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Crossed sliding Luttinger liquid phase
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We study a system of crossed spin-gapped and gapless Luttinger liquids. We establish the existence of a
stable non-Fermi-liquid state with a finite-temperature, long-wavelength, isotropic electric conductivity that
diverges as a power law in temperatureT asT→0. This two-dimensional system has many properties char-
acteristic of a true isotropic Luttinger liquid, though at zero temperature it becomes anisotropic. This model can
easily be extended to three dimensions.
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For over two decades a central theme in the study
correlated electronic systems has been the drive to un
stand and classify electronic states that do not conform
Landau’s Fermi-liquid theory. A clear example of su
‘‘non-Fermi liquid’’ physics occurs in one dimension~1D!,1

where arbitrarily weak interactions destroy the Fermi surf
and invalidate the notion of independent quasiparticles
low energy. Away from charge-density-wave instabilitie
the interacting 1D electron gas forms a Luttinger liquid
which the discontinuity in occupation at the Fermi energy
a normal Fermi liquid is replaced by a power-law singulari
and the low-lying excitations are bosonic collective modes
which spin and charge decouple.

Following the discovery of high-temperature superco
ductivity, Anderson suggested that the unusual normal-s
properties of the cuprates were the result of similar n
Fermi-liquid physics in two dimensions.2 However, the study
of non-Fermi liquids in higher dimensions has proven to
quite difficult. Since the Fermi liquid is stable for weak in
teractions, perturbative methods fail.3 Moreover, generaliza-
tions of the bosonization technique to isotropic systems
higher dimensions have indicated that Fermi-liquid the
survives provided the interactions are not pathologically lo
ranged.4 An alternative approach has been to study ani
tropic systems consisting of arrays of parallel wea
coupled 1D wires.5 It has recently been proposed6,7 that for a
range of interwire charge and current interactions, there
smectic-metal~SM! phase in which Josephson, charge- a
spin-density-wave, and single-particle couplings are irr
evant. This phase is an anistropic sliding Luttinger-liqu
phase whose transport properties exhibit power-law sin
larities like those of a 1D Luttinger liquid. It is the quantu
analog of the sliding phases of coupled classicalXY models
found by O’Hernet al.8,9

We consider a square network of 1D wires formed
coupling two perpendicular smectic metals10 and show that it
exhibits a newcrossed sliding Luttinger Liquid~CSLL!
phase. We establish a range of couplings for which both
phase and the anisotropic two-dimensional smectic-m
phase from which it is constructed are stable with respec
a large class of operators. At finite temperatureT, the CSLL
phase is an isotropic 2D Luttinger liquid with an isotrop
long-wavelength conductivity that diverges as a power-l
in T as T→0. At T50, it is essentially two independen
smectic metals. This model could be realized in manm
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structures constructed from quantum wires such as car
nanotubes. Extension of the model to a three-dimensio
stack may be relevant to the stripe phases of the cupra
Based on neutron and x-ray scattering measurements, it
been suggested that spin-charge stripes in the adjacent C2
plane are orthogonal to each other.11

The Lagrangian density describing the low-energy beh
ior of a one-dimensional Luttinger liquid is

L05
1

2
k@v21~]tf!21v~]xf!2#, ~1!

wheref is a bosonic field12 andk and the sound velocity,v,
are nonuniversal functions of the coupling constants. For
pulsive interactions,k.1. The Lagrangian density in term
of the dual phase variableu has the same form as Eq.~1!, but
with v replaced by 1/v. For spin-1/2 fermions, the spin ex
citations could either be gapped or gapless. In the spin-g
Luther-Emery regime, the system can be described b
single Luttinger liquid for charge. In the gapless case, b
spin and charge are dynamical degrees of freedom, and t
are two Luttinger parameters (kc ,ks), and two velocities
(vc ,vs).

