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Molecular geometry fluctuations and field-dependent mobility in conjugated polymers
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Many conjugated polymers exhibit an electric field-dependent mobility of approximately the Poole-Frenkel
form. We propose a model to describe transport in dense films of these materials in which thermal fluctuations
in the molecular geometry modify the energy levels of localized electronic charged states in the material. Based
on quantum chemistry calculations we argue that the primary restoring force for these fluctuations in molecular
geometry is steric in origin, which leads to spatially correlated fluctuations in the on-site energy of the charged
electronic states. The phenylene ring torsion, in PPV-like conjugated polymers, is an example of this kind of
spatially correlated thermal fluctuation. Using a Master equation approach to calculate the mobility, we show
that the model can quantitatively explain the experimentally observed field-dependent mobility in conjugated
polymers. We examine typical paths taken by carriers and find that at low fields, the paths are three-
dimensional, whereas at high fields the paths become essentially one-dimensional along the applied field. Thus,
one-dimensional transport models can be valid at high fields but not at low fields. Effects of deep traps, the site
energy correlation length, temperature, and asymmetric and small polaron rates are studied.

DOI: 10.1103/PhysRevB.63.085202 PACS number~s!: 72.10.2d, 71.38.2k, 72.80.Le
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I. INTRODUCTION

Electronic devices based on conjugated polymers have
tracted much attention because of their processing and
formance advantages.1,2 Understanding the carrier transpo
properties in these materials is important to design and s
thesize better materials and to further improve the dev
performance. Time-of-flight mobility measurements sh
that the field-dependent mobility in many conjugated po
mers approximates the Poole-Frenkel form, i.e., the mob
increases approximately exponentially withAE over an ex-
tended range of electric fieldE.3–5 Theoretically, Ba¨ssler and
co-workers extensively studied field-dependent mobility
these materials using Monte Carlo simulations of the Gau
ian disorder model~GDM!.6 The GDM satisfactorily ex-
plains many features of mobility observed in these materi
however, as pointed out by Gartstein and Conwell,7 a spa-
tially correlated potential for the carriers is needed to expl
the Poole-Frenkel behavior in the low-field region (;104

V/cm!.
Historically, Poole-Frenkel behavior was first observed

molecularly doped polymers, in which the dopants have p
manent electric dipole moments.8,9 Dunlap and co-workers
recently proposed the charge-dipole model for the mobi
in these molecularly doped materials.10 The long-range spa
tial correlation of carrier energies, which comes about fr
the charge-dipole interaction, is an essential aspect of
model. The charge-dipole model has been very successf
describing the observed transport properties of molecul
doped polymers. Although the mobility in conjugated po
mers and in molecularly doped materials exhibits some s
larities in behavior, the mechanism leading to the Poo
Frenkel behavior in conjugated polymers cannot be due
charge-dipole interactions, as it is in molecularly doped po
mers, because most conjugated polymers do not have a
manent dipole moment. Therefore, an alternative mechan
is needed to explain the field-dependent mobility in con
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gated polymers. Here we propose a model, in which ther
fluctuations in the molecular geometry modify the ener
levels of localized electronic charged states in the mate
and study the predictions of this model for the field a
carrier density dependence of the mobility. A prelimina
discussion of this model has been presented in a short no11

Conjugated polymers contain impurities and defec
These impurities and defects may serve as traps for car
in these materials, which may be critical to electrical tran
port. We construct a one-dimensional~1D! trap model and
obtain the analytical solution for this model. We also n
merically study the three-dimensional~3D! system with ran-
domly distributed deep traps.

In 1D models, analytical results for the mobility can b
obtained based on Derrida’s exact solution to a 1D ste
state Master equation.12 Since 3D models are too complex t
have an analytical solution, there is a temptation to exte
the 1D results to 3D. However, it is not clear to what exte
the 1D results can be used in 3D systems. In 3D systems
carrier can choose optimal paths to avoid high energy ba
ers, while in 1D systems, the carrier has no choice for
path. We systematically compare the numerical 3D res
with the 1D results and study typical carrier paths in 3
systems.

The article is organized as follows. In Sec. II, we intr
duce our model and estimate the parameters of the m
Hamiltonian. In Sec. III, we present 1D analytical solutio
of the model. Section IV is devoted to 3D numerical resu
including asymmetric and small polaron rates. We summ
rize our conclusions in Sec. V.

