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Crossed sliding Luttinger liquid phase
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We study a system of crossed spin-gapped and gapless Luttinger liquids. We establish the existence of a
stable non-Fermi-liquid state with a finite-temperature, long-wavelength, isotropic electric conductivity that
diverges as a power law in temperatreas T—0. This two-dimensional system has many properties char-
acteristic of a true isotropic Luttinger liquid, though at zero temperature it becomes anisotropic. This model can
easily be extended to three dimensions.
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For over two decades a central theme in the study oftructures constructed from quantum wires such as carbon
correlated electronic systems has been the drive to undenanotubes. Extension of the model to a three-dimensional
stand and classify electronic states that do not conform tstack may be relevant to the stripe phases of the cuprates.
Landau’'s Fermi-liquid theory. A clear example of such Based on neutron and x-ray scattering measurements, it has
“non-Fermi liquid” physics occurs in one dimensigiD),!  been suggested that spin-charge stripes in the adjacent CuO
where arbitrarily weak interactions destroy the Fermi surfacélane are orthogonal to each otfér.
and invalidate the notion of independent quasiparticles at The Lagrangian density describing the low-energy behav-
low energy. Away from charge-density-wave instabilities, ior of @ one-dimensional Luttinger liquid is
the interacting 1D electron gas forms a Luttinger liquid in
which the discontinuity in occupation at the Fermi energy of
a normal Fermi liquid is replaced by a power-law singularity,

and the low-lying excitations are bosonic collective modes in . _ .
which spin and charge decouple. where¢ is a bosonic fieltf andx and the sound velocity,,

Following the discovery of high-temperature supercon-2€ nongniversgl functions of the coupl_ing constants. For re-
ductivity, Anderson suggested that the unusual normal-staUlSive interactionsg>1. The Lagrangian density in terms
properties of the cuprates were the result of similar non®f the dual phase variablehas the same form as Eq), but
Fermi-liquid physics in two dimensiorfsdowever, the study With v replaced by /. For spin-1/2 fermions, the spin ex-
of non-Fermi liquids in higher dimensions has proven to becitations could either be gapped or gapless. In the spin-gap,
quite difficult. Since the Fermi liquid is stable for weak in- Luther-Emery regime, the system can be described by a
teractions, perturbative methods faiMoreover, generaliza- Single Luttinger liquid for charge. In the gapless case, both
tions of the bosonization technique to isotropic systems iFPin and charge are dynamical degrees of freedom, and there
higher dimensions have indicated that Fermi-liquid theory2r® two Luttinger parametersc{, «s), and two velocities
survives provided the interactions are not pathologically Iong(Uc V) . i )
ranged® An alternative approach has been to study aniso- NOW consider a two-dimensional array of parallel quan-
tropic systems consisting of arrays of parallel weaklytum wires. To begin with, we consider tlspin gappectase,
coupled 1D wireS.It has recently been propodethat fora SO that the spin quctqaﬂons on each wire are effecuvely fro-
range of interwire charge and current interactions, there is 48N Out at low energies. It has been suggested that this case
smectic-metalSM) phase in which Josephson, charge- andMight describe the stripe phases of high-temperature
spin-density-wave, and single-particle couplings are irreI—SUperCO”dUCtO@ In general, we expect a generalized
evant. This phase is an anistropic sliding Luttinger-liquidCu"e”t'cu”em mteractlon_between_ the wires, which can be
phase whose transport properties exhibit power-law singu‘ePresented by a Lagrangian density of the form
larities like those of a 1D Luttinger liquid. It is the quantum 1
%nua::ngsf(t)r,\a;llndé?gl.ggases of coupled classi# models ﬁint=§ n; LonG WL (=] (x 1), ()

We consider a square network of 1D wires formed by . e .
coupling two perpendicular smectic mefland show that it ~ WNerei u.n=Lpn(X,7),Jn(X,7)] with py=dybn(x,7) the den-
exhibits a newcrossed sliding Luttinger LiquidCSLL) Sty @ndJ,=d.¢n(x,7) the current on thenth wire. This
phase. We establish a range of couplings for which both thigtéraction is marginal and should be included in the fixed-
phase and the anisotropic two-dimensional smectic-metaﬁ_o'”t action. It is invariant under’the shd_mg transforma-
phase from which it is constructed are stable with respect t§0NS ¢n— ¢n+ @ and 6,— 6,+ e . Equations(1) and (2)

a large class of operators. At finite temperatliréhe CSLL ~ define the fixed-point action of the smectic-metal pifase,
phase is an isotropic 2D Luttinger liquid with an isotropic Which can be written in Fourier space as
long-wavelength conductivity that diverges as a power-law