Now consider a two-dimensional array of parallel qua
tum wires. To begin with, we consider thespin gappedcase,
so that the spin fluctuations on each wire are effectively f
zen out at low energies. It has been suggested that this
might describe the stripe phases of high-temperat
superconductors.13 In general, we expect a generalize
current-current interaction between the wires, which can
represented by a Lagrangian density of the form

Lint5
1

2 (
n,n8,m

j m,n~x,t!W̃m~n2n8! j m,n8~x,t!, ~2!

wherej m,n5@rn(x,t),Jn(x,t)# with rn5]xfn(x,t) the den-
sity and Jn5]tfn(x,t) the current on thenth wire. This
interaction is marginal and should be included in the fixe
point action. It is invariant under the ‘‘sliding’’ transforma
tions fn→fn1an andun→un1an8 . Equations~1! and ~2!
define the fixed-point action of the smectic-metal phas6

which can be written in Fourier space as

S5(
Q

1

2
$W0~q'!v21W1~q'!qi

2%uf~Q!u2, ~3!
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where Q5(v,qi ,q'), with qi the momentum along the
chain andq' perpendicular to the chains.

We can study perturbatively the relevance of various
erators to ascertain the stability of the smectic-metal~SM!
phase. Due to the spin gap, single-particle hopping betw
chains is irrelevant, and the only interchain interactions
volving only pairs of chains that could become relevant
the Josephson~SC! and CDW couplings, whose respectiv
Hamiltonian densities are

HSC,n5(
i

Jn cos@A2p~u i2u i 1n!#,

HCDW,n5(
i

Vn cos@A2p~f i2f i 1n!#, ~4!

whereJn are the interchain Josephson couplings andVn the
interchain particle-hole~CDW! interactions. The scaling di
mensions ofHSC,n andHCDW,n are, respectively,

DSC,n5E
2p

p dq'

2p
~12cosnq'!k~q'!,

DCDW,n5E
2p

p dq'

2p

~12cosnq'!

k~q'!
, ~5!

where k(q')5AW0(q')W1(q'). For the smectic-meta
phase to be stable, these perturbations should be irrele
which implies

DCDW,n.2, DSC,n8.2 ~6!

for all n andn8. In addition to the pairwise operators of E
~4!, there are multiwire operators of the formHCDW,$sn%

5( iT(sn)cos@A2p((nsnu i 1n)# where thesn8s are integers
satisfying (sn50. The overall strengths of these intera
tions measured byT(sn) are much smaller than those o
HCDW,n , and they become important only at very small te
peratures even if they are relevant. We will therefore ign
them in this article, delaying a more complete study of th
effects to a future publication.

To explore the regions of stability of the SM phase, w
follow Refs. 7 and 9 and take

k~q'!5K@11l1 cos~q'!1l2 cos~2q'!#. ~7!

We defineDSC,n5anK and DCDW,n5bn /K, wherea15(1
2l1/2), a25(12l2/2) and an51 for nÞ1,2. The SM
phase becomes unstable to interchain Josephson coup
for K less thanKSC5maxn(2/an) and unstable to interchai
CDW interactions forK greater thanKCDW5minn(bn/2).
Thus the smectic metal phase is stable with respect to p
wise interactions over a window ofK, KSC,K,KCDW, pro-
vided

b[
KCDW

KSC
5

anbm

4 U
min.wrt.m&n

.1. ~8!

If b,1, the system goes directly from a 2D superconduct
~SC! phase to a CDW crystal asK is increased, without
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passing through the SM phase.k(q') reaches a minimum
k(k0)[DK at someq'5k0. The SM phase is stabilized a
small D, that is, when the system is close to a CDW ins
bility in which there is a periodic modulation of charge o
different wires. SettingD51025, we plotb as a function of
k0. We note that there are regions of stability of the smec
phase with respect toHSC andHCDW, for positive as well as
negative values ofl1. ~See Fig. 1!.

We consider next a square grid of wires, again for t
spin-gapped case. There are two arrays of quantum wires
X andY arrays running, respectively, parallel to thex andy
directions. Each wire now sees a periodic one-electron
tential from the array of wires crossing it that leads to a n
band structure with new band gaps. We assume that
Fermi surface is between gaps so that the wires would
conductors in the absence of further interactions. By rem
ing degrees of freedom with wavelengths smaller than
inverse wire separation, we obtain an effective theory wh
form is identical to the theory before the periodic potent
was introduced. Thus, in the absence of two-particle inter
tions between crossed arrays, the system could be in a p
consisting of two crossed, noninteracting smectic-me
states.