II. MODEL

Since most conjugated polymers show a field-depend
mobility of the Poole-Frenkel form, the model and th
mechanism used to describe this observed behavior sh
©2001 The American Physical Society02-1
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be generic. Compared with many other conjugated polym
the observed field-dependent mobility of poly~9,9-
dioctylfluorene! ~PFO! is unusual: The mobility in PFO is
two orders higher than that in poly~p-phenylene vinylene!
~PPV!, and the field dependence is very weak.13 In conju-
gated polymers like PPV, the orientation of the benze
rings can fluctuate around their equilibrium positions.
PFO, however, the ring-torsion freedom is suppressed by
chemical bonding between the phenylene rings. This dif
ence suggests that fluctuations in molecular geometry
strongly affect the mobility in these materials. In conjugat
polymers, the restoring force of ring orientation fluctuatio
may come from two origins, intermolecular or intramolec
lar interactions. The intermolecular restoring force becom
dominant in dense films, where molecules are clos
packed.14 Because of the short distance between molecu
small fluctuations of the adjacent molecular orientations m
give rise to a large steric energy. By contrast, the intram
lecular restoring force is weak. The characteristic ene
measured for the torsion mode in an isolated PPV molec
is quite small.15

To quantitatively understand the effects of fluctuations
molecular geometry in conjugated polymers, we carried
an electronic structure calculation of the total ener
~AM1!16 of biphenyl as a function of the twist angle betwe
two rings. For neutral biphenyl, the energy is almost cons
with changing torsion angle.11 However, when an extra elec
tron or hole is added to this system, the total energy of
charged state strongly depends on the torsion angle.
result is expected, as conventional resonance structures
gest there should be very littlep-character in the bond con
necting the two benzene rings for the neutral molecule,
therefore there is nearly free rotation about the single bo
But for both positive and negative ions a coplanar orientat
maximizes thep-overlap between them and allows th
charge to delocalize more easily over both rings. Thus th
is a strong coupling between the local electronic excitat
~carrier! and the ring orientation. To estimate the steric
teraction between chains, we examined a model consistin
three parallel benzene rings with a fixed separation.11 These
calculations show that the intermolecular restoring is do
nant over the intramolecular one in densely packed mater

We propose a general model to describe the mobility
dense films of conjugated polymers described by the Ha
tonian

H5(
i

« iCi
†Ci1

K

2E d3r ~¹f!21n(
i

Ci
†Cif~r i !

1
s

2E d3rf2~r !1(
i , j

h i j ~Ci
†Cj1H.c.!. ~1!

HereCi
† is the creation operator of a carrier~polaron! on site

i and « i is its bare energy.f(r ) describes the molecula
geometry field~in PPV, it can be regarded as the deviation
the torsion angle of the benzene ring from its equilibriu
value atr ). K is the intermolecular restoring force consta
the origin of the gradient of the molecular geometry field
this term is that the intermolecular elastic energy depend
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the difference of the torsion in adjacent molecules.s is the
intramolecular restoring force constant. This term is sm
compared with the intermolecular term. The energy mi
mum in the neutral system occurs in a different geome
than that in the charged system.11 Expanding the energy o
the charged system around the equilibrium geometry~energy
minimum for the neutral system! gives a linear coupling be
tween the polaron and the torsion described by the coup
constantn. h i j is the polaron hopping matrix element b
tween sites. The effect of fluctuations in the bare site en
gies « i has been studied in the GDM.6 Here we consider
cases in which energy fluctuations are dominated by the
teraction with the molecular geometry field and take the b
site energies all equal to zero.

The renormalized polaron energy is a function of positi
due to the local coupling between the polaron and the m
lecular geometry

«~r i !5nf~r i !. ~2!

The total free energy from the molecular geometry fluctu
tions is

Fmg5V21(
q

uF~q!u2~Kq2/21s/2!, ~3!

whereV is the volume of the system andF(q) is the Fourier
transform off(r ).11 The equipartition law,̂ Fmg&5kBT/2,
gives the spatial correlation of polaron energies, at temp
ture T,

^«~r1!«~r2!&5n2^f~r1!f~r2!&5
n2kBT

4pKR
e2aR, ~4!

whereR5ur12r2u, a5As/K, and kB is Boltzmann’s con-
stant.

