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Many conjugated polymers exhibit an electric field-dependent mobility of approximately the Poole-Frenkel
form. We propose a model to describe transport in dense films of these materials in which thermal fluctuations
in the molecular geometry modify the energy levels of localized electronic charged states in the material. Based
on quantum chemistry calculations we argue that the primary restoring force for these fluctuations in molecular
geometry is steric in origin, which leads to spatially correlated fluctuations in the on-site energy of the charged
electronic states. The phenylene ring torsion, in PPV-like conjugated polymers, is an example of this kind of
spatially correlated thermal fluctuation. Using a Master equation approach to calculate the mobility, we show
that the model can quantitatively explain the experimentally observed field-dependent mobility in conjugated
polymers. We examine typical paths taken by carriers and find that at low fields, the paths are three-
dimensional, whereas at high fields the paths become essentially one-dimensional along the applied field. Thus,
one-dimensional transport models can be valid at high fields but not at low fields. Effects of deep traps, the site
energy correlation length, temperature, and asymmetric and small polaron rates are studied.
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[. INTRODUCTION gated polymers. Here we propose a model, in which thermal
fluctuations in the molecular geometry modify the energy

Electronic devices based on conjugated polymers have atevels of localized electronic charged states in the material,
tracted much attention because of their processing and peand study the predictions of this model for the field and
formance advantagé<. Understanding the carrier transport carrier density dependence of the mobility. A preliminary
properties in these materials is important to design and symdiscussion of this model has been presented in a shorthote.
thesize better materials and to further improve the device Conjugated polymers contain impurities and defects.

performance. Time-of-flight mobility measurements showThese impurities and defects may serve as traps for carriers
that the field-dependent mobility in many conjugated poly-jn these materials, which may be critical to electrical trans-

mers approximates the Poole-Frenkel form, i.e., the mobili%ort_ We construct a one-dimensior(dD) trap model and

increases approximately exponentially WitlE over an ex-  gptain the analytical solution for this model. We also nu-

tended range of electric fiel.>~ Theoretically, Basler and merically study the three-dimension@D) system with ran-
co-workers extensively studied field-dependent mobility ingomly distributed deep traps.

ian disorder mode(GDM).” The GDM satisfactorily €x- optained based on Derrida’s exact solution to a 1D steady
plains many features of mobility observed in these materialsstate Master equatidf.Since 3D models are too complex to
however, as pointed out by Gartstein and ConWellspa- have an analytical solution, there is a temptation to extend
tially correlated potential for the carriers is needed to explainne 1D results to 3D. However, it is not clear to what extent
the Poole-Frenkel behavior in the low-field region 10" the 1D results can be used in 3D systems. In 3D systems, the
Viem). . . ~ carrier can choose optimal paths to avoid high energy barri-
Historically, Poole-Frenkel behavior was first observed ingrs, while in 1D systems, the carrier has no choice for its
molecularly doped polymers, in which the dopants have perpath. We systematically compare the numerical 3D results
manent electric dipole momerftS.Dunlap and co-workers with the 1D results and study typical carrier paths in 3D
recently proposed the charge-dipole model for the mob|I|tySy3temS_
in these molecularly doped materiafsThe long-range spa-  ~ The article is organized as follows. In Sec. II, we intro-
tial correlation of carrier energies, which comes about fromgyce our model and estimate the parameters of the model
the charge-dipole interaction, is an essential aspect of thigamiltonian. In Sec. Ill, we present 1D analytical solutions
model. The charge-dipole model has been very successful & the model. Section IV is devoted to 3D numerical results

describing the observed transport properties of molecularlyhcluding asymmetric and small polaron rates. We summa-
doped polymers. Although the mobility in conjugated poly- rize our conclusions in Sec. V.

mers and in molecularly doped materials exhibits some simi-
larities in behavior, the mechanism leading to the Poole-
Frenkel behavior in conjugated polymers cannot be due to
charge-dipole interactions, as it is in molecularly doped poly-
mers, because most conjugated polymers do not have a per- Since most conjugated polymers show a field-dependent
manent dipole moment. Therefore, an alternative mechanismmobility of the Poole-Frenkel form, the model and the

is needed to explain the field-dependent mobility in conju-mechanism used to describe this observed behavior should

