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In this paper we propose an extension of the self-consistent charge-density-functional tight-b8Cityg
DFTB) method[M. Elstneret al, Phys. Rev. B68, 7260(1998], which allows the calculation of the optical
properties of finite systems within time-dependent density-functional response tHi&FRT). For a test
set of small organic molecules low-lying singlet excitation energies are computed in good agreement with
first-principles and experimental results. The overall computational cost of this parameter-free method is very
low and thus it allows us to examine large systems: we report successful applicatiostal@he polyacene
series.
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[. INTRODUCTION tion of the excitation energies, a single-parti¢&) approxi-
mation (as energy differences between virtual and occupied

While ground-state properties of large systems can be calevels cannot in general be used in confined systems be-
culated quite routinely, the prediction of optical spectra iscause of the strong electron-hole interacttor
still a complex task. In the past years, accurate methods Several methods and approximatidhs® have been pro-
emerged in this field, like th&W method of Hedihand the ~ Posed to treat this interaction, most of them in the context of
solution of the Bethe-Salpeter equafian the context of ~OPtical properties of semiconductor clusters. In these meth-
solid-state physics or quantum chemistry approaches bas@§S the results may yet depend on the quality of the used
on sophisticated configuration-interacti¢@l) scheme& parameters and the choice of the dielectric constant ndeeI.
Although these methods provide an accuracy that comeR€cently, a TB approach to the Bethe-Salpeter equation has
close to what can be achieved in experiment, they are limite§€€n deveI(l)ped and  successfully applied to silicon
to rather small systems. nam-)cr.ystal§. _ ,

Recently, the time-depende(¥D) extension of density- Similar SE-TB models are also widely used in quantum
functional theor§~1! (DFT) received a lot of attention since Chemistry 2f403r studying optical properties of organic
it shares the numerical efficiency and predictive power withmoleculest® these methods are fully parametrized at the
a ground-state formulation. Within this theory, the linear re-Hartree-Fock/Cl-singles level. In all these TB approaches,
sponse of the electron density can be treated ex&tthThe the _many-partlcle effects are ca_lculated starting from quasi-
TD density-functional response theof@FRT) results in a particle energy !evels. In th.IS artlc[e.we present aTB method
simple scheme to calculate optical properties of finitet0 calculate optical properties c_>f f|n|tg systems starting from
system&®and bulk material$see, e.g., Ref. 12 and refer- the LDA (GGA) energy levels, i.e., W'}E"” the TD-DFRT.
ences therein In fact, the computational scheme resembles a  EXtending the SCC-DFTB methdd°we present a Sim-
random-phase approximatiGr{RPA), but all the exchange- Plified Bgalcglatmn scheme for the TD-DFRT coupling
correlation(XC) effects are in principle correctly included. Matrix.”” This scheme, which we will refer to as theap-
Using the local density approximatichDA) or the gener- proximation is numerically as efficient as the SE-TB meth-

alized gradient approximatiofGGA) for the XC functional, ~©dS, because no integral evaluations have to be done.
promising results have been obtained for organic Before dlspu§3|ng the ab_ove-mentloned approximation in
molecules®~9a series of fullerene® and a variety of metal Sec. Il we WI|| first summarize Fhe emplpyed self-consistent
and semiconductor clustets:?® There are also attempts to charge-density  functional  tight-binding (SCC-DFTB
use more sophisticated XC function&f6-2’ method in Sec. Il. The accuracy of theapproximation is
However, although the TD-DFRT is much cheaper inacce;sed in Sec. IV_wherg we test the method on a set of
terms of computational cost than the aforementioned metHrganic molecules. Finally, in Sec. V we present applications
ods, simulations of nanosystems with hundreds of atoms a® two more complex systemsggand the polyacene series.
still out of reach. For such complex systems, semi-empirical
tight-binding (SE-TB) approaches have been shown to work
satisfactorily?® In the SE-TB methodology, the many-body
problem is recast into an effective Hamiltonian in order to A detailed discussion of the SCC-DFTB scheme has been
reproduce the electronic energy levels obtained from experigiven elsewheré**® The model is derived from DFT by a
ment or first-principles resulfS:*° However, for the calcula- second-order expansion of the DFT total energy functional