We will now demonstrate that the sliding phase in
crossed grid is stable if the sliding phase in the compon
planar arrays is stable. In addition to the interwire couplin
within each array, we need to consider Coulomb interacti
between wires on theX array and wires on theY array. These
interarray couplings are marginal and should be included
the fixed point. They do not, however, change the dim
sions of the operators, except by renormalizingk(q'). For a
stable sliding phase, additional interactions between the
arrays, such as the Josephson and CDW couplings, hav
be irrelevant. We will show that it is possible to tunek(q')
such that this is indeed the case.

The Coulomb interactions between electrons on inters
ing wires gives rise to a term in the Hamiltonian of the for
Vm,n

c (x,y)rx,m(x)ry,n(y), where rx,m(x)@ry,m(y)# is the

FIG. 1. Plot of b[KCDW /KSC as a function ofk0 /p. For b
.1 there exists a region ofK over which the non-Fermi-liquid
phase is stable to all pairwise interactions.
3-2
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electron density on themth wire on theX(Y) array at posi-
tion x(y). We expectVm,n

c (x,y) to have the formVc(x
2na,y2ma), where a is the distance between parall
wires. If all parameters for theX andY arrays are the same
the crossed-grid action as a functional of theu andf vari-
ables can be written as

S5
1

2E dvdqxdqy

~2p!3 @Vu~qy!qx
2uuxu21Vu~qx!qy

2uuyu2

1Vf~qy!qx
2ufxu21Vf~qx!qy

2ufyu2

1VC~qx ,qy!qxqy$fxfy* 1c.c.%2 ivqx$ux* fx1c.c.%

2 ivqy$uy* fy1c.c.%# ~9!

with obvious definitions forfx5fx(v,qx ,qy),fy ,ux , and
uy . It should be noted that this is an effective theory wit
2p/a,qx ,qy,p/a. Integrating out thef variables, we are
left with an effective action

Su5
1

2E dvdqxdqy

~2p!3 F 1

kx~q! S vx~q!qx
21

v2

vx~q! D uuxu2

1
1

ky~q! S vy~q!qy
21

v2

vy~q! D uuyu2

1VR
c ~q!v2$uxuy* 1c.c.%G , ~10!

where

kx~q!5A g~q!

Vf~qx!V
u~qy!

, vx~q!5AVu~qy!g~q!

Vf~qx!

with g(q)5Vf(qx)V
f(qy)2„Vc(q)…2, and ky(q)

5kx(PK ); vy(q)5vx(Pq) where Pq5P(qx ,qy)
5(qy ,qx). Correlation functions forux anduy can be calcu-
lated directly from Eq.~10!. ux-uy cross correlations are non
singular, whereas,ux-ux anduy-uy correlations have singula
parts with exactly the same functional forms as they have
the absence of coupling between layers, but with thek(q)
function in expressions for the scaling exponents replaced

k~q'!5kx~0,q'!5ky~q',0!. ~11!

Thus, other than renormalizingk(q), the couplingVm,n
c be-

tween the two arrays leaves the dimensions of all opera
unchanged. Equations~10! and ~11! define a 2D non-Ferm
liquid with scaling properties to be discussed below.

First, however, we must verify that it is possible to choo
potentials so that this 2D non-Fermi liquid is stable w
respect to perturbations. All pairwise couplings within
given array, i.e.,HSC,n

X , HCDW,n
X , HSC,n

Y andHCDW,n
Y defined

as obvious generalizations of Eq.~4!, can be rendered irrel
evant by choosingk(q') as in the case of an individua
array. We must also consider Josephson and CDW coupl
between the two arrays, which operate at the points of cr
ing (x,y)5(na,ma) of wire m in the X array and wiren of
the Y array and, respectively, take the form
08110
in

y
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e
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HSC
XY5J XY cos@A2p„ux,m~na!2uy,n~ma!…#

HCDW
XY 5V XY cos@A2p„fx,m~na!2fy,n~ma!…#. ~12!

The dimensions of these operators are, respectively,

DSC,̀ [E
2p

p dq

2p
k~q!5K,

DCDW,`[E
2p

p dq

2p

1

k~q!
.

1

K

1

ACD
, ~13!

where we assume thatk(q) has the form given by Eq.~7!, D
is defined as before, andC[k9(k0)/2K. If k is chosen such
that Eq.~7! is satisfied for each array, thenHSC

XY andHCDW
XY

are automatically irrelevant. We do not need any further fi
tuning ofk to get this 2D sliding Luttinger liquid phase, an
there is a stable CSLL phase.

