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Mott metal-insulator transition in the half-filled Hubbard model on the triangular lattice
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We investigate the metal-insulator transition in the half-filled Hubbard model on the two-dimensional tri-
angular lattice using both the Kotliar-Ruckenstein slave-boson technique and an exact numerical diagonaliza-
tion of finite clusters. Contrary to the case of a square lattice, where a perfect nesting of the Fermi surface leads
to a metal-insulator transition at arbitrarily small values ofU, always accompanied by antiferromagnetic
ordering, on a triangular lattice, due to the lack of perfect nesting, the transition takes place at a finite value of
U, and frustration induces a nontrivial competition among different magnetic phases. Indeed, within the
mean-field approximation in the slave-boson approach, as the interaction grows the paramagnetic metal turns
into a metallic phase with incommensurate spiral ordering. Increasing the interaction further, a linear spin-
density wave is stabilized, and finally for strong coupling the latter phase undergoes a first-order transition
toward an antiferromagnetic insulator. No trace of the intermediate phases is seen in the exact diagonalization
results, indicating a transition between a paramagnetic metal and an antiferromagnetic insulator.
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The Mott metal-insulator transition~MIT !, i.e., the transi-
tion from a metallic to an insulating phase driven by ele
tronic correlation,1,2 is one of the most relevant issues
condensed-matter theory. In the last few years it has
been the object of intensive study, due to the considera
experimental evidence of Mott insulators ranging from t
parent compounds of the superconducting cuprates3 to the
alkali fullerides of the typeA4C60.4

The simplest model in which the competition between
delocalizing effect of the kinetic energy and the electro
correlation can give rise to a MIT is the Hubbard model

H52t(̂
i j &
s

~ci ,s
† cj ,s1H.c.!2m(

i ,s
ci ,s

† ci ,s1U(
i

ni↑ni↓ ,

~1!

whereci ,s
† (ci ,s) creates~destroys! an electron with spins on

site i, andni ,s5ci ,s
† ci ,s is the number operator;t is the hop-

ping amplitude,U is the Hubbard on-site repulsion, andm is
the chemical potential. The hopping is restricted to nea
neighbors, and the indicesi and j label the pointsRi andRj
of a d-dimensional lattice.

At half-filling ~i.e., for a number of electrons equal to th
number of sites!, this model is known to undergo a MIT b
increasing the interaction strengthU. On a d-dimensional
cubic lattice the perfect nesting property of the Fermi surf
makes the model unstable toward antiferromagnetism
soon as a nonzeroU is turned on, driving the system to a
insulating state. In this paper we focus on a triangular lat
in d52 as a prototype for a model where perfect nesting
absent for the uncorrelated metal.5 Since in theU/t→`
~Heisenberg! limit the model is likely to display a Ne´el-
ordered~insulating! ground state~GS!,6,7 a MIT is expected
to occur for finiteU.
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Besides its theoretical relevance, our analysis has als
experimental counterpart. In fact, adlayer structures on se
conductor surfaces, such as SiC(0001)~Ref. 8! or
K/Si(111):B,9 recently turned out to be almost ideal env
ronments for the study of Mott insulators,10 and are charac-
terized by aA33A3 arrangement of the dangling-bond su
face orbitals, which are likely to be well described by tw
dimensional strongly correlated Hamiltonians10 on a
triangular lattice.

Hartree-Fock~HF! calculations, performed by Krishna
murthy and co-workers,11,12 produce a rather rich phase dia
gram: for smallU the system is a paramagnetic metal~PM!,
which turns to a metal with incommensurate spiral sp
density wave~spiral metal, SM! at U5Uc153.97t. Two suc-
cessive first-order transitions occur, further increasing
coupling: at U5Uc254.45t a semimetallic linear spin-
density wave~LSDW! is stabilized, and a first-order MIT to
an antiferromagnetic insulator~AFMI ! occurs atU5Uc3

55.27t. In the same work it was also argued that at fin
temperature the model should present a Mott transition
tween a paramagnetic metal and a paramagnetic insulat

However, the above transitions only occur at relative
large U/t and the HF approximation is unreliable in th
intermediate- and strong-coupling regimes, as it gives a
ear dependence of the PM energy onU, and overestimates
the tendency toward the AFMI, stable in the strong-coupl
limit. Conversely, the slave-boson~SB! approach13,14 leads
to a lower energy for finiteU/t in the PM phase, reducing to
the HF limit for U/t→0, and correctly reproduces the G
energy proportional tot2/U in the limit U→`. Therefore,
we adopt the more appropriate SB approach as an interp
ing scheme between theU/t50 and U/t→` regimes. To
allow for the presence of incommensurate spiral spin ord
©2001 The American Physical Society04-1
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ing, we introduce the spin-rotational invariant formulation15

of the Kotliar-Ruckenstein SB approach.14 The reader can
find further details in Ref. 15.

