendicular magnetc fié3d 1 T

The effective masmis a material-dependent parameter. The |S2)= E(CATCAL + CBTCBL)|O>’ @
coupling of the dotgwhich includes tunnelingis modeled
by a quartic potential

1 + + + At
) |S3>:E(CATCA1_CBTCBL)|O>! 8
Vi) = ot L qzy? @
24 2 | 432 oI and the triplet multiplet,
which separates into two harmonic wells of frequengy |T*1)=c,§lc§l|0>, 9

(one for each dotin the limit 2a>2a,, wherea is half the
distance between the dots aag= VAi/Mmwy is the effective 1
Bohr radius of a dot. T = ?(CXTCQJFC&CEMO), (10)
Following Burkardet al.® we employ the Hund-Mulliken 2
method of molecular orbits to describe the low-lying spec- ITY=ct ci o) (11)
trum of our system. This approach concentrates on the low- ATEBTIE/
est orbital states in each dot and is an extension of th&he three triplet states are degener@pically, we can ig-
Heitler-London method also discussed in Ref. 6. The Hundnore possible Zeeman splittirtysand have the common ei-
Mulliken approach accounts for double occupancies and igenvalue,
therefore useful for investigating the questions at issue here.
In the usual symmetric gauge=B(—Y,x,0)/2 the Fock- eT=2e+V_, (12)
Darwin ground state of a single dot with harmonic confine-where we have defined
ment centered around= (*£4a,0,0) reads

M mw
P+alXy)=\/ %EX%ﬁ{(Xi a)’+y?}

i a
X exp( *5Y —2) , ©) An important further observation is that, as a consequence
Ig of inversion symmetry along the axis connecting the dots,

the Hamiltonian does not have any nonzero matrix elements
between the singlet staj&;) and other states. HenceS;)

is, independently of the system parameters, an eigenstate.
The eigenvalues of the triplet ang;), however, do depend

on system parameters. The Hamiltonian acting on the re-
maining space spanned b$;) and|S,) can be written as

e=(Alh|A)=(B|h|B) (13

and

V_=(T?C[T), V.=(S/[C|Sy). (14)

wherelg= % c/eBis the magnetic length, and the frequency
 is given byw?= w3+ »? , wherew, =eB/2mcis the usual
Larmor frequency. From these nonorthogonal one-particl
states, we construct the orthonormalized sti#esand |B)
with wave functions

<F|A>=\/%g_gz(¢+a_g¢a)y 4 H=23+%UH+V+—(U2'::2 _3:/2>, (15
) 1 where
<r|B>:\/Tg_gz((Pfa_g‘P+a)y (5 t,=(A|h|B)=(B|h|A) (16)
with S being the overlap between the staf8s andg=(1  and
— \/EZ)IS. For appropriate values of system parameters Uy=(S,|C|S,) -V, . a7

such as the interdot distance and the external magnetic field,
the overlapS becomes exponentially smélln this limit, an ~ The nontrivial part of Eq(15) is a simple Hubbard Hamil-
electron in one of the stat¢A), |B) is predominantly local- tonian and can be identified as the Hamiltonian of a
ized around = (=a,0,0). In the following, we consider this Pseudospin-half object in a pseudomagnetic field having a
case and use these states as basis states to define qubits, cemponentJ in the z direction and 4,, in the x direction
qubits are realized by the spin state of an electron in eitheof pseudospin spacé\ote that this pseudospin is not related
orbital |A), or orbital |B). to the spin degree of freedom that provides the qubite

An appropriate basis set for the six-dimensional two-space spanned H,) and|S,) contains the ground state of
particle Hilbert space is givefusing standard notatiprby  the system. The basis states themselves are eigenstates only
the three spin singlets in the case of a vanishing tunneling amplitugewhere|S;)
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is the ground state. In all other cases, the ground state has atates between the singlé®,) and|S;). Thus, in the pres-
admixture of double occupied states containediSs). The  ence of an electric field= —eEZ;x; , the Hamitonian acting
energy gap between the triplet and the singlet ground state tn the singlet subspace spanned|8y), |S,), |S;) reads

