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Multiple scattering of electrons in solids and molecules: A cluster-model approach
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A method for the simulation of electron scattering and diffraction in solids and molecules within the cluster
approach is presented with explicit applications to photoelectron diffraction, electron scattering in molecules,
and low-energy electron diffraction. No approximations are made beyond the muffin-tin model, and, in par-
ticular, an exact representation of the free-electron Green function is used. All multiple-scattering paths are
accounted for up to an order of scattering that ensures convergence. The method relies upon a convenient
separation of the free-electron Green function in rotation matrices and translations along thez axis, which
greatly reduces the computation time and storage demand. The evaluation of the multiple-scattering expansion
is implemented using the fully convergent recursion method, which permits one to perform an iterative refine-
ment of the final-state wave function, as expressed in the basis set of spherical harmonics attached to each atom
of the cluster. Examples are offered in which the direct multiple-scattering expansion and the more elaborated
simultaneous relaxation method fail to converge, whereas the recursion method leads to convergence. The
computation time needed by the resulting computer program of electron diffraction in atomic clusters to
determine the self-consistently scattered wave function is proportional toN2( l max11)3, whereN is the number
of atoms in the cluster andl max is the maximum angular momentum for which the scattering phase shifts take
non-negligible values. Within this method it is possible to establish that in practical casesN.1000 might be
needed for a convergence of the cluster size, although the angular averaging inherent in many experiments may
reduce this. The recursion method was also modified to reduce the effort in computing angular distributions of
photoelectrons and low-energy diffracted electrons, which now require negligible time for each angle of
emission once the wave function has been determined for a given electron energy. Angle and energy distri-
butions of core-level photoemission, elastic scattering of electrons from a free molecule, and low-energy
electron diffraction in large-unit-cell surfaces are calculated.

DOI: 10.1103/PhysRevB.63.075404 PACS number~s!: 61.14.Dc, 61.14.Qp
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I. INTRODUCTION

Multiple elastic scattering~MS! plays a central role in the
description of electron transport inside solids and molecu
in different experimental spectroscopies like photoelect
diffraction ~PD!,1–3 low-energy electron diffraction
~LEED!,4,5 Auger electron diffraction ~AED!,6 x-ray-
absorption fine structure~XAFS!,7 and related techniques.

Various approximations are customarily employed to
ficiently calculate MS effects. For relatively high electro
energies like most of the ones considered in this wo
(.50 eV above the Fermi level!, electron scattering is rathe
insensitive to the outermost region of the atomic potent
that make up the solid or molecule. Therefore, the ato
potentials can be well approximated by spherically symm
ric muffin-tin potentials.4 In addition, inelastic scattering i
usually treated in a phenomenological way via a comp
optical potential, or equivalently, inelastic mean free path4

Two different categories of computational schemes can
distinguished, depending on the use made of the symm
of the atomic structure in the case of solids: layer-by-la
methods and cluster methods. The former were primarily
veloped in the context of LEED, and take advantage of
fact that the atoms of an oriented crystal are disposed
layers parallel to the surface, resulting in remarkably e
cient algorithms for the transport between layers.4,8–10 The
latter do not require any sort of long-range order, and can
0163-1829/2001/63~7!/075404~16!/$15.00 63 0754
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applied to other classes of problems.11–17

In particular, when translational crystal symmetry is br
ken due to either the presence of randomly distributed ad
bates and defects or a localized character of the elec
source as in the case of PD and AED, cluster models prov
a natural approach for simulating MS effects that is su
gested by the fact that excited electrons cannot travel la
distances in real solids without suffering inelastic losses,
that the region which actually contributes to the emission
elastically scattered electrons defines a finite cluster
rounding the adsorbate, defect, or emitter.11–17This approach
is also suitable for dealing with similar scattering phenome
in adsorbed or free molecules.