On each site we introduce a set of four SB operat
ei , si ,↑ , si ,↓ , and di to label empty (e), singly (s), and
doubly ~d! occupied sites, respectively. The spin projecti
§5↑,↓ is measured with respect to a local quantization a
which is allowed to vary from site to site. The resulting S
Hamiltonian is

H52t(̂
i j &

§,§8

@ c̃i ,§
† zi ,§

† ~R i
†Rj !§,§8zj ,§8c̃ j ,§81H.c.#

2m(
i ,§

c̃i ,§
† c̃i ,§1U(

i
di

†di1(
i

l i S ei
†ei1di

†di

1(
§

si ,§
† si ,§21D 1(

i ,§
L i ,§~ c̃i ,§

† c̃i ,§2si ,§
† si ,§2di

†di !,

~2!

where c̃i ,§ and c̃i ,§
† are the pseudofermion operators, t

Lagrange multipliersl i and L i ,§ enforce on each site th
completeness constraint and the correct fermion counting
spectively, the operatorRi rotates the local reference fram
back to the laboratory frame, and the operator

zi ,§5
ei

†si ,§1si ,2§
† di

A12di
†di2si ,§

† si ,§A12ei
†ei2si ,2§

† si ,2§

reconstructs the hopping amplitude in the enlarged F
space, and yields the correctU→0 limiting behavior in the
mean-field approximation.14,15 When the angle between tw
local quantization axes depends only on their relative p
tion, up to a global phase factor one can assumeR i

†Rj

5exp@iQ•(Ri2Rj )ty/2#, wherety is the Pauli matrix andQ
is the~incommensurate! modulating wave vector.15 In such a
case a mean-field description with real site-independent
pectation values for the SB operators,

^ei
(†)&5e0 , ^si ,§

(†)&5s0,§ , ^di
(†)&5d0 , ~3!

and for the Lagrange multipliers,

^l i&5l0 , ^L i ,§&5L0,§ , ~4!

is possible. Equations~3! and ~4! refer to the case in which
the translational symmetry is not broken and the expecta
values of the bosons and of the Lagrange multipliers do
depend on the site. We have also studied configurations
broken translational symmetry. In particular, we conside
solutions in which in the bosons have different values
each of the three sublattices, and analogous to the LS
found within the HF approximation.12 The latter solutions
can be found considering a four-site unit cell. A similar S
calculation was performed in Ref. 16, where, however,
generalization of the SM phase found in the HF approxim
tion was never recovered as an energy minimum. In the c
of spiral spin ordering, Hamiltonian~2! can be analytically
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diagonalized by adopting the Bloch representation, and p
forming a unitary transformation with respect to spin indice
yielding

Ek,65
1

2
@ t~z0,↑

2 1z0,↓
2 !Te1L0,↑1L0,↓#2m

6
1

2
A@ t~z0,↑

2 2z0,↓
2 !Te1L0,↑2L0,↓#214t2z0,↑

2 z0,↓
2 To

2,

where Te52( lcos(Q• l/2)cos(k• l), To52( lsin(Q• l/
2)sin(k• l), and l5(1,0),(1/2,6A3/2) are the nearest
neighbor displacements. The self-consistency equations
obtained by minimizing the free energy

F5F02T (
k,a56

log~11e2Ek,a /T!,

where F05N@Ud0
21l0(e0

21d0
21s0,↑

2 1s0,↓
2 21)2L0,↑(d0

2

1s0,↑
2 )2L0,↓(d0

21s0,↓
2 )1mn#, N is the number of sites, and

n is the electron density per site, and read

]F0

]X 1 (
k,a56

]Ek,a

]X f ~Ek,a!50, ~5!

where f (E)5@eE/T11#21 is the Fermi function andX rep-
resents generically one of the parameters~3! and~4! and the
two components of the pitch vectorQ. The chemical poten-
tial m is fixed by the condition

(
k,a56

f ~Ek,a!5nN.

In this paper we henceforth assumen51 ~half-filling!.
The self-consistency equations~5! yield the same solu-

tions found in the HF approximation, namely, a parama
netic metal, a metal with incommensurate spiral ordering
linear spin-density wave and an antiferromagnetic insula
As in the HF method, the PM-SM transition is continuou
and the other two transitions are of first order, but all of the
occur at larger coupling values:Uc156.68t, Uc256.84t, and
Uc357.68t. The energy curves corresponding to the abo
phases are reported in Fig. 1. Our results agree with Ref
as far as the PM, AFMI, and LSDW phases are concern
but we also find a region of stability for the SM phase, whi
was not detected in Ref. 16. These authors were indeed l
ing for spiral phases starting from the strong-coupling si
and following them to weaker coupling. On the other han
our analysis shows that a spiral phase develops continuo
from the PM at intermediate coupling, and ends in a criti
point soon after the level crossing with the AFMI~see the
inset in Fig. 1!, and does not exist at strong coupling. The
fore, our SM phase is the generalization of the correspond
phase found within the HF approximation,12 and it is unre-
lated to the high-energy SM phases of Ref. 16. However,
region of existence of the SM is narrower within the S
method as compared to the HF method, and the magne
tion m5 1