The parametersn and K in the Hamiltonian can be esti
mated from the AM1 quantum chemistry calculations for t
biphenyl molecule and the three-benzene system.11 We find
n;0.3–0.4 eV per radian andK;0.002–0.005 eV/Å.

III. 1D ANALYTICAL RESULTS

A. Poole-Frenkel behavior

A 1D Master equation with nearest neighbor hopping t
can be used to describe the field-dependent mobility has b
exactly solved by Derrida.12 In the continuum limit, the mo-
bility can be calculated using this solution to the Mas
equation.10,17 Using the correlation function obtained for ou
model gives for the mobility

m5
m0e2bs2

bA2ps2aeEK1~bA2ps2aeE!
, ~5!

where b5(kBT)21, s25n2/(2p2Ka), 1/a is the momen-
tum cutoff, andK1(z) is the first-order modified Bessel func
tion of the third kind. By using the asymptotic expansion f
K1(z), the mobility is

m;e2bs2
ebAEA2ps2ae. ~6!
2-2
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MOLECULAR GEOMETRY FLUCTUATIONS AND FIELD- . . . PHYSICAL REVIEW B 63 085202
For this 1D solution, our model and the charge-dipole mo
result in the same field dependence for the mobility, i
ln m;AE. However, our model leads to a different tempe
ture dependence of the mobility: lnm;b in our model
whereas lnm;b2 in the charge-dipole model. The reason f
the different temperature dependence is that the energ
disorder is independent of temperature in the charge-dip
model, whereas it increases with increasing temperatur
our model.

B. Trap effects

We consider a 1D model to study the effect of traps on
mobility. Two kinds of sites are considered, ‘‘regular site
and a small concentration of ‘‘trap sites.’’ Each trap site h
two levels, one is deep~a! and the other is shallow (b). The
shallow level at the trap site is similar to the levels at regu
sites. The deep level~a! is not directly connected to othe
sites, instead, it connects only via the shallow level on
trap. The occupation of the deep trap sites may be subs
tial, but the occupation of regular sites is small. We stud
nonlinear Master equation wherePi is the probability for the
particle to be on sitei andv i j is the hopping rate from sitej
to site i. For regular sites, this nonlinear equation can
linearized. If sitel is a trap, the Master equation for the tw
levels (a andb) on the trap site read

dPl
a

dt
5vab~12Pl

a!Pl
b2vba~12Pl

b!Pl
a , ~7!

dPl
b

dt
5v l l 21Pl 211v l l 11Pl 112~v l 11l1v l 21l !Pl

b

1vba~12Pl
b!Pl

a2vab~12Pl
a!Pl

b . ~8!

The Master equation for regular sites is the same as tha
theb level trap sites without the terms involving thea levels.

At steady state

vab~12Pl
a!Pl

b5vba~12Pl
b!Pl

a . ~9!

Thus the occupation probabilities for the deep levela of trap
sites drops out of the Master equation; it has the same f
as for the model without traps and we can use Derrid
solution. The effect of the traps enters by changing the n
malization condition. That is, the sum over all site occup
tion probabilities, including the deep level trap sites, is eq
to the electron concentration. With this normalization con
tion the mobility in this 1D trap model becomes

m̃5mF~c,d!, ~10!

wherem is the mobility without traps,d is the electron con-
centration per site,c is the trap density,D5Eb2Ea is the
depth of the trap, and

F~c,d!5~11 1
2 $@~c2d!ebD21#

1A@12~c2d!ebD#214cebD%!21. ~11!

The field dependence is the same as without the traps bu
traps modify the overall magnitude of the mobility. This
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an idealized 1D model but it shows the basic physical eff
of deep traps and much of the qualitative behavior that
find in the more complete 3D numerical calculations for de
traps is reproduced by this simple 1D model.

IV. 3D NUMERICAL RESULTS

A. Energy distributions and correlations

It is not a priori obvious to what extent the 1D results a
valid for dense 3D films. In 3D systems a carrier can cho
optimal paths to avoid high energy barriers. We study
mobility in a 3D lattice by solving the static Master equatio
for this system

05(
j

@v i j Pj~12Pi !2v j i Pi~12Pj !#. ~12!

