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Mott metal-insulator transition in the half-filled Hubbard model on the triangular lattice
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We investigate the metal-insulator transition in the half-filled Hubbard model on the two-dimensional tri-
angular lattice using both the Kotliar-Ruckenstein slave-boson technique and an exact numerical diagonaliza-
tion of finite clusters. Contrary to the case of a square lattice, where a perfect nesting of the Fermi surface leads
to a metal-insulator transition at arbitrarily small valuesf always accompanied by antiferromagnetic
ordering, on a triangular lattice, due to the lack of perfect nesting, the transition takes place at a finite value of
U, and frustration induces a nontrivial competition among different magnetic phases. Indeed, within the
mean-field approximation in the slave-boson approach, as the interaction grows the paramagnetic metal turns
into a metallic phase with incommensurate spiral ordering. Increasing the interaction further, a linear spin-
density wave is stabilized, and finally for strong coupling the latter phase undergoes a first-order transition
toward an antiferromagnetic insulator. No trace of the intermediate phases is seen in the exact diagonalization
results, indicating a transition between a paramagnetic metal and an antiferromagnetic insulator.
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The Mott metal-insulator transitiofMIT), i.e., the transi- Besides its theoretical relevance, our analysis has also an
tion from a metallic to an insulating phase driven by elec-experimental counterpart. In fact, adlayer structures on semi-
tronic correlation;? is one of the most relevant issues in conductor surfaces, such as SiC(0001iRef. 8 or
condensed-matter theory. In the last few years it has alsg/sSi(111):B? recently turned out to be almost ideal envi-
been the ObjeCt of intensive Study, due to the ConSiderablﬁ)nmentS for the Study of Mott insu|atd%and are charac-
experimental evidence of Mott insulator§ ranging from theigizeq by ay3x \/3 arrangement of the dangling-bond sur-
parent compounds of the superconducting cuptaieshe ¢ ce orbitals, which are likely to be well described by two-

. . 4
alkali fullerides of the typeA,Ceo. » dimensional strongly correlated Hamiltonidhson a
The simplest model in which the competition between thetriangular |attice

delocalizing effect of the kinetic energy and the electronic Hartree-Fock(HF) calculations, performed by Krishna-

correlation can give rise to a MIT is the Hubbard model murthy and co-worker&-12 produce a rather rich phase dia-

gram: for smallU the system is a paramagnetic mgRM),
H=—tz (CiT,ng,ng H-C-)—,U«E CiT,oCi,0+Uz ni N, which turns to a metal with incommensurate spiral spin-
<'¢Jr> e ' density wavgspiral metal, SMatU=U_.;=3.9%. Two suc-

(N cessive first-order transitions occur, further increasing the
wherec! (c; ) createddestroy$an electron with spir on coupling: atU=U,,=4.43 a semimetallic linear spin-
sitei, andn, U:Cifaci , is the number operatotis the hop- densny_ Wave(LSDW) is stabilized, and a first-order MIT to
ping amplitude)U is the Hubbard on-site repulsion, apds ~ @n antiferromagnetic insulatodAFMI) occurs atU=Ucs
the chemical potential. The hopping is restricted to nearest 2-27%. In the same work it was also argued that at finite
neighbors, and the indicésandj label the pointsR; andR; temperature the model should present a Mott transition be-
of a d-dimensional lattice. tween a paramagnetic metal and a paramagnetic insulator.

At half-filling (i.e., for a number of electrons equal to the ~ However, the above transitions only occur at relatively
number of sitel this model is known to undergo a MIT by large U/t and the HF approximation is unreliable in the
increasing the interaction strength. On ad-dimensional intermediate- and strong-coupling regimes, as it gives a lin-
cubic lattice the perfect nesting property of the Fermi surfacear dependence of the PM energy Bnand overestimates
makes the model unstable toward antiferromagnetism akhe tendency toward the AFMI, stable in the strong-coupling
soon as a nonzerd is turned on, driving the system to an limit. Conversely, the slave-bosaiSB) approach®!* leads
insulating state. In this paper we focus on a triangular latticéo a lower energy for finitéJ/t in the PM phase, reducing to
in d=2 as a prototype for a model where perfect nesting ishe HF limit for U/t—0, and correctly reproduces the GS
absent for the uncorrelated metaSince in theU/t—o energy proportional ta?/U in the limit U—c~. Therefore,
(Heisenbery limit the model is likely to display a Na-  we adopt the more appropriate SB approach as an interpolat-
ordered(insulating ground statdGS),%’ a MIT is expected ing scheme between thg/t=0 andU/t—« regimes. To
to occur for finiteU. allow for the presence of incommensurate spiral spin order-
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ing, we introduce the spin-rotational invariant formulation diagonalized by adopting the Bloch representation, and per-
of the Kotliar-Ruckenstein SB approathThe reader can forming a unitary transformation with respect to spin indices,
find further details in Ref. 15. yielding