Il. SCC-DFTB
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with respect to the charge-density fluctuatiafjs around a 1 N
given reference density,: E2nd=§ E AQ,AdgYag
a,p

occ

1
E:zi <¢'|HO|¢'>+§Jffuw[r,r’,po]gpgp/ where
YQB:J‘ f fuxc[r:r’aPO]Fa(r)Fg(l”) (5

1 i
- Ej f popo, +Exc[PO]_f Vid polpotEii, . , ,
[r—r’] is introduced as shorthand notation and will be referred to as

(1) the v functional
In the limit of large interatomic distances, the XC contri-
whereH°=H[p,] is the effective Kohn-Sham Hamiltonian bution vanishes within DFT an#,,q may be viewed as a
evaluated at the reference densitip and dp’ are short- pure Coulomb interaction between the point charygg. In
hands for 8p(r) and 8p(r’'), respectively,/' are Kohn- the opposite case, when the charges are located at one and
Sham orbitals, and the same atomy,, can be approximated by the chemical

hardnessy,,,*® or the Hubbard-like parameted,: 7y,
, 1 85%Eye ~2n,~U,. Similar approximations are widely used in the
fuxdr.r ,po]=m+5p5p, (2)  previously reported SE-TB methotfs:3¢4>*3This on-site

Po parameter can be calculated for any atom type within the
DFT as the second derivative of the total energy of a single

is the Coulomb-exchange-correlation kernel. Hésg and tom with respect to the occupation number of the highest

Vi are, respectively, the exchange-correlation energy an ccupied atomic orbitd® Using an interpolation formul%,

potential, andg;; is the core-core repulsion energy. the ex ; :
. pression fory,s then only depends on the distance
To derive the total energy of the SCC-DFTB method, the
energy contributions in EqJ) are further subjected to the between the atoma and 8 and on the parametets, and

. . B . . . . . _ B .
following approximations: First, the Hamiltonian matrix ele Within these approximations the XC effects in the

ments(y/|H°|y') are represented in a suitable set of local-.fynctional have been directly considered only for the on-

ized atomic orbitalsp,, , site term. This is reasonable in both the LDA and GGA, for
which the XC-functional contribution to the functional is
y=> c ¢,(r). (3)  very short-ranged and decays as fast as the overlap df the
wrs functions?®

The remaining terms in Ed1), E;; and the energy con-
tributions, which depend opy only, are collected in a single
energy contributiorE¢,. ThisE,, is then approximated as
a sum of short-range repulsive potentials, which depend on

To determine the basis functiors, , we solve the atomic

DFT problem by adding an additional harmonic potential

(r/ro)? to confine the atomic orbitaf€:*’ The Hamiltonian

matrix elemgntsgn this linear combination of atomi? orbitaﬂsthe diatomic distances.

;;%ﬁ;)e?:;':g:gg' ::2 :Qlfgncfolct;gatt:: ;tz r;?goggérgt‘/zlsgs With these definitions and approximations, the SCC-
wp DFTB total energy finally reads

and the nondiagonal elemer1ﬂ§w are calculated in a two-

center approximation occ |
0 R 0 0 Et0t=§i: 2 CLLCIVH/.LV+ E 2‘; yaﬁAquqﬁ+Erep-
H,LLV:<¢/.L|T+veff[pa+p,8]|¢V>! MrEa, VEB . (6)
which are tabulated together with the overlap matrix ele-gy applying the variational principle to the energy functional
ments S, with respect to the interatomic distané®,;.  (6), one obtains the corresponding Kohn-Sham equations:

