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Double-occupancy errors, adiabaticity, and entanglement of spin qubits in quantum dots
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Quantum gates that temporarily increase singlet-triplet splitting in order to swap electronic spins in coupled
quantum dots lead inevitably to a finite double-occupancy probability for both dots. By solving the time-
dependent Schro¨dinger equation for a coupled dot model, we demonstrate that this does not necessarily lead to
quantum computation errors. Instead, the coupled dot ground state evolves quasiadiabatically for typical
system parameters so that the double-occupancy probability at the completion of swapping is negligibly small.
We introduce a measure of entanglement that explicitly takes into account the possibilty of double occupancies
and provides a necessary and sufficient criterion for entangled states.
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I. INTRODUCTION

In the past several years there has been a great de
interest in possible physical realizations of quantum comp
ing bits and operations.1 Among the various proposals, soli
state systems are particularly attractive since they are m
easily integrated into large quantum networks. In particu
semiconductor nanostructures that use the spin degre
freedom of the electrons2 ~rather than their charge! for infor-
mation processing are of special interest since they can
advantage of the comparatively long spin coherence time
such materials.3–5

A key challenge is the construction of systems compo
of two coupled quantum dots that can be coupled to perfo
swap operationsUSW, i.e., unitary two-qubit operations tha
interchange the spin states~qubits! of the electrons on the
two dots.2,6–10By combining the ‘‘square root’’U SW

1/2 of such
a swap with other isolated-qubit manipulations, one can c
struct a quantum XOR gate. A quantum XOR gate, alo
with isolated-qubit operations, has been shown to be su
cient for the implementation of any quantum algorithm11

Hence, a practical and reliable realization of a swap g
would be an important step towards the fabrication o
solid-state quantum computer.

The swap operation of electron spin states in a double
system can be realized in principle by turning on a tim
dependent exchange coupling between the spins as a ‘‘so
of entanglement.’’ In practice the exchange interaction
provided by singlet-triplet splitting in a double dot, which
always accompanied by a finite interdot electron tunnel
amplitude.

In a recent work, Das Sarma and co-workers9,10 empha-
sized that exchange interactions in the range of interest
accompanied by a substantial probability, during the sw
operation, that both electrons will be on the same dot. In
paper we demonstrate that, contrary to naive expectati
these virtual double occupancies willnot, under circum-
stances typically envisioned, lead to an important increas
quantum computing errors.Double occupancy is not a fata
problem for quantum dot based quantum computing w
spins. The occurrence of double occupanciesduring the
0163-1829/2001/63~8!/085311~8!/$15.00 63 0853
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swapping process does not lead to processing errors,
vided that the double occupancies are sufficiently suppres
when the swapping of spin states is completed. The princ
purpose of the present paper is to illustrate this basic fea
within the Hund-Mulliken description of a quantum dot h
drogen molecule. We will see that, in a system of identi
dots, the time evolution of this system can be reduced to
problem of a pseudospin half in a time-dependent pseu
magnetic field. In particular, the question of whether dou
occupancies are a severe obstacle for swap operations i
quantum dot system is equivalent to the question of h
close the pseudospin dynamics is to its adiabatic lim
Simple numerical studies presented in Sec. IV show that
pseudospin has an approximately adiabatic time evolu
for a ramarkably broad range of coupling ramp times. It tu
out that this behavior holds even if the inversion symme
along thex axis connecting the dots is broken~e.g., in the
presence of an electric field!.

A secondary purpose of this work is to introduce
coordinate-independent measure of entanglement approp
for the Hilbert space of the above system. This quantity p
vides a necessary and sufficient criterion for the entan
ment of quantum states. It differs from other entanglem
criteria proposed in the literature12 in so far as it takes into
account states with double occupancies. This generalizes
typical situation of Einstein-Podolsky-Rosen experimen
We expect this measure of entanglement to be useful in
theoretical study of coupled quantum dots~or similar
quantum-confined nanostructures!, independent of the par
ticular model considered here.