On each site we introduce a set of four SB operators
€, S, S, ,» andd; to label empty €), singly (s), and 1
doubly (d) occupied sites, respectively. The spin projection Ek,izg[t(zé,T—i_zg,i)Te—i_ Aoi+Ao ]—n
s=1,| is measured with respect to a local quantization axis,

which is allowed to vary from site to site. The resulting SB 1
Hamiltonian is iE\/[t(zS’T—ZSJ)Te—F Noy— Ao, 12 +4t223, 22 T2,
H=—t2, [¢] 2 (R{R))s¢24Cjs+HC] where Te=—Z3cosQ-I/2)cosk-1), To=—3sin@Q-I/
(i 2)sink-1), and 1=(1,0),(1/2;+/3/2) are the nearest-

s,s’

neighbor displacements. The self-consistency equations are

~ ~ obtained by minimizing the free energy
_,(LIE CiT,gCi,g_’_Uzi d;rd|+z| )\i(eiTei-f—ddei
1S

F=Fo—T 2 log(l+e EralT),
k,a==*

+2 SiT,GSi,;_l +iz Ai,;(EiT,sEi,s_S;r,ssi,s_d;rdi)!
S S
@ where  Fo=N[Ud3+\o(e5+dj+s5,+s5, —1)—Ag;(d
+55,) = Ao, (di+s5)+un], Nis the number of sites, and

whereC; ; and c/_ are the pseudofermion operators, the" IS the electron density per site, and read
Lagrange multipliersy; and A; . enforce on each site the

: ; : i . aFy IE,
completeness constraint and the correct fermion counting re + 3 a
spectively, the operatdR; rotates the local reference frame oX  ka=x JIX
back to the laboratory frame, and the operator

f(Ek,a):Ov (5)

wheref(E)=[e®T+1] ! is the Fermi function and\ rep-

efs +sf d. resents generically one of the parame{@sand(4) and the
1 ~I,s 1,—s™I . .
z = two components of the pitch vect@. The chemical poten-
" Vi-did-sl s Vi-ele—s' s, tial 2 is fixed by the condition

reconstructs the hopping amplitude in the enlarged Fock

space, and yields the corredt—0 limiting behavior in the > f(Exa)=nN.

mean-field approximatiot:®* When the angle between two Ka=s

local quantization axes depends only on their relative posit, this paper we henceforth assume 1 (half-filling).

tion, up to a global phase factor one can aSS.UR“iERJ The self-consistency equatiorf) yield the same solu-
=exfiQ- (Ri—R;) /2], wherer, is the Pauli matrixan@  tjons found in the HF approximation, namely, a paramag-
is the(incommensuragemodulating wave vector In such @ netic metal, a metal with incommensurate spiral ordering, a
case a mean-field description with real site-independent eXmear spin-density wave and an antiferromagnetic insulator.

pectation values for the SB operators, As in the HF method, the PM-SM transition is continuous,
(h o o and the other two transitions are of first order, but all of them
(ei)=eq, (siy)=sos, (di”’)=do, 3 occurat larger coupling valuest;; =6.68&, U.,=6.84, and

U.3=7.68. The energy curves corresponding to the above
phases are reported in Fig. 1. Our results agree with Ref. 16
NY=No,  (A;)=Ao,, (4) z;s far as thg PM, AF_MI, and L$_DW phases are concemed,
ut we also find a region of stability for the SM phase, which
is possible. Equation€3) and (4) refer to the case in which was not detected in Ref. 16. These authors were indeed look-
the translational symmetry is not broken and the expectatioing for spiral phases starting from the strong-coupling side,
values of the bosons and of the Lagrange multipliers do noand following them to weaker coupling. On the other hand,
depend on the site. We have also studied configurations withur analysis shows that a spiral phase develops continuously
broken translational symmetry. In particular, we consideredrom the PM at intermediate coupling, and ends in a critical
solutions in which in the bosons have different values onpoint soon after the level crossing with the AFNHee the
each of the three sublattices, and analogous to the LSDWset in Fig. 3, and does not exist at strong coupling. There-
found within the HF approximatiot?. The latter solutions fore, our SM phase is the generalization of the corresponding
can be found considering a four-site unit cell. A similar SB phase found within the HF approximatiéhand it is unre-
calculation was performed in Ref. 16, where, however, thdated to the high-energy SM phases of Ref. 16. However, the
generalization of the SM phase found in the HF approxima+tegion of existence of the SM is narrower within the SB
tion was never recovered as an energy minimum. In the caseethod as compared to the HF method, and the magnetiza-
of spiral spin ordering, Hamiltoniat2) can be analytically tion m= %(nT—nl) is always less than 0.1, and stays smaller