Here, v, is the effective Kohn-Sham potential apd are

the reference densities of the neutral atams i )
Next, the charge-density fluctuatiodp are decomposed EV C(Hu= €5,,)=0 Vi

into atom-centered contributionp == ,6p, and p,, is ap-

proximated by the monopolar term of a multipole expansion

1
(see the Appendijx H=(¢ulHol#,) + ESMVEg (Yaet vp)AAe,

9Pa(1)=A0aF (1), @ which have to be solved iteratively for the wave function
whereF ,(r) denotes a normalized spherical density fluctua-expansion coefficients,,, since the Hamiltonian matrix el-
tion on atoma andAq, represents the Mulliken net charge ements depend on thng due to the Mulliken net charges. In
on atom «. The employed monopolar approximation ac- general, few cycles are required for convergence.
counts for the most important charge-transfer The repulsive pair potentials fdf ., are constructed by
contributions** subtracting the DFT total energy from the SCC-DFTB elec-
The second-order term in E¢Ll) then becomes tronic energy{first two terms on the right-hand side of Eq.
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(6)] with respect to the bond distance for a small set of suit
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TABLE I. Values for the parametet$ andM used in this work,

able reference systems. It should be noted that the repulsive eV. These values have been obtained by numerical atomic cal-
potential appears only in the total energy. It is required forculations, as explained in the text.

geometry optimization but is not of interest for the calcula-

tion of optical properties which depend only on the Kohn- Element U M
Sham orbitals and energies. H 11.425 ~1.970
C 9.921 —0.618
lIl. THE y APPROXIMATION N 11.725 —0.694
The route to excitation energies within the TD-DFRT 0 13.481 —0.759
consists of two part$? First, an ordinary self-consistent field
(SCH calculation has to be done in order to obtain the
single-particle KS orbitalg/' and the corresponding KS en- 8°Eye  6°Eye (26 —1 6%Eyc 11
ergiese; . In a second step, the coupling matrix has to be 5p05p;_ SpSp’ (28,5~ )5m5m" (11

built, which gives the response of the SCF potential with

respect to a change in the electronic density. In the adiabatigquation(11) is valid if the ground-state density is spin un-
approximation the coupling matrix takes the following polarized and spin-orbit interactions are neglected, since in

form:®°

Kija,kIT:J J () P(r)

( 1 8%E

X +

[r=r'l 8py(r)dpAr’)

Xy ) (r)drdr’, (7

where o and 7 are spin indices. We consider only closed-
shell systems. The true excitation energies)(are then
found by solving the eigenvalue problem

Z [wizj 6ik 91 657+ 2N wijKij 5 ki wkI]Fin(r: o Flr

ijo

8

wherew;; = €;— €; (i,k are occupied KS orbitals, whereps
are unoccupied ongs
In the y-approximation the coupling matriZ) is treated

this case mixed derivatives with respect to the densignd
the magnetizatiom vanish.
The coupling matrix7) now reads

Kijg,m:EB QA Vap+ (26,,— DMl (12)
where
;/aﬁ:fffuxo[r'r,:P]Fa(r)Fﬁ(r’), (13

mo | [ s

The last two expressions are then further approximated. The
expression in Eq(13) is formally equivalent to they func-
tional in Eq.(5) and it only differs by the actual densify
entering the kernel ,,.. As in the SCC-DFTB formulation,

Fo(r)Fg(r’). (14
P

as follows: We decompose the transition density betweefe on-site termy,,,) can be approximated by an Hubbard-

different orbitalsp'! (r) = ¢/ (r) y/(r) into atom-centered con-
tributionsp'! (r)== ,p)(r). Similar to the derivation of the
second-order term in the SCC-DFTB schefsee Eq.(4)],

like termU . This can be calculated as the second derivative
of the total energy with respect to the occupation number of
the highest occupied atomic orbital, but of an atom of charge

p'C'; is subjected to a multipole expansion and a monopoI%qa [see Eq.(4)]. However, we found that the dependence

approximation(see the Appendix

(1) =0aF(r), 9

Whereqi!i are the Mulliken atomic transition charges:
”’—}22 'cls, +cicls (10
a_2 (CMCV v Cycp, v,u)- )

nea v

The monopolar approximation in E€Q) is well justified for

of the Hubbard term from the atomic charge is small: thus, at
least for systems with small charge transfer, this difference

can be ignored, leading t6a~ua. Then, using the same
interpolation expressidfias in the ground state for the two-

center term, we obtaify,z= ¥.z-

Turning to the term involving the magnetization in Eq.
(14), we take it to be strictly on-site because of its very
short-ranged nature. This is consistent with the approxima-
tion made for they functional. The integral itself is approxi-

large interatomic distances since higher-order multipolar inimated by the quantiti, which like the Hubbard parameter,
teractions decay more rapidly then the monopolar term. Focan be obtained from atomic DFT calculatiorisv
short distances, on the other hand, additional terms may be 3(d€;'™% an; — a€'*M%/an ] of a neutral atom: for rea-

needed, as discussed in the next section.