Uy 1
ST_830:V+_V,_7H+§\/UH+16{H. (18) 1 UH/2 2tH 0
H=28+§UH+V+_ 2tH _UH/2 F
A swap operation in the present system is a unitary trans- 0 F —Uy/2+2X
formation that turns a state having the qubits in different (21)
states, say, . .
y with the real matrix elemerft =(S,|£|S;) and
1

CXTCELIOFE(ITOHISD), (19 2X=(S,|C[S,) — (S4| C|S3) = 2(A[(A|C|B)[B). (22

. ) . With a finite matrix elemenf, the dynamics of the system is
into a state where the contents of the qubits are mterchangegﬁgh“y more complicated, but also in this case the only cou-
1 pling of the two-qubit state€l9) and(20) to the subspace of
+ o 1O\~ ([TO\ _ double-occupied states is provided by the tunneling ampli-
Ca1Ca1/0) \/§(|T )= 182D 20 tude t, . Therefore, with respect to the adiabaticity of the
, ) swapping process, the situation can be expected to be not
These two states are eigenstates in the daseV_ and ey different from the one with inversion symmetry be-
ty=0 for which the singlet-triplet splitting vanishes. tween the dots. This will be verified in Sec. IV.
As discussed in Refs. 2 and 6, swapping may be achieved gq far we have not considered a possible Zeeman cou-
by the action of a gate that I_owers the potential parrier bepling to the electron spin. This would not change the situa-
tween the quantum dots. This leads to exponentially largefion essentially since all states involved in the swapping pro-

values for bothv, —V_ andty. It is adequate for our pur- -ggg (T%, |S,), |S,), and eventuallySs)) have the total
poses to consider a model wheve =V _ (consistent with spin quantum numbes?=0.

the above limit of small overlafs) and the singlet-triplet
splitting results entirely fronty . If the duration and ampli-
tude of a tunneling pulse is adjusted appropriately, the rela-
tive phase between the Singlet and the triplet state involved Before ana|yzing further the poss|b|||ty of performing
picks up a shift ofr, and a swapping operation is performed. swap operations in the above system, let us introduce an
As pointed out in Ref. 10, a finite tunneling amplitude appropriate measure for the entanglement of its quantum
necessarily leads to a finite probability for double occupanstates. Consider a system of two fermions living in a four-
cies of qubit states. If double occupancy errors occur to angimensional one-particle space. A general state vector in this
sizable extenas a resultof the swapping process, any quan- six-dimensional Hilbert space can be written as
tum computation based on this hardware is likely to fail.
However, if the double occupancies are sufficiently efter |W)=W,,Co ;| 0) (23
the swapping process, errors in the quantum computation can
likely be corrected dynamically. An important observation iswhere a summation convention is understood for repeated
that the double-occupancy probabiliafter the swap van- latin indicesa,b, . ..,e{1,2,3,4 running over the orthonor-
ishes in the adiabatic limit, i.e., if the ramp timeof the = malized one-particle states. The coefficient matvixan be
guantum gate is such thaf 7 is much larger than the pseu- assumed to be antisymmetriwg,= —Wy,. The normaliza-
dospin splittingy/U, + 16t2. This follows since the nonadia- tion condition reads
batic effects can arise only from the sta{&) and|S,),
which have a nontrivial time evolution when the tunneling
amplitude ty is time dependent. Thus, the question of
whether double occupancies are problematic for swap opera-
tions in the present system is reduced to the question of howhere the bar denotes complex conjugation. A two-particle
close the motion of a spin-half object in a time-dependenstate of the form(23) is, in general, entangled, i.e., it cannot
magnetic field is to its adiabatic limit. This will be investi- be written as a single Slater determinahk) is nonen-
gated further in Sec. IV. tangled, i.e., a single Slater determinantwihas the form
The reduction of the dynamics to the time evolution of a
two-level system relies on the fact that the system has inver-

sion symmetry along the axis in real space connecting the
dots. This symmetry can be broken if odd powers of the .
particle coordinates; are added to the Hamiltoniai), for ~ for two orthonormal spinorg* andz?, z,z,= 6. We note
example, the potential of a homogeneous electric field. Howthat for a given nonentangled state) the choice of spinors
ever, the only additional matrix element due to such terms irz; and z, is by no means unique since any @Wtransfor-

the Hamiltonian occurs in the subspace of double-occupiedhation among these two occupied one-particle states leads to