Il. MODEL
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be generic. Compared with many other conjugated polymerghe difference of the torsion in adjacent moleculess the
the observed field-dependent mobility of p@y®- intramolecular restoring force constant. This term is small
dioctylfluorene (PFO is unusual: The mobility in PFO is compared with the intermolecular term. The energy mini-
two orders higher than that in pafyphenylene vinylene mum in the neutral system occurs in a different geometry
(PPV), and the field dependence is very wéakn conju-  than that in the charged systémExpanding the energy of
gated polymers like PPV, the orientation of the benzenghe charged system around the equilibrium geom@nergy
rings can fluctuate around their equilibrium positions. Inminimum for the neutral systengives a linear coupling be-
PFO, however, the ring-torsion freedom is suppressed by thisveen the polaron and the torsion described by the coupling
chemical bonding between the phenylene rings. This differconstanty. 7;; is the polaron hopping matrix element be-
ence suggests that fluctuations in molecular geometry catween sites. The effect of fluctuations in the bare site ener-
strongly affect the mobility in these materials. In conjugatedgies ¢; has been studied in the GDMHere we consider
polymers, the restoring force of ring orientation fluctuationscases in which energy fluctuations are dominated by the in-
may come from two origins, intermolecular or intramolecu- teraction with the molecular geometry field and take the bare
lar interactions. The intermolecular restoring force becomesite energies all equal to zero.
dominant in dense films, where molecules are closely The renormalized polaron energy is a function of position
packed Because of the short distance between moleculesjue to the local coupling between the polaron and the mo-
small fluctuations of the adjacent molecular orientations mayecular geometry
give rise to a large steric energy. By contrast, the intramo-
lecular restoring force is weak. The characteristic energy e(rp)=ve(r). i)
measured for the torsion mode in an isolated PPV molecul
is quite smallt®
To quantitatively understand the effects of fluctuations in
molecular geometry in conjugated polymers, we carried out
an electronic structure calculation of the total energy Fng= Q1 | ®(a)|[A(Kg?/2+s/2), ©)
(AM1)*® of biphenyl as a function of the twist angle between d
two rings. For neutral biphenyl, the energy is almost constanivhere() is the volume of the system awel(q) is the Fourier
with changing torsion angf¥. However, when an extra elec- transform of ¢(r).1! The equipartition law{ Frng) =kgT/2,
tron or hole is added to this system, the total energy of thejives the spatial correlation of polaron energies, at tempera-
charged state strongly depends on the torsion angle. Thisire T,
result is expected, as conventional resonance structures sug-
gest there should be very little-character in the bond con- o B v2kgT CaR
necting the two benzene rings for the neutral molecule, and ~ (£(r)e(r2)=vAe(r)¢(ra))=,— —e ", (4)
therefore there is nearly free rotation about the single bond.
But for both positive and negative ions a coplanar orientationwhere R=|r,—r,|, a=\s/K, andkg is Boltzmann's con-
maximizes them-overlap between them and allows the Stant.
charge to delocalize more easily over both rings. Thus there The parameterg andK in the Hamiltonian can be esti-
is a strong coupling between the local electronic excitationmated from the AM1 quantum chemistry calculations for the
(carriep and the ring orientation. To estimate the steric in-biphenyl molecule and the three-benzene systewe find
teraction between chains, we examined a model consisting af~0.3—-0.4 eV per radian arki~0.002-0.005 eV/A.
three parallel benzene rings with a fixed separatfofhese
calculations show that the intermolecular restoring is domi- IIl. 1D ANALYTICAL RESULTS
nant over the intramolecular one in densely packed materials.
We propose a general model to describe the mobility in
dense films of conjugated polymers described by the Hamil- A 1D Master equation with nearest neighbor hopping that
tonian can be used to describe the field-dependent mobility has been
exactly solved by Derrid& In the continuum limit, the mo-