A hybrid model consisting of treating MS within a cluste
formed by concentric spherical shells was proposed
Pendry18 and implemented by Saldin and co-workers19–21 to
simulate x-ray-absorption near-edge structure,19 LEED,20

AED, and PD.21 This method can in fact be advantageous
LEED calculations when large surface unit cells a
considered.20

The more straightforward cluster approach adopted in
present work was extensively employed in the past withi
single-scattering approximation, and it has been found to
produce qualitatively, and in several respects quantitativ
many of the experimental features in both XAFS~Refs. 7
and 22! and PD.2,6,23 However, higher orders of MS ar
needed to improve accuracy and structural analyses.24 For
©2001 The American Physical Society04-1
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example, by interpreting the terms of the MS series as p
that the electron follows connecting atoms in the cluster
all possible ways,25 characteristic MS effects like forwar
focusing and defocusing along rows of atoms have been
cerned in PD experiments.24

A basis set suited to describe the electron wave functio
provided by spherical harmonics and spherical Bessel fu
tions attached to each atom of the cluster. This incorpor
curved-wave effects in a natural way. Unfortunately, t
propagation of these functions between cluster atoms is c
putationally very demanding.26,27,4Since no intensive use o
crystal symmetry is made in cluster models, further appro
mations have been introduced in the past in order to m
feasible the calculation of the MS series.28–37,2,7,6,11,13–15,21,22

In the high-energy limit, the propagation reduces to pla
wave factors ~hence the name ‘‘plane-wave approxim
tion’’ !, and each term in the MS series becomes a produc
scattering amplitudes.7 Different expansions of the propa
gated wave function in the finite region centered around e
cluster atom lead to the so-called small-ato
approximations.33,11 Among these, the point-scattering a
proximation goes beyond the plane-wave approximation
multiplying the scattering amplitude by appropriate curve
wave factors.35

As the experimental resolution increases, more accu
theoretical analyses become necessary. These are co
cated by the fact that the number of multipole terms that
needed rises rapidly with increasing electron energies.
maximum of the significant angular momentum quant
numbers scales roughly asl max;krmt , wherek is the elec-
tron momentum andr mt is the muffin-tin radius of the scat
terers. Upon inspection of actual calculations,l max is of the
order of 5 –20 for electron energies in the range 50–700
Since the number of different multipole components (l ,m)
used to describe the electron wave function around e
atom is (l max11)2, the aforementioned propagation betwe
each pair of atoms involves multiplication by propagati
matrices, requiring (l max11)4 complex products.

On the other hand, the number of atomsN needed in a
cluster to reach convergence is also important in the eva
tion of the computational demand of the problem. This nu
ber scales as the cube of the electron inelastic mean free
~imfp!, l i . We estimateN as the number of sites of a simp
cubic lattice of lattice constant 2.5 Å that are contained i
sphere of radius 1.5l i . The dependence of the univers
imfp curve on the electron energy must be also allow
for.38–40 The relation betweenl max and the electron momen
tum discussed above has been assumed for a typical mu
tin radiusr mt51.25 Å. In this way, one obtains the relatio
betweenN and l max shown in Fig. 1 by the solid curve.

In order to overcome the rapidly-growing computation
demand with increasingl max, Rehr and Albers13 ~RA! pro-
vided a clever procedure based upon a separable repres
tion of the free-electron Green function that allows one
generalize the scattering amplitudes, substituting them
matrices that describe each scattering event for a given
of atom in such a way that the leading element of each
trix reproduces the point-scattering approximation. Th
method, which produces reliable results when keeping on
07540
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few more relevant elements in those matrices,13 is particu-
larly suitable to calculate the contribution of different ind
vidual electron paths, and it has been implemented for
calculations by Kaduwelaet al.17 and Chenet al.41

Rather than including all possible electron paths, Zab
sky et al.36 also showed that only a small fraction of all pat
contribute significantly to the MS series in XAFS. This pe
mitted them to reduce the total computational effort subst
tially by only including in the calculation selected path
whose contributions are already non-negligible within t
plane-wave approximation. Their approach is very efficie
in particular if the so-called second-order RA separable r
resentation is used, where each scattering event with
given electron path is typically represented by a 636 matrix.

More recently, Chenet al.41 used a similar approach in
the case of PD, incorporating an iterative evaluation of
MS expansion within the framework of the RA separab
representation.13 In this approach, the number of comple
multiplications per iteration is 36N3.