Ill. ENTANGLED STATES

(wlw)=1&Tr(ww)=— % (24)

1
Wan=> (ZaZ)~ 27, (25

085311-3



JOHN SCHLIEMANN, DANIEL LOSS, AND A. H. MACDONALD PHYSICAL REVIEW B63 085311

the same two-particle state vector). Hence, for a given condition. As an example, consider a st&e with wi,
nonentangled stafev) there is a three-dimensional manifold =wg,=1/4, Wi3=wy,=i/4, and wy,=Wy3=0. This is

of spinors fulfilling Eq.(25). clearly a maximally entangled statge(w) =1, while its sca-
We define thedual matrix wof w by lar product with the complex conjugate of its dual state is
(w|w)=0.
~ 1 — We also mention the following identity for the determi-
Wab:i‘eabcc&"’cd (260 nant ofw:

with £22¢? denoting the totally antisymmetric unit tensor in 1. 2
four dimensions. The scalar product of a state with its detw=|{ z(w|w) | . (33

dual statdw) can be written as _
Hence it follows that als¢detw| could be used as a measure

(W] W)= 620U, Wy = B(W1 Wag+ Wy Wt Wi Wos). of entaglement. Equatio(83) is important for the proof of
(270 the sufficiency of our criterion for nonentangled states, as
explained in detail in the Appendix.
A convenient choice to make contact between the general
state labelsa,b, ...e{1,2,3,4 used here and the basis
~ states of the preceding section is given by (1,2,3,4)
m(w):=w|w)l (28) =(A71,A[,BT,B]). With this convention, a state vector
is a necessary condition fgw) being a single Slater deter- spanned byS,) and|S;) only hasw;, andws, as its only
minant. Moreover, in the Appendix it is shown thafw) independent nonzero coefficientsvin Such a state lies fully
=0 is actually also a suffcient condition fow) being non-  in the subspace of double occupancies, and its entanglement
entangled. Thusy defines a measure of entanglement that igs purely due to the orbital degrees of freedom
exactly zero for nonentangled stategw) # 0 is therefore a
necessary and sufficient condition for entanglement of quan- TMorb=8|W1aW3y. (34

tum states. Maximally entangled states are characterized k¥n the other hand, a state spanned®y and|T°) has no

the fact that they are collinear with their dual sta#sv)  double occupancies and is entangled purely with respect to
=1. As simple examples, we consider the basis states usqfle spin degrees of freedom,

in the preceding section: the stat@s ) and|T') are single
Slater determinants, while all other basis states are maxi- Nspin= 8|W14Woq]. (35
mally entangled.

The matrixw transforms under a unitary transformation of
the one-particle space,

This cyclic sum vanishs identically iiv has the form(25).
Hence, the vanishing of

For a general state vector, both kinds of entanglentert
bital and spin contribute ton(w).

caUc Ut =Up,cy (29) IV. RESULTS FOR THE SWAPPING PROCESS

as We now continue with our investigation of the dynamics
T of the double quantum dot qubit swapping process generated
w—UwU’, (B0 py a time-dependent tunneling amplitude.

where UT is the transposenot the adjoint of U. It is Letus first con_sider the case of inversjon symmetry aloqg
straightforward to see that is invariant under such transfor- the axis connecting the dots. As explained in Sec. I, this
mations, and the determinant wfremains the same up to a Problem can be reduced essentially to the time evolution of a
possible phase factor. Thus, the entanglement of a jstate PSeudospin-half object in a magnetic field having a time-
quantified by does not depend on the basis chosen for thélépendent component in thedirection of the pseudospin
one-particle space, which is of course a necessary requiréPace. In the course of swapping, the triplet contribution to

ment for a measure of entanglement. the incoming stat€19) will just pick up a phase factor ac-
The dualization of a state can be identified as a particlecording to its constant eigenvalue, while the singlet contri-
hole transformation, bution will mix with the other singletS,). Therefore, a finite