Next, we rewrite the functional derivative of the XC en-
ergy using the set of variablgs=p; +p, (the total density
andm=p,—p, (the magnetization

sons similar to the previous case, we neglect charge-transfer
effects. The employed values forandM for different ele-
ments are reported in Table I. These values have been ob-
tained by GGA numerical atomic calculatiots.
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With these approximations, the coupling matrix in Eg. All the calculations were done at optimized geometries at the
(12) can be easily constructed. The excitation energies obrespective level of theory. To classify the symmetry of the
tained from Eg.(8) and the required singlet oscillator excited state wave function we followed the prescription

strengths can be calculated usﬁng given in Ref. 8. In addition to the true excitation energies
(w)), Table Il also lists the SP energy differenca%g]g) of
2 . _ wj; 2 the most dominant transition in a Cl-like expansion.
! =39 > E (r ) ?(Fi'jpL Filji) , Turning first to the first-principles results, we find a mean
=X,¥,Z | ij |

absolute error of 0.37 eV for the triplet and 0.36 eV for the
(19 singlet excitations. These values are of the same magnitude
Where the transition_dipo'e matrix e|ements are as those_reported by BauemSChmitt al’ld Ahlﬁéﬂier Other
XC functionals on a smaller test set.
, , . Considering now the results of the approximation, we
(lrlghy=> R.q1. (16)  find a remarkably good performance, at least for the singlet
“ excitations. The error of 0.38 eV is very close to the first-
L . . rinciples results. Having in mind the various approxima-
_Considering the minimal basis set employed, SyStem%l)ons done in the ground-state as well as the response part of
with hundreds of atoms can be easily investigated. For veryhe cajculation, the success of the method is encouraging.

large systems, the bottleneck is the solution of the eigenvalue \ye note that in our method the lower singlet/triplet tran-
problem in Eq.(8), although the direct full-matrix diagonal- sition energies are in general overestimated compared to the
ization can be avoided using the Davidson’s iterative sUbTD-DFRT results. This is mainly due to the fact that thgs
space algorithm? For the calculations of the lowest excited energies, from the SCC-DFTB ground-state calculation, are
states, the size of the coupling matrix can also be drasticallih general larger than the first-principles results. As a matter
reduced: in fact, if the collective effects are not too strong,of fact, this shortcoming improves the final singlet energy in
i.e., if the off-diagonal matrix elements in EG.2) are small, comparison with the experimental results: in fact the first-
then only the inclusion of a small set of occupied and unocprinciples results are in general too I6%On the other hand,
cupied Kohn-ShantKS) orbitals is required. In this way, the the accuracy of triplet excitation energies is less convincing:
optical spectrum of a system with 100 atoms can be obtainegompared to experimental results we find an error of 0.64
in few minutes on a common workstation. eV. We also found a smaller coupling contribution for the
Finally, we note that expressidf2) can easily be imple- triplet excitations than the first-principles results. For the
mented into any TB scheme. However, to obtain reliableriplet excitations only the magnetization part of the coupling
results the response kernel must be used in conjunction witfatrix (12) is responsible for the shift away from thexs
the proper LDA(GGA) KS orbital energy differences. We Vvalues. This means that the employed on-site approximation
note further that the coupling correction are smaller than irfor the magnetization kernel is too rigid and the inclusion of
quasiparticle approaché&*! considering the TD-DFRT for- two-center terms is required. This can be done by the nu-
mulation in Eq.(7) we see that only exchangelike integrals merical evaluation of the exchange-correlation integrals in
appear and that théscreenell Coulomb integrals are re- EQ.(14).
placed by the small ones from the XC-functional derivative Another limitation of they approximation is related to the
(see, for example, Ref. 51 monopolar approximation in Eq9). Inspection of Table I
clearly shows that thes approximation is fine formr— =*
transitions but fails fon— 7* (or o— 7*) promotion. This
is due to the fact that the Mulliken atomic transition charges
Organic molecules in Eq. (10) are zero for this type of transition, thus leading to

