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Tight-binding approach to time-dependent density-functional response theory
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In this paper we propose an extension of the self-consistent charge-density-functional tight-binding~SCC-
DFTB! method@M. Elstneret al., Phys. Rev. B58, 7260~1998!#, which allows the calculation of the optical
properties of finite systems within time-dependent density-functional response theory~TD-DFRT!. For a test
set of small organic molecules low-lying singlet excitation energies are computed in good agreement with
first-principles and experimental results. The overall computational cost of this parameter-free method is very
low and thus it allows us to examine large systems: we report successful applications to C60 and the polyacene
series.
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I. INTRODUCTION

While ground-state properties of large systems can be
culated quite routinely, the prediction of optical spectra
still a complex task. In the past years, accurate meth
emerged in this field, like theGW method of Hedin1 and the
solution of the Bethe-Salpeter equation2 in the context of
solid-state physics or quantum chemistry approaches b
on sophisticated configuration-interaction~CI! schemes.3–5

Although these methods provide an accuracy that co
close to what can be achieved in experiment, they are lim
to rather small systems.

Recently, the time-dependent~TD! extension of density-
functional theory6–11 ~DFT! received a lot of attention sinc
it shares the numerical efficiency and predictive power w
a ground-state formulation. Within this theory, the linear
sponse of the electron density can be treated exactly.13,14The
TD density-functional response theory~DFRT! results in a
simple scheme to calculate optical properties of fin
systems8,9,11 and bulk materials~see, e.g., Ref. 12 and refe
ences therein!. In fact, the computational scheme resemble
random-phase approximation15 ~RPA!, but all the exchange
correlation~XC! effects are in principle correctly included
Using the local density approximation~LDA ! or the gener-
alized gradient approximation~GGA! for the XC functional,
promising results have been obtained for orga
molecules,16–19a series of fullerenes,20 and a variety of meta
and semiconductor clusters.21–25 There are also attempts t
use more sophisticated XC functionals.14,26,27

However, although the TD-DFRT is much cheaper
terms of computational cost than the aforementioned m
ods, simulations of nanosystems with hundreds of atoms
still out of reach. For such complex systems, semi-empir
tight-binding~SE-TB! approaches have been shown to wo
satisfactorily.28 In the SE-TB methodology, the many-bod
problem is recast into an effective Hamiltonian in order
reproduce the electronic energy levels obtained from exp
ment or first-principles results.29,30However, for the calcula-
0163-1829/2001/63~8!/085108~9!/$15.00 63 0851
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tion of the excitation energies, a single-particle~SP! approxi-
mation ~as energy differences between virtual and occup
levels! cannot in general be used in confined systems
cause of the strong electron-hole interaction.31–33

Several methods and approximations34–39 have been pro-
posed to treat this interaction, most of them in the contex
optical properties of semiconductor clusters. In these me
ods the results may yet depend on the quality of the u
parameters and the choice of the dielectric constant mod40

Recently, a TB approach to the Bethe-Salpeter equation
been developed and successfully applied to silic
nanocrystals.41

Similar SE-TB models are also widely used in quantu
chemistry for studying optical properties of organ
molecules:42,43 these methods are fully parametrized at t
Hartree-Fock/CI-singles level. In all these TB approach
the many-particle effects are calculated starting from qu
particle energy levels. In this article we present a TB meth
to calculate optical properties of finite systems starting fr
the LDA ~GGA! energy levels, i.e., within the TD-DFRT.

Extending the SCC-DFTB method,44,45 we present a sim-
plified calculation scheme for the TD-DFRT couplin
matrix.8,9 This scheme, which we will refer to as theg ap-
proximation, is numerically as efficient as the SE-TB met
ods, because no integral evaluations have to be done.