II. THE MODEL

We consider a system of two electrons in two latera
coupled quantum dots. The experimental motivation for
model described below has been discussed elsewher6–8

Here, we just summarize its basic features.
The Hamiltonian is given byH5T1C, whereC denotes

the Coulomb repulsion between the electrons andT
5( i 51,2hi is the one-particle part with
©2001 The American Physical Society11-1
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hi5
1

2m S pW i1
e

c
AW ~rW i ! D 2

1V~rW i !. ~1!

The one-particle Hamiltonianhi describes electron dynamic
confined to thexy plane in a perpendicular magnetc fieldB.
The effective massm is a material-dependent parameter. T
coupling of the dots~which includes tunneling! is modeled
by a quartic potential

V~x,y!5
mv0

2

2 F 1

4a2
~x22a2!21y2G , ~2!

which separates into two harmonic wells of frequencyv0
~one for each dot! in the limit 2a@2a0, wherea is half the
distance between the dots anda05A\/mv0 is the effective
Bohr radius of a dot.

Following Burkardet al.,6 we employ the Hund-Mulliken
method of molecular orbits to describe the low-lying spe
trum of our system. This approach concentrates on the l
est orbital states in each dot and is an extension of
Heitler-London method also discussed in Ref. 6. The Hu
Mulliken approach accounts for double occupancies an
therefore useful for investigating the questions at issue h

In the usual symmetric gaugeAW 5B(2y,x,0)/2 the Fock-
Darwin ground state of a single dot with harmonic confin
ment centered aroundrW5(6a,0,0) reads

w6a~x,y!5Amv

p\
expS mv

2\
$~x7a!21y2% D

3expS 6
i

2
y

a

l B
2 D , ~3!

wherel B5A\c/eB is the magnetic length, and the frequen
v is given byv25v0

21vL
2 , wherevL5eB/2mc is the usual

Larmor frequency. From these nonorthogonal one-part
states, we construct the orthonormalized statesuA& and uB&
with wave functions

^rWuA&5
1

A122Sg2g2
~w1a2gw2a!, ~4!

^rWuB&5
1

A122Sg2g2
~w2a2gw1a!, ~5!

with S being the overlap between the states~3! and g5(1
2A12S2)/S. For appropriate values of system paramet
such as the interdot distance and the external magnetic fi
the overlapS becomes exponentially small.6 In this limit, an
electron in one of the statesuA&, uB& is predominantly local-
ized aroundrW5(6a,0,0). In the following, we consider thi
case and use these states as basis states to define qubit
qubits are realized by the spin state of an electron in ei
orbital uA&, or orbital uB&.

An appropriate basis set for the six-dimensional tw
particle Hilbert space is given~using standard notation! by
the three spin singlets
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uS1&5
1

A2
~cA↑

1 cB↓
1 2cA↓

1 cB↑
1 !u0&, ~6!

uS2&5
1

A2
~cA↑

1 cA↓
1 1cB↑

1 cB↓
1 !u0&, ~7!

uS3&5
1

A2
~cA↑

1 cA↓
1 2cB↑

1 cB↓
1 !u0&, ~8!

and the triplet multiplet,

uT21&5cA↓
1 cB↓

1 u0&, ~9!

uT0&5
1

A2
~cA↑

1 cB↓
1 1cA↓

1 cB↑
1 !u0&, ~10!

uT1&5cA↑
1 cB↑

1 u0&. ~11!

The three triplet states are degenerate~typically, we can ig-
nore possible Zeeman splittings6! and have the common ei
genvalue,

«T52«1V2 , ~12!

where we have defined

«5^AuhuA&5^BuhuB& ~13!

and

V25^TauCuTa&, V15^S1uCuS1&. ~14!

An important further observation is that, as a conseque
of inversion symmetry along the axis connecting the do
the Hamiltonian does not have any nonzero matrix eleme
between the singlet stateuS3& and other states. Hence,uS3&
is, independently of the system parameters, an eigens
The eigenvalues of the triplet anduS3&, however, do depend
on system parameters. The Hamiltonian acting on the
maining space spanned byuS1& and uS2& can be written as

H52«1
1

2
UH1V12S UH/2 2tH

2tH 2UH/2D , ~15!

where

tH5^AuhuB&5^BuhuA& ~16!

and

UH5^S2uCuS2&2V1 . ~17!