In order to check the accuracy of our approximations, wd© coupling(i.e., the singlet and triplet transit'ion energy are
calculated the vertical excitation energies for a set of smalfdua! to each other and equaldgsg). For an improvement
organic molecules. For these systems the absorption spectf? employed Mulliken approximatiotsee the Appendix
are well known, and in addition, first-principles calculations MUSt be removed for the on-site terms: then the calculation
are feasible. Since the optical properties of such molecule§f @ll the one-center Coulomb and XC integrafenich are
are very sensitive to the various approximations they cafp€yond the monopolar teps needed. Similar integrals are,

serve as a sound benchmark test. The test set contains orlf}f €x@mple, included in the intermediate neglect of differ-

H 57
low-lying transitions with clear valence character since exci-ntial overlap methotf _
However, both of these improvements are beyond a

tations to Rydberg states are of course out of the scope of our X oo X .
method. simple tight-binding scheme, because they require numerical

Table Il lists the results of our approach together with thelhtegration from wave functions. They also do not change

experimental values and those obtained from first-principle&® final optical spectra significantly, because the oscillator

TD-DFRT, as implemented in theaussian 98 program® strength is zero for the triplet excitatiofwithout spin-orbit
' oupling and very small fon— 7* transitions’®

For the latter we used the gradient corrected XC-functionaf
B-PW91>4°° both in the SCF and response part of the cal-

culation. The Gaussian basis set employed was 6-311
+G** ,® which includes diffuse and polarization functions  In order to further test the performance of our method, we
and can be considered sufficient for the transitions studiechow present applications to more complex systems, for

IV. RESULTS

V. APPLICATIONS
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TABLE II. Calculated excitation energies, within the y approximation in comparison with first-

principles results and experimenbyg is the SP energy difference of the most dominant transition. In

parentheses the character of this transition is indicated. All energies are in eV.

y approximation TD-DFRT
Molecule/State Expt. w, wks [on wks
Ethylene
3By (m—7*) 4.402 5.47 6.30 4.16 5.66
By (7m—7*) 7.65° 7.81 6.30 7.44 5.66
Propene
SA! (r— ) 5.24 5.94 3.95 5.26
A (o—a) 7.05 7.05 6.36 6.37
N (r—7*) 7.19°¢ 7.30 5.94 6.69 5.26
Butadiene
3B, (7m— 7*) 3.20¢ 3.72 4.21 2.83 3.88
SA (T ) 4,959 5.62 6.07 4.91 6.09
By(7m—m*) 5.92¢ 5.55 4.21 5.43 3.88
1By(o—7*) 6.43 6.43 6.08 6.11
LAy (7 7*) 5.80¢ 6.44 6.07 6.16 6.14
A (o—7*) 5.59 5.59 6.36 6.36
Cyclopropene
3B, (7r— 7*) 4.16° 4.83 5.43 3.77 5.01
1By (7r— ™) 6.45' 6.21 5.43 6.00 5.01
Benzene
3By (7m— ) 3.89¢ 4.69 5.28 3.90 5.07
SE y(m— ) 4.859 5.04 5.28 4.55 5.07
3B, (m—7*) 5.69¢ 5.28 5.28 4.87 5.07
1Byy(m— ) 4.899 5.28 5.28 5.17 5.07
1By (mr—7*) 6.209 5.65 5.28 5.91 5.07
Pyridine
3B,(n—*) 4.10" 4.47 4.47 3.71 4.09
3B, (m— ) 4.84! 4.92 5.06 4.36 4.44
1B, (n—7*) 451° 4.47 4.47 4.37 4.09
By(7r—7*) 5.00! 5.39 5.06 5.28 4.44
A (r— 7*) 6.45/ 5.81 5.26 5.94 5.93
1B, (r— 7*) 7.23 7.01 5.85 6.48 6.48
A (m—7*) 7.23 7.03 5.65 6.69 6.70
Formaldehyde
3A,(n—7*) 3.50% 4,54 4.54 3.09 3.58
IA,(n—7*) 3.79¢ 4.54 4.54 3.83 3.58
SA(mr— ) 5.82% 7.26 8.05 5.61 7.33
Ketene
SA,(m—n) 4.40 4.40 3.30 3.61
A, (7—n) 3.84! 4.40 4.40 3.71 3.61
SA (7m— ) 6.18 6.62 5.14 6.12
Propynal
SA"(N—7*) 2.99M 4.04 4.04 2.74 3.15
A (n— %) 3.56" 4.04 4.04 3.37 3.15
Glyoxal
3A,(n—7*) 2.38° 2.42 2.42 1.53 1.93
1A, (n—7*) 2.73° 2.42 2.42 2.14 1.93
Abs. err. singlet$16 comp) 0.38 0.83 0.36 0.84
Sign err. singlets 0.05 —-0.51 —-0.24 —-0.78
Abs. err. triplets(13 comp) 0.64 0.96 0.37 0.66
Sign err. triplets 0.57 0.89 —0.36 0.43