In the present work, the MS expansion is evaluated us
an exact representation of the Green-function propagator
iterative procedure is followed that require
'(10/3)N2( l max11)3 multiplications per iteration. Wu and

FIG. 1. Minimum criteria for convergence on cluster size a
angular momenta in multiple scattering calculations~solid curve!
and relative speeds of the present EDAC method versus the sec
order Rehr-Albers~RA! separable representation~broken curve!.
Criteria are expressed in terms of the number of atomsN as a
function of the maximum angular-momentum quantum num
l max. The value ofN for which convergence is achieved~solid
curve! is estimated as the number of atoms contained within
sphere of radius equal to 1.5 times the universal inelastic mean
pathl i , assuming an average nearest-neighbor separation of 2
l i depends upon the electron momentumk, which is in turn related
to l max via l max5krmt for a typical muffin-tin radius ofr mt51.25 Å.
The number of complex multiplications needed per iteration
(10/3)N2( l max11)3 in EDAC and 36N3 in the RA representation
and therefore, EDAC requires a shorter computation time as c
pared with the RA method whenN.0.1(l max11)3 ~white area
above the broken curve! if all scattering paths are accounted for.
4-2
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MULTIPLE SCATTERING OF ELECTRONS IN SOLIDS . . . PHYSICAL REVIEW B 63 075404
Tong42 reported a lack of convergence in the exact MS
pansion, and claimed that this problem can be overcome
using the simultaneous relaxation method,43 consisting of
both mixing the result of each iteration with that of the pr
vious one and using the updated components of the w
function as they are calculated rather than waiting for a gi
iteration to be completed. That iteration procedure is co
pared in the present paper with the Haydock recurs
method,44–46which was shown to be more robust and to le
to full convergence even in cases where the former fails
converge. In addition, the recursion method results in fa
convergence as compared with either the direct MS exp
sion or the simultaneous relaxation method. These ideas
been implemented in a fully automated computer code
calculating electron diffraction in atomic clusters~EDAC!. A
similar approach was recently employed in the description
photon scattering in nanostructures.47 The computational
performance of EDAC as compared with the second-or
RA method is shown in Fig. 1~broken curve!: the EDAC
method is faster outside the shadowed area.

The MS theory is reviewed in Sec. II in a way suitable
be employed within the selected iterative scheme. Fur
computational details are given in Sec. III. In particular, se
eral iteration methods are discussed, and a modificatio
the recursion method is introduced to allow one to calcu
scattered or emitted electron intensities for multiple dir
tions simultaneously from a single MS calculation~Sec.
III A !. Moreover, the free-electron propagators are deco
posed into rotations and translations along thez axis, result-
ing in a significant reduction both in time and in stora
demand~Sec. III B!. Particular examples of application t
PD, elastic electron scattering from molecules, and LE
from surface structures with large unit cells are presente
Secs. IV, V, and VI, respectively. Finally, the main concl
sions are summarized in Sec. VII.

Atomic units ~a.u., i.e.,e5m5\51) will be used from
now on, unless otherwise specified. The notation
Messiah48 for spherical Bessel and Hankel functions, sphe
cal harmonics, and rotation matrices will be adopted.

II. MULTIPLE-SCATTERING THEORY

Let us begin by introducing the standard elements of m
tiple scattering theory in a Green-function approach. C
sider an electron of energyE described by the wave functio
w0(r ) that satisfies the free-electron Schro¨dinger equation

~H02E!w050, ~1!

whereH052¹2/2.
The presence of a solid or molecule introduces a str

perturbation that can be represented by the potential

V~r !5(
a

Va~r !,

where the sum is extended over atomic positionsRa . Within
the muffin-tin model adopted here, each atomic potentialVa

vanishes outside a sphere of radiusr mt
a ~the muffin-tin radius!
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centered atRa . These are nonoverlapping spheres, andV(r )
is set to a constant~the muffin-tin zero! in the interstitial
region.

The wave functionw that satisfies the full Schro¨dinger
equation (H01V2E)w50 can be written w5w01f,
wheref is the scattered part. Using matrix notation,49 the
latter can be expressed in terms of the atomic-clusterT ma-
trix as

f5G0Tw0, ~2!

where G0 is the free-electron propagator that satisfiesE
2H0)G051, andk5A2E is the electron momentum. Defin
ing the cluster Green functionG via (E2H02V)G51, the
T matrix can be writtenT5V1VGV. An implicit depen-
dence onE is understood in these expressions.