The nontrivial part of Eq.~15! is a simple Hubbard Hamil-
tonian and can be identified as the Hamiltonian of
pseudospin-half object in a pseudomagnetic field havin
componentUH in the ẑ direction and 4tH in the x̂ direction
of pseudospin space.~Note that this pseudospin is not relate
to the spin degree of freedom that provides the qubit! The
space spanned byuS1& and uS2& contains the ground state o
the system. The basis states themselves are eigenstates
in the case of a vanishing tunneling amplitudetH whereuS1&
1-2
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is the ground state. In all other cases, the ground state ha
admixture of double occupied states contained inuS2&. The
energy gap between the triplet and the singlet ground sta

«T2«S05V12V22
UH

2
1

1

2
AUH

2 116tH
2 . ~18!

A swap operation in the present system is a unitary tra
formation that turns a state having the qubits in differe
states, say,

cA↑
1 cB↓

1 u0&5
1

A2
~ uT0&1uS1&), ~19!

into a state where the contents of the qubits are interchan

cA↓
1 cB↑

1 u0&5
1

A2
~ uT0&2uS1&). ~20!

These two states are eigenstates in the caseV15V2 and
tH50 for which the singlet-triplet splitting vanishes.

As discussed in Refs. 2 and 6, swapping may be achie
by the action of a gate that lowers the potential barrier
tween the quantum dots. This leads to exponentially lar
values for bothV12V2 and tH . It is adequate for our pur
poses to consider a model whereV15V2 ~consistent with
the above limit of small overlapS) and the singlet-triplet
splitting results entirely fromtH . If the duration and ampli-
tude of a tunneling pulse is adjusted appropriately, the r
tive phase between the singlet and the triplet state invol
picks up a shift ofp, and a swapping operation is performe

As pointed out in Ref. 10, a finite tunneling amplitud
necessarily leads to a finite probability for double occup
cies of qubit states. If double occupancy errors occur to
sizable extentas a resultof the swapping process, any qua
tum computation based on this hardware is likely to fa
However, if the double occupancies are sufficiently rareafter
the swapping process, errors in the quantum computation
likely be corrected dynamically. An important observation
that the double-occupancy probabilityafter the swap van-
ishes in the adiabatic limit, i.e., if the ramp timet of the
quantum gate is such that\/t is much larger than the pseu
dospin splittingAUH116tH

2 . This follows since the nonadia
batic effects can arise only from the statesuS1& and uS2&,
which have a nontrivial time evolution when the tunneli
amplitude tH is time dependent. Thus, the question
whether double occupancies are problematic for swap op
tions in the present system is reduced to the question of
close the motion of a spin-half object in a time-depend
magnetic field is to its adiabatic limit. This will be invest
gated further in Sec. IV.

The reduction of the dynamics to the time evolution o
two-level system relies on the fact that the system has in
sion symmetry along thex̂ axis in real space connecting th
dots. This symmetry can be broken if odd powers of
particle coordinatesxi are added to the Hamiltonian~1!, for
example, the potential of a homogeneous electric field. H
ever, the only additional matrix element due to such term
the Hamiltonian occurs in the subspace of double-occup
08531
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states between the singletsuS2& and uS3&. Thus, in the pres-
ence of an electric fieldE52eE( ixi , the Hamitonian acting
on the singlet subspace spanned byuS1&, uS2&, uS3& reads

H52«1
1

2
UH1V12S UH/2 2tH 0

2tH 2UH/2 F

0 F 2UH/212X
D
~21!

with the real matrix elementF5^S2uEuS3& and

2X5^S2uCuS2&2^S3uCuS3&52^Au^AuCuB&uB&. ~22!