%Reference 74.
bReference 75.
‘Reference 77.
dReference 78.
®Reference 79.
'Reference 80.
9Reference 81.

hReference 82.
'Reference 83.
JReference 76.
KReference 84.
'Reference 85.

MReference 86.

"Reference 87.
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25F Single-particle spec. 1
o o o

abs |1/eV]

FIG. 2. Schematic viewgraph of the polyaceness the number
of monomers.

, , ) , In our study, we first optimized § with the SCC-DFTB
2 3 ? energy[eV] 6 7 method. The obtained structure is in good agreement with
' ' ' ' ' ' ' ' ' experiment as shown in Ref. 47. To illustrate the important
role of the coupling correction, we then calculated the ab-
sorption spectrum in the SP approximation. As can be seen
in Fig. 1(a) this approach fails to reproduce the experimental
spectrum. As is well known, the SP approximation cannot be
used when the coupling between different electronic transi-
tions becomes important, giving rise to collective effects.
These effects are correctly described within th@pproxi-
mation, as shown in Fig. (). The lower excitations are
T e T e T drastically screened, shifting much oscillator strength to the
encrgy [eV] 5-7 eV plasmonlike regime. The main features in the experi-

Gamma-approximation

08

06

abs [1/eV]

04

02

seonve or O mental spectrum are reproduced correctly, whereas the peak
c) positions are systematically redshifted similar to the already
200000 - mentioned TD-DFRT results.
E 160000 B. The polyacene series
£ 1200004 The polyacenes (f.2Hn+4) are linear chains of anel-
4 lated polycyclic aromatic hydrocarbons, as shown in Fig. 2.
“ m"_ The monomeri=1) is benzene. Naphtalene has 2, an-
40000 . thracenen= 3, tetracenan=4, and so on.
: Ty These systems are one of the most studieer*
o7 T 1 systemg®’! The optical spectrum of these molecules has