%he total free energy from the molecular geometry fluctua-
tions is

A. Poole-Frenkel behavior

+ K 3 ) ; bility can be calculated using this solution to the Master
H:Ei &iC; Ci"’Ef d>r(Ve) +Vzi CiCia(ri) equation'®*’ Using the correlation function obtained for our
model gives for the mobility
s
+§f d3r¢2(r)+izj 7;(CICj+H.c). (1) poe” B

= , 5
T : ) . g ﬁ\/ZWUzaEEKl(,B\/ZWO'ZaeE)
HereC; is the creation operator of a carrigrolaror) on site

i and s; is its bare energye(r) describes the molecular Where 8= (kgT) ™', o®=v%/(27°Ka), 1/a is the momen-
geometry fieldin PPV, it can be regarded as the deviation oftum cutoff, andK,(z) is the first-order modified Bessel func-
the torsion angle of the benzene ring from its equilibriumtion of the third kind. By using the asymptotic expansion for
value atr). K is the intermolecular restoring force constant; K1(z), the mobility is

the origin of the gradient of the molecular geometry field in , 5

this term is that the intermolecular elastic energy depends on u~e PorlghlEN2matae (6)
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For this 1D solution, our model and the charge-dipole modehn idealized 1D model but it shows the basic physical effect

result in the same field dependence for the mobility, i.e.of deep traps and much of the qualitative behavior that we

In u~+E. However, our model leads to a different tempera-find in the more complete 3D numerical calculations for deep

ture dependence of the mobility: l~g in our model traps is reproduced by this simple 1D model.

whereas Inu~ 2 in the charge-dipole model. The reason for

the different temperature dependence is that the energetic IV. 3D NUMERICAL RESULTS

disorder is independent of temperature in the charge-dipole

model, whereas it increases with increasing temperature in

our model. It is nota priori obvious to what extent the 1D results are

valid for dense 3D films. In 3D systems a carrier can choose

B. Trap effects optimal paths to avoid high energy barriers. We study the

mobility in a 3D lattice by solving the static Master equation

8or this system

A. Energy distributions and correlations

We consider a 1D model to study the effect of traps on th
mobility. Two kinds of sites are considered, “regular sites”
and a small concentration of “trap sites.” Each trap site has
two levels, one is deefa) and the other is shallowb]. The 0=2> [w;;P;(1—P;)—w;;Pi(1—-P))]. (12
shallow level at the trap site is similar to the levels at regular )
sites. The deep leveh) is not directly connected to other After finding the solutionP; to Eq. (12), we calculate the
sites, instead, it connects only via the shallow level on theaverage carrier velocity from
trap. The occupation of the deep trap sites may be substan-
tial, but the occupation of regular sites is small. We study a
nonlinear Master equation wheRg is the probability for the

article to be on sité and w;; is the hopping rate from sitj . . .
tpo site i. For regular sites, this nonlﬁﬁaa? equation ca??] pevhere Ry =r;—r;, and obtain the mobility viav=uE.
linearized. If sitel is a trap, the Master equation for the two Qompared with Monte Carlo S|mu|at|o‘hsh(_e Ma_ster equa-
levels (@ andb) on the trap site read t|on_approach has several aQ\{antages: .FII’St, it guarantees a
stationary solution; second, it is convenient for considering

VZZ wjiPi(l_Pi)Rji’ (13
i]

dp? density-dependent effects; third, it is numerically more effi-
szab(l— P?)PF— wpa(l— PF)P,a, (7) cient. In Appendix A, we compare these two numerical ap-
proaches in greater detalil.
dpP In our numerical calculations, first we generate randomly
| . . .
T P it o 41Pla— (@4t wl—lI)PIb dIStI:Ibuted but spatlal!y correlated moIecuIar geometry flup-
tuations and, accordingly, polaron energies on each site.
Then we solve the Master equation using a symmetric hop-
+ pa( 1= PP)Pf— wap( 1= PPPY. ®) a pasy P

ping rate in the presence of an applied electric figld

The Master equation for regular sites is the same as that for B

theb level trap sites without the terms involving tadevels. Wji = W€
At steady state

ZFR” /ae(B/Z)[s(rl)—s(rJ)—eER“]. (14)