With a finite matrix elementF, the dynamics of the system i
slightly more complicated, but also in this case the only co
pling of the two-qubit states~19! and~20! to the subspace o
double-occupied states is provided by the tunneling am
tude tH . Therefore, with respect to the adiabaticity of th
swapping process, the situation can be expected to be
very different from the one with inversion symmetry b
tween the dots. This will be verified in Sec. IV.

So far we have not considered a possible Zeeman c
pling to the electron spin. This would not change the situ
tion essentially since all states involved in the swapping p
cess (uT0&, uS1&, uS2&, and eventuallyuS3&) have the total
spin quantum numberSz50.

III. ENTANGLED STATES

Before analyzing further the possibility of performin
swap operations in the above system, let us introduce
appropriate measure for the entanglement of its quan
states. Consider a system of two fermions living in a fo
dimensional one-particle space. A general state vector in
six-dimensional Hilbert space can be written as

uw&5wabca
1cb

1u0& ~23!

where a summation convention is understood for repea
latin indicesa,b, . . . ,P$1,2,3,4% running over the orthonor-
malized one-particle states. The coefficient matrixw can be
assumed to be antisymmetric,wab52wba . The normaliza-
tion condition reads

^wuw&51⇔Tr~w̄w!52
1

2
, ~24!

where the bar denotes complex conjugation. A two-parti
state of the form~23! is, in general, entangled, i.e., it cann
be written as a single Slater determinant.uw& is nonen-
tangled, i.e., a single Slater determinant, ifw has the form

wab5
1

2
~za

1zb
22zb

1za
2! ~25!

for two orthonormal spinorsz1 and z2, za
i z̄a

j 5d i j . We note
that for a given nonentangled stateuw& the choice of spinors
z1 and z2 is by no means unique since any SU~2! transfor-
mation among these two occupied one-particle states lead
1-3
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the same two-particle state vectoruw&. Hence, for a given
nonentangled stateuw& there is a three-dimensional manifo
of spinors fulfilling Eq.~25!.

We define thedual matrix w̃of w by

w̃ab5
1

2
«abcdw̄cd ~26!

with «abcd denoting the totally antisymmetric unit tensor
four dimensions. The scalar product of a stateuw& with its
dual stateuw̃& can be written as

^w̃uw&5«abcdwabwcd58~w12w341w13w421w14w23!.
~27!

This cyclic sum vanishs identically ifw has the form~25!.
Hence, the vanishing of

h~w!ª z^w̃uw& z ~28!

is a necessary condition foruw& being a single Slater deter
minant. Moreover, in the Appendix it is shown thath(w)
50 is actually also a suffcient condition foruw& being non-
entangled. Thus,h defines a measure of entanglement tha
exactly zero for nonentangled states.h(w)5” 0 is therefore a
necessary and sufficient condition for entanglement of qu
tum states. Maximally entangled states are characterize
the fact that they are collinear with their dual statesh(w)
51. As simple examples, we consider the basis states
in the preceding section: the statesuT21& anduT1& are single
Slater determinants, while all other basis states are m
mally entangled.

The matrixw transforms under a unitary transformation
the one-particle space,

ca
1°Uca

1U 15Ubacb
1 , ~29!

as

w°UwUT, ~30!

where UT is the transpose~not the adjoint! of U. It is
straightforward to see thath is invariant under such transfor
mations, and the determinant ofw remains the same up to
possible phase factor. Thus, the entanglement of a stateuw&
quantified byh does not depend on the basis chosen for
one-particle space, which is of course a necessary req
ment for a measure of entanglement.

The dualization of a state can be identified as a parti
hole transformation,

Up2hca
1U p2h

1 5ca , Up2hu0&5c1
1c2

1c3
1c4

1u0&, ~31!

followed by complex conjugation. In fact,

Up2huw&52uwD &. ~32!

We note that the complex conjugations in Eqs.~26! and~32!
are unimportant for statesuw& such thath(w)50, since a
single Slater determinant is always orthogonal to its partic
hole conjugate, irrespective of a possible phase transfor
tion of a prefactor. However, the complex conjugation in t
definition ~26! is essential to the sufficiency of the abo
08531
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condition. As an example, consider a stateuw& with w12
5w3451/4, w135w245 i /4, and w145w2350. This is
clearly a maximally entangled state,h(w)51, while its sca-
lar product with the complex conjugate of its dual state
^wD uw&50.