been widely investigated in the past with semiempirical
approache$®” The LDA is expected to work well for this
FIG. 1. (a) Calculated absorption spectrum ofydn the SP  highly homogeneous system, as confirmed by recent first-
approximation: a Lorentzian broadening of 0.35 eV has been usegrinciples TD-LDA calculations® Thus, these systems pro-
(b) Calculated absorption spectrum in theapproximation(c) Ex-  vide an excellent basis to check the performance ofhe
perimental absorption spectrum in solution from Ref. 20. The suapproximation also from a quantitative point of view.
perimposed lines are the TD-DFRT results, blueshifted by 0.35eV. In F|g 3 we report the results of our method in Compari_
Figure Xc) is reproduced with permission from Ref. 20, Copyright son with first-principle¥’ and experimental resultsee ref-
(1998 American Chemical Society. erences in Ref. 19 for polyacenes witm=2 up ton=7
t(the results for benzene are already reported in Taplé\e
compare the lowestH,,) singlet and triplet excitation ener-
gies and the most intense singlet oy (). The agreement
AC is very good: for the reported singlet energies, thapproxi-
"o mation mean deviation from the first-principles results is
The fullerene G, has been the subject of many only 0.08 eV. The mean deviation for triplet excitations is
experimental°® as well as theoretic¥™®® studies in the higher(0.22 eV}, as previously noted. These results confirm
past. It may therefore serve as a good benchmark for ouhe good performance of our method in describimgr™
method, especially for the oscillator strengths that have nosystems.
been examined up to now. Recently Bauernschetital 2°
reported a combined theoretical/experimental study on a se- VI. CONCLUSIONS
ries of fullerenes from g, to Cgy. They recorded the absorp-
tion spectrum in solution at room temperature as reported in In conclusion, we have implemented a tight-binding ver-
Fig. 1(c). Shown as a line spectrum, the diagram also consion of the TD-DFRT, which yields reasonable agreement
tains their TD-DFRT results. The authors uniformly blue- for optical spectra with experiments and first-principles cal-
shifted the obtained theoretical spectrum by 0.35 eV to faculations at a highly reduced cost. The method presented
cilitate the comparison with experiment. (SCC-DFTB plus they approximation works without any

energy [eV]

which first-principles results are also available. We repor
calculations on the fullereneggand the polyacene series.
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6f L S Wheni is an occupied orbital ang unoccupied one then
OO y-approx. p'(r) is a transition density, whereas the total charged den-
&--oTD-LDA sity can be obtained from
S5t 4 -— & Experim.
occ
4 n(r=2 p"(r). (A2)
1

Applying the Mulliken approximation which meanse ,(r)
—3S,,¢,(r), and symmetrizing, the expressiohl) can be

Energy [eV]
(%]

2 directly decomposed in atomic centered contributions:

Ly p1=2 pd(r),

0 . : ' : : : where

2 3 4 5 6 7
# Monomer - .
pPaN=2 |6, (N7QL, pea (A3)
FIG. 3. Comparison between thg approximation, TD-LDA “

results, and experimental values for the polyacene series. with
emp|r|c§1I parameter and can be used to study very large sys Qi=S Z(d s, +ccls, ).
tems with hundreds of atoms and without symmetry, for e A VIRTVR

2

which first-principles calculations are out of reach, or when a
large number of different conformations has to be investi-The square of a generic atomic orbigalon atome is
gated.

Very good results have been obtained form* systems. 16,(02=|R,, (N]ZY ([
In this context, the method is useful to study biological and ® aly AN
organic molecules which are of interest for optoelectronic ;
applications. Further improvements of our method, concern- _ 2 @ s
ing a better description aby s, triplet, andn-7* excitations, |R“"M(r)| % GimY1.m r)’ A9
are in progress. Extensions of the method for calculations of ) ] ) )
optical properties of complex bulk materials are also envisWhereR,, (r) is the normalized radial part of the atomic

aged. orbital, Y, ., are normalized real spherical harmonics, and
G}, is a Gaunt coeﬁicient@{ﬁnszM,mMYu,mﬂY,,mdQ).
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APPENDIX The monopolar term is easily obtained becausd,

In this short appendix we briefly report conditions under=1/\/4:
which the Mulliken charges represent a monopolar approxi- 1
mation for atomic density fluctuationsl) and for atomic 2(f)|oo=4—|Ra(r)|22 Q. (AB)
transition densitie$9). T uwea
. Consider a generical molecular orbital product expressecf,hus (1/47)|R,(1)|2=F (r) is a normalized spherical den-
In a LCAQ basis(3): sity distribution andE#EQQE is exactly the expression in

ey — o iir) — i (Al Eq. (10). From Egs.(A2) and (A6), the monopolar approxi-
PHN =g ¢ % EV CuCubu(N)dulr). (AD) mation for the total density leads to the Mulliken charffes.
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