In Sec. IV, we compare results using this symmetric form for

the hopping rate with the small polaron form and the asym-
wa( 1~ Pf)PI=wpa( 1~ PP)PF. ®  metric l?\I/Iaillcgr—Abrahams form. P g
Thus the occupation probabilities for the deep levef trap We consider nearest and the next nearest neighbor hop-

sites drops out of the Master equation; it has the same forrping. The system size is 6432X 32, the lattice constant is

as for the model without traps and we can use Derrida’'sa=10 A, 2I"'=10, and the applied field is along theaxis.
solution. The effect of the traps enters by changing the norThere is no correlation betweeh(q) for different q. We
malization condition. That is, the sum over all site occupa-work in momentum space and generate Gaussian distribu-
tion probabilities, including the deep level trap sites, is equations of ®(q) with g-dependent width[ B(Kg?+s)] L.

to the electron concentration. With this normalization condi-Then we Fourier transform to fing(r), which have the

tion the mobility in this 1D trap model becomes spatial correlation in Eq4).
_ We use an intermolecular force constantkof0.0034
pu=pF(c,d), (100 eV/A and a coupling coefficient of=0.3 eV per radian.

These values match the measured room temperature mobility
for MEH-PPV and are consistent with the AM1 calculations
described above. Hereis set to zero and the temperature is
T=2300 K. The energy distribution is calculated by

whereu is the mobility without trapsd is the electron con-
centration per site¢ is the trap densityA=E,—E, is the
depth of the trap, and

F(c,d)=(1+3{[(c—d)efr—1]
+[I-(c—d)eP P+ acd™)—1. (1D P(Z):Q_lf d3r(S8({—e(r))). (15

The field dependence is the same as without the traps but th¥e show that the energy distributig( ) is Gaussian by
traps modify the overall magnitude of the mobility. This is introducing 6= ¢/ v,
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P(():(VQ)_lj dr(8(6—¢(r))). (16) 107 B
Using the Fourier transform, we have .
o 10°F -
2
p(é“):(vﬂ)*lf d3F< 5( -0 1> (I)(Q)eiq'r)> 5 -
q = 4577
Z 10 .
1 i g —ig- -
— 3 —ixQ [0 1q-r
_27Tvﬂfd rdeéX0<e ’ zq: e > ----- T=300K
10° —-—- T=400K | _|
(17 , , , . .
200 400 600 800 1000 1200 1400
12 1/2 —1/2
Since there is no correlation betwedr(q) for differentq, E(Viem ™)

the average can be calculated for eacseparately, FIG. 1. Logarithm of mobility x againstEY? with different

temperatures for=0.3 eV, K=0.0034 eV/A. Solid, dashed, and

<e*ixﬂ_1®(q)e_iq">:e*(XZ/ZOZ)(VD(Q)IZ)_ (18)  dot-dashed lines correspond To=200, 300, and 400 K, respec-
tively. The inset is the distribution of carrier energies at these tem-
Thus peratures.
1 C. Finite carrier density
i _(y2 2 2

p(d)= mJ dxe*?[] e (<292 @I%) Sites with the deeper energy potentials are bottlenecks for

a transport, since it is difficult for carriers to escape once they

J7 2 are caught there. The mobility depends on the carrier density,

= ex;{ — T) , (190  since when some carriers fill the deeper potentials, the other
2mvb 4b“y carriers become more mobile. The density dependence of

mobility can be studied by solving the nonlinear Master
where b2:(20)*22q<|<b(q)|2). The polaron has a Gauss- equation. We have developed an iteration approach to accu-
ian energy distribution with a width proportional io rately solve these nonlinear equations. From the Master
equation(12), we expres$; as

B. Dilute carrier density limit

Previously, we considered the field-dependent mobility in > ;P > (wji— i) P

the dilute carrier density limit by linearizing the Master i i

equationt! We found that the calculated logarithm of mobil- i~ 1- . (20

ity as a function ofEY? was reasonably close to the linear, ; Wi ; Wi

showing that the model gives approximately the Poole—

Frenkel form. For a more dispersive systémg., v=0.3 _ )

eV), the mobility was low with a strong field dependence!n EQ. (20), we scale all hopping rates by, wy; to avoid