We also mention the following identity for the determ
nant ofw:

detw5S 1

8
^w̃uw& D 2

. ~33!

Hence it follows that alsoudetwu could be used as a measu
of entaglement. Equation~33! is important for the proof of
the sufficiency of our criterion for nonentangled states,
explained in detail in the Appendix.

A convenient choice to make contact between the gen
state labelsa,b, . . . P$1,2,3,4% used here and the bas
states of the preceding section is given by (1,2,3
5(A↑,A↓,B↑,B↓). With this convention, a state vecto
spanned byuS2& and uS3& only hasw12 and w34 as its only
independent nonzero coefficients inw. Such a state lies fully
in the subspace of double occupancies, and its entanglem
is purely due to the orbital degrees of freedom

horb58uw12w34u. ~34!

On the other hand, a state spanned byuS1& and uT0& has no
double occupancies and is entangled purely with respec
the spin degrees of freedom,

hspin58uw14w23u. ~35!

For a general state vector, both kinds of entanglement~or-
bital and spin! contribute toh(w).

IV. RESULTS FOR THE SWAPPING PROCESS

We now continue with our investigation of the dynami
of the double quantum dot qubit swapping process gener
by a time-dependent tunneling amplitude.

Let us first consider the case of inversion symmetry alo
the axis connecting the dots. As explained in Sec. II, t
problem can be reduced essentially to the time evolution
pseudospin-half object in a magnetic field having a tim
dependent component in thex direction of the pseudospin
space. In the course of swapping, the triplet contribution
the incoming state~19! will just pick up a phase factor ac
cording to its constant eigenvalue, while the singlet con
bution will mix with the other singletuS2&. Therefore, a finite
probability for double occupancies will necessarily arisedur-
ing the swapping process. However, if these amplitudes
be suppressed sufficiently when the swapping is complete~as
in the adiabatic limit! errors in the quantum computation ca
be avoided. Thus, we are left with the question of how clo
the dynamics of our formal spin-half object is to its adiaba
limit. We note that, in the adiabatic limit, no Berry phas
occurs in the time evolution of the singlet states, since
motion of the formal spin is restricted to a plane. Hence,
solid angle encircled in a round trip is strictly zero.

The integration of the Schro¨dinger equation for our time-
dependent two-level problem is, in general, nonelement
1-4
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However, there is a considerable body of literature, star
with early work by Landau,13 Zener,14 and Rosen and
Zener,15 where particular cases of this problem were redu
to well-known differential equations of mathematical phys
such as the hypergeometric equation. This work was
viewed and generalized very recently in Ref. 16. Howev
such an approach still works only for special time-depend
Hamiltonians, i.e., in the present context, only for spec
shapes of the tunneling pulsetH(t) and many quantities o
interest are given by complicated nonelementary express
that require numerical evaluation. For this reason and for
sake of brevity of our paper, we shall resort to numeri
integrations of the Schro¨dinger equation. From such studie
we will see that the range of adiabaticity is remarkably lar
Our numerical findings will be corroborated and made phy
cally plausible by well-known analytical results for Landa
Zener-type transitions in simplified cases.

To be specific, we consider a time-dependent tunneling
the form

tH~ t !5
D

11
cosh~ t/t!

cosh†T/~2t!‡

. ~36!

