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The real-space renormalization group for the study of periodic systems goes through the reduction of the
Hilbert space to products of lowest eigenstates of identical blocks. Instead of working with the Hamiltonian, it
is possible to estimate effective interactions between blocks from the spectrum of dimers or trimers of blocks,
according to the effective Hamiltonian theory of Bloch. Tests on a series of spin profehesive energy of
the one-dimensionallD) chain and of the 2D square lattice, excitation energies of the dimerized 1D spin
chain, and behavior of the frustrated chain in the low frustration regghew the potentiality of the method.
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[. INTRODUCTION combination of boundary condition€BC) and thesuper-
block methods. In the latter, the general behavior at the
To study the low-energy properties of strongly interactingboundaries is provided by embedding the block of interest in
guantum lattice models, several numerical methods are avai& larger block(the superblock While the projection of the
able. Actually, only a few cases can be solved analyticalljwave function of the superblock onto the system block is a
via the Bethe ansatz as the one-dimensiqia@l) Hubbard  single-valued coordinate projection in the noninteracting sys-
and Heisenberg modéland none of the proposed methods tem, it becomes more complicated for the interacting system.
may be applied universally. Among the most important onesThe DMRG is based on the choice of an optimal way to do
one may cite the density-matrix renormalization-groupthis projection.
(DMRG) method’*® for which a remarkable accuracy can be  Several other investigations to improve the RSRG calcu-
achieved for 1D systems. The generalization of its applicatations have been formulated. Quite accurate results are ob-
bility to more than 1D systems remains, however, a subjecfained in Ref. 17, where the authors take into account the
of active development. The quantum Monte Cal@MC)  excited states within a block through a second-order quaside-

5 :
method® has been successfully applied to the study of 2Dgenerate perturbation theory. In the same kind of philosophy,

systems, but this method is hindered by the minus sign probs,giher methdld integrates the effect of excited states by

lem \lNTjenl fetmlzlgg)s arethczgfge rnre]_d.hohne may also C'tet thﬁefining a new transformed Hamiltonian from calculations
couplec-cluste method, - which has given accurale ., qiners of blocks. The interaction of the transformations

descriptions of the ground states of several models when al.lds a sequence of renormalized Hamiltonians. This propo-
adapted reference function can be defined, and the exact di- 4 ' prop

agonalization of finite-size systenfs;2which is powerful sition, which gives reliable results, has been presented as a
for calculating dynamical correlations. Of course, the eXpo_renormallzatlon-group estimate in the particular case of a 2D

nential growth of the number of states for interacting quan-Sduare spin lattice. From our point of view, it is possible to
tum lattice systems that limits the latter justifies the generaformalize this idea in a more general way that extends

attempt to develop procedures in which the Hilbert space jwidely its domain of applications. This is in fact the purpose
truncated. of the present paper. We formulate a renormalization-group

The real-space renormalization-grodRSRG method, Procedure in which the renormalized Hamiltonian is defined
which was first proposed by Wilsdi, is a variational @as a Bloch effective Hamiltonialy. Using effective Hamil-
scheme that truncates the Hilbert space. The basic idea is tonian theory, one may truncate the Hilbert space in a con-
integrate out unimportant degrees of freedom progressivelfrolled way, and take into account the effect of the omitted
using a succession of renormalization-group transformationgart of the space through accurate extractions of effective
The method works well in the single-impurity Kondo prob- interactions.
lem but fails for most quantum lattice modéfst® The A detailed presentation of the method is given in the next
reason® for the breakdown is attributed to the use of fixed section while applications on several spin problems are pre-
boundary conditions of the blocks, i.e., if one keeps only thesented in Sec. lll. In order to show the efficiency of this
ground state of the block in a 1D system, for example, theprocedure, we have first applied it to the 1D spin chain for
wave function of the next-iteration larger block has almost avhich exact results are available from the Bethe ansatz. The
node at the connection between the blocks. When the latticeohesive energy of the 2D square spin lattice obtained with
does not present an intrinsic separation in energy scales, it the method is compared with the best available results. We
necessary to keep a large number of block states to descriltleen study the spin gap of the dimerized 1D chain and cal-
accurately the low-lying states of the next-size block. Severatulate the first excitation energies of the polyacetylene chain
attemps to solve that problem have been proposed. Whitior several values of the dimerization parameter. Finally, the
and Noak formulated two types of RG proceddfethat  behavior of the frustrated spin chain is studied and conclu-
work quite well for the single-particle problem, namely the sions are given in the final section.
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Il. PRESENTATION OF THE METHOD Hélgck ¢|( )>:ei( )|¢|( )>_ (3)

The renormalization-group procedure that is used in thisp, o\ |owest eigenstates)!”) of each block are used to
work is an iterative procedure that starts with the exact treat; ! !