After finding the solutionPi to Eq. ~12!, we calculate the
average carrier velocity from

v5(
i j

v j i Pi~12Pj !Rj i , ~13!

where Rj i 5r j2r i , and obtain the mobility viav5mE.
Compared with Monte Carlo simulations6 the Master equa-
tion approach has several advantages: First, it guarante
stationary solution; second, it is convenient for consider
density-dependent effects; third, it is numerically more e
cient. In Appendix A, we compare these two numerical a
proaches in greater detail.

In our numerical calculations, first we generate random
distributed but spatially correlated molecular geometry flu
tuations and, accordingly, polaron energies on each s
Then we solve the Master equation using a symmetric h
ping rate in the presence of an applied electric fieldE,

v j i 5v0e22GRi j /ae(b/2)[«(r i )2«(r j )2eE•Rj i ] . ~14!

In Sec. IV, we compare results using this symmetric form
the hopping rate with the small polaron form and the asy
metric Miller-Abrahams form.

We consider nearest and the next nearest neighbor
ping. The system size is 64332332, the lattice constant is
a510 Å, 2G510, and the applied field is along thex axis.
There is no correlation betweenF(q) for different q. We
work in momentum space and generate Gaussian distr
tions of F(q) with q-dependent widthV@b(Kq21s)#21.
Then we Fourier transform to findf(r ), which have the
spatial correlation in Eq.~4!.

We use an intermolecular force constant ofK50.0034
eV/Å and a coupling coefficient ofn50.3 eV per radian.
These values match the measured room temperature mo
for MEH-PPV and are consistent with the AM1 calculatio
described above. Heres is set to zero and the temperature
T5300 K. The energy distribution is calculated by

r~z!5V21E d3r ^d~z2«~r !!&. ~15!

We show that the energy distributionr(z) is Gaussian by
introducingu5z/n,
2-3
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r~z!5~nV!21E d3r ^d~u2f~r !!&. ~16!

Using the Fourier transform, we have

r~z!5~nV!21E d3r K dS u2V21(
q

F~q!e2 iq•r D L
5

1

2pnVE d3r E dxeixuKe2 ixV21(
q

F(q)e2 iq•r L .

~17!

Since there is no correlation betweenF(q) for different q,
the average can be calculated for eachq separately,

^e2 ixV21F(q)e2 iq•r
&5e2(x2/2V2)^uF(q)u2&. ~18!

Thus

r~z!5
1

2pnE dxeixu)
q

e2(x2/2V2)^uF(q)u2&

5
Ap

2pnb
expS 2

z2

4b2n2D , ~19!

whereb25(2V)22(q^uF(q)u2&. The polaron has a Gauss
ian energy distribution with a width proportional ton.

B. Dilute carrier density limit

Previously, we considered the field-dependent mobility
the dilute carrier density limit by linearizing the Mast
equation.11 We found that the calculated logarithm of mob
ity as a function ofE1/2 was reasonably close to the linea
showing that the model gives approximately the Poo
Frenkel form. For a more dispersive system~e.g., n50.3
eV!, the mobility was low with a strong field dependen
~i.e., larger coefficient multiplyingE1/2 in the exponential!,
whereas for a more ordered system~e.g., n50.1 eV!, the
mobility was higher with a weaker field dependence.

Figure 1 describes the effects of temperature on mobi
We calculate the mobility forT5200, 300, and 400 K with
other parameters fixed. We find that in the low-field regim
with increasing temperature, the mobility is enhanc
whereas in the high-field regime, the mobility decreases w
increasing temperature. In the low-field regime, thermal
citations are more important for carriers to overcome
energy barriers than the applied field, and the mobility
larger for higher temperatures. In the high-field regime, ho
ever, field-assisted hopping is dominant over the therm
assisted hopping. For higher temperatures, thermal fluc
tions in molecular geometry are stronger and the sys
becomes more disordered. Therefore in the high-field
gime, the mobility is reduced with increasing temperature
the inset of Fig. 1, we plot the polaron energy distribution
the different temperatures.
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C. Finite carrier density

Sites with the deeper energy potentials are bottlenecks
transport, since it is difficult for carriers to escape once th
are caught there. The mobility depends on the carrier den
since when some carriers fill the deeper potentials, the o
carriers become more mobile. The density dependenc
mobility can be studied by solving the nonlinear Mas
equation. We have developed an iteration approach to a
rately solve these nonlinear equations. From the Ma
equation~12!, we expressPi as

Pi5

(
j

v i j Pj

(
k

vki

Y H 12

(
j

~v j i 2v i j !Pj

(
k

vki
J . ~20!