Before discussing the above-mentioned approximation
Sec. III we will first summarize the employed self-consiste
charge-density functional tight-binding ~SCC-DFTB!
method in Sec. II. The accuracy of theg approximation is
accessed in Sec. IV where we test the method on a se
organic molecules. Finally, in Sec. V we present applicatio
to two more complex systems: C60 and the polyacene series

II. SCC-DFTB

A detailed discussion of the SCC-DFTB scheme has b
given elsewhere.44,45 The model is derived from DFT by a
second-order expansion of the DFT total energy functio
©2001 The American Physical Society08-1
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with respect to the charge-density fluctuationsdr around a
given reference densityr0 :

E5(
i

occ

^c i uĤ0uc i&1
1

2E E f uxc@r ,r 8,r0#drdr8

2
1

2E E r0r08

ur2r 8u
1Exc@r0#2E Vxc@r0#r01Eii ,

~1!

whereĤ05Ĥ@r0# is the effective Kohn-Sham Hamiltonia
evaluated at the reference density,dr and dr8 are short-
hands fordr(r ) and dr(r 8), respectively,c i are Kohn-
Sham orbitals, and

f uxc@r ,r 8,r0#5
1

ur2r 8u
1

d2Exc

drdr8
U

r0

~2!

is the Coulomb-exchange-correlation kernel. HereExc and
Vxc are, respectively, the exchange-correlation energy
potential, andEii is the core-core repulsion energy.

To derive the total energy of the SCC-DFTB method, t
energy contributions in Eq.~1! are further subjected to th
following approximations: First, the Hamiltonian matrix el
ments^c i uĤ0uc i& are represented in a suitable set of loc
ized atomic orbitalsfm ,

c i5(
m

cm
i fm~r !. ~3!

To determine the basis functionsfm , we solve the atomic
DFT problem by adding an additional harmonic potent
(r /r 0)2 to confine the atomic orbitals.46,47 The Hamiltonian
matrix elements in this linear combination of atomic orbita
~LCAO! basis,Hmn

0 , are then calculated as follows: the d
agonal elementsHmm

0 are taken to be the atomic eigenvalu
and the nondiagonal elementsHmn

0 are calculated in a two
center approximation

Hmn
0 5^fmuT̂1ve f f@ra

01rb
0 #ufn&, mPa, nPb

which are tabulated together with the overlap matrix e
ments Smn with respect to the interatomic distanceRab .
Here,ve f f is the effective Kohn-Sham potential andra

0 are
the reference densities of the neutral atomsa.

Next, the charge-density fluctuationsdr are decomposed
into atom-centered contributionsdr5(adra anddra is ap-
proximated by the monopolar term of a multipole expans
~see the Appendix!:

dra~r !'DqaFa~r !, ~4!

whereFa(r ) denotes a normalized spherical density fluctu
tion on atoma andDqa represents the Mulliken net charg
on atom a. The employed monopolar approximation a
counts for the most important charge-trans
contributions.44

The second-order term in Eq.~1! then becomes
08510
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E2nd5
1

2 (
a,b

N

DqaDqbgab ,

where

gab5E E f uxc@r ,r 8,r0#Fa~r !Fb~r 8! ~5!

is introduced as shorthand notation and will be referred to
the g functional.

In the limit of large interatomic distances, the XC cont
bution vanishes within DFT andE2nd may be viewed as a
pure Coulomb interaction between the point chargesDqa . In
the opposite case, when the charges are located at one
the same atom,gaa can be approximated by the chemic
hardnessha ,48 or the Hubbard-like parameterUa : gaa
'2ha'Ua . Similar approximations are widely used in th
previously reported SE-TB methods.35–38,42,43This on-site
parameter can be calculated for any atom type within
DFT as the second derivative of the total energy of a sin
atom with respect to the occupation number of the high
occupied atomic orbital.48 Using an interpolation formula,44

the expression forgab then only depends on the distanc
between the atomsa and b and on the parametersUa and
Ub .

Within these approximations the XC effects in th
g-functional have been directly considered only for the o
site term. This is reasonable in both the LDA and GGA,
which the XC-functional contribution to theg functional is
very short-ranged and decays as fast as the overlap of tF
functions.49

The remaining terms in Eq.~1!, Eii and the energy con
tributions, which depend onr0 only, are collected in a single
energy contributionErep . This Erep is then approximated a
a sum of short-range repulsive potentials, which depend
the diatomic distances.

With these definitions and approximations, the SC
DFTB total energy finally reads

Etot5(
i

occ

(
mn

cm
i cn

i Hmn
0 1

1

2 (
ab

gabDqaDqb1Erep .