L build a restricted Hilbert space for the superblock, called the
ment of a finite-size systelfcalled the superblogknade up . .
of a few identical blocks of sites. At the next iteration, thesemOOIeI spacey. S is spanned by the direct products of the

4 i (0) :
blocks are considered as “supersites” of the lattice for'\i functions;™" of each block andN; andNy, must be such

which the allowed states are the lowest eigenstates of thiflat S and S, are isodimensionathis assertion will be jus-
blocks; this represents a drastic truncation of the space. TH§ied later on,

main difference between this method and the previous pro- ) ) ) Ng

posals consists in the evaluation of the interactions between ~ So={Pm }={® &}, dim(SH)=N;F=Np,.

these supersites. Instead of using the real Hamiltonian, we '

propose to extract renormalized interactions from the speg-et p, be the projector on the model spasg,

trum of the superblockSB). Such a procedure should enable

us to take into account the effect of the neglected excited Np

states of the blocks. The basic idea is to pass from the exact Po= >, |[®O%®9). (4)
HamiltonianH g of the superblock expressed in its complete m=1

Hilbert space to an effective Hamiltonian describing the iN-At this step, it is possible to revise the choice of both the

tet_ractlonfhbegweenttr:jeblo;\{g_s; statfs Otf tdhe f?lcﬁgles, lC_JIperjl target and the model space. Actually the definition of an
ating on the truncated baxiS ne extracted etiective Hami= 5.c 510 effective Hamiltonian is not always possible. The

tonian is then used to describe the superblock, now built Marget spac& must haveN,, nonzero and linearly indepen-
H m

terms of blocks, at the next iteration and the procedure ig - projections on the model space, i.e., a one-to-one cor-
iterated until the convergence of the property is achieved. respondence betwedand S, must exi’st. B

The formalism of effective Hamiltonian used in this work ~
has been proposed by BlofhLet us now explain step by If one callsW{?) the projection of the eigenvectdr(y’ of
step how the Bloch effective Hamiltonian is built up and the superblock onto the model spag
integrated to the renormalization procedure. ~

(W) =Pol W), (5
A. The choice of a target space

o _ oo an alternative way to writ®, is
One first isolates a portion of an infinite system Nof

sites that can be divided in a feWg) identical blocks. The Nm _

size of this system that constitutes the superblock must be Po= 2 [POW (¥, (6)
such that the calculation of a set of exact eigenvectors of the m=1

Hamiltonian matrix is possible. Using the efficient LancZos = ONL ) = 0)

or Davidsofi! diagonalization technique for sparse matricesWhere (Vy°)~ is the biorthogonal state o¥p,". Actually
one calculatedN,,, eigenstatesl?) among which are those the projections?(? of the (orthogonal states¥ () have no
that are relevant to describe the physical phenomenon of ineason(except for symmetry reasont be orthogonal; they
terest(for instance, for the calculation of the gap define an overlap matrig,

HGE W) =ER Vi), @ Sn= (VO T 0y, )

where “(0)” indicates the iteration.

The choice is crucial since, in the effective Hamiltonian
construction, all the information concerning the other states
will be forgotten. The spac® spanned by thesN,, vectors
is called the target space,

and the biorthogonal vectors are defined by
(W) y=s" TR, (8)

The values of the norms of the projections, i.e., the diagonal
S= g O dim(S)=N elements of thes matrix, give an indication of the quality of
={¥n'},  dim(S)=Np. the description of these states by the truncated sac&he
Let us callPs the projector associated wi model space and the target space must be in strong corre-
spondence, i.e., one must choose both spaces so that the
Nim vectors‘lfﬁ?) have the largest projections &j.
Pe= 3 [W)(WR. @
o
C. Extraction of an effective Hamiltonian for the next iteration

Let us recall that our purpose is to obtain effective inter-
actions between the blockse., the supersites of the next

The superblock is divided into a fewNg) identical iteration so that the Hamiltonian of the iteration H§g)
blocks that are treated exactly. Let us daff)., the Hamil-  will have the same expression as the effective Hamiltonian.
tonian of the isolated block, It seems then natural to decompo$¢£{)¥) as follows:

B. The choice of a model space
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i (@I (HEH D] )
(HEﬁ)(l):'Zl (Hfﬁ)<1)+z (Hiejﬁ)(l)' © (0) £(0)] (yeffy(1) effy (1) effy(1)] 4(0) 4(0)
= (i =(¢r, ds; [(HR)'™W +(HE)'W + (Hip) V| &y, #5.)
wherei andj stand for the blocks and is their total num- (16)
ber. Since this Hamiltonian operates on the direct products of
the wave functions of the blocks, the first term is only a _ (0) 1 (0)|/1geff\(1)] 4(0) 4(0)
. N ) ; =E, +E, +
diagonal matrix, its elements being a sum over the eigenen- EritEs <¢rA Pse (Hae) ™l Pse ) (17)

ergies of the blocks. In the second term, the sum runs over

all the couples of interacting blocks. Of course, this expres{®|(HM™|d,)

sion _Cou_ld be gen_eralize_d to deS(_:ribe more co_mplicz_;\ted —( (0) 40)pyef (1)|¢(0)¢(0) (19)

Hamiltonians involvingN-site interactions by extending this Ta¥sg ' AB ta Tug

sum to groups of thre@jk) or more blocks. In this paper, the . .