This is a tunneling pulse that is switched on and off exp
nentially with a characteristic timet. It has a duration ofT
and an amplitude given byD ~for T@t). Therefore, this
form is flexible enough to describe the essential features
pulse. The exponential switching is motivated by t
exponential-like dependence of the tunneling matrix elem
on external parameters.6

A typical situation is shown in Fig. 1 for a switching tim
of t54\/UH , an amplitude ofD5UH/8, and the durationT

FIG. 1. A swap process as a function of time. The tunnel
amplitude tH(t) is plotted ~in units of UH) as a dotted line. The
square amplitude of the incoming state~19! and the outgoing state
~20! are shown as thick lines. The square amplitudes of the sing
uS1& and uS2& are denoted byuw1u2 and uw2u2, respectively, and
plotted as long-dashed lines. The measure of entanglementh(t) is
also shown.
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adjusted to enable single swap operation. The figure sh
the results of a numerical integration of the time-depend
Schrödinger equation using the fourth-order Runge-Ku
scheme. The time-dependent tunneling amplitudetH(t) is
plotted ~in units UH) as a dotted line. The square amplitud
of the incoming state~19! and the outgoing state~20! are
shown as thick lines. The square amplitudes of the sing
uS1& and uS2& are denoted byuw1u2 and uw2u2, respectively,
and plotted as long-dashed lines. The probability of dou
occupancies is given byuw2u2. As one can see from Fig. 1
this quanity is finite during the swapping process b
strongly suppressed afterwards. The measure of entan
ment h(t) is also shown Fig. 1. It is zero for the none
tangled incoming and outgoing state, and achieves its m
mum value of almost unity in the middle of the process. T
quantifies and shows explicitly the entanglement of the qu
tum state during the swapping process.

The probabilityuw2u2 for double occupancy after switch
ing off the tunneling depends on the switching timet, the
amplitudeD, and also on the durationT of the tunneling
pulse, i.e., on the exact time when the switching off sets
However, our numerics suggest that there is an upper bo
for uw2u2 at givent andD. In the above example, the doub
occupancy probability after the swapping process is sma
than 10210, which is a very tiny value. A typical order o
magnitude for the double occupancy probability is 1026 for
amplitudesD,UH and switching timest.4\/UH . In fact,
also larger values ofD ~being still comparable withUH) can
be possible, leading to double occupancy probabilities of
same order, while this probability significantly increases it
becomes smaller than 4\/UH . Thus, this value characterize
the region where the motion of the system is close to
adiabatic limit and is remarkably small on the natural tim
scale of the system given by\/UH , while adiabatic behavior
is, in general, expected for a particularly slow time evo
tion.

This large range of quasiadiabatic behavior can be un
stood qualitatively by considering a simplified situatio
where the tunneling is switched on and off linearly in tim
and is constant otherwise. Then, nonadiabtic effects can
cur only during the sharply defined switching processes.
simplicity, we consider the first switching process on
where the tunneling has the time dependencetH5(D/t), t
P@0,t#. To enable analytical progress, let us further assu
tP@2`,`#, which should lead to an upper bound for th
probability of nonadiabatic transitions due to the switchin
This problem was considered a long time ago by Landa13

and by Zener.14 The result of Ref. 14 for the probability o
nonadiabatic transitions reads

Pnad5e2a ~37!

with an adiabaticity parameter

a5
p

8

UH
2

\~D/t!
. ~38!

We see that the probability for nonadiabatic transitions
exponentially suppressed with increasing switching timet.
This exponential dependence explains qualitatively

ts
1-5
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above observation of a large range of quasiadiabatic ba
ior. To obtain an estimate for a nonlinear switching one m
replace the ratio (D/t) in the denominator of Eq.~38! by the
maximum time derivative of the tunnelingtH(t) @giving a
5pUH

2 /3\(D/t) for the pulse~36!#.
A similar exponential dependence of the probability f

nonadiabatic transitions on the switching timet was also
found analytically by Rosen and Zener15 for a particular two-
parametric pulse of the form

tH~ t !5D/cosh~ t/t!. ~39!

In this case, nonadiabatic transitions occur with a probab

Pnad5sin2@Dt/~2\!#/cosh2@UHt/~2\!#. ~40!

To illustrate the behavior in the strongly nonadiabatic ca
we have plotted in Fig. 2uw1u2 and uw2u2 for the same situ-
ation as in Fig. 1, but with a four times smaller ramp time
only t5\/UH . In this case, small oscillations occur in th
time evolution of these two quantities during the tunneli
pulse, which can be understood in terms of the eigensp
trum at a given tunnelingtH5D. Additionally, a sizable
double occupancy probability of about 0.005 remains a
the pulse, as shown in the inset.