In Eq. ~20!, we scale all hopping rates by(kvki to avoid
very large or small numbers. Based on the above equa
we updatePi using implicit iterations until the accuracy cri
terion has been satisfied. Specifically, if we have obtain
Pi

n21 (1< i<N) as the solution after stepn21, then to cal-
culatePi at the next step~stepn), on the right hand side o
Eq. ~20!, we will usePj

n for j , i andPj
n21 for j . i . We find

that if we useexplicit iteration, i.e.,Pj
n21 for all j, the itera-

tion scheme does not converge.
Previously we have illustrated the carrier density effe

on the mobility for the case of no trap states.11 We note that
the mobility was enhanced by almost one order of magnit
with increase of the carrier density ton56.931018 cm23 at
E;43104 V/cm. In the low-field regime, where the field
assisted hopping for carriers is less efficient than in the hi
field regime, the carrier density effect on mobility was mo
pronounced.

In Fig. 2, we illustrate the carrier occupation as a functi
of the carrier energy with different applied fields. The occ
pation function is calculated by

FIG. 1. Logarithm of mobilitym againstE1/2 with different
temperatures forn50.3 eV, K50.0034 eV/Å. Solid, dashed, an
dot-dashed lines correspond toT5200, 300, and 400 K, respec
tively. The inset is the distribution of carrier energies at these te
peratures.
2-4
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N~z!5V21(
i

^Pid~z2«~r i !!&. ~21!

We find that the occupation shifts toward higher energy a
becomes broader with increasing field. Thus it is more lik
that the low-energy sites~traps! are filled by carriers in the
low-field regime, where the mobility strongly depends on t
carrier density.

Figure 3 shows the effect of deep traps on the mobility
the system, there are randomly distributed traps with a c
centration 0.231018 cm23 and the trap level is20.5 eV.
Because of the traps, the mobility is small in the low-fie
regime for low carrier densities. When the carrier density
sufficiently large to quench the traps, the mobility is e

FIG. 2. Carrier occupation as a function of the energy w
different applied fields for carrier densityn56.931018 cm23, n
50.3 eV,K50.0034 eV/Å, andT5300 K. Solid and dashed line
correspond to fieldE50.05 and 1.03106 V/cm, respectively. The
inset is the distribution of carrier energies.

FIG. 3. Logarithm of mobilitym againstE1/2 with different
carrier densities for a system with randomly distributed traps. T
trap concentration is 0.231018 cm23 and the trap level is20.5 eV.
Short-dashed, long-dashed, dot-dashed, and dotted lines corre
to carrier densitiesn50.47, 0.24, 0.12, 0.0331018 cm23, respec-
tively. The solid line shows the results of solving the lineariz
Master equation without traps.
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hanced dramatically. The field dependences of the mobili
for different carrier densities are similar, which is consiste
with the 1D trap model.

D. Comparison between 3D and 1D systems

In Fig. 4, we compare a 3D numerical result, a 1D n
merical result, and an analytic 1D result which used De
da’s solution12 to the 1D Master equation with a continuu
approximation to calculate the mobility. For the 1D nume
cal result we used a solution for a 3D lattice with the sa
energy distribution as in the 3D numerical calculation b
removed all the interchain hopping. We find that the 3D a
the 1D numerical results merge in the high-field regime.
the low-field regime, however, the difference is substant
indicating that the 1D mobility solution cannot be direct
extended to 3D systems in the low-field regime. The
analytic result is similar to the 1D numerical result at low
fields but differs at higher fields because the continuum
proximation was used in the analytical result.

In 3D systems, a carrier can optimize its path to avo
high energy barriers and achieve a higher mobility. Figur
illustrates the current patterns in the low-field and the hig
field regions. In the figure, we project the 3D lattice onto t
x-y plane by summing over the currents in different plan
The width of each bond in the figure is proportional to t
current across the bond. Darker bonds indicate that the
rent is opposite to the standard directions~from left to right
and from down to up!. In the low-field regime, we see tha
the carriers take complex paths involving many chai
When such irregular paths occur, a 1D model, where the p
is always along the field, is not appropriate. In the high-fie
regime, where the field is strong enough to overcome
energy barriers, the carrier paths are essentially o
dimensional. Therefore the 3D and 1D numerical resu
merge in the high-field regime.