Hamiltogrllianpused v‘il(il.»lJ zmly involve two-site inﬁefactions whereErA and Es, are the energies of the block eigenstates

even when trimers of blocks are considered. ¢, and ¢, respectively. Another way to calculate these
In the formalism proposed by Blocf, an effective interactions is to solve Eq11) for the N,, vectors¥, i.e.,

Hamiltonian defined on a model spa@gof dimensionN,is  to solve the system oN? equations since the effective

entirely determined by th&l,, eigenenergies and eigenvec- Hamiltonian matrix is of dimensioN,,. Note that to get the

tors of the exact Hamiltonian that span the isodimensionatight number of equations, the sizes of the model and the

target spacé having Pg as associated projector. target spaces must be equal, and the number of interactions
The two spacesmodel and targetare in a one-to-one requested to describe the lattice should be lower than or

correspondence, the wave operdibtransformingS, into S, equal to (N,,)2. As we will see in the applications, this num-

according to the equation ber is in practice much smaller thaN{)? due to space and
spin symmetry properties, and very simple solutions can be
PS:QP(). (10) found_
The effective Hamiltonian, defined on the model space, is
such that itdN,,, eigenvalues are thid,, exact eigenvalues of D. Renormalization procedure and iteration

iltoniaid © its ei - o .
the exact Hamiltoniai sg, and its eigenvectors are the pro- 114 |attice is now made up 9, supersites that are the

jections of the exact eigenvectoisy on the model space, pjocks of the iteration 0. The Hamiltonian is a renormalized
effective Hamiltonian involving the extracted effective inter-

(HE D] W0y = Q[P0 (1)) actions. It has the general expression of Ej, where the
Note that the spectral decomposition &)@ is sums overi andj now run over theNt supersites of the
superblock,
Nm
HefM W= > EOpO)y/pO)yL| 12 Nt
=1 (i)

Thus, if the projections are not orthogonal, this Hamiltonian
is not Hermitian. However, its hermitizatiéfhcan easily be We can then go back to the first step and iterate the proce-
obtained by imposing the solutions of the new effectivedure.

Hamiltonian to be the symmetrically orthogonalized solu-  Let us notice that the Hamiltoniansigg) ™) and Hgg)
tions of the Bloch Hamiltonian. have no reason to be of the same nature. For instance, the
The effective interactions between blocks belong to thedivision of the lattice into blocks may induce a different
second term of Eq(9) and are calculated by expressing thetopology, leading to interactions that could differ in nature
effective Hamiltonian matrix in the basis of the vectdr§, ~ and number from the original ones; the shape of the blocks

will also determine the new spin nature of the states. This

~ ~ degree of freedom should enable us to modify the model,

<(I’E<0)|(H6ﬁ)(l)|q>l(o)>:% <®E|\F$)>E$)<(\I’$))L|q’?>' i.e? to go from a Hubbard to a Heisenberg mfzdel, for ex-
(13 ample, or to study lattices through a different arrangement of

) ) . . their sites. Nevertheless, as will be shown in the applications,

Let us consider the case in which the superblock is comj js sometimes possible to define the blocks and the model
posed of two blocks onlyA and B. The vectorsd{Y are  space in such a way that the new Hamiltonian is isomorphic

products of eigenstates of each block, for instance to the initial one.
0y — [ 4(0) & (O
|q)k ) |¢tA ®(;SSB ) (14 IIl. APPLICATIONS OF THE METHOD
|0 =]V ) (15) The method has been applied to various spin problems. In
A ug/?

all the presented cases, the division of the lattice into blocks
and the effective Hamiltonian will be written as a matrix, the has been realized in such a way that the nature of the Hamil-
elements of which are tonian is conserved throughout the iterative procedure.
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A. Cohesive energy of the 1D spin chain wherea;" (a;) now creategannihilate$ a doubletS,= 3 on
The considered Heisenberg Hamiltonian has the followinghe blocki, ) is the effective exchange parametit
expression: =(ab|(H{"Wab)=—(ab|(Hf")®[ab) in our convention,

and the energy of the ferromagnetic sglut[diﬂe triplet _of
(H{H®] is  BW=(ab|(H{"®|ab)=3(ab+abl(Hf")Jab