(i.e., larger coefficient multiplyingsY/2 in the exponentia) ~ V€Y large or small numbers. Based on the above equation,

whereas for a more ordered systdéeg., v=0.1 eV), the W€ updateP; usmglmpl_lcn |terat|qr_13 untll_ the accuracy cri-

mobility was higher with a weaker field dependence. tenoln ha; been satisfied. S_pecmcally, if we have obtained
Figure 1 describes the effects of temperature on mobilityPi ~ (1<i<N) as the solution after step—1, then to cal-

We calculate the mobility for =200, 300, and 400 K with ~culateP; at the next stejgstepn), on the right hand side of

other parameters fixed. We find that in the low-field regime,Ed. (20), we will useP} for j<i andP}~* for j>i. We find

with increasing temperature, the mobility is enhancedthat if we useexplicit iteration, i.e.,P}“1 for all j, the itera-

whereas in the high-field regime, the mobility decreases wittiion scheme does not converge.

increasing temperature. In the low-field regime, thermal ex- Previously we have illustrated the carrier density effects

citations are more important for carriers to overcome theon the mobility for the case of no trap statésVe note that

energy barriers than the applied field, and the mobility isthe mobility was enhanced by almost one order of magnitude

larger for higher temperatures. In the high-field regime, howwith increase of the carrier density to=6.9x 10'® cm™3 at

ever, field-assisted hopping is dominant over the thermalE~4x10* V/cm. In the low-field regime, where the field-

assisted hopping. For higher temperatures, thermal fluctuassisted hopping for carriers is less efficient than in the high-

tions in molecular geometry are stronger and the systerfield regime, the carrier density effect on mobility was more

becomes more disordered. Therefore in the high-field repronounced.

gime, the mobility is reduced with increasing temperature. In  In Fig. 2, we illustrate the carrier occupation as a function

the inset of Fig. 1, we plot the polaron energy distribution atof the carrier energy with different applied fields. The occu-

the different temperatures. pation function is calculated by
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FIG. 2. Carrier occupation as a function of the energy with . - ) o
different applied fields for carrier density=6.9x 10" cm ™3, v FIG. 4. Logarithm of mobilityn againste™* for »=0.3 eV,
—0.3 eV,K=0.0034 eV/A, andr =300 K. Solid and dashed lines K=0.0034 eV/A, andl =300 K. Solid line is obtained by solving

correspond to fieldE=0.05 and 1.0< 1¢° V/cm, respectively. The the 3D static Master equation; the dashed line is the numerical 1D
inset is the distribution of carrier energies. result and the dot-dashed line is the analytical 1D result.

hanced dramatically. The field dependences of the mobilities

. for different carrier densities are similar, which is consistent
N({)=Q Z (Pid({—e(ri)). (21 with the 1D trap model.

D. Comparison between 3D and 1D systems
We find that the occupation shifts toward higher energy and |y Fig. 4, we compare a 3D numerical result, a 1D nu-

becomes broader with increasing field. Thus it is more likelymerical result, and an analytic 1D result which used Derri-
that the low-energy siteétraps are filled by carriers in the ga's solution? to the 1D Master equation with a continuum

low-field regime, where the mobility strongly depends on thegpproximation to calculate the mobility. For the 1D numeri-
carner density. - cal result we used a solution for a 3D lattice with the same

Figure 3 shows the effect of deep traps on the mobility. Inenergy distribution as in the 3D numerical calculation but
the system, there are randomly distributed traps with a conremoved all the interchain hopping. We find that the 3D and
centration 0.X 10 cm™® and the trap level is-0.5 eV.  the 1D numerical results merge in the high-field regime. In
Because of the traps, the mobility is small in the low-field the |ow-field regime, however, the difference is substantial,
regime for low carrier densities. When the carrier density ispdicating that the 1D mobility solution cannot be directly
sufficiently large to quench the traps, the mobility is en-extended to 3D systems in the low-field regime. The 1D

analytic result is similar to the 1D numerical result at lower
107 . . . fields but differs at higher fields because the continuum ap-
proximation was used in the analytical result.