2 (n↑2n↓) is always less than 0.1, and stays smal
4-2
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MOTT METAL-INSULATOR TRANSITION IN THE . . . PHYSICAL REVIEW B 63 085104
than the HF value (&0.4). Therefore the jump of the mag
netization at the SM-AFMI transition is substantially larg
than in the HF approximation. We point out that, contrary
nesting models, where the presence of free particles~doping!
is a necessary condition for spiral ordering,15,17,18 here the
spiral phase exists at half-filling, as previously shown in R
11, within the HF approximation. Despite the overall qua
tative agreement between the HF and SB phase diagrams
main outcome of a comparison between them is that
stability of the SM phase is strongly reduced. Furthermo
the SM is hardly distinguishable from the PM in its who
region of stability. It is therefore reasonable to expect t
the inclusion of quantum fluctuations washes out th
phases which are characterized by small order parame
and are very close in energy both to the PM and the AF
~see the inset in Fig. 1!. On the other hand, the PM phase
small U/t reduces asymptotically to the exact solution, a
should be slightly affected at larger values. The AFMI pha
at largeU/t is robust, and the only effect of quantum flu
tuations is expected to be a reduction of the sublattice m
netization with respect to saturation~cf. the case of the
Heisenberg model7!. This leaves the way open for a dire
Mott transition between the PM and the AFMI.

Despite the strong frustration of the antiferromagne
~AFM! order on the triangular lattice,6,7 both the HF and SB
approaches indicate no paramagnetic Mott insulating ph
in the zero-temperature phase diagram of the half-filled H
bard model. In particular, within the SB approach, we c
indicate how far the system is from the Brinkman-Ri
transition2 to a paramagnetic Mott insulator. In fact, if th
possibility for magnetic ordering is neglected, the param
netic metallic phase undergoes a Brinkman-Rice transi
with vanishing double occupancy and an effective hopp
amplitude, for a critical value~at T50) of the Hubbard in-
teraction UBR532tN21(k«kQ(2t«k1m) @«k52Te(Q
50),m/t520.835#,2,14 i.e., UBR /t.15.8 on the triangular
lattice. As we see, this value is much larger thanUc1 /t,

FIG. 1. U dependence of the ground-state energy per site.
results: PM~solid line!, SM ~dotted line!, LSDW ~dot-dashed line!,
and AFMI ~dashed line!. Open dots are the exact diagonalizati
results for theN512 cluster.
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Uc2 /t and Uc3 /t found above. The system is therefore n
even close to the Brinkman-Rice transition when a MIT o
curs.

In order to understand to what extent the picture we fou
within the mean-field SB theory survives in an exact tre
ment of the model, we performed an exact diagonalization
small clusters by means of the standard Lanczos algorit
The largest lattice compatible with all the symmetries of t
model that can be handled with exact diagonalization i
N512 site cluster.6 It is clear that, despite the exact dete
mination of the GS energy and wave function, the exact
agonalization results suffer from finite-size effects, and t
no reliable size scaling is possible for the present proble
We point out, however, that the AFMI has a wide gap in t
single-particle spectrum, and is well described by small cl
ters. This is not the case for the incommensurate pha
found above within the SB approach. Therefore we exp
that exact diagonalization should characterize properly
Mott transition toward the AFMI, while it could miss th
appearance of the SM and the LSDW. Finite-size calcu
tions are reliable only if the number of electrons correspo
to a closed-shell configuration. Since 12 electrons on 12 s
are not a closed-shell configuration for periodic or antipe
odic boundary conditions, we always used twisted bound
conditions with a suitable phase such that the half-filled s
tem is in a closed-shell configuration. This is important
order to perform a reasonable investigation of the conduc
properties of a finite-size system. It turns out that the bou
ary conditions that minimize the energy in a closed-sh
configuration forU50 leave the system in a closed-she
configuration at allU. The energy is shown as a function o
U in Fig. 1. The overall agreement with the mean-field S
results is good, the largest deviations (;20%) being, as ex-
pected, at intermediate coupling (U/t;7).