(H)(o)zz (2‘](0)5'.51_%) (20 -
(i) +ab).
The matrix representation of this Hamiltonian is
=2 194/ a ajar+a) a aa; 2EA+ B — gD 3
(ij) (HeM D= _
ot +o+ Jm 2ES+ B g
—a/a a8~ a; a ajag], (21) (24

where (jj) stands for the couple of nearest-neighbor sites The effective interaction8(*) and J*) are obtained by re-
and]. The interaction parametsf® is the positive exchange placing byE4® and EZ® the solutionsE of

a_ndai+ and a; (a,i and aﬁ_ are th_e usual creat_ior_1 and anni- detHef'— E1) =0, (25)
hilation operators of a spin ugspin down on sitei. Let us
note that this Hamiltonian differs from the usual on¢, | being the representative matrix of the identity operator.
=3j,JS-S;, by both the interaction parameter, which hereOne obtains
is one-half, and a shift of the zero energy to the energy of the
ferromagnetic state.

Let us consider a portion of a chain df sites as the AB_ oA L n(l)
superblock, made up of two identical blochksand B of Ng Er =2Ep+B. (27)
(odd sites. In theS,=0 block Hamiltonian matrix, the The isomorphism from one iteration to another implies the
ground state of the superblock is a singlet and the first exgeneration of a sequence of identical effective Hamiltonians.
cited state is a triplet. These two states, deno@f and  The eigenvalues of (Hijﬁ)(“) for a single block being equal
W48, respectively, constitute our target space. Let us calln units ofJ™ at any iteratiom, one may therefore calculate
ES® andET® the corresponding eigenvalues. the energyA™ of a block as follows:

One needs now to define the model space. After an exact
treatment of one of the identical blocks, F120r examplewe AV =NAT D4 ngBM D+ ad M7, (28)
have kept the doublet ground state denateassociated to
the S,= 3 component. Let us cab the S,=3 component of

the doublet ground state of the blogk a andb the corre- IM = 30-D), (30)

spondingS,= — 1 components, anéf andES the energies , , _ . )
of these two blécks in their ground Dstate. FDrom the four pre—WherenB is the number of first-neighbor paiter bonds (ij)

vious states, one may build four direct products, namel))nSide the blocks and. is the number of b_ond_s connecting
— — — - two blocks. Note thaty, 8, and vy are iteration-independent
ab, ab, ab, andab. The projections of the two exact lowest

AB AB . parameters. Notice that this procedure is applicable to any
states¥’s™ and W'y~ of the superblock on the last two direct yimengional lattice in which only one type of interaction

products are of course zero because of spin. Thus, to build @ nnects the blocks.

model spac&,, one may keep onlgb andab, which gen- Expressiong30)—(32) are also true at the first iteration,
erate the following projector:

E&B=2E5+BY—2JW), (26)

BMW=nB"" Y+ 3N, (29

AL =NAO +ngBO + ), (3D
Po=|ab)(abl+[ab)(ab|. (22 BD=n B0+ IO, 32)
One should notice that keeping the two doublet components W= 30, 33)

for each block corresponds to assigning effective spins up

and down to the supersites at the next iteration, thus insuringith A(®=0 andB(®=0 to getH .

the isomorphism between the iterations. ExpressingA(™, BM andJ™ as functions of the initial
The effective Hamiltonian is therefore a Heisenbergparameters, one obtains

Hamiltonian of the same nature. It may be written as a func-

tion of only two effective interactions, A Na A+ . an BO) 4 - y‘J(O)
s~ llc ST
Ng
=t {n (Ns—nc)(Ns—) '
rala sl e e malay aal), ™y g0 P 50
n
23 B —>nc(B +nC_7J ) (35
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TABLE |. Asymptotic energy per site of the 1D spin chain for several block sizes and the infinite

estimate.
Block size 5 7 9 11 o estimate
Block energy per site —1.1711544 —1.2389256 —1.2747381 —1.2967442

Superblock energy per site —1.3016070 —1.3252463 —1.3385568 —1.3470978
Renormalized energy per site—1.3922702 —1.3901138 —1.3889509 —1.3882531 —1.386205

I =y, (36) o at2p  AELB-6E)
. . €2p=lim Ng"A" = = AB, AB-
In the case of a 1D chain, the number of connecting bonds N—seo 9-vy 18-E7;"+Ejg
between two consecutive blocksris=1 and the number of _ ) )
bonds per blocks i$'|B= NS_ 1, so the |arge-|imit ground- The obtained value des=9 is —2.332 31 while the energy