. o . . 1
in TasT—0. At T=0, it is essentially two independent s=> 1w 24w 2 2 3
smectic metals. This model could be realized in manmade % 2{ o) 1(qi)q“}|¢(Q)| ' @

1
Lo=5 kv H2.0)2+0(0x$)?], M
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where Q=(w,q,q,), with g, the momentum along the 2
chain andq, perpendicular to the chains.

We can study perturbatively the relevance of various op-
erators to ascertain the stability of the smectic-me&iV)
phase. Due to the spin gap, single-particle hopping between B
chains is irrelevant, and the only interchain interactions in-
volving only pairs of chains that could become relevant are

the JosephsofSC) and CDW couplings, whose respective 1
Hamiltonian densities are

Hsc,nzzi TnCO§\2m(6,— 6,4 )],

e

l
!

Heown= 2 Vo Co$2m( i~ ¢in)], @

0.25
where 7, are the interchain Josephson couplings &hdhe
interchain particle-holéCDW) interactions. The scaling di-
mensions ofHsc, andHcepw , are, respectively,

= dq,
Asc,n:f ﬁ(l—cosnm)x(ql),

—ar

0.5

ky/m

0.75

FIG. 1. Plot of B=K¢pw/Ksc as a function ofky /7. For 8
>1 there exists a region df over which the non-Fermi-liquid
phase is stable to all pairwise interactions.

passing through the SM phase(q,) reaches a minimum,

k(kg)=AK at someq, =k,. The SM phase is stabilized at

7 dqg, (1—cosnq,)
ACDW,n:f ey

small A, that is, when the system is close to a CDW insta-

_ 27 W (5 bility in which there is a periodic modulation of charge on
different wires. Settingh=10"°, we plot3 as a function of
where «(q,)=+VWy(q,)W,(q,). For the smectic-metal k,. We note that there are regions of stability of the smectic
phase to be stable, these perturbations should be irrelevampihase with respect ti(sc andHpy, for positive as well as

which implies negative values ok,. (See Fig. 1

We consider next a square grid of wires, again for the
Acown>2, Ascp>2 (6) spin-gapped case. There are two arrays of quantum wires, the

for all n andn’. In addition to the pairwise operators of Eq. X andY arrays running, respectively, parallel to thandy

(4), there are multiwire operators of the form(;DW,{(,n}
=3,T(on)co§V2m(Znhon6; +n)] Where theo, s are integers

directions. Each wire now sees a periodic one-electron po-
tential from the array of wires crossing it that leads to a new
band structure with new band gaps. We assume that the

satisfying =0, =0. The overall strengths of these interac- poymi qurface is between gaps so that the wires would be
tions measured byi(c,) are much smaller than those of .o ctors in the absence of further interactions. By remov-
Hcow,n, and they become important only at very small tem-j, gegrees of freedom with wavelengths smaller than the
peratures even if they are relevant. We will therefore ignorg, e rse wire separation, we obtain an effective theory whose
them in this article, delaying a more complete study of theiftq s identical to the theory before the periodic potential

effects to a future publication.

was introduced. Thus, in the absence of two-particle interac-

To explore the regions of stability of the SM phase, Weyjqns hetween crossed arrays, the system could be in a phase

follow Refs. 7 and 9 and take

k(g )=K[1+\;codq,)+\,co82q,)]. @) states.

consisting of two crossed, noninteracting smectic-metal

We will now demonstrate that the sliding phase in a

We defineAgc,=a,K and Acpw,=b,/K, wherea;=(1  crossed grid is stable if the sliding phase in the component
—N\1/2), a,=(1—\,/2) anda,=1 for n#1,2. The SM planar arrays is stable. In addition to the interwire couplings
phase becomes unstable to interchain Josephson couplingéhin each array, we need to consider Coulomb interactions
for K less thanK sc=max,(2/a,) and unstable to interchain between wires on th¥ array and wires on th¥ array. These