probability for double occupancies will necessarily adse-

Up-nCally_n=Ca, Uy_pl0)=cicyc5c4|0), (31)  ing the swapping process. However, if these amplitudes can

be suppressed sufficiently when the swapping is comféete

in the adiabatic limit errors in the quantum computation can
(32 be avoided. Thus, we are left with the question of how close

the dynamics of our formal spin-half object is to its adiabatic
We note that the complex conjugations in E(@6) and(32)  limit. We note that, in the adiabatic limit, no Berry phase
are unimportant for statesv) such thatn(w)=0, since a occurs in the time evolution of the singlet states, since the
single Slater determinant is always orthogonal to its particlemotion of the formal spin is restricted to a plane. Hence, the
hole conjugate, irrespective of a possible phase transformaolid angle encircled in a round trip is strictly zero.
tion of a prefactor. However, the complex conjugation in the The integration of the Schdinger equation for our time-
definition (26) is essential to the sufficiency of the above dependent two-level problem is, in general, nonelementary.

followed by complex conjugation. In fact,

up—h|W>: - |VT/>
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1.00 ' ' adjusted to enable single swap operation. The figure shows
incoming state swapped state the results of a numerical integration of the time-dependent
Schralinger equation using the fourth-order Runge-Kutta
] scheme. The time-dependent tunneling amplitagé) is
plotted (in unitsUy) as a dotted line. The square amplitude
of the incoming staté€19) and the outgoing staté20) are
: shown as thick lines. The square amplitudes of the singlets
|S,) and|S,) are denoted bye,|? and|e,|?, respectively,
and plotted as long-dashed lines. The probability of double
occupancies is given blp,|2. As one can see from Fig. 1,
this quanity is finite during the swapping process but
strongly suppressed afterwards. The measure of entangle-
ment 7(t) is also shown Fig. 1. It is zero for the nonen-
t (t/U tangled incoming and outgoing state, and achieves its maxi-
. H H . . . .
0.00 N i N mum yalue of almost unity in the middle of the process. This
-100 -50 0 50 100 quantifies and shows explicitly the entanglement of the quan-
time t [h/(2rU,)] tum state during the swapping process.
The probability|¢,|2 for double occupancy after switch-

FIG. 1. A swap process as a function of time. The tunnelinging off the tunneling depends on the switching timethe
amplitudety(t) is plotted (in units of U,) as a dotted line. The amplitude A, and also on the duratiofi of the tunneling
square amplitude of the incoming stafd) and the outgoing state pyise, i.e., on the exact time when the switching off sets in.
(20) are shown as thick lines. Thezsquare arznplitudes _of the Singletﬂowever, our numerics suggest that there is an upper bound
S1) and |S;) are denoted byey|* and|¢,|*, respectively, and | 12 at givenr andA. In the above example, the double
plotted as long-dashed lines. The measure of entangles(@hts occupancy probability after the swapping process is smaller
also shown. than 10° which is a very tiny value. A typical order of
magnitude for the double occupancy probability is 4 @or
@mplitudesA <U,, and switching times>4#/U,, . In fact,

Iso larger values ai (being still comparable withJ ;) can

0.80

0.60

0.40 |

020 | lo)I°

However, there is a considerable body of literature, startin
with early work by Landad?® Zener!* and Rosen and

15 ; ;
tZenezl, kwhere dp;rtlcultqucasest_of th's} prog:em V\t/_erel ridupe e possible, leading to double occupancy probabilities of the
0 well-known diiferential equations of mathematical physiCSqy e orger, while this probability significantly increases if

S.UCh as the hypergeometnc equatlon_. This work was "hecomes smaller tham4U . Thus, this value characterizes
viewed and generah;ed very recently in Ref.' 16. However he region where the motion of the system is close to its
such_an ?‘ppro‘?“’h s’.t'" works only for special tlme-depend_en diabatic limit and is remarkably small on the natural time
Hamiltonians, i.e., in the present context, only for Spec'alscale of the system given By U,, , while adiabatic behavior