~6!

By applying the variational principle to the energy function
~6!, one obtains the corresponding Kohn-Sham equation

(
n

cn
i ~Hmn2e iSmn!50 ;m,i

Hmn5^fmuH0ufn&1
1

2
Smn(

z
~gaz1gbz!Dqz ,

which have to be solved iteratively for the wave functio
expansion coefficientscm

i , since the Hamiltonian matrix el
ements depend on thecm

i due to the Mulliken net charges. I
general, few cycles are required for convergence.

The repulsive pair potentials forErep are constructed by
subtracting the DFT total energy from the SCC-DFTB ele
tronic energy@first two terms on the right-hand side of Eq
8-2
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~6!# with respect to the bond distance for a small set of s
able reference systems. It should be noted that the repu
potential appears only in the total energy. It is required
geometry optimization but is not of interest for the calcu
tion of optical properties which depend only on the Koh
Sham orbitals and energies.

III. THE g APPROXIMATION

The route to excitation energies within the TD-DFR
consists of two parts.8,9 First, an ordinary self-consistent fiel
~SCF! calculation has to be done in order to obtain t
single-particle KS orbitalsc i and the corresponding KS en
ergiese i . In a second step, the coupling matrix has to
built, which gives the response of the SCF potential w
respect to a change in the electronic density. In the adiab
approximation the coupling matrix takes the followin
form:8,9

Ki j s,klt5E E c i~r !c j~r !

3S 1

ur2r 8u
1

d2Exc

drs~r !drt~r 8!
D

3ck~r 8!c l~r 8!dr dr 8, ~7!

wheres and t are spin indices. We consider only close
shell systems. The true excitation energies (v I) are then
found by solving the eigenvalue problem

(
i j s

@v i j
2 d ikd j l dst12Av i j Ki j s,kltAvkl#Fi j s

I 5v I
2Fklt

I ,

~8!

wherev i j 5e j2e i ( i ,k are occupied KS orbitals, whereasj ,l
are unoccupied ones!.

In the g-approximation the coupling matrix~7! is treated
as follows: We decompose the transition density betw
different orbitalspi j (r )5c i(r )c j (r ) into atom-centered con
tributionspi j (r )5(apa

i j (r ). Similar to the derivation of the
second-order term in the SCC-DFTB scheme@see Eq.~4!#,
pa

i j is subjected to a multipole expansion and a monop
approximation~see the Appendix!:

pa
i j ~r !'qa

i j Fa~r !, ~9!

whereqa
i j are the Mulliken atomic transition charges:

qa
i j 5

1

2 (
mPa

(
n

~cm
i cn

j Smn1cn
i cm

j Snm!. ~10!

The monopolar approximation in Eq.~9! is well justified for
large interatomic distances since higher-order multipolar
teractions decay more rapidly then the monopolar term.
short distances, on the other hand, additional terms ma
needed, as discussed in the next section.

Next, we rewrite the functional derivative of the XC e
ergy using the set of variablesr5r↑1r↓ ~the total density!
andm5r↑2r↓ ~the magnetization!:
08510
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d2Exc

drsdrt8
5

d2Exc

drdr8
1~2dst21!

d2Exc

dmdm8
. ~11!

Equation~11! is valid if the ground-state density is spin un
polarized and spin-orbit interactions are neglected, since
this case mixed derivatives with respect to the densityr and
the magnetizationm vanish.

The coupling matrix~7! now reads

Ki j s,klt5(
ab

qa
i j qb

kl@ g̃ab1~2dst21!mab#, ~12!

where

g̃ab5E E 8
f uxc@r ,r 8,r#Fa~r !Fb~r 8!, ~13!

mab5E E 8 d2Exc

dm~r !dm~r 8!
U

r

Fa~r !Fb~r 8!. ~14!

The last two expressions are then further approximated.
expression in Eq.~13! is formally equivalent to theg func-
tional in Eq. ~5! and it only differs by the actual densityr
entering the kernelf uxc . As in the SCC-DFTB formulation,
the on-site term (g̃aa) can be approximated by an Hubbar
like termŨa . This can be calculated as the second derivat
of the total energy with respect to the occupation numbe
the highest occupied atomic orbital, but of an atom of cha
Dqa @see Eq.~4!#. However, we found that the dependen
of the Hubbard term from the atomic charge is small: thus
least for systems with small charge transfer, this differen
can be ignored, leading toŨa'Ua . Then, using the same
interpolation expression44 as in the ground state for the two
center term, we obtaing̃ab5gab .