The key ingredient of MS theories is the reduction of t
T matrix of the cluster to theTa matrices of the individual
muffin-tin potentialsVa . The latter are defined by the sel
consistent relation

Ta5Va1VaG0Ta . ~3!

Following Beeby,25 T can be written as a series expansi
whose terms represent all possible electron scattering pa
More precisely,

T5(
a

La ,

where

La5Ta1 (
bÞa

TbG0Ta1 (
gÞb

(
bÞa

TgG0TbG0Ta1•••

~4!

accounts for MS paths in which the first scattering ev
occurs at atoma and two consecutive scattering events ta
place always at different atoms of the cluster. From Eq.~4!,
T can alternatively be defined as

T5(
a

S Ta1 (
bÞa

LbG0TaD
5Ta0

1 (
bÞa0

~Lb1LbG0Ta0
!, ~5!

for any atoma0 .
Inserting Eq.~5! into Eq. ~2!, the scattered wave reduce

to

f5(
a

S fa
01 (

bÞa
G0Lbfa

0 D , ~6!

where

fa
05G0Taw0 ~7!

represents the first-order contribution to MS. The seco
term on the right-hand side of Eq.~6! can be understood a
4-3
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the propagation of the results of scattering at atoma to every
other atom of the clusterb, followed by subsequent MS
starting at the latter.

Some information on the structure of the scattered w
function can be gained by considering explicit expressi
for G0 . That is,

G0~r2r 8!5
21

2p

eikur2r8u

ur2r 8u

522k(
L

hL
(1)~kr ! j l 2m~kr 8!~21!m

~r .r 8!, ~8!

where hL
(1)(kr )5 i lhl

(1)(kr)YL(V r) represents an outgoin
spherical wave,j L(kr 8)5 i l j l(kr8)YL(V r8) is a mixture of
outgoing and incoming spherical waves that exhibits no
flux into or out of a closed surface containing the origin,hl

(1)

is a spherical Hankel function,48 j l is a spherical Bessel func
tion, andL5( l ,m) labels spherical harmonicsYL . Since, by
virtue of Eq. ~3!, Ta vanishes outside the muffin-tin sphe
a, one finds, using Eqs.~7! and ~8!, that

fa
0~r !5(

L
hL

(1)@k~r2Ra!#fa,L
0 ~9!

for ur2Rau.r mt
a .50 Therefore,fa

0 is a superposition of out
going spherical waves centered onRa . Following a similar
argument in Eq.~6!, the self-consistently scattered wave c
be written

f~r !5(
a

(
L

hL
(1)@k~r2Ra!#fa,L ~10!

for r outside the muffin-tin spheres. Equation~10! states that
the scattered wave finds its sources in the muffin-tin sphe
from which it emerges as a combination of outgoing sph
cal waves.

The propagation offa
0 from atoma to atomb, which is

needed in the evaluation of Eq.~6!, can be performed by
using Eq. ~9! and the translation formula of spheric
harmonics26,27,4

hL8
(1)

@k~r2Rb!#5(
L

j L@k~r2Ra!#Gab,LL8 , ~11!

where

Gab,LL854p(
L9

hL9
(1)

@k~Ra2Rb!#

3E dVYL~V!YL9~V!YL8
* ~V!.

Equation~11! is valid provided thatur2Rau,uRa2Rbu; this
condition is satisfied whenr is contained inside the muffin
tin spherebÞa, and nonoverlapping spheres are consider
It is also convenient to representG0 in the basis set of
07540
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spherical harmonics attached to each atom of the clus
Using Eqs.~8! and ~11!, one finds26,27,4

G0~r2r 8!522k(
LL8

j L@k~r2Ra!#

3 j l 82m8@k~r 82Rb!#~21!m8Gab,LL8 ,

~12!

and this expression is valid in the present context fora
Þb, and r and r 8 lying inside different nonoverlapping
muffin-tin spheres.

With the help of these expressions, all spatial integr
that are implicit in Eqs.~4! and ~6! ~see Ref. 49! can be
collected in the so-called scattering matrix elements:

ta,LL8522kE drdr 8 j l 2m@k~r2Ra!#

3~21!mTa~r ,r 8! j L8@k~r 82Ra!#. ~13!