In 3D systems, a carrier can optimize its path to avoid
high energy barriers and achieve a higher mobility. Figure 5
illustrates the current patterns in the low-field and the high-
field regions. In the figure, we project the 3D lattice onto the
x-y plane by summing over the currents in different planes.
The width of each bond in the figure is proportional to the
current across the bond. Darker bonds indicate that the cur-
rent is opposite to the standard directidfrom left to right
and from down to up In the low-field regime, we see that
the carriers take complex paths involving many chains.
) When such irregular paths occur, a 1D model, where the path
200 w0 600 800 1000 is always along the field, is not appropriate. In the high-field

E™(Viem ™) regime, where the field is strong enough to overcome the
energy barriers, the carrier paths are essentially one-

F.IG' 3. '.‘anrithm of mObi"t.y“ againStElfz With different dimensional. Therefore the 3D and 1D numerical results
carrier densities for a system with randomly distributed traps. The

trap concentration is 0:210*® cm™2 and the trap level is-0.5 eV. merge in the high-field regime.
Short-dashed, long-dashed, dot-dashed, and dotted lines correspond
to carrier densities=0.47, 0.24, 0.12, 0.0% 10'® cm 3, respec-
tively. The solid line shows the results of solving the linearized In the above calculations, the intramolecular restoring
Master equation without traps. force s was set to zero. Finite values feresults in a short-

E. Correlation length effects
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FIG. 7. Comparison of calculated mobility using the symmetric
hopping rate and the small-polaron rates. The solid line is for the
. i e symmetric hopping rates. The short-dashed and long-dashed lines
are for the small polaron hopping rates with=0.1 and 0.02 eV,
respectively. Other parameters are fixeds0.3 eV, K=0.0034
| : ! eV/A, andT=300 K.

ally uncorrelated, which is very close to the GDM model.
We find that with increasingy, the mobility decreases rap-
idly and the mobility deviates from the Poole-Frenkel behav-
ior in the low-field region. These results demonstrate that the

FIG. 5. Current patterngcarrier paths for different applied . - L
field. The width of the bond is proportional to the current across thisSNeray correlation can enhance the mobility efficiently and

bond. Upper and lower panels are fBr=0.5x10° and 2x10° make the field dependence of the mobility closer to the
Vicm, respectively. Poole-Frenkel behavior.

range energy correlation e *R. In Fig. 6, we plot the mo- F. Small-polaron and Miller-Abrahams hopping rates

bility as a function of the applied field for different values of | the foregoing calculations, the rate with which a carrier

a but with identical energy distributions as shown in the hgps from one site to another was chosen to be the widely

inset of Fig. 2. Thus these different curves correspond to thgsed symmetric form of Eq14). This form corresponds to

same disorder strength but different energy correlatians. the small-polaron hopping rate for systems with a strong

=0 means that the polaron energy has a long-range correlgharge-lattice coupling.

tion. a=1.0 A~ indicates that the polaron energy is virtu-  According to the small-polaron theory developed by Hol-
stein and Emirt®'°the hopping rate can be written as

E— I, I I 2l B . _ - 2
e @i %\ 70 2T (Rij 1) g (AlAD)(Aeji +0)7 (22

——- =01 e P
—-—= o=10 - Ve

,,,,,, - | where Agjj=¢g;—¢;—€E-R;; is energy difference between
,,,,,,, -~ sitesj andi in the presence of an applied electric fifldand

"""" - Q1 is the small-polaron relaxation energy. Wha j; <(),

_______ Py the small-polaron hopping rate reduces to the symmetric

. | form of Eq. (14) within site-energy-independent terms that
P can be included inwy.

e When() is comparable to or smaller thaxe;;, it is not

10

i (cm?/Vs)

-
.-
—

12

E

(v'?cm

600

—1/2.
)