Turning to the term involving the magnetization in E
~14!, we take it to be strictly on-site because of its ve
short-ranged nature. This is consistent with the approxim
tion made for theg functional. The integral itself is approxi
mated by the quantityM, which like the Hubbard paramete
can be obtained from atomic DFT calculations@M
5 1

2 (]e↑
HOMO/]n↑2]e↑

HOMO/]n↓# of a neutral atom: for rea-
sons similar to the previous case, we neglect charge-tran
effects. The employed values forU andM for different ele-
ments are reported in Table I. These values have been
tained by GGA numerical atomic calculations.50

TABLE I. Values for the parametersU andM used in this work,
in eV. These values have been obtained by numerical atomic
culations, as explained in the text.

Element U M

H 11.425 21.970
C 9.921 20.618
N 11.725 20.694
O 13.481 20.759
8-3
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With these approximations, the coupling matrix in E
~12! can be easily constructed. The excitation energies
tained from Eq. ~8! and the required singlet oscillato
strengths can be calculated using8

f I5
2

3
v I (

k5x,y,z
U(

i j
^c i ur kuc j&Av i j

v I
~Fi j ↑

I 1Fi j ↓
I !U2

,

~15!

where the transition-dipole matrix elements are

^c i ur uc j&5(
a

Raqa
i j . ~16!

Considering the minimal basis set employed, syste
with hundreds of atoms can be easily investigated. For v
large systems, the bottleneck is the solution of the eigenv
problem in Eq.~8!, although the direct full-matrix diagonal
ization can be avoided using the Davidson’s iterative s
space algorithm.52 For the calculations of the lowest excite
states, the size of the coupling matrix can also be drastic
reduced: in fact, if the collective effects are not too stro
i.e., if the off-diagonal matrix elements in Eq.~12! are small,
then only the inclusion of a small set of occupied and un
cupied Kohn-Sham~KS! orbitals is required. In this way, th
optical spectrum of a system with 100 atoms can be obta
in few minutes on a common workstation.

Finally, we note that expression~12! can easily be imple-
mented into any TB scheme. However, to obtain relia
results the response kernel must be used in conjunction
the proper LDA~GGA! KS orbital energy differences. W
note further that the coupling correction are smaller than
quasiparticle approaches:37,41 considering the TD-DFRT for-
mulation in Eq.~7! we see that only exchangelike integra
appear and that the~screened! Coulomb integrals are re
placed by the small ones from the XC-functional derivat
~see, for example, Ref. 51!.

IV. RESULTS

Organic molecules

In order to check the accuracy of our approximations,
calculated the vertical excitation energies for a set of sm
organic molecules. For these systems the absorption sp
are well known, and in addition, first-principles calculatio
are feasible. Since the optical properties of such molec
are very sensitive to the various approximations they
serve as a sound benchmark test. The test set contains
low-lying transitions with clear valence character since ex
tations to Rydberg states are of course out of the scope o
method.

Table II lists the results of our approach together with
experimental values and those obtained from first-princip
TD-DFRT, as implemented in theGAUSSIAN 98 program.53

For the latter we used the gradient corrected XC-functio
B-PW91,54,55 both in the SCF and response part of the c
culation. The Gaussian basis set employed was 6-
1G** ,56 which includes diffuse and polarization function
and can be considered sufficient for the transitions stud
08510
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All the calculations were done at optimized geometries at
respective level of theory. To classify the symmetry of t
excited state wave function we followed the prescripti
given in Ref. 8. In addition to the true excitation energi
(v I), Table II also lists the SP energy differences (vKS) of
the most dominant transition in a CI-like expansion.8,9

Turning first to the first-principles results, we find a me
absolute error of 0.37 eV for the triplet and 0.36 eV for t
singlet excitations. These values are of the same magni
as those reported by Bauernschmitt and Ahlrichs16 for other
XC functionals on a smaller test set.