For spherically symmetric potentials,ta,LL8 becomes diago-
nal, and it is given in terms of the scattering phase shiftsd l

a

as48

ta,LL85ta,ldLL85 sind l
aeid l

a
dLL8 . ~14!

Finally, using Eqs.~4! and ~9!–~13!, and identifying co-
efficients that multiply into the same functionshL

(1)@k(r
2Ra)#, Eq. ~6! leads to

f̃a5f̃a
01 (

bÞa
taGabf̃b

01 (
gÞb

(
bÞa

taGabtbGbgf̃g
01•••,

~15!

where f̃a
0 and f̃a denote column vectors of componen

fa,L
0 and fa,L , respectively,Gab represents the matrix o

componentsGab,LL8 , the scattering matrixta has compo-
nents given by Eq.~14!, and matrix multiplication involves
summation over indicesL, L8, etc.

III. COMPUTATIONAL PROCEDURE

The time employed in the direct evaluation of Eq.~15!
grows exponentially with the number of terms on the rig
hand side. However, an iterative procedure makes it feas
to evaluate the MS series until convergence is achieved
discussed below in Sec. III A,41,42,47where several iteration
methods are examined in connection with the solution of t
equation, including a modification of the recursion meth
that allows us to calculate intensities simultaneously
many angles in the far electron field from a single MS c
culation.

An exact representation of the free electron Green fu
tion is used in the present work, and this is made possibl
part thanks to the saving in both computation time and s
age demand achieved through the method introduced in
III B: decomposition of the Green function into elementa
rotations and translations while keeping track of the latter,
4-4
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MULTIPLE SCATTERING OF ELECTRONS IN SOLIDS . . . PHYSICAL REVIEW B 63 075404
that they are not unnecessarily re-calculated during the
MS evaluation.

A. Iterative solution of the MS series

It is easy to see that the sum of the firstn11 terms on the
right-hand side of Eq.~15!, f̃a

n , obeys the recurrence rela
tion

f̃a
n5f̃a

01ta (
bÞa

Gabf̃b
n21 ~n.0!. ~16!

That is, the difference betweenf̃a
n and f̃a

n21 is just thenth
sum on the right-hand side of Eq.~15!. Each term in that sum
containsn products by matricesta , that is, it can be inter-
preted as the contribution of paths along which the elect
undergoesn atomic-scattering events.

Taking then→` limit in Eq. ~16!, one finds

f̃a5f̃a
01ta (

bÞa
Gabf̃b . ~17!

The direct inversion of Eq.~17!, sometimes called giant
matrix inversion, is prohibitive in many cases, since it
quires performing;N3( l max11)6 complex products. How-
ever, this has been carried out by some authors for sm
values ofN and l max,

51,52 and is also commonly used withi
individual layers in a surface with small number of atoms p
surface unit cell.4,5 Three different iterative techniques hav
been used and compared in the present work to eval
Eq. ~15!: ~a! direct Jacobi iteration;~b! simultaneous
relaxation,43 previously used in this context;42 and ~c! the
Haydock recursion method.44–46

(a) Direct Jacobi iteration.This method is based upon th
iterative evaluation of Eq.~16!. Starting withf̃a

0 , each itera-
tion of Eq.~16! leads to the next order of scattering, and th
procedure has to be carried out until convergence
achieved. Substitutingfa,L

n for fa,L in Eq. ~10!, one obtains
the approximate wave function calculated up to ordern of
MS. Since the wave-function coefficientsfa,L span a space
of dimension (l max11)2N, Eq. ~16! can also be regarded a
the power series inversion formula 1/(12X)uf&5(11X
1X21•••)uf&, whereX is a matrix that operates on tha
space, defined in terms ofta andGab , anduf& is the vector
of coefficientsfa,L . Unfortunately, when any of the eigen
values ofX has a magnitude larger than 1, this expans
series fails to converge. This problem was already discus
in the context of LEED~Ref. 9! and PD.42 Faster convergen
schemes can be found that do not require an extra comp
tional effort, at the price of dismissing the intuitive physic
picture of going to the next order of scattering with ea
iteration step. This is the case of the simultaneous relaxa
method and the recursion method discussed next.