Figure 3 shows a square root of a swap, which is obtai
from the situation of Fig. 1 by halving the durationT of the
tunneling pulse. The resulting state is a fully entangled co
plex linear combination of the statesuS1& and uT0&, or,
equivalently, of the incoming state~19! and the outgoing
state~20! of the full swap. Again, the weight of the doubl
occupied stateuS2& is strongly suppressed after the tunneli
pulse. As a consequence, Eq.~34! implies thathorb50 after
the completion of switching, whileh5hspin58uw14w23u

FIG. 2. The square amplitudes of the singlet statesuS1& anduS2&
for the same situation as in Fig. 1, but with a four-times sma
ramp time of onlyt5\/UH . The inset showsuw2(t)u2 on a mag-
nified scale. The dynamics of the system is clearly in the nona
batic regime.
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51. This shows that the entanglement of the two electron
entirely in the spin~and not in the orbital! degrees of free-
dom after switching.

Let us finally consider swapping processes when the
version symmetry along the axis connecting the dots is b
ken. Such processes are governed by the Hamiltonian~21! in
the presence of a finite matrix elementF. Our numerical
results are, in this case, qualitatively the same as before
the admissible switching timest slightly growing with in-
creasingF. In Fig. 4 we illustrate our findings for a compara
tively large off-diagonal elementF50.4UH . The additional
Coulomb matrix element isX50.2UH , and the parameter
of the tunneling pulse aret58\/UH and D5UH/8 with a
durationT appropriate for a single swapping. As a result
clean swapping operation can be performed also in the
sence of inversion symmetry.

We note that the Hund-Mulliken scheme used here is
stricted to the low-energy sector where only the low
single-particle energy levels~with typical spacingsde) are
kept. For this scheme to be valid also in a switching proce
we need to require that time-dependent changes must be
formed adiabatically also with respect to the time scale
by \/de, i.e., we needt.\/de.6 On the other hand, to sup
press double-occupancy errors we have seen that the ad
ticity parametera of Eq. ~38! must exceed one, implying
that t.8\D/(pUH

2 ). Thus, the adiabaticity condition fo
switching becomes more generally,

t.tminªmaxH \

de
,
8\

p

D

UH
2 J . ~41!

There are now two particular cases we can distinguish. F
if the effective Coulomb charging energy exceeds the le

r

a-

FIG. 3. A square root of a swap, which is obtained from t
situation of Fig. 1 by halving the pulse durationT. The probability
of double occupancies is again strongly suppressed after the tu
ing pulse. The resulting state is a fully entangled complex lin
combination ofuS1& and uT0&, or, equivalently, of the incoming
state~19! and the outgoing state~20! of the full swap. The quantum
mechanical weights of the latter states are plotted as thick s
lines.
1-6
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spacing, i.e.,UH.de, we obtaintmin5\/de, since for con-
sistency we haveD,de. Thus, when the switching is adia
batic with respect to the scale set byde, errors due to double
occupancy are automatically excluded. In the second c
with UH,ADde,de ~‘‘ultrasmall quantum dots’’! we ob-
tain tmin58\D/(pUH

2 ), which means that the overall con
dition for adiabaticity is determined by the no-double occ
pancy criterion. Using typical material parameters for Ga
quantum dots,17 we can estimate6 that tmin is of the order of
50 ps.

V. CONCLUSIONS

We have studied a double quantum dot system as a q
tum gate swapping the electronic spin states on the two d
Within the Hund-Mulliken approach, the dynamics of such
system having inversion symmetry along the axis connec
the dots reduces to the problem of a pseudospin-half ob
in a time-dependent pseudomagnetic field. By solving
time-dependent Schro¨dinger equation numerically we dem
onstrate the possibility of performing swap operations a
investigate the role of double occupancies of the dots. Th
double occupancies are found to be~exponentially! strongly
reduced, as a result of the swapping process, for a la
range of system parameters and are therefore not a prin
obstacle for quantum computation in such systems. Fur
numerical studies show that this situation is not altered qu
tatively when the inversion symmetry is broken.