Considering now the results of theg approximation, we
find a remarkably good performance, at least for the sing
excitations. The error of 0.38 eV is very close to the fir
principles results. Having in mind the various approxim
tions done in the ground-state as well as the response pa
the calculation, the success of the method is encouragin

We note that in our method the lower singlet/triplet tra
sition energies are in general overestimated compared to
TD-DFRT results. This is mainly due to the fact that thevKS
energies, from the SCC-DFTB ground-state calculation,
in general larger than the first-principles results. As a ma
of fact, this shortcoming improves the final singlet energy
comparison with the experimental results: in fact the fir
principles results are in general too low.20 On the other hand,
the accuracy of triplet excitation energies is less convinci
compared to experimental results we find an error of 0
eV. We also found a smaller coupling contribution for th
triplet excitations than the first-principles results. For t
triplet excitations only the magnetization part of the coupli
matrix ~12! is responsible for the shift away from thevKS
values. This means that the employed on-site approxima
for the magnetization kernel is too rigid and the inclusion
two-center terms is required. This can be done by the
merical evaluation of the exchange-correlation integrals
Eq. ~14!.

Another limitation of theg approximation is related to the
monopolar approximation in Eq.~9!. Inspection of Table II
clearly shows that theg approximation is fine forp→p*
transitions but fails forn→p* ~or s→p* ) promotion. This
is due to the fact that the Mulliken atomic transition charg
in Eq. ~10! are zero for this type of transition, thus leading
no coupling~i.e., the singlet and triplet transition energy a
equal to each other and equal tovKS). For an improvement
the employed Mulliken approximation~see the Appendix!
must be removed for the on-site terms: then the calcula
of all the one-center Coulomb and XC integrals~which are
beyond the monopolar term! is needed. Similar integrals are
for example, included in the intermediate neglect of diffe
ential overlap method.43,57

However, both of these improvements are beyond
simple tight-binding scheme, because they require numer
integration from wave functions. They also do not chan
the final optical spectra significantly, because the oscilla
strength is zero for the triplet excitations~without spin-orbit
coupling! and very small forn→p* transitions.58

V. APPLICATIONS

In order to further test the performance of our method,
now present applications to more complex systems,
8-4
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TABLE II. Calculated excitation energiesv I within the g approximation in comparison with first
principles results and experiment.vKS is the SP energy difference of the most dominant transition.
parentheses the character of this transition is indicated. All energies are in eV.

g approximation TD-DFRT
Molecule/State Expt. v I vKS v I vKS

Ethylene
3B1u(p→p* ) 4.40a 5.47 6.30 4.16 5.66
1B1u(p→p* ) 7.65b 7.81 6.30 7.44 5.66
Propene
3A8(p→p* ) 5.24 5.94 3.95 5.26
1A9(s→p* ) 7.05 7.05 6.36 6.37
1A8(p→p* ) 7.19c 7.30 5.94 6.69 5.26
Butadiene
3Bu(p→p* ) 3.20d 3.72 4.21 2.83 3.88
3Ag(p→p* ) 4.95d 5.62 6.07 4.91 6.09
1Bu(p→p* ) 5.92d 5.55 4.21 5.43 3.88
1Bg(s→p* ) 6.43 6.43 6.08 6.11
1Ag(p→p* ) 5.80d 6.44 6.07 6.16 6.14
1Au(s→p* ) 5.59 5.59 6.36 6.36
Cyclopropene
3B2(p→p* ) 4.16e 4.83 5.43 3.77 5.01
1B2(p→p* ) 6.45f 6.21 5.43 6.00 5.01
Benzene
3B1u(p→p* ) 3.89g 4.69 5.28 3.90 5.07
3E1u(p→p* ) 4.85g 5.04 5.28 4.55 5.07
3B2u(p→p* ) 5.69g 5.28 5.28 4.87 5.07
1B2u(p→p* ) 4.89g 5.28 5.28 5.17 5.07
1B1u(p→p* ) 6.20g 5.65 5.28 5.91 5.07
Pyridine
3B1(n→p* ) 4.10h 4.47 4.47 3.71 4.09
3B2(p→p* ) 4.84i 4.92 5.06 4.36 4.44
1B1(n→p* ) 4.51b 4.47 4.47 4.37 4.09
1B2(p→p* ) 5.00j 5.39 5.06 5.28 4.44
1A1(p→p* ) 6.45j 5.81 5.26 5.94 5.93
1B2(p→p* ) 7.23j 7.01 5.85 6.48 6.48
1A1(p→p* ) 7.23j 7.03 5.65 6.69 6.70
Formaldehyde
3A2(n→p* ) 3.50k 4.54 4.54 3.09 3.58
1A2(n→p* ) 3.79k 4.54 4.54 3.83 3.58
3A1(p→p* ) 5.82k 7.26 8.05 5.61 7.33
Ketene
3A2(p→n) 4.40 4.40 3.30 3.61
1A2(p→n) 3.84l 4.40 4.40 3.71 3.61
3A1(p→p* ) 6.18 6.62 5.14 6.12
Propynal
3A9(n→p* ) 2.99m 4.04 4.04 2.74 3.15
1A9(n→p* ) 3.56n 4.04 4.04 3.37 3.15
Glyoxal
3Au(n→p* ) 2.38b 2.42 2.42 1.53 1.93
1Au(n→p* ) 2.73b 2.42 2.42 2.14 1.93
Abs. err. singlets~16 comp.! 0.38 0.83 0.36 0.84
Sign err. singlets 0.05 20.51 20.24 20.78
Abs. err. triplets~13 comp.! 0.64 0.96 0.37 0.66
Sign err. triplets 0.57 0.89 20.36 0.43