(b) Simultaneous relaxation (SR) method.This consists of
using the latest values off̃a

n as soon as they are calculate
In addition, the result obtained from its iteration is mixe
with the previous result to improve convergence. Then
iteration formulas become
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f̃9a
n5f̃a

01ta (
bÞa

Gabf̃8b
n

and

f̃a
n5hf̃9a

n1~12h!f̃a
n21 ,

wheref̃8b
n5f̃9b

n for b,a andf̃8b
n5f̃b

n21 otherwise, andh
is a mixing parameter typically adjusted in the range 0,h
,2 in order to accelerate convergence. For 0,h,1 one has
what is termed underrelaxation.43

(c) Modified recursion method.With the notation of point
~a! above, Eq.~17! can be writtenuf&5(l2X)21uf0& (l
51). The relevant magnitude in which we are interested
the electron current at the detector, which is proportiona
u^ f uf&u2 with a suitable definition of the final detected wav
function in a given direction̂ f u ~see, e.g., Sec. IV below!.
Haydock’s recursion method44,46 permits one to obtain this
matrix element by iterative refinement. Herel plays the
same role as the energy in calculations of solid ground-s
properties.45,46 Although we are only interested in the valu
l51 in the present case, the recursion method is adva
geous because it is fully convergent for any matrixX. Actu-
ally, it produces rigorously exact values when the iteration
carried out (l max11)2N times, although convergence
achieved much earlier, typically in less than 20 iterations
the examples presented in the present work.

In many cases, one is interested in calculating angu
distributions of emitted or scattered electrons~e.g., in Fig. 3!.

FIG. 2. C 1s photoemission intensity in a cluster formed by tw
carbon atoms separated by 1.2 Å as a function of iteration step.
incoming light is linearly polarized with the polarization vector pa
allel to the interatomic axis. The emission occurs in the forwa
scattering direction~see the inset!. The electron energy is 15 eV
Results obtained from different iteration methods are compared
recursion method of this work~solid circles!, which converges rap-
idly to the exact result derived via giant-matrix inversion~GMI!;
the direct Jacobi iteration~open circles!, for which the number of
iteration steps equals the scattering order; and the simultaneou
laxation ~SR! method~Refs. 42 and 43! for various values of the
relaxation parameterh ~thin broken curves!. The intensity has been
normalized to that of an isolated C atom.
4-5
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Unfortunately, the recursion method requires carrying
the MS iteration procedure for each direction of emiss
~i.e., for each^ f u). Here we have modified the recursio
method so that it allows one to obtain intensities for vario
directions of emission with a single MS calculation, provid
one stores the momentsmn5^ f uXnuf0& for eacĥ f u and each
iteration stepn. Our modified method is based upon th
double recurrence

uap11&5@~X†2ap* !uap&2bp* uap21&]/bp11* ~18!

and

ubq11&5@~X2aq!ubq&2bqubq21&]/bq11 , ~19!

where the starting values areua21&5ub21&50, ua0&
5u f &/Am0* , and ub0&5uf0&/Am0, andan and bn are com-
plex numbers. Upon inspection, one can easily prove tha

^a i ub j&5d i j ~20!

if one chooses

FIG. 3. ~a! Schematic representation of the cluster used in p
toelectron diffraction calculations. Only atoms whose sum of d
tances to the emitter~darkest atom! and to the surface is smalle
thandmax are included in the calculation~gray atoms!. This criterion
leads to a parabolic surface with the focus coinciding with the em
ter. ~b! R-factor @Eq. ~34!# variation with the number of atomsN for
Cu 2s photoemission from the third layer of a Cu~111! surface.
Azimuthal scans have been considered with a polar angle of e
sion of 35°, a photoelectron energy of 100 eV, and p-polarized l
under normal incidence conditions, as shown schematically in
lower left corner of the figure. The inset shows the intensity a
function of azimuthal angle for various cluster sizes, as indicated
labels, normalized to that of the direct emission without inelas
attenuation.
07540
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an5^anuXubn& ~21!

and bp11 such that^ap11ubp11&51. Haydock’s recursion
method is recovered in the special case whereX5X† and
u f &5uf0&.44 These recurrences share in common with Ha
dock’s method the property that the matrix of compone
^a i uXub j& is tridiagonal, as can be seen from Eqs.~18!, ~19!,
and~20!, and this permits writing the desired matrix eleme
as the continued fraction44

^ f u~l2X!21uf0&5
^ f uf0&

l2a12
b1

2

l2a22
b2

2

l2a32•••

.