(39

state energy per site in units af% is per site for an 18-site cluster is1.8926. The best available
QMC method* and dressed clust¢éDCM) method® results
a+ B 2[EXB—ER] are, respectively;:2.338 68 and-2.338 56. For comparison,

e1p=lim Ng"A"W= (37)  the CC method gives-2.334 00 in the LSUB6 approxima-
n—= tion and —2.33634 in the LSUB8 approximatidi.Notice

We have performed calculations on superblockief= 10, that we.did not_perform any extrapolation asa function of th_e
14, 18, and 22 sites, so the number of sites per blodkgs Plock size, which would have probably improved the esti-
=5, 7, 9, and 11, respectively. The obtained values of thénated value. Actually, the next-size block would b
large-limit energies per site are reported in Table I. The exact 25 sites, i.e.Ny=50 for an identical treatment, which is
value of the ground-state energy per site given by the BethBOt possible to compute exactly at the moment. It would,
ansat? is —2In2 in our Hamiltonian. The error as a func- however, be possible to treat thés=11- and 13-site sys-
tion of the number of sites is going fromx610~3 for Ng  tems by changing the model of the lattice, and this will be
=5 to 2x 1073 for Ng=11. It is always 20 times smaller the subject of a future work.

than the energy error obtained from the starting dimer. We

have estimated the infinite-size energy per site using the  C. Spin gap of the dimerized 1D chain: Application
standard BST extrapolation meth&tThis method evaluates to the polyacetylene

the limit of a functionT(h)=T+a;h“+a,h?*+..., where
h=1/Ng and w is a free parameter, by approximating the
function T(h) by a sequence of rational functions.

A minimal error of 8< 108 is obtained forw=1.606; the
corresponding estimated value of the energy- 386 205.
This result compares very well with the exact one ) . _ - (0)_10) )
(—1.386 294. One should recall that it has been obtained forSyStém with alternating spin couplingt”=J3(1+ 5)

a very low computational cost, with only one diagonalizationand J$=J3©(1-5©), where J©® is a mean coupling

of the block and the superblock systems for each size.  (which here is fixed to land 6(%) is a dimerization param-
eter varying from O to 1. There is no spin gap for the non-

B. Cohesive energy of the 2D square lattice dimerized chain Q(O)Z 0). Actually the lowest singlet-triplet

A similar development has been performed to calc:ulatetranSItlon %rtl)ergy. caI(?uIated. from E‘?S%) and (27) I_s
JM =230 at iterationn with y<1, i.e., zero for an in-

the large-limit energy per site of the 2D square spin Iattice.z_ ) : 3 N
The superblock hall;y= 18 sites and is divided in two iden- finite number of iterations. As soon @) is different from

tical blocks of Ng=9 sites arranged in a (33) sublatice. 2€r0, & gap appears. For the fully dimerized chadi’)(
The effective Hamiltonian has been extracted from the two=1), the strong bonds with{®)= 23 become independent
lowest eigenstate® 45 and¥1© of the superblock. It hasthe (3$’=0) and the excitation energy IAEL(6V=1)
expression of Eq23) and the two associated eigenvalues are=43©), The power lawAEg= @623 (Ref. 27 has been
given by Eqgs(26) and(27). established in the case of the dimerized and frustrated 1D
Since in that case also one gets an isomorphism from onghain at the critical ratid=J,/J1=0.2411 ¢, andJ; be-
iteration to another, it is possible to calculate the energy of ang, respectively, the second- and first-nearest-neighbor cou-
block at any iteratiom using the expression84)—(36), as  plings). When the ratiod is lower than that critical value,
did the authors of Ref. 18. Now the characteristic numbers Ofogarithmic corrections appear. In order to Study that prob-
the lattice are as follows: lem within our RSRG approach, we have to consider a block
with an odd number of sitelds, presenting a strong interac-
Ns=9, ng=12, nc=3, B8 tion J{” on one border and a weak interactia$f’ on the
which leads to an expression of the large-limit energy pewther border. Actually when th&®/J{% ratio increases, the
site in units ofJ(®) of the form unpaired electror(effective spin tends to localize on the

Ns—y 2Ng—EfB+EL®

As we have seen in the presentation of the method, the
excited states should be accurately described by this method
since the effective Hamiltonian theory is designed to repro-
duce several states simultaneously. The simplest verification
may concern the dimerized 1D spin chain, i.e., an infinite
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FIG. 1. Two types of 10-site dimeric superblocks for the study chl
of the dimerized spin chain. °F 05 1