aReference 74.
bReference 75.
cReference 77.
dReference 78.
eReference 79.
fReference 80.
gReference 81.

hReference 82.
iReference 83.
jReference 76.
kReference 84.
lReference 85.
mReference 86.
nReference 87.
085108-5
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which first-principles results are also available. We rep
calculations on the fullerene C60 and the polyacene series.

A. C60

The fullerene C60 has been the subject of man
experimental59–66 as well as theoretical67–69 studies in the
past. It may therefore serve as a good benchmark for
method, especially for the oscillator strengths that have
been examined up to now. Recently Bauernschmittet al.20

reported a combined theoretical/experimental study on a
ries of fullerenes from C60 to C80. They recorded the absorp
tion spectrum in solution at room temperature as reporte
Fig. 1~c!. Shown as a line spectrum, the diagram also c
tains their TD-DFRT results. The authors uniformly blu
shifted the obtained theoretical spectrum by 0.35 eV to
cilitate the comparison with experiment.

FIG. 1. ~a! Calculated absorption spectrum of C60 in the SP
approximation: a Lorentzian broadening of 0.35 eV has been u
~b! Calculated absorption spectrum in theg approximation.~c! Ex-
perimental absorption spectrum in solution from Ref. 20. The
perimposed lines are the TD-DFRT results, blueshifted by 0.35
Figure 1~c! is reproduced with permission from Ref. 20, Copyrig
~1998! American Chemical Society.
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In our study, we first optimized C60 with the SCC-DFTB
method. The obtained structure is in good agreement w
experiment as shown in Ref. 47. To illustrate the import
role of the coupling correction, we then calculated the a
sorption spectrum in the SP approximation. As can be s
in Fig. 1~a! this approach fails to reproduce the experimen
spectrum. As is well known, the SP approximation cannot
used when the coupling between different electronic tran
tions becomes important, giving rise to collective effec
These effects are correctly described within theg approxi-
mation, as shown in Fig. 1~b!. The lower excitations are
drastically screened, shifting much oscillator strength to
5–7 eV plasmonlike regime. The main features in the exp
mental spectrum are reproduced correctly, whereas the p
positions are systematically redshifted similar to the alrea
mentioned TD-DFRT results.

B. The polyacene series

The polyacenes (C4n12H2n14) are linear chains of anel
lated polycyclic aromatic hydrocarbons, as shown in Fig.
The monomer (n51) is benzene. Naphtalene hasn52, an-
thracenen53, tetracenen54, and so on.