800

1000

clear that the hopping rate in E(L4) is a good approxima-
tion to the small-polaron form. To see how much difference
these two forms of hopping rates make in the mobility cal-

culations, we carry out calculations using the small-polaron
FIG. 6. Logarithm of mobilityx againstE¥2for »=0.3 eV and Nopping rates with different values fd2. We adjust an
T=300 K. K is adjusted for different intramolecular restoring con- 0verall multiplicative factor to give the same low-field mo-
stantssin such a way to keep the same energy distribution as in thdility results and compare the field dependences for the dif-
inset of Fig. 2. Solid, short-dashed, long-dashed, and dot-dashd@rent hopping rates. As shown in Fig. 7, these different hop-
lines correspond ter=0, 0.01, 0.1, and 1.0 A, respectively. ping rates lead to very similar field dependence over the
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10° . . . tions. The phenylene ring torsion, in PPV-like conjugated
polymers, is an example of this kind of spatially correlated
thermal fluctuation.

We developed a numerical approach which enables us to
study the electrical transport in three-dimensional systems.
We investigated the density dependence of the mobility and
find that when the carrier density is large, the mobility can be
significantly enhanced. The mobility increases strongly with
increasing carrier density at low fields, but carrier density
dependence of the mobility is weaker at high fields. These
results are consistent with both light-emitting diodes and
field-effect transistor measurements. We also studied the mo-
bility in a system with randomly distributed traps. We found
that the trap affects primarily the overall magnitude of the
- - - mobility and has a weaker effect on the field dependence of
200 400 ., 500, 800 1000 the mobility. When the carrier density is sufficiently large to

E-(Viem ) fill up all traps, the mobility is enhanced.

FIG. 8. Comparison of the calculated mobility using symmetric_ e found that the carrier hopping in the low-field regime
and asymmetric hopping rates. The solid line is obtained by using!t;.S male due to the thermal excitations, while in the h'lgh-
the symmetric hopping rate with=0.3 eV,K =0.0034 eV/A, and ield regime, the field-assisted hopping becomes dominant.
T=300 K. The dashed line is obtained by using the asymmetricT hese different hopping mechanisms result in different tem-
Miller-Abrahams hopping rate. perature dependences in different field regions: In the low-

field regime, the mobility increases as temperature increases,
range of fields considered even wh&n=0.02 eV, smaller whereas in the high-field regime, the mobility decreases as
than the width of energy distribution~0.1-0.2 eV atr  temperature increases.
=0.3 eV). We conclude that the symmetric form of EG4) We compared our 3D numerical results with 1D numeri-
is reasonable to study the field-dependent mobility in denséal results and 1D analytical results. We studied typical car-
polymer films for the range of fields commonly used in poly-rier paths at different electric fields. We found that, in the
mer based electronic devices. low-field regime, the carrier paths are irregular and distrib-
In the literature of transport in disordered systems, artited in the whole 3D system, whereas in the high-field re-
asymmetric rate with the Miller-Abrahams form has alsogime, the path is essentially 1D along the field. We found

i (cm?/Vs)

been extensively used, that the mobilities from our 3D numerical result and the 1D
numerical one are close to each other at high fields but dra-

TR fa) e Pheii, if Ag;>0 matically different in the low-field region, indicating that 1D
wji = o ! 1, if As;<0. (23 models cannot be directly extended to 3D systems at low

_ ~fields. Finally, we studied the effect of asymmetric hopping
Both the symmetric form Eq(14) and the asymmetric rate and small-polaron rate on the mobility. We found that
Miller-Abrahams form Eq(23) satisfy the detailed balance, these two variables do not significantly affect the mobility
compared to the case of symmetric hopping rate.
Wiji _ Our model presents a comprehensive picture and a gen-
— =exp(— BAsgj). 24
- - phs;) 24 eral framework for understanding the Poole-Frenkel behav-
We compare the mobility calculated using the asymmetric'orI ot?se_rved n mgny conjugated pé)_lymerfs. Ou_r nudmen_cal
Miller-Abrahams hopping rates and symmetric hoppingsca culations provide an understanding of carrier density,
. A o temperature, and trap effects on the field-dependent mobility
Figure 8 shows that the calculated mobility is not sensitive tQ .
; ) , .In these materials.
the choice of hopping rates over the range of fields consid-

ered.