5(0)
external site connected to the system by a weak bond. There FIG. 2. Dimerization parametei’?) (dot-dashed lineand mean

are, therefore, two possible types of diméesee Fig. ). The couplinng) (plain line), both obtained at the first iteration, and

first on ncerns th rminating with strong interaction . . :
st one concerns those te ating with strong interactio %onverged vaIueAEgﬁm (dashed lingas functions of the coupling

for which the splitting into two blocks goes through a Strongdimerization paramete¥® for the dimerized 1D chain. Circles and

interaction. The singlet-triplet splitting of such a Ske'etons uares correspond, respectively, to seven- and nine-site blocks
obtained at the first iteration is actually finite and q pond, resp ¥, '

_ -
23("=AEQ)(2Ns). (40) =T x . (42
. . L ... Since the procedure converges in three or four iterations to
On the contrary, in the other type of dimers, terminating with

two weak interactions, the two blocks are connected by &€ accurr?u_lation p_oint, the asymptotic value8k’ and the
weak interaction and the interaction between the two remotgap are finite. While the values df?) and 5") are quite

effective spins will be weak; and actually, different for Ng=7 and 9, the values of the converged gaps
are very close. Figure 3 presents, fdg=7, a very simple
2358 =AELP (2Ng) (41)  interpolation of the gapsAEUY'=4J«s% where the
=0.71 optimized value is close to the canonical vajue
is much weaker and will tend to zero whey tends to As a more realistic illustration of this study, we will cal-

infinity. From 3(21) andJ(ll), one redefines new values &) culate the first excitation energy of the polyacetylene chain

and )™M and iterates the procesdy” decreases rapidly to (CH), in the Heisenberg regime. The low-lying states of that
zero. i.e.. one obtains a finite QAFE(SHT)- polymer may be studied by considering only a half-filled

The logical structure of the problem can be pictured as Qir)dhinvolvin% the ?’T atorr?ic Orlbitals ththe Car:bon k.151tom|s,
. , . . o) (1) (ny) which are orthogonal to the polymer chain. The other elec-
single f|ggre (F'Q- 2).|n which J&), 5, and_ AEgr/4 trons(of the carbon and the hydrogen atgrbslong to ther
(wheren, is the iteration where the procedure is convejged system. The Heisenberg Hamiltonfrthat we use in this

are represented as functions &F) for Ng=7 and 9. One study treats the electronic delocalization of theelectrons
sees that bot'") and &) increase toward 1 whead!®  through the exchange parametek;2 A scalar termR;; de-
increases. The iteration procedure can be visualized as a staigribes thes system energy,

growth toward thes(®=1, §M=1, andJ®=1 accumula-
tion point. At each steps(™ is changed into a new value
5"+ rapidly equal to 1 and one may calculate the corre-

sponding value 08"* 1) from the newly read valug® for ..
this &M, —a; 3y ajai] +Rij(ry;). (43

0)_ + _ + +
(H) )—%‘, Jap(riplaiayajai+a;ar aa—a a aja

TABLE Il. First excitation energie§n a.u) of the polyacetylene chain calculated for several black sizes and the infinite-size estimate for
different values of the bond alternatian(in A).

Block size 3 5 7 9 11 o estimate
d=0.01 2.64983E—-2 2.30643&—-2 2.15701&€-2 2.055 638E-2 2.00929¢ -2 1.971708-2
d=0.02 4.05332E—2 3.61217E-2 3.397 36&—2 3.31232k-2 3.27316k—-2 3.21594E-2
d=0.032 5.407 118—-2 4.880%FE—2 4676 77T&E—2 4,581 &—002 4.451 16E—2 4.29573FE—-2
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1 ‘ ‘ - < sizes are reported in Table Il. The values of these energies
when Nt tends to infinity, estimated by the BST extrapola-
tion algorithm, as a function of the dimerization parameter

08 1 1 are plotted in Fig. 4. Fod=0.01, 0.02, and 0.032, the mini-
mal errors are=2x10"8, 9x10 % and 1X10 7, respec-
tively, for the corresponding values af=4.695, 2.642, and
1.375. Previous estimates of the excitation energies may be
found in Ref. 30, where a dressed cluster method was used.
The calculatedAEgT were somewhat smaller than the
present values, but they did not behave &5, as they
should, while the results of the present work nicely follow
o2 b | this power law.

06

AE /4

04 -

D. The 1D spin-% Heisenberg chain with nearest-neighbor

o ‘ ‘ . . (NN) and next-nearest-neighbor(NNN) couplings
0 0.2 0.4 0.6 0.8 1

8” Let us start with the Hamiltonian of this model,

FIG. 3. Converged gapglivided by 4 obtained from nine-site
blocks. The circles correspond to calculated values while the plain

ina i ; ; Na_ 4 7% §0.71
line is a power-law interpolatioA E 3= 4J* 807

0)_ + + _ 4+ + _ + +
(H)( >—”ENN Ji[a’a;aartaay aa—a e ap

+ - + _ + _
_aTarajai]+ij%N Jla'a aartaarag
The parameter®;;(ri;) and J;(r;;) are functions of the ’
interatomic distances;; ; they have been extracted from ac- ~-a'a aja— aii a"ajail. (44)
curateab initio calculations on the lowest singlet and triplet o o _ o _
states of the ethylene molecule. The scalar tep(r;;) To get an isomorphic Hamiltonian since the first iteration,
plays a role in the determination of the optimal bond-lengtnon€ should have both NN and NNN block couplings. We

alternations but not in the calculation of transition energies aff@ve so considered superblocks made up of three identical
a fixed geometry. blocks of an odd number of sites, namélyB, andC, where