~22!

Different terminations of the iteration procedure have be
proposed,44 but in the present context, our results are qu
insensitive to the particular choice.

Rather than directly evaluating these recurrences,
equivalent recurrence can instead be constructed using
quantities

I pq
n 5^apuXnubq&.

Multiplying Eq. ~19! by ^apuXn, one finds

I pq11
n 5@ I pq

n112aqI pq
n 2bqI pq21

n #/bq11 , ~23!

and, similarly, from Eq.~18!,

I p11,q
n 5@ I pq

n112apI pq
n 2bpI p21,q

n #/bp11 . ~24!

Moreover, Eq.~21! can be recast as

ap5I p,p
1 , ~25!

and the normalization factorbp11 becomes

bp115AI pp
2 2ap

22bp
2. ~26!

Now ap andbp , and therefore also Eq.~22!, can be evalu-
ated using Eqs.~23!, ~24!, ~25!, and~26! recursively with the
starting valuesI 00

n 5mn /m0 and I p,21
n 5I 21q

n 50. The rel-
evance of this procedure is that it permits calculating
matrix element@Eq. ~22!# directly from the momentsmn ,
which are in turn obtained from a single MS calculation f
as manŷ f u ’s as desired.

Comparisons of rapidity of convergence using these ite
tion methods are offered in Figs. 2, 3, and 4 for PD, and
Fig. 7 for electron scattering. The results are discussed
more detail in Secs. IV and V.

An important point about the iteration methods just d
scribed is that the number of products of scattering matri
ta per iteration isN in all of them, whereas the number o
Gabf̃b products isN(N21). Therefore, in realistic clusters
whereN.100~see Fig. 1!, no substantial relative increase
computational effort is introduced if one goes beyond
commonly used spherical muffin-tin approximation, that
if nondiagonal scattering matrices like those needed to r
resent nonspherical potentials53–55~e.g., in photoelectron dif-
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fraction in oriented molecules56! or spin-orbit coupling53 are
considered. Since most of the computational effort is
vested in products byGab matrices~vector addition takes a
negligible time!, we have devoted Sec. III B to a descriptio
of how to minimize their computational cost.

B. Optimization of products of Green functions

Following previous authors,26,13,14 the Green function
Gab that propagates a free electron along an interato
bond vectordab5Ra2Rb will be expressed in terms of th

FIG. 4. ~a! R-factor variation with scattering order for azimuth
scans of W 4f photoemission from a W~110! surface covered with
one monolayer of 131 O ~Ref. 59!. The emitter is taken to be in
the third W layer, the photoelectron is emitted with an energy
250 eV and a polar angle of 46°, and the incident light is circula
polarized and coming perpendicular to the surface~see the inset!.
The cluster consists ofN565 atoms@dmax51 nm; see Fig. 3~a!#.
Results derived from the recursion method~solid curves and
circles! are compared with those obtained using direct Jacobi it
tion ~broken curves and open circles!. Thick and thin curves show
R-factor values according to the definitions of Eqs.~34! and ~35!,
respectively~i.e., the relative value of the average deviation and
maximum deviation, respectively!. ~b! Same as~a! for N5189 at-
oms @dmax51.4 nm; see Fig. 3~a!#. ~c! R-factor variation withl max

under the same conditions as in~a! for dmax51.2 nm ~solid curve
and solid circles!. The variation of theR factor for the atomic scat-
tering amplitude as defined by Eq.~36! is shown by the broken
curve and open circles. Also shown is the expectedl max value based
on the simple criterion ofl max5krmt .
07540
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FIG. 5. W 4f photoemission intensity as a function of the pol
direction of emission for a W~110! surface covered with one mono
layer of 131 O and illuminated with left circularly polarized ligh
~Ref. 59!. Represented is@ I (u,w)2I 0(u)#/I 0(u), where I 0(u) is
the average of the intensity over azimuthal angles. The photoe
tron energy is 250 eV. The emission takes place from the top-m
~oxide! W layer. Dark regions correspond to high intensity.~a!
EDAC calculation for a cluster consisting ofN5393 atoms (dmax

518 Å!. The position of the oxygen is shown schematically in t
inset. An average over the two symmetry-equivalent positions
the oxygen has been performed. The direction of normal emis
corresponds to the center of the figure, and the polar angleu is
proportional to the distance to that point~the range actually plotted
is 46°<u<63.5°). ~b! Experimental results taken from Ref. 59.