E. Correlation length effects

In the above calculations, the intramolecular restor
force s was set to zero. Finite values fors results in a short-

e

ond

FIG. 4. Logarithm of mobilitym againstE1/2 for n50.3 eV,
K50.0034 eV/Å, andT5300 K. Solid line is obtained by solving
the 3D static Master equation; the dashed line is the numerica
result and the dot-dashed line is the analytical 1D result.
2-5



of
he
th
.
re
u-

el.
-
v-
the
nd

the

ier
ely

ng

ol-

n

tric
at

ce
al-
ron

-
dif-
op-
the

thi

n-
th

sh

ric
the
lines
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range energy correlation;e2aR. In Fig. 6, we plot the mo-
bility as a function of the applied field for different values
a but with identical energy distributions as shown in t
inset of Fig. 2. Thus these different curves correspond to
same disorder strength but different energy correlationsa
50 means that the polaron energy has a long-range cor
tion. a51.0 Å21 indicates that the polaron energy is virt

FIG. 5. Current patterns~carrier paths! for different applied
field. The width of the bond is proportional to the current across
bond. Upper and lower panels are forE50.53105 and 23106

V/cm, respectively.

FIG. 6. Logarithm of mobilitym againstE1/2 for n50.3 eV and
T5300 K. K is adjusted for different intramolecular restoring co
stantss in such a way to keep the same energy distribution as in
inset of Fig. 2. Solid, short-dashed, long-dashed, and dot-da
lines correspond toa50, 0.01, 0.1, and 1.0 Å21, respectively.
08520
e

la-

ally uncorrelated, which is very close to the GDM mod
We find that with increasinga, the mobility decreases rap
idly and the mobility deviates from the Poole-Frenkel beha
ior in the low-field region. These results demonstrate that
energy correlation can enhance the mobility efficiently a
make the field dependence of the mobility closer to
Poole-Frenkel behavior.

F. Small-polaron and Miller-Abrahams hopping rates

In the foregoing calculations, the rate with which a carr
hops from one site to another was chosen to be the wid
used symmetric form of Eq.~14!. This form corresponds to
the small-polaron hopping rate for systems with a stro
charge-lattice coupling.

According to the small-polaron theory developed by H
stein and Emin,18,19 the hopping rate can be written as

v j i }A b

4pV
e22G(Ri j /a)e2(b/4V)(D« j i 1V)2

, ~22!

where D« j i 5« j2« i2eE•Rj i is energy difference betwee
sitesj andi in the presence of an applied electric fieldE and
V is the small-polaron relaxation energy. WhenD« j i !V,
the small-polaron hopping rate reduces to the symme
form of Eq. ~14! within site-energy-independent terms th
can be included inv0 .

WhenV is comparable to or smaller thanD« j i , it is not
clear that the hopping rate in Eq.~14! is a good approxima-
tion to the small-polaron form. To see how much differen
these two forms of hopping rates make in the mobility c
culations, we carry out calculations using the small-pola
hopping rates with different values forV. We adjust an
overall multiplicative factor to give the same low-field mo
bility results and compare the field dependences for the
ferent hopping rates. As shown in Fig. 7, these different h
ping rates lead to very similar field dependence over

s

e
ed

FIG. 7. Comparison of calculated mobility using the symmet
hopping rate and the small-polaron rates. The solid line is for
symmetric hopping rates. The short-dashed and long-dashed
are for the small polaron hopping rates withV50.1 and 0.02 eV,
respectively. Other parameters are fixed,n50.3 eV, K50.0034
eV/Å, andT5300 K.
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range of fields considered even whenV50.02 eV, smaller
than the width of energy distribution (;0.1–0.2 eV atn
50.3 eV!. We conclude that the symmetric form of Eq.~14!
is reasonable to study the field-dependent mobility in de
polymer films for the range of fields commonly used in po
mer based electronic devices.

In the literature of transport in disordered systems,
asymmetric rate with the Miller-Abrahams form has al
been extensively used,

v j i 5v0e22G(Ri j /a)H e2bD« j i , if D« j i .0

1, if D« j i ,0.
~23!

Both the symmetric form Eq.~14! and the asymmetric
Miller-Abrahams form Eq.~23! satisfy the detailed balance

v j i

v i j
5exp~2bD« j i !. ~24!