We now investigate the transport properties of the CS
phase. The conductivities of an array of parallel wires h
been considered by Emeryet al.6 In the presence of impuri-
ties, the resistivity along the wires,r i , vanishes asTa i,14

with a i5DCDW,`22. The perpendicular conductivity,s' ,
goes asTa' with a'52DSC23, whereDSC is the minimum
of DSC,1 and DSC,2. The conductance,sc , arising from the
Josephson coupling at the contact between the crossed w
satisfiessc;Tac, whereac52DSC,̀ 23.

Thus we can model our 2D non-Fermi liquid as the res
tor network depicted in Fig. 2 with nodes at the vertic
Josephson junctions between the arrays atr mn . The nodes of
the X(Y) array are connected by nearest neighbor resis
with conductancess i5r i

21 if they are parallel to thex(y)
axis ands' if they are perpendicular to thex axis(y axis!.
Nearest-neighbor nodes of theX andY arrays are connecte
by resistors of conductancesc . In the continuum limit, the
2D current densities in the plane of thea grids (a5X,Y) is
Ji

a5s i j
a Ej where s i j

X5s iexiex j1s'eyiey j and s i j
Y

5s'exiex j1s ieyiey j andE is the in-plane electric field. The
current per unit area passing between the planes isJn
5(sc /a2)(VX2VY) where V is the local voltage. In this
limit, the local voltages satisfy

FIG. 2. A schematic depiction of the 2D non-Fermi liquid as
resistor network, with two parallel arrays of wire running along t
x andy axes, with nodes in thez direction
3-3
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2s i j
X] i] jV

X1
sc

a2
~VX2VY!5T X

2s i j
Y] i] jV

Y2
sc

a2
~VX2VY!5T Y, ~14!

where T X and T Y are current densities~current/area! in-
jected, respectively, into theX andY grids. If no currents are
injected, then this equation is solved byVX5VY52E•x to
produce a total in-planar curent density

Ji[Ji
X1Ji

Y5~s i j
X1s i j

Y !Ej5~s i1s'!Ei . ~15!

Thus under a uniform electric field, the double layer beha
like an isotropic 2D material with in-plane conductivitys
5s i1s'.s i , or equivalently with an isotropic resistivity
that vanishes asr i;Ta i. If currents are spatially nonuni
form, as they are, for example, when current is inserted
one point and extracted from another, there is a crosso
from isotropic to anisotropic behavior at length scales l
than l 5aA(s i1s')/sc;T2(a i1ac)/2 that diverges asT
→0.

This two-layer CSLL model can, quite simply, be e
tended to three dimensions by stacking alternate arrays in
third direction. It is still possible, although more difficult, fo
a stable CSLL phase to exist. This phase is characterize
an isotropic in-plane conductivitys i;T2a i and a conduc-
tivity sc /a;Tac in the direction perpendicular to the plan
s

ys

y,

.

,

08110
s
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of the wires. Thus the conductivity along the planes is mu
larger than the perpendicular conductivity.

The extension of the above analysis to a system
coupled Luttinger liquids where both charge and spin ex
tations aregaplessis straightforward. On each wire, there
a Luttinger liquid for charge and for spin. To maintain ga
less Luttinger liquids and SU~2! symmetry, we require tha
the spin degrees on each wire be represented by a Lagran
of the form Eq.~2! with ks51 and that at the fixed poin
there be no spin coupling between the wires. The fixed po
for the charge degrees of freedom has the same form a
the gapped case. However, now, single-particle tunneling
well as Josephson and CDW couplings may be relevant.
phase diagram is quite complicated and will be discusse
a future publication. Thereis, however, a small but finite
region of phase space where the sliding phase is stable.

In conclusion, we have demonstrated the existence o
non-Fermi metallic phase in two dimensions that mainta
spin-charge separation and is stable to all pairwise potent
This is a remarkable phase, which could be identified a
two-dimensional Luttinger liquid. We delay to a future pu
lication the investigation of the stability of this phase wi
respect to all multiwire interactions.

We would like to thank S. A. Kivelson and E. Fradkin fo
useful discussions. R.M. and T.C.L. acknowledge supp
from the National Science Foundation under Grant N
DMR97-30405.
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