i
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argue that the primary restoring force for these quctuationiPPENDlX A- COMPARISON BETWEEN MONTE CARLO
in molecular geometry is steric in origin. Because the restor- AND .MASTER EQUATION APPROACHES
ing force is intermolecular, there is a spatial correlation in

the molecular distortions. This leads to spatially correlated In previous numerical studies of field-dependent mobility
fluctuations in the on-site energy of the electronic excita-in polymers, Monte Carlo simulations have been widely used
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APPENDIX B: DISTRIBUTION FUNCTION FOR THE
MOLECULAR GEOMETRY FLUCTUATIONS:
INTERACTION WITH THE CARRIER

The distribution function we use to describe fluctuations
in the classical molecular geometry field is based on the free
energy expression in EQJ). It is rigorously valid only in the
weak coupling limit(i.e., smallv) because the interactions
with the carrier, described by the term linear in the classical
field variable, are not included in the expression for the free
energy. This term may not be negligible for realistic values
of the model parameters for polymers. Here we show that the
effects of this coupling can be included by taking the expec-

200 200 s 1/2660 N 800 1000 tation value_of the Hamiltoni_an with the carrier at a_specific
E"™ (V"%cm™?) molecular site and completing the square to eliminate the
linear term in the classical field variable. This treatment

FIG. 9. Comparison between the Monte Carlo and the Masteagain gives a Gaussian distribution function with a modified
equation approaches. The two solid lines are obtained by solvinglassical field variable. The results are essentially the same as
the static Master equations witi=0.3 (upper ong¢ and 0.35 eV the original treatment in that the long-range spatial correla-
(lower ong. The open circles and filled triangles are Monte Carlotions are maintained and with the same functional form.
rgsults. The simulation time ig for open circles and 3 for filled Consider that part of the Hamiltonian which involves only
triangles. the molecular geometry fielgp and its coupling with the

] _charge of a carrier at site
because they are both conceptually simple and easily

programmed. "% In this approach, at=0 some particles K[ ) . , . S[ s

are added in a lattice, these particles then randomly hop t&= Ef d>r(Ve) +Vf d>r (r)]¢i(r)|*+ Ef d°r ¢=(r),

adjacent sites according to a particular distribution. The mo-

bility is determined by calculating the average velocity of which can be rewritten in the Fourier transformed form as

particles after a simulation timg,. Thust, must be long Ka2+s

enough so that the average velocity will not change if a E:Q—lz [|¢(q)|2[ q

longer simulation time was used. q 2
Since the mobility is a property of the steady state, oNg i

can directly solve the stationary Master equation to study the

mobility. Compared with the Monte Carlo simulations, the '

Master equation approach has the advantage that stationary Ri(Q):f dre™ 9" [y(r)|.

solutions are guaranteed. Since the Monte Carlo simulation

time required for convergent results increases exponentiallyve can further simplify this by completing the square

as the disorder becomes stronger in the sysfeinis diffi- 5 ) 5

cult to obtain stationary solutions from the Monte Carlo E—01S | B )|2(Kq +S>_ v |Ri(9)]

simulations for strongly disordered systems. As an example, q g 2 2(Kg?+s)

we carry out Monte Carlo simulations to calculate the mo-

bility using our model. We choosk large enough that for Where

weak disorder strengthsy&0.1 and 0.2 eV, the Monte

Carlo simulations produce exactly the same results as the

Master equation approach. For stronger disorder strengths

(v=0.3 and 0.35 €Y/ as shown in Fig. 9, the results from

Monte Carlo simulations deviate somewhat from those fronPicking ®(q) according to the distribution function defined

the Master equation approach. If we double the simulatio®y this free energy expression, with the relation between

time, the Monte Carlo results approach the Master equatio®(q) and ®(q) given above, gives the same site energy

results but deviation still exists. This comparison indicatedistribution as the procedure we uséd within an overall

that the Monte Carlo simulations can become inefficient inconstant as long as the wave functions on the sites are the

polymers with strong disorder. same.

+v<1>(q)Ri(q)],

vR(q)
Kg+s'

®(q)=D(q)+
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