and for the Lagrange multipliers,
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U and theU=10Q (full dots) GS's, for N=12. In the inset the GS

energy per site in thke=(0,0) (solid line) andk= (2#/3,0) (dashed

FIG. 1. U dependence of the ground-state energy per site. SBine) subspaces is plotted .
results: PM(solid line), SM (dotted ling, LSDW (dot-dashed ling
and AFMI (dashed ling Open dots are the exact diagonalization U.,/t andU.3/t found above. The system is therefore not
results for theN=12 cluster. even close to the Brinkman-Rice transition when a MIT oc-
curs.

In order to understand to what extent the picture we found
within the mean-field SB theory survives in an exact treat-
ment of the model, we performed an exact diagonalization of
. ’ . small clusters by means of the standard Lanczos algorithm.
nesting models, Wher_e_ the presence of fre_e %rg(dep'”@ The largest lattice compatible with all the symmetries of the
IS a hecessary condition f_or spiral orde_rﬁ?d,* here _the model that can be handled with exact diagonalization is a
spiral phase exists at half-filling, as previously shown in Ref.\ — 15 sjte clustef. It is clear that, despite the exact deter-
11_, within the HF approximation. Despite the ove_rall quali- mination of the GS energy and wave function, the exact di-
tative agreement between the HF and SB phase diagrams, thgonalization results suffer from finite-size effects, and that
main outcome of a comparison between them is that tho reliable size scaling is possible for the present problem.
stability of the SM phase is strongly reduced. Furthermorewye point out, however, that the AFMI has a wide gap in the
the SM is hardly distinguishable from the PM in its whole single-particle spectrum, and is well described by small clus-
region of stability. It is therefore reasonable to expect thaters. This is not the case for the incommensurate phases
the inclusion of quantum fluctuations washes out thesgound above within the SB approach. Therefore we expect
phases which are characterized by small order parametetisat exact diagonalization should characterize properly the
and are very close in energy both to the PM and the AFMIMott transition toward the AFMI, while it could miss the
(see the inset in Fig.)10n the other hand, the PM phase atappearance of the SM and the LSDW. Finite-size calcula-
small U/t reduces asymptotically to the exact solution, andtions are reliable only if the number of electrons corresponds
should be slightly affected at larger values. The AFMI phasd0 a closed-shell configuration. Since 12 electrons on 12 sites
at largeU/t is robust, and the only effect of quantum fluc- areé not a closed-shell configuration for periodic or antiperi-
tuations is expected to be a reduction of the sublattice magRdic boundary conditions, we always used twisted boundary
netization with respect to saturatiofef. the case of the conditions with a suitable phase such that the half-filled sys-

Heisenberg modd). This leaves the way open for a direct tem is in a closed-shell configuration. This is important in
Mott transition between the PM and the AEMI order to perform a reasonable investigation of the conduction
Despite the strong frustration of the antiferromagneticprOpert'eS of a finite-size system. It turns out that the bound-

(AFM) order on the triangular lattic®’ both the HF and SB &Y conditions that_m|n|m|ze the energy in a closed-shell
o . i : configuration forU=0 leave the system in a closed-shell
approaches indicate no paramagnetic Mott insulating phasé

in the zero-temperature phase diagram of the half-filled Hub%oinr??:Li';atllon.rateaéljé;meazr;s gr]%/elr?t S:/C:t)r\:v ?hgsn? egjr?-?it Ie?g g;
.bar.d model. In particular, W'th'.n the SB apprqach, We Calfegyits is good, the largest deviationsZ0%) being, as ex-
indicate how far the system is from the Brlnkman—Rlcepected at intermediate coupling/{t~7).

trans.iti.o.r? to a paramagnetic Mott insulator. In fact, if the = 14 check the occurrence of a discontinuous phase transi-
possibility for magnetic ordering is neglected, the paramaggjon we evaluated the overlap between the GS wave function
netic metallic phase undergoes a Brinkman-Rice transitiog the two limiting cases & =0, and for largdJ (namely,
with vanishing double occupancy and an effective hoppinguzloq). As shown in Fig. 2, on the large- side of the
amplit.ude, for a critical ValuéatT=0) of the Hubbard in- diagram the GS has a |arge over|ap to the AFM strong-
teraction Ugg=32N 'S0 (2te+u) [ex=—Te(Q  coupling state, and a vanishing overlap with the noninteract-
=0),u/t=—0.835,2* i.e., Ugr/t=15.8 on the triangular ing metallic one. On the metallic side the overlap with the
lattice. As we see, this value is much larger thag, /t, noninteracting state is always finite, but it is a decreasing

than the HF value £0.4). Therefore the jump of the mag-
netization at the SM-AFMI transition is substantially larger
than in the HF approximation. We point out that, contrary to