We compare the mobility calculated using the asymme
Miller-Abrahams hopping rates and symmetric hoppin
Figure 8 shows that the calculated mobility is not sensitive
the choice of hopping rates over the range of fields con
ered.

V. CONCLUDING REMARKS

In summary, we proposed a general model to desc
transport in dense films of conjugated polymers. In t
model thermal fluctuations in the molecular geome
modify the energy levels of localized electronic excitatio
in the material. Based on quantum chemistry calculations
argue that the primary restoring force for these fluctuati
in molecular geometry is steric in origin. Because the res
ing force is intermolecular, there is a spatial correlation
the molecular distortions. This leads to spatially correla
fluctuations in the on-site energy of the electronic exc

FIG. 8. Comparison of the calculated mobility using symmet
and asymmetric hopping rates. The solid line is obtained by us
the symmetric hopping rate withn50.3 eV,K50.0034 eV/Å, and
T5300 K. The dashed line is obtained by using the asymme
Miller-Abrahams hopping rate.
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tions. The phenylene ring torsion, in PPV-like conjugat
polymers, is an example of this kind of spatially correlat
thermal fluctuation.

We developed a numerical approach which enables u
study the electrical transport in three-dimensional syste
We investigated the density dependence of the mobility
find that when the carrier density is large, the mobility can
significantly enhanced. The mobility increases strongly w
increasing carrier density at low fields, but carrier dens
dependence of the mobility is weaker at high fields. The
results are consistent with both light-emitting diodes a
field-effect transistor measurements. We also studied the
bility in a system with randomly distributed traps. We foun
that the trap affects primarily the overall magnitude of t
mobility and has a weaker effect on the field dependence
the mobility. When the carrier density is sufficiently large
fill up all traps, the mobility is enhanced.

We found that the carrier hopping in the low-field regim
is mainly due to the thermal excitations, while in the hig
field regime, the field-assisted hopping becomes domin
These different hopping mechanisms result in different te
perature dependences in different field regions: In the lo
field regime, the mobility increases as temperature increa
whereas in the high-field regime, the mobility decreases
temperature increases.

We compared our 3D numerical results with 1D nume
cal results and 1D analytical results. We studied typical c
rier paths at different electric fields. We found that, in t
low-field regime, the carrier paths are irregular and distr
uted in the whole 3D system, whereas in the high-field
gime, the path is essentially 1D along the field. We fou
that the mobilities from our 3D numerical result and the 1
numerical one are close to each other at high fields but
matically different in the low-field region, indicating that 1D
models cannot be directly extended to 3D systems at
fields. Finally, we studied the effect of asymmetric hoppi
rate and small-polaron rate on the mobility. We found th
these two variables do not significantly affect the mobil
compared to the case of symmetric hopping rate.

Our model presents a comprehensive picture and a g
eral framework for understanding the Poole-Frenkel beh
ior observed in many conjugated polymers. Our numeri
calculations provide an understanding of carrier dens
temperature, and trap effects on the field-dependent mob
in these materials.
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APPENDIX A: COMPARISON BETWEEN MONTE CARLO
AND MASTER EQUATION APPROACHES

In previous numerical studies of field-dependent mobil
in polymers, Monte Carlo simulations have been widely us
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because they are both conceptually simple and ea
programmed.5–7,10 In this approach, att50 some particles
are added in a lattice, these particles then randomly ho
adjacent sites according to a particular distribution. The m
bility is determined by calculating the average velocity
particles after a simulation timet0 . Thus t0 must be long
enough so that the average velocity will not change i
longer simulation time was used.

Since the mobility is a property of the steady state, o
can directly solve the stationary Master equation to study
mobility. Compared with the Monte Carlo simulations, t
Master equation approach has the advantage that statio
solutions are guaranteed. Since the Monte Carlo simula
time required for convergent results increases exponent
as the disorder becomes stronger in the systems,6 it is diffi-
cult to obtain stationary solutions from the Monte Ca
simulations for strongly disordered systems. As an exam
we carry out Monte Carlo simulations to calculate the m
bility using our model. We chooset0 large enough that for
weak disorder strengths (n50.1 and 0.2 eV!, the Monte
Carlo simulations produce exactly the same results as
Master equation approach. For stronger disorder stren
(n50.3 and 0.35 eV!, as shown in Fig. 9, the results from
Monte Carlo simulations deviate somewhat from those fr
the Master equation approach. If we double the simulat
time, the Monte Carlo results approach the Master equa
results but deviation still exists. This comparison indica
that the Monte Carlo simulations can become inefficient
polymers with strong disorder.