CDW interactions forK greater thanKcpy=min,(b/2). interarray couplings are marginal and should be included in
Thus the smectic metal phase is stable with respect to paithe fixed point. They do not, however, change the dimen-
wise interactions over a window #f, Ks<K<Kcpy, pro-  sions of the operators, except by renormalizi{g|, ). For a

vided stable sliding phase, additional interactions between the two
arrays, such as the Josephson and CDW couplings, have to
_ Kepw  anbp be irrelevant. We will show that it is possible to turéq, )
= K == " m&n> 1. ®  such that this is i_ndeed t_he case. _
S The Coulomb interactions between electrons on intersect-

If B<1, the system goes directly from a 2D superconductingng wires gives rise to a term in the Hamiltonian of the form
(SO phase to a CDW crystal akK is increased, without V¢ (X,¥)pxm(X)pyn(y), Where py m(X)[pym(y)] is the
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electron density on theth wire on theX(Y) array at posi-
tion x(y). We expectVy, ,(x,y) to have the formV°(x
—na,y—ma), where a is the distance between parallel
wires. If all parameters for th¥ andY arrays are the same,
the crossed-grid action as a functional of #hend ¢ vari-
ables can be written as

dwdq,dqy

%f (2m)°

+V4(0,) a7l bl 2+ V(a0 05| by |2
+Vc(qx !qy)qqu{ ¢x¢; +c.ci—iwgy 9: ¢yt+c.cl
—i0q,{6y ¢y +c.cl] 9

with obvious definitions forg,= ¢,(w,0qy,dy), ¢y, 05, and
6y . It should be noted that this is an effective theory with
—mla<qy,qy<m/a. Integrating out thep variables, we are
left with an effective action

[VO(ay)az] 0417+ V7(ax) a5 6y)2

_1(dedgdg,[ 1 5 2)
s=3) @m? Kx<q>(vx(‘”qx )18

b oy 2)|o|2

() | DTy 10

VR(0) w?{ 6,65 +c.c}|, (10
where

R ~ N%ay)¥(a)

=N Vaovia,) YT N VA,
with  y(a)=V%(q)V?(a,) - (V(q))®>, and  «y(q)
= kx(PK); Uy(q):Ux(Pq) where Pq:P(QXaqy)

=(gy,0y). Correlation functions fop, and ¢, can be calcu-
lated directly from Eq(10). 6,-6, cross correlations are non-
singular, whereadi,- 0, and 6,-6, correlations have singular

parts with exactly the same functional forms as they have i

the absence of coupling between layers, but with #iig)

function in expressions for the scaling exponents replaced b§0€S as “ with a, =

x(9;)=rx(09,)=x,(q,,0). 13

Thus, other than renormalizing(q), the coupIingVﬁLn be-
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FIG. 2. A schematic depiction of the 2D non-Fermi liquid as a
resistor network, with two parallel arrays of wire running along the
x andy axes, with nodes in the direction

HEe=T"Y co§ V27 (6, m(na)— 6, n(Mma))]

HEow= VXY cog V27 (¢, m(na) — by n(ma))].

The dimensions of these operators are, respectively,

(12

_ (™ dqg _
Ascp= o ZK(Q)—K,

= dg 1 1 1
ACDW,OCEJ Py (13

27 k(q) K \/_

where we assume tha{q) has the form given by Ed7), A
is defined as before, ar@= «"(ky)/2K. If « is chosen such
that Eq.(7) is satisfied for each array, théiiss and Hgpy
are automatically irrelevant. We do not need any further fine
tuning of k to get this 2D sliding Luttinger liquid phase, and
there is a stable CSLL phase.

We now investigate the transport properties of the CSLL
phase. The conductivities of an array of parallel wires has
been considered by Emeet al® In the presence of impuri-

fies, the resistivity along the wiregy, vanishes ag®l,*

with @j=Acpw,.—2. The perpendicular conductivityy, ,
2A5c— 3, whereA g¢is the minimum
0f AgciandAgc,. The conductances., arising from the
Josephson coupling at the contact between the crossed wires
satisfieso.~T%, wherea,=2Agc..— 3.
Thus we can model our 2D non-Fermi liquid as the resis-

tween the two arrays leaves the dimensions of all operator®r network depicted in Fig. 2 with nodes at the vertical

unchangedEquations(10) and (11) define a 2D non-Fermi
liquid with scaling properties to be discussed below.