To check the occurrence of a discontinuous phase tra
tion we evaluated the overlap between the GS wave func
and the two limiting cases ofU50, and for largeU ~namely,
U5100t). As shown in Fig. 2, on the large-U side of the
diagram the GS has a large overlap to the AFM stro
coupling state, and a vanishing overlap with the nonintera
ing metallic one. On the metallic side the overlap with t
noninteracting state is always finite, but it is a decreas

B

FIG. 2. Overlap of the finite-U GS with theU50 ~empty dots!
and theU5100t ~full dots! GS’s, for N512. In the inset the GS
energy per site in thek5(0,0) ~solid line! andk5(2p/3,0) ~dashed
line! subspaces is plotted vsU.
4-3
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CAPONE, CAPRIOTTI, BECCA, AND CAPRARA PHYSICAL REVIEW B63 085104
function ofU; in this regime the GS has a vanishing overl
with the AFM state. We therefore have clear evidence o
strongly correlated metal with a decreasing coherent par
particular the sharp change of the GS wave function
UMIT.12.07t is due to a level crossing occurring betwe
metallic and antiferromagnetic solutions, as shown in the
set of Fig. 2. These results, however, do not rule out
possibility of a continuous transition within the metall
phase, i.e. the PM-SM transition found with SB.

In Fig. 3 we show the spin structure factorS(q)
5( i , jSi

zSj
zexp@q•(Ri2Rj )#/N for different values ofU. The

results do not suggest any intermediate state between a
tallic state without magnetic order and the AFM insulator,
S(q) abruptly changes from a structureless behavior to
AFM pattern peaked at the classical ordering wave vec
i.e., Q05(4p/3,0). Although we suspect that the intermed
ate phases are artifacts of the mean-field approach, the w
ness and the strong size dependence of the spiral phases
gested by the SB results may make them unaccessible on
12-site lattice.

Using the Lanczos algorithm we have also calculated
finite-frequency optical conductivitys(v) and the Drude
weight, measuring the electronic mobility. The real part
the xx component of the conductivity tensor for a tigh
binding model at zero temperature may be expressed
terms of the Kubo formula19

sxx~v!5Dxxd~v!1ImK f0UJx
† 1

v2H1E02 id
JxUf0L ,

~6!

where Jx5( i ,s,ll x(ci ,s
† ci 1 l,s2H.c.) is thex component of

the current operator, andl x are thex components of the
nearest-neighbor displacement vectorsl defined above. The
coefficient of the zero-frequency delta function contributi
Dxx , the Drude weight, is given by thef sumrule19

Dxx52
pe2

2
^H x

t &2 (
nÞ0

u^f0uJxufn&u2

En2E0
, ~7!

FIG. 3. Spin structure factorS(q): U52t ~dotted line!, U58t
~dashed line!, U511.5t ~dot-short-dashed line!, U512.5t ~dot-
long-dashed line!, andU540t ~solid line!.
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whereH x
t 5( i ,s,ll x

2(ci ,s
† ci 1 l,s1H.c.), andufn& is the eigen-

function of H with eigenvalueEn .
The latter quantity, which is reported in Fig. 4, is a dire

measure of the metallic character of the state, and the MI
signaled by the vanishing ofDxx .20 For a finite system,Dxx

does not vanish for any value ofU. For U,UMIT , Dxx is a
decreasing function of the interaction, which resembles
overlap in Fig. 2. An abrupt change takes place at the le
crossing point, and forU.UMIT it becomes negative, a
common phenomenon in the insulating phase of a small-
system.21

All the results of exact diagonalization point in the sam
direction: the metal-AFMI level crossing found within th
SB mean-field approach is shifted to larger values ofU. The
metallic solution exhibits a continuous loss of metallici
with increasingU. The Drude weight is finite up to the MIT
on the 12-site lattice, although it is quite small (4% of t
noninteracting value!. We remark that, due to finite-size e
fects, we cannot exclude the possibility thatDxx vanishes
before the transition to the AFMI is reached. In such a ca
there would be a region of parameters in which the param
netic insulator exist, though the SB results point in the o
posite direction.

In conclusion, using the slave-boson technique and
exact diagonalization, we have investigated the ze
temperature phase diagram of the half-filled Hubbard mo
on a two dimensional triangular lattice. The mean-field S
approach displays a rich phase diagram which qualitativ
resembles the one from HF calculations, but, on the ot
hand, drastically reduces the stability of the spiral metal a
of the linear spin-density-wave states. That is, the we
coupling paramagnetic metal continuously evolves into a s
ral metal atU5Uc156.68t, which crosses the linearly po
larized spin-density-wave ground state atU5Uc256.84t.
The latter phase undergoes a further first-order transition
ward an antiferromagnetic insulator atU5Uc357.68t.
All these transitions occur for coupling constants subst
tially smaller than the critical value for the Brinkman-Ric
transition to a paramagnetic insulator (UBR515.8t). The
exact-diagonalization results present a first-order transi

FIG. 4. Exact calculation of the Drude weight as a function ofU
for the N512 cluster.
4-4
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between the paramagnetic metal and the antiferromagn
insulator atUMIT512.07t, without intermediate ‘‘exotic’’
phases.
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