Previous calculatio?® (exact diagonalizations and ex- the NN blocksA andB, as well asB andC, interact through

trapolations have predicted an optimized geometry of thethe effective exchangd{", and the NNN blocksA and C
chain. Let us defing;;.;=r+d. The optimized average interact through the effective exchangg’ (see Fig. 5.
interatomic distance and bond-length alternation paranageter ~ Here also, only the doublet ground state of each block has
(half difference between the long and short bond lengthsbeen kept. The model space of tBg= 3 component states is
are, respectivelyr=1.4A andd=0.032A. We have con- made up of the three direct produabc, abc, andabc.
centrated our study on thé parameter keeping=1.4 A We now need to identify the three states of the superblock
constant. Since the bond-length alternation increases the aRaving the right projections on this model space. The posi-
tiferromagnetic coupling in every other bond, one gets twation of these states in the spectrum of the superblock is not as
alternatingJ{”) and J%) couplings so that{®¥’=J;;(f—d) trivial as in the previously considered cases. Actually, it
andJ®)=J;;(r+d), respectively, for short and long bonds. changes as a function of the ratle?=J"/3{", and is dif-

Our calculations have been performed for superblocks oferent for different-sized systems, so systematic projections
Nt=10, 14, 18, and 22 sites, so thdt=>5, 7, 9, and 11 of the low-lying states of the superblock matrix were per-
sites, respectively. The values of the calculated gaps for se¥ermed to control the method.
eral values of the dimerization and for the different block The expression of the effective Hamiltonian matrix is

3E5+2BM -3V — 5! I I
(Hef = 3 3Ep+2B 23" 3t , (45
g I 3E5+2BM -3 — g5V

whereE’S is the ground-state energy of a blodﬁ}) andJ(zl) three eigenstates of different symmetries: an ir;t(l:symmetnc

. 3, ABC : i~
are the NN and NNN exchange couplings to extract, andloublet ground stat#p,~, a symmetric double¥ps~, and
2BM is the energy of the ferromagnetic solution an antisymmetric quartelfgic. These states are the projec-
(abc|(Hﬁﬁ)(1)|abc>. The diagonalization of this matrix gives tions of the three states of the superblock to be identified,
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0.06 d T T
l
0.05 -

0.04

;'/ 0.03 +
LLIG
<
0.02
0.01
0 : ‘ ] o L ‘ .
0 0.01 0.02 0.03 0.04 0 0.2 0.4
d Jo
FIG. 4. Extrapolated values of the first excitation enerdins FIG. 6. 1D spin frustrated chain: effective couplingé"
a.u) of the polyacetylene chain wheNr tends to infinity, as a = 3(U/3(!) obtained at the first iteration as a function of the initial
function of the bond-length alternation parametein A). ratios 3= J13(? for different sizes of the blocks. The circles

are used folNg= 3, the squares foNs=5, and the diamonds for

~ ABC _ 1 Ng=7. The dotted line is a straight line of slope 1.
#5325 = 3labe) ~ = (@bo)+abc), 40

model space would be necessary beyond that value. For a
B 1 given value ofNg,J{) depends weakly od(® while J5"
|WEES) = —(Jabc)—|aboy), (47 increases. When the number of sites per block increases, they
V2 both tend to zero for small values of the initial rati,
while they seem to converge to a finite value for larger val-
~apo 1L — ues of this ratio. Unfortunately, we did not manage to get any
[WGa)= ‘/—§(|§bc>+|abc>+|ab7:}). (48 infinite-size estimates for both couplings from the BST ex-
trapolation algorithm. The ratid™=J{/3(Y as a function
Once the corresponding states are identified, one can extragt J() presents an interesting behavior, as may be seen in
the three effective interactions by replacing the solutiBns Fig. 6. For each value dfig, the distance of the correspond-
of ing curve to the straight line of slope 1 goes through a mini-
off B mum around)(®=0.24 and this distance decreases when
de{H®"—El)=0 . L o )
increases. The three values 8P giving the minimal dis-
by the three corresponding eigenvaltg3¢, EASC and tance are reported in Table lll. An extrapolation of the posi-
EAEC. One finally gets tion of the closest contack® whenNg increases has been
performed using the BST algorithm. The estimated asymp-
S Eoa —Epa” Lo 2EQa"—3Epe+ ESBAC. toteJQO): 0.241 915with a minimal errore=5x 10" and a
1T g 2 6 valuew=2.362) compares quite well with the accurate value
J.=0.241167' The minimal differenceJ®—J© de-
We have performed calculations on superblocks made up afreases slowly(as N5%?9 when Ng increases. One may
Nr=09, 15, and 21 sites. Let us consider what happens at thierefore expect that the extrapolatdd)=F(J©) curve
first iteration whend(©@=J3{/3{) increases from 0 to 0.5. il present an accumulation point &) . This point will be
We have concentrated on that domain because the nature gftractive when one comes from a lower value of the ratio
the ground state changes after 0.5 and the definition of a newnhd repulsive when starting from a larger value. Starting the
iteration procedure from a valuk®<J, an infinite num-
J ber of iterations is required to reach the accumulation point.