First, however, we must verify that it is possible to choosewith conductancesr=p; *

Josephson junctions between the arrays,@t The nodes of
the X(Y) array are connected by nearest neighbor resistors
if they are parallel to the(y)

potentials so that this 2D non-Fermi liquid is stable with axis ando, if they are perpendicular to theaxis(y axis).

respect to perturbations All pairwise couplings within aNearest-neighbor nodes of tikeandY arrays are connected
given array, i.e.Hac,, Hepwn» Hécn andHepw , defined by resistors of conductance, . In the continuum limit, the
as obvious generalizations of E@), can be rendered irrel- 2D current densities in the plane of thegrids (@=X,Y) is
evant by choosing«(q,) as in the case of an individual J{*=oj{E; where af}zauexieijraLeyieyj and ai\;
array. We must also consider Josephson and CDW couplings o, €,;e,;+ o|€y;e,; andE is the in-plane electric field. The
between the two arrays, which operate at the points of crossurrent per unit area passing between the planed,is

ing (x,y)=(na,ma) of wire min the X array and wiren of
the Y array and, respectively, take the form

=(o./a?%)(V*-VY) whereV is the local voltage. In this
limit, the local voltages satisfy
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o of the wires. Thus the conductivity along the planes is much
— ol iV + —;(VX—VY)zTX larger than the perpendicular conductivity.

a The extension of the above analysis to a system of
coupled Luttinger liquids where both charge and spin exci-
tations aregaplessis straightforward. On each wire, there is
a Luttinger liquid for charge and for spin. To maintain gap-
less Luttinger liquids and S@) symmetry, we require that
the spin degrees on each wire be represented by a Lagrangian
of the form Eq.(2) with k=1 and that at the fixed point
there be no spin coupling between the wires. The fixed point
for the charge degrees of freedom has the same form as for

\]iEJiXJr\]iY:(Ui)]?Jrgi\J()Ej:(g”Jrgl)Ei ) (15  the gapped case. However, now, s.ingle—particle tunneling as
. o well as Josephson and CDW couplings may be relevant. The
Thus under a uniform electric field, the double layer behaveﬁf1ase diagram is quite complicated and will be discussed in
like an isotropic 2D material with in-plane conductivity 3 fytyre publication. Therés, however, a small but finite
=0+, =0|, or equivalently with an isotropic resistivity oqion of phase space where the sliding phase is stable.
that vanishes ag~T. If currents are spatlal_ly_nonunl- In conclusion, we have demonstrated the existence of a
form, as they are, for example, when current is inserted Aon-Fermi metallic phase in two dimensions that maintains
one point a|_1d extrapted frpm another, there is a Crossoveinn—charge separation and is stable to all pairwise potentials.
from isotropic to anisotropic behavior at Ie-ngth scales Iesg-hiS is a remarkable phase, which could be identified as a
than I=a\(oj+0,)/oc~T (172 that diverges asT 4 gimensional Luttinger liquid. We delay to a future pub-

—0. . ) _ lication the investigation of the stability of this phase with
This two-layer CSLL model can, quite simply, be ex- respect to all multiwire interactions.

tended to three dimensions by stacking alternate arrays in the

third direction. It is still possible, although more difficult, for ~ We would like to thank S. A. Kivelson and E. Fradkin for
a stable CSLL phase to exist. This phase is characterized hyseful discussions. R.M. and T.C.L. acknowledge support
an isotropic in-plane conductivity~T~“l and a conduc- from the National Science Foundation under Grant No.
tivity o./a~T% in the direction perpendicular to the planes DMR97-30405.

g
—agaiaij—a—;(vX—vYFTY, (14)

where 7% and 7Y are current densitiegcurrent/aren in-
jected, respectively, into thé andY grids. If no currents are
injected, then this equation is solved Wf=VY=—E-x to
produce a total in-planar curent density
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