§hapes of th? tunneling pql$ﬁ(t) and many quantities Of. is, in general, expected for a particularly slow time evolu-
interest are given by complicated nonelementary expressio

that require numerical evaluation. For this reason and for the
sake of brevity of our paper, we shall resort to numerical o o P -
. . L ' ) . ““'stood qualitatively by considering a simplified situation
integrations of the Schdinger equation. From such studies g y by g P

il that th f adiabaticity | Kably | where the tunneling is switched on and off linearly in time
we will see thal the range ot adiabaticily IS remarkably 1arge., 4 i« constant otherwise. Then, nonadiabtic effects can oc-

Olflr nLllmer!c;al f'nd'ng”s":v'” be corrltjpor?ted alndfmade phySI'cur only during the sharply defined switching processes. For
;a y plausible by well-khown la_lpadytlca results for Landau- simplicity, we consider the first switching process only
eger-btype tra_?5|t|ons n s_|(rjnp| '?. cag,es. dent t i ¥vhere the tunneling has the time dependetige (A/7), t
0 be specific, we consider a ime-dependent uNNeling oL 1 -1 1o enable analytical progress, let us further assume

This large range of quasiadiabatic behavior can be under-

the form te[ —o,], which should lead to an upper bound for the
probability of nonadiabatic transitions due to the switching.
ty(t)= ; (36) This problem was considered a long time ago by Lahtlau
costit/7) and by Zenet? The result of Ref. 14 for the probability of
cosiT/(27)] nonadiabatic transitions reads
This is a tunneling pulse that is switched on and off expo- Prac—=€ ¢ (37)

nentially with a characteristic time. It has a duration o \\ith an adiabaticity parameter
and an amplitude given b (for T> 7). Therefore, this

form is flexible enough to describe the essential features of a . Uﬁ

pulse. The exponential switching is motivated by the =g hAlD) (38)
exponential-like dependence of the tunneling matrix element

on external parametefs. We see that the probability for nonadiabatic transitions is

A typical situation is shown in Fig. 1 for a switching time exponentially suppressed with increasing switching time
of r=44/Uy, an amplitude oA =U,/8, and the duratiom  This exponential dependence explains qualitatively the
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1.00 | - - 1.00 ' ' '
0.05 | ot incoming state ()
0.04
0.80 0.03 | 0.80 1
0.02
0.01
0.60 | , 060 ) 1
o, (t)] lo,(B)] entangled state
\wwwweweww. . | T T T T T T T
0.40 | 0.40 | 1
0.20 | lo,(t)* 0.20 | lo, ()" ]
K _______ \‘\t}(t)/UH (U,
| //VVVVVVVVV\‘\ L 1 z ~ L
0.00 0.00
-100 -50 0 50 100 -100 -50 0 50 100

time t [h/(2rU,)] time t [h/(2rU)]

FIG. 2. The square amplitudes of the singlet stifgs and|S,) FIG. 3. A square root of a swap, which is obtained from the
for the same situation as in Fig. 1, but with a four-times smallersituation of Fig. 1 by halving the pulse duratidn The probability
ramp time of onlyr=7%/U, . The inset show$p,(t)|> on a mag-  of double occupancies is again strongly suppressed after the tunnel-
nified scale. The dynamics of the system is clearly in the nonadiaing pulse. The resulting state is a fully entangled complex linear
batic regime. combination of|S;) and |T°%), or, equivalently, of the incoming

state(19) and the outgoing stat@0) of the full swap. The quantum
above observation of a large range of quasiadiabatic bahamechanical weights of the latter states are plotted as thick solid
ior. To obtain an estimate for a nonlinear switching one mayines-
replace the ratio4/7) in the denominator of Eq38) by the
maximum time derivative of the tunneling,(t) [giving «
=wU2/3k(A/7) for the pulse(36)].

A similar exponential dependence of the probability for
nonadiabatic transitions on the switching timewas also
found analytically by Rosen and Zefhefor a particular two-
parametric pulse of the form

=1. This shows that the entanglement of the two electrons is
entirely in the spin(and not in the orbitaldegrees of free-
dom after switching.