FIG. 9. Comparison between the Monte Carlo and the Ma
equation approaches. The two solid lines are obtained by sol
the static Master equations withn50.3 ~upper one! and 0.35 eV
~lower one!. The open circles and filled triangles are Monte Ca
results. The simulation time ist0 for open circles and 2t0 for filled
triangles.
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APPENDIX B: DISTRIBUTION FUNCTION FOR THE
MOLECULAR GEOMETRY FLUCTUATIONS:

INTERACTION WITH THE CARRIER

The distribution function we use to describe fluctuatio
in the classical molecular geometry field is based on the
energy expression in Eq.~3!. It is rigorously valid only in the
weak coupling limit~i.e., smalln) because the interaction
with the carrier, described by the term linear in the classi
field variable, are not included in the expression for the f
energy. This term may not be negligible for realistic valu
of the model parameters for polymers. Here we show that
effects of this coupling can be included by taking the exp
tation value of the Hamiltonian with the carrier at a speci
molecular site and completing the square to eliminate
linear term in the classical field variable. This treatme
again gives a Gaussian distribution function with a modifi
classical field variable. The results are essentially the sam
the original treatment in that the long-range spatial corre
tions are maintained and with the same functional form.

Consider that part of the Hamiltonian which involves on
the molecular geometry fieldf and its coupling with the
charge of a carrier at sitei:

E5
K

2E d3r ~¹f!21nE d3rf~r !uc i~r !u21
s

2E d3rf2~r !,

which can be rewritten in the Fourier transformed form a

E5V21(
q

H uF~q!u2FKq21s

2 G1nF~q!Ri~q!J ,

with

Ri~q!5E d3re2 iq•ruc i~r !u2.

We can further simplify this by completing the square

E5V21(
q

F uF̄~q!u2S Kq21s

2 D2
n2uRi~q!u2

2~Kq21s!
G ,

where

F̄~q!5F~q!1
nRi* ~q!

Kq21s
.

Picking F(q) according to the distribution function define
by this free energy expression, with the relation betwe
F̄(q) and F(q) given above, gives the same site ener
distribution as the procedure we used~to within an overall
constant! as long as the wave functions on the sites are
same.
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5M. Abkowitz, H. Bässler, and M. Stolka, Philos. Mag. B63, 201
~1991!.

6H. Bässler, Phys. Status Solidi B175, 15 ~1993!.
7Yu. N. Gartstein and E. M. Conwell, Chem. Phys. Lett.245, 351

~1995!.
8D. M. Pai, J. Chem. Phys.52, 2285~1970!.
9W. D. Gill, J. Appl. Phys.43, 5033~1972!.

10D. H. Dunlap, P. E. Parris, and V. M. Kenkre, Phys. Rev. Le
77, 542~1996!; S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P
E. Parris, and A. V. Vannikov,ibid. 81, 472 ~1998!.

11Z. G. Yu, D. L. Smith, A. Saxena, R. L. Martin, and A. R
Bishop, Phys. Rev. Lett.84, 721 ~2000!.
08520
.

.

12B. Derrida, J. Stat. Phys.31, 433 ~1983!.
13M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. W

Appl. Phys. Lett.73, 1565~1998!.
14D. Chen, M. J. Winokur, M. A. Masse, and F. E. Karasz, Ph

Rev. B41, 6759~1990!.
15K. Pichler, D. A. Halliday, D. D. C. Bradley, P. L. Burn, R. H

Friend, and A. B. Holmes, J. Phys.: Condens. Matter5, 7155
~1993!.

16H. J. S. Dewar, E. G. Zoebisch, and E. F. Healy, J. Am. Che
Soc.107, 3902~1985!.

17P. E. Parris, M. Kus´, D. H. Dunlap, and V. M. Kenkre, Phys. Rev
E 56, 5295~1997!.

18T. Holstein, Ann. Phys.~N.Y.! 8, 325 ~1959!; 8, 343 ~1959!.
19D. Emin, Adv. Phys.24, 305 ~1975!.
2-9