Moreover, we have introduced an appropriate measur
entanglement that takes explicitly into account the possib
of double occupancies. This quantity allows to quantify t
entanglement of the quantum state during a gate opera

FIG. 4. A swapping processes in the absence of inversion s
metry along the axis connecting the dots. The square amplitude
the singlet statesuSi&, i P$1,2,3%, are denoted byuw i u2. The addi-
tional matrix elements entering the Hamiltonian~21! are X
50.2UH andF50.4UH . The parameters of the tunneling pulse a
t58\/UH andD5UH/8 with a durationT appropriate for a single
swapping. As a result, a clean swapping operation can be perfor
also in the absence of inversion symmetry.
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and provides a necessary and sufficient condition for
tangled states. Hence, we expect this measure of entan
ment to be useful in general in the study of quantum inf
mation phenomena in systems such as~real or artificial!
diatomic molecules, or other quantum-confined two-s
structures.
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APPENDIX

Here we give the proof thath(w)50 is indeed a suffi-
cient condition for uw& being a single Slater determinan
state. The proof consists of two steps.

(i) Let w be purely real.Since h(w)50 implies detw
50 @cf. Eq.~33!# w has at least one zero eigenvalue. Beca
w is real and antisymmetric its eigenvalues are purely ima
nary ~if not zero! and occur in pairs of complex conjugate
Therefore, at least two of the four eigenvalues ofw are zero.
It follows from standard arguments~similar to those for real
and symmetric matrices! that these two zero eigenvalues co
respond to two real eigenvectors being orthogonal onto e
other. It follows that there is a real and orthogonal on
particle transformationU so that, say, the first two rows an
columns of the resulting matrixUwUT are zero. Hence, the
one-particle states with labelsa51,2 ~in this new basis! are
strictly empty, and the two electrons occupy the remain
two states. Thus,uw& is clearly a single Slater determinant

(ii) General case: w complex.By a one-particle transfor-
mationU with

U5diag~eif1,eif2,eif3,eif4!, ~A1!

one can adjust the phases inw85UwUT in a manner that,
say,w128 , w138 , w148 are real. Denoting the real and imagina
part of w8 by

w85u1 iv ~A2!

it follows that detv50. Consider now the~unnormalized!
statesuu& and uv&. If one of these states vanishes the ass
tion is already proved in~i!, thus assumeuu&5” 05” uv&. The
conditionh(w)50 reads

^ũuu&2^ṽuv&1 i ~^ũuv&1^ṽuu&!50. ~A3!

Since both terms in the imaginary part are equal by definit
and detv50 implies ^ṽuv&50, it holds

^ũuu&50⇒detu50 ~A4!
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and

^ũuv&5^ṽuu&50. ~A5!

From~i! one concludes that bothuu& anduv& are single Slater
determinants. Thus, there are spinorsx1, x2 andy1, y2 with

uab5
1

2
~xa

1xb
22xb

1xa
2!, vab5

1

2
~ya

1yb
22yb

1ya
2!. ~A6!

Moreover, Eq.~A5! implies that

«abcdxa
1xb

2yc
1yd

250. ~A7!

Thus, the 434 matrix having these four spinors as its row
or columns has a vanishing determinant. Therefore th
spinors are linearly dependent. Without loss of genera
consider the case

x15ax21by11gy2, ~A8!
w-

s,

ss

08531
se
,

where the complex coefficientsb and g are not both zero
since otherwiseu50. Let, again without loss of generality
b be nonzero. Then the spinors

z15by11gy2, z25x21
i

b
y2 ~A9!

solve the problem, i.e.,

wab8 5uab1 ivab5
1

2
~za

1zb
22zb

1za
2!. ~A10!

z1 and z2 are both nonzero and not collinear to each oth
since otherwisew850. Thus, up to an unimportant orthono
malization, these two spinors define one-particle states
allow us to expressuw8& ~and consequentlyuw&) as a single
Slater determinant.
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