Let us finally consider swapping processes when the in-
version symmetry along the axis connecting the dots is bro-
ken. Such processes are governed by the Hamilto@iann
the presence of a finite matrix elemeft Our numerical
results are, in this case, qualitatively the same as before with
the admissible switching times slightly growing with in-
creasing~. In Fig. 4 we illustrate our findings for a compara-
In this case, nonadiabatic transitions occur with a probabilitytively large off-diagonal elemerft=0.4Uy,. The additional

Coulomb matrix element i¥=0.2U,,, and the parameters
(40) of the tunneling pulse are=8A/U, and A=U4/8 with a
durationT appropriate for a single swapping. As a result, a

ty(t)=A/cosht/7). (39

Pac=SI[A7/(2%)]/cosR[ Uy 7/(2%)].
clean swapping operation can be performed also in the ab-

To illustrate the behavior in the strongly nonadiabatic case

S 2 5 : sence of inversion symmetry.
we have plotted in Fig. 2¢,|® and|e,|* for the same situ- We note that the Hund-Mulliken scheme used here is re-
ation as in Fig. 1, but with a four times smaller ramp time of

. I ) stricted to the low-energy sector where only the lowest
only 7=%/Uy. In this case, small oscillations occur in the single-particle energy levelswith typical spacingsde) are
kept. For this scheme to be valid also in a switching process,
. . i : Sve need to require that time-dependent changes must be per-
trum at a given tunneling,=A. Additionally, a sizable  ¢,meqd adiabatically also with respect to the time scale set
double occupancy probability of about 0.005 remains afterOy #l5e. i.e., we need>#/5¢.5 On the other hand, to sup-

theF?guJ?:éassth\?svv ; gngfei?OSgtt‘of a swap, which is obtaine ﬁress double-occupancy errors we have seen that the adiaba-
X X ! : ' . city parametera of Eq. (38) must exceed one, implyin
from the situation of Fig. 1 by halving the duratidnof the Y P « d. (38) plying

: . . > 2). [ ici iti
tunneling pulse. The resulting state is a fully entangled comthat 7>8AA/(mU}). Thus, the adiabaticity condition for

plex linear combination of the statd$;) and |T°), or, switching becomes more generally,
equivalently, of the incoming stat€l9) and the outgoing 5 8% A
state(20) of the full swap. Again, the weight of the doubly S U—z}
occupied stat¢S,) is strongly suppressed after the tunneling H
pulse. As a consequence, E84) implies thatz,,,=0 after
the completion of switching, whilen= 7,i,=8|w4w,3

T Tmin:=max[ (41)

There are now two particular cases we can distinguish. First,
if the effective Coulomb charging energy exceeds the level
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1.00 ' ' ' and provides a necessary and sufficient condition for en-
incoming state swapped state tangled states. Hence, we expect this measure of entangle-
ment to be useful in general in the study of quantum infor-
0.80 | | mation phenomena in systems such (esal or artificia)
diatomic molecules, or other quantum-confined two-site
structures.
0.60 , ]
et NN ] ACKNOWLEDGMENTS
0.40 | . We thank Guido Burkard for useful discussions and com-
ments on this paper. J.S. was supported by the Deutsche
Forschungsgemeinschaft under Grant No. Schl 539/1-1 and
0.20 | 00 t,(tVU,, 1 acknowledges the hospitality of the Institute for Theoretical
P ] Physics of Hannover University, Germany, where this work
_ was completed. D.L. acknowledges partial support from the
0'09100 50 0 50 100 Swiss National Science Foundation. A.H.M. acknowledges

time t [h/(27U,)] support from the National Science Foundation under Grant
i No. DMR-9714055.
FIG. 4. A swapping processes in the absence of inversion sym-

metry along the axis connecting the dots. The square amplitudes of APPENDIX
the singlet state$S;), i €{1,2,3}, are denoted byg;|%. The addi-
tional matrix elements entering the Hamiltonig@l) are X Here we give the proof thay(w)=0 is indeed a suffi-