085104-3



CAPONE, CAPRIOTTI, BECCA, AND CAPRARA PHYSICAL REVIEW B3 085104

1

0.8

0.6

S(q)

0.4

0.2

—
=
~
—

FIG. 3. Spin structure factds(q): U=2t (dotted ling, U =8t FIG. 4. Exact calculation of the Drude weight as a functiotof
(dashed ling U=11.5 (dot-short-dashed ling U=12.8 (dot- {5 the N=12 cluster.

long-dashed ling andU =40t (solid line).
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function of U; in this regime the GS has a vanishing overlapwr:]e:iM:X fi'{/‘\’/i'tlﬁ‘(ci""%\j"l" e: c), and|¢y) is the eigen
with the AFM state. We therefore have clear evidence of Ju '?ho | ct)t tige h‘.”lﬁ e ted in Fig. 4. is a direct
strongly correlated metal with a decreasing coherent part. In € latter quantity, which 1S reported in Fg. 4, 1S a direct
particular the sharp change of the GS wave function af€@sure of the metallic character of the state, and the MIT is
Uyir=12.0% is due to a level crossing occurring between Signaled by the vanishing @,.>° For a finite systemb,
metallic and antiferromagnetic solutions, as shown in the indoes not vanish for any value of. ForU<Uyr, D,y is a
set of Fig. 2. These results, however, do not rule out thélecreasing function of the interaction, which resembles the
possibility of a continuous transition within the metallic Overlap in Fig. 2. An abrupt change takes place at the level-
phase, i.e. the PM-SM transition found with SB. crossing point, and foJ>U),r it becomes negative, a

In Fig. 3 we show the spin structure fact@(q) common phenomenon in the insulating phase of a small-size

1

=3, ;S/Sfexdq- (Ri—R;)J/N for different values ol. The systent. , L o
results do not suggest any intermediate state between a me- AII.the results of exact d|agonal|zat'|on point in Fhef same
tallic state without magnetic order and the AFM insulator, asdiréction: the metal-AFMI level crossing found within the
S(q) abruptly changes from a structureless behavior to arpS Mmean-field approach is shifted to larger values/oThe
AFM pattern peaked at the classical ordering wave vector‘,“eta”'C solution exhibits a continuous loss of metallicity
i.e., Qu=(4m/3,0). Although we suspect that the intermedi- With mcreas_lng.J. The Drude Wellg.ht is flmte up to the MIT
ate phases are artifacts of the mean-field approach, the weaR? the 12-site lattice, although it is quite small (4% of the
ness and the strong size dependence of the spiral phases sfgninteracting value We remark that, due to finite-size ef-
gested by the SB results may make them unaccessible on of@cts, we cannot exclude the possibility tHag, vanishes
12-site lattice. before the transition to the AFMI is reached. In such a case,

Using the Lanczos algorithm we have also calculated th&1€re would be a region of parameters in which the paramag-

finite-frequency optical conductivity-(w) and the Drude neti_c in§ulatpr exist, though the SB results point in the op-
weight, measuring the electronic mobility. The real part ofPOSite direction. .
the xx component of the conductivity tensor for a tight- !N conclusion, using the slave-boson technique and the

terms of the Kubo formufd temperature phase diagram of the half-filled Hubbard model

on a two dimensional triangular lattice. The mean-field SB
approach displays a rich phase diagram which qualitatively
¢>0>, resembles the one from HF calculations, but, on the other
hand, drastically reduces the stability of the spiral metal and
of the linear spin-density-wave states. That is, the weak-
coupling paramagnetic metal continuously evolves into a spi-
ral metal atU=U_,=6.68&, which crosses the linearly po-
larized spin-density-wave ground state @& U.,=6.84.
The latter phase undergoes a further first-order transition to-
ward an antiferromagnetic insulator ait=U_ ;=7.68&.
All these transitions occur for coupling constants substan-
a2 ol d] o) 2 tially smaller than the critical value for the Brinkman-Rice
D :__<Ht>_2 0l xI ¥n ' 7) transmqn to a pa_ramagnetlc msulatoUE(R: 15.8). The”
> 2 ¥ 470 E,—Eg exact-diagonalization results present a first-order transition

O @) =Dy d(w) + Im< I e o g Eie

(6)

WhereJx=Ei,,ﬂlx(cfygcmyg—H.c.) is thex component of
the current operator, anlj, are thex components of the
nearest-neighbor displacement vectbdefined above. The
coefficient of the zero-frequency delta function contribution
D,, the Drude weight, is given by thesumrulé®
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