These systems are one of the most studiedp-p*
systems.70,71 The optical spectrum of these molecules h
been widely investigated in the past with semiempiric
approaches.72,73 The LDA is expected to work well for this
highly homogeneous system, as confirmed by recent fi
principles TD-LDA calculations.19 Thus, these systems pro
vide an excellent basis to check the performance of thg
approximation also from a quantitative point of view.

In Fig. 3 we report the results of our method in compa
son with first-principles19 and experimental results~see ref-
erences in Ref. 19!, for polyacenes withn52 up to n57
~the results for benzene are already reported in Table II!. We
compare the lowest (B2u) singlet and triplet excitation ener
gies and the most intense singlet one (B3u). The agreement
is very good: for the reported singlet energies, theg approxi-
mation mean deviation from the first-principles results
only 0.08 eV. The mean deviation for triplet excitations
higher~0.22 eV!, as previously noted. These results confi
the good performance of our method in describingp-p*
systems.

VI. CONCLUSIONS

In conclusion, we have implemented a tight-binding ve
sion of the TD-DFRT, which yields reasonable agreem
for optical spectra with experiments and first-principles c
culations at a highly reduced cost. The method presen
~SCC-DFTB plus theg approximation! works without any

d.

-
.

FIG. 2. Schematic viewgraph of the polyacenes:n is the number
of monomers.
8-6
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empirical parameter and can be used to study very large
tems with hundreds of atoms and without symmetry,
which first-principles calculations are out of reach, or whe
large number of different conformations has to be inve
gated.

Very good results have been obtained forp-p* systems.
In this context, the method is useful to study biological a
organic molecules which are of interest for optoelectro
applications. Further improvements of our method, conce
ing a better description ofvKS , triplet, andn-p* excitations,
are in progress. Extensions of the method for calculation
optical properties of complex bulk materials are also env
aged.
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APPENDIX

In this short appendix we briefly report conditions und
which the Mulliken charges represent a monopolar appro
mation for atomic density fluctuations~4! and for atomic
transition densities~9!.

Consider a generical molecular orbital product expres
in a LCAO basis~3!:

pi j ~r !5c i~r !c j~r !5(
m

(
n

cm
i cn

j fm~r !fn~r !. ~A1!

FIG. 3. Comparison between theg approximation, TD-LDA
results, and experimental values for the polyacene series.
-
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When i is an occupied orbital andj unoccupied one then
pi j (r ) is a transition density, whereas the total charged d
sity can be obtained from

n~r !5(
i

occ

pii ~r !. ~A2!

Applying the Mulliken approximation, which meansfm(r )
→Smnfn(r ), and symmetrizing, the expression~A1! can be
directly decomposed in atomic centered contributions:

pi j 5(
a

pa
i j ~r !,

where

pa
i j ~r !5(

m
ufm~r !u2Qm

i j , mPa ~A3!

with

Qm
i j 5(

n

1

2
~cm

i cn
j Smn1cn

i cm
j Snm!.

The square of a generic atomic orbitalm on atoma is

ufm~r !u25uRa,l m
~r !u2UYl m ,mmS r

r D U
2

5uRa,l m
~r !u2(

lm
Glm

m Yl ,mS r

r D , ~A4!

whereRa,l m
(r ) is the normalized radial part of the atom

orbital, Yl ,m are normalized real spherical harmonics, a
Glm

m is a Gaunt coefficient (Glm
m 5*Yl m ,mm

Yl m ,mm
Yl ,mdV).

Then we ignore thel dependence of the radial part i
uRa,l m

(r )u2: this is a reasonable approximation for the v
lence orbitals. In this way the expression~A3! becomes

pa
i j ~r !5(

lm
Yl ,mS r

r D uRa~r !u2 (
mPa

Glm
m Qm

i j . ~A5!

The monopolar term is easily obtained becauseG00
m

51/A4p:

pa
i j ~r !u005

1

4p
uRa~r !u2 (

mPa
Qm

i j . ~A6!

Thus (1/4p)uRa(r )u25Fa(r ) is a normalized spherical den
sity distribution and(mPaQm

i j is exactly the expression in
Eq. ~10!. From Eqs.~A2! and ~A6!, the monopolar approxi-
mation for the total density leads to the Mulliken charges44
.
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