TABLE IIl. Critical ratios of the NNN and NN couplings ob-
tained at the first iteration of the RG transformation for several
block sizes and their infinite-size estimate, for the frustrated 1D

chain.
J (1
2 Block size 3 5 7  estimate
FIG. 5. Example of a trimef15-site superblock for the study ~ J( 0.23355 0.23935 0.24075 0.24191

of a frustrated spin chain.
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At each step the new value dfl”“) is obtained by multi- tonian for a 1D chain that this procedure circumvents quite
plying J(lﬂ) by the value oﬂ(ll) (which is always smaller than efficiently the fixed boundary condition problem since the

1) corresponding to a value df® equal toJ™, effective interaction between the two lowest states of the
blocks no longer behaves B\lsg2 (whereNg is the dimension
IPTH=a¢ <. of the block but asNg*.

. ) ) . . Computationally, the bottleneck is the exact treatment of
The effective interactions decrease at each iteration leading,o superblock that attempts to consider blocks of smaller
to a zero value of7 . Consequently the gap defined as thegjze than the traditional RSRG method. Larger systems
energy difference between the quartet and the lowest doubl@py|d, however, be treated if the space of the Hamiltonian of
AEpq=3J; is zero. the superblock were truncated, the neglected terms being, for
Starting from aJ(® value greater than the critical one, a instance, included by an appropriate dressing of the mrix.
few iterations lead outside of the studied domain. The conit may be worth noting the flexibility of the method, since it
verged value of)7 would be obtained from the next accu- presents several degrees of freedom—the topology of the
mulation point. Unfortunately, to get the new accumulationblocks, the number of the selected eigenstates, and the divi-
point, it would be necessary to define a different model spacsion of the superblock in a variable number of blocks—
(this one being irrelevant beyontf®=0.5). Nevertheless, which govern the nature and complexity of the effective
since the effective coupling}él) seem to converge to a finite Hamiltonian. Playing with these different factors should also

value whenN; increases, a finite gap is expected. give the opportunity to check the stability of the results.
The method has been tested on several spin problems. We
IV. CONCLUSION have seen that in the case of the 1D and 2D spin lattices,

_ . ~infinite summations were possible, due to the isomorphism

This work proposes an improvement of the numericalof the Hamiltonian from one iteration to another. In such
real-space renormalization-group method. It first proceedgases, only one iteration of the procedure was necessary to
through the exact treatment of a finite-size system, whicltalculate the converged results.
may be divided into a few blocks. Then one restricts the The formalism of the effective Hamiltonian has been de-
Hilbert space to products of the lowest eigenstates of thessigned to study several states at a time, so that the calculation
blocks. At the next iteration, these blocks are considered agf gaps is possible, as illustrated in the study of the excita-
the new sites of the system and the procedure is repeategon energies of the 1D dimerized spin chain. Finally, the
The main difference with the traditional RSRG method con-example of the 1D frustrated spin chain has shown the pos-
sists in the determination of an effective interaction betweerible use of the method for the study of phase transition. The
the selected eigenstates of the blocks. Treating exactly @omain of application of this method is wide; it can be ap-
dimer or a trimer of blocks, it becomes possible, according tglied to 2D and 3D systems and its extension to more so-
Bloch’s formalism, to define an effective Hamiltonian, hav- phisticated models such as the Hubbard or tthe model
ing one-body and two-bodfand eventuallyn-body) interac-  would be easy and not computationally more demanding. It
tions where the bodies are the blocks in their selected eigefwould be worthwhile to use the eigenstates of the blocks’
states. At this stage, it is possible to check the relevance atduced density matrix to define the model spaaestead of

the chosen model space by calculating the projections on the eigenstates of the blocks, as done in the DMRG method.
of the interesting eigenstates of the superblock. The numeri-
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