=0.2Uy, andF=0.4U,, . The parameters of the tunneling pulse are cient condition for|w) being a single Slater determinant
7=8#/Uy andA =U./8 with a durationT appropriate for a single state. The proof consists of two steps.
swapping. As a result, a clean swapping operation can be performed (i) Let w be purely real.Since »(w)=0 implies detv
also in the absence of inversion symmetry. =0 [cf. Eq.(33)] w has at least one zero eigenvalue. Because
w is real and antisymmetric its eigenvalues are purely imagi-
spacing, i.e.J> de, we obtainr,;,=%/ ¢, since for con-  nary (if not zerg and occur in pairs of complex conjugates.
sistency we havel < §e. Thus, when the switching is adia- Therefore, at least two of the four eigenvaluesvadire zero.
batic with respect to the scale set by, errors due to double It follows from standard argumentsimilar to those for real
occupancy are automatically excluded. In the second casand symmetric matricg¢shat these two zero eigenvalues cor-
with U< A Se< Se (“ultrasmall quantum dotsy we ob-  respond to two real eigenvectors being orthogonal onto each
tain 7oin=8%A/(wUZ), which means that the overall con- Other. It follows that there is a real and orthogonal one-
dition for adiabaticity is determined by the no-double occu-Particle transformatiot so that, say, the first two rows and
pancy criterion. Using typical material parameters for GaAscolumns of the resulting matridwU" are zero. Hence, the

quantum dots? we can estimafethat 7, is of the order of ~©One-particle states with labeds=1,2 (in this new basisare
50 ps. strictly empty, and the two electrons occupy the remaining

two states. Thugw) is clearly a single Slater determinant.

(i) General case: w complexBy a one-particle transfor-
V. CONCLUSIONS mationZ{ with

We have studied a double qgantu_m dot system as a quan- U=diag e %1,ei%2 el %3, el 44,
tum gate swapping the electronic spin states on the two dots.
Within the Hund-Mulliken approach, the dynamics of such apne can adjust the phasesviri=UwUT in a manner that,
system having inversion symmetry along the axis connectingay,wiz, W5, Wi, are real. Denoting the real and imaginary
the dots reduces to the problem of a pseudospin-half objecg;art ofw’ by
in a time-dependent pseudomagnetic field. By solving the
time-dependent Schdinger equation numerically we dem- w =u+iv (A2)
onstrate the possibility of performing swap operations and
investigate the role of double occupancies of the dots. Thegé follows that dety=0. Consider now théunnormalized
double occupancies are found to (@xponentially strongly states|u) and|v). If one of these states vanishes the asser-
reduced, as a result of the swapping process, for a largéon is already proved ifii), thus assuméu) #0+|v). The
range of system parameters and are therefore not a princip@ndition »(w) =0 reads
obstacle for quantum computation in such systems. Further _ B _ ~
numerical studies show that this situation is not altered quali- (ulu)y—(vlv)+i({ulv)+(v|u))=0. (A3)
tatively when the inversion symmetry is broken. ) ) ) ) L
Moreover, we have introduced an appropriate measure opince both terms in tfle imaginary part are equal by definition
entanglement that takes explicitly into account the possibilityand dev =0 implies(v|v)=0, it holds
of double occupancies. This quantity allows to quantify the ~
entanglement of the quantum state during a gate operation (ulu)=0=detu=0 (A4)

(A1)
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and where the complex coefficien{8 and y are not both zero
_ _ since otherwisei=0. Let, again without loss of generality,
(ulv)=(v|u)=0. (A5) B be nonzero. Then the spinors

From (i) one concludes that both) and|v) are single Slater .
. ; 2 1 2 i |
determinants. Thus, there are spingts x? andy?, y? with 2= pyle 2 PR=xP+ Eyz (A9)

1 1
12 1,2 I N S N

Moreover, Eq.(A5) implies that 1
gbed L2120 (A7) W =Ugp+iva,= E(z;zﬁ— z7%). (A10)

Thus, the 44 matrix having these four spinors as its rows ) .
or columns has a vanishing determinant. Therefore thesg andz® are bo:[h nonzero and not collinear to each other
spinors are linearly dependent. Without loss of generalitySince otherwisev’=0. Thus, up to an unimportant orthonor-

consider the case malization, these two spinors define one-particle states that
allow us to expresfn’) (and consequentlyw)) as a single
xt=ax?+ Byl+ yy?, (A8)  Slater determinant.
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