FIG. 6. Azimuthal dependence of the photoemission inten
from s levels of a row of Xe atoms adsorbed near a step in a Pt~111!
surface. Top part: the Xe atom is on the lower terrace at the
edge. Bottom part: the Xe atom is on the upper terrace. In all ca
the Xe atoms are located in Pt continuation sites.~See the schematic
representations on the right-hand side.! The photoelectron kinetic
energy is 60 eV. The electron take-off angle is 30°. The light
unpolarized and incident perpendicular to the terraces.
4-7



s
r

th

si

luat-
n

re-
ies

c-
n

are
ers

in
r of
der-
nd
a

h at
nce
gral

m

the
q.
t

and
ion

d
nc-
ion

ent
the
d in
nt

c-
e

u
ing

.

ep

F. J. GARCI´A de ABAJO, M. A. VAN HOVE, AND C. S. FADLEY PHYSICAL REVIEW B63 075404
propagator along thez axis by using rotation matrice
Rmm8

( l ) (abg), where (abg) are the corresponding Eule
angles.48 In a first step, the bond vectordab is rotated onto
the z axis by applying the matrix13,48

Rab,LL85d l l 8Rmm8
( l )

~0,u,p2w!, ~27!

where (u,w) are the polar angles ofdab . Then the electron
is propagated along the bond vector, now directed along
z axis, and for which the Green function reduces to

Gab,LL8
z

5dmm8A4p (
l 9

A2l 911i l 9hl 9
(1)

~kdab!

3E dVYlm~V!Yl 90~V!Yl 8m
* ~V!. ~28!

Finally, the bond vector is rotated back to the original po
tion, and one finds13,41

FIG. 7. ~a! Scattering probability of 809-eV electrons fromC60

molecules as a function of scattering angle. Experimental res
~circles! taken from Ref. 64 are compared with single-scatter
~broken curve! and multiple-scattering~solid curve! calculations.
An average over molecular orientations has been performed~b!
Scattering probability of 100-eV electrons from C60 molecules as a
function of scattering angle calculated for various iteration st
~see labels! using the recursion method~solid curves! and direct
Jacobi iteration~broken curves!.
07540
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Gab5Rab
21Gab

z Rab . ~29!

A recurrence relation has been reported that permits eva
ing Eq.~28! efficiently.15 The rotation matrices can be in tur
decomposed into azimuthal and polar rotations as48

Rmm8
( l )

~0,u,p2w!5Rmm8
( l )

~0,u,0!~21!m8eiwm8.

This decomposition of the Green function permits us to
duce both~i! the storage required to evaluate the MS ser
and ~ii ! the computational effort.

~i! A significant reduction in memory demand can be a
complished if the coefficients of each polar rotatio
Rmm8

( l ) (0,u,0), each azimuthal rotation (21)m8eiwm8, and
each propagation along a bond distanceGab,LL8

z are com-
puted and stored once and for all the first time that they
encountered during the full calculation. Since actual clust
on which MS calculations are to be performed possess
general a certain degree of symmetry, the total numbe
different bond distances and bond polar angles is consi
ably reduced as compared with the total number of bo
vectors. To illustrate this, let us take the example of
simple-cubic-lattice cube of sidep in units of the lattice con-
stant; this cluster containsp3 atoms and (2p21)321 differ-
ent bond vectors, a number that has to be compared wit
most 3p2 bond distances, since the square of the dista
between any pair of atoms has to be equal to an inte
number, and the distance between opposite corners isA3p.
A better estimate for this case results in'1.8p2 different
bond distances.

~ii ! For a given maximum value of the angular momentu
number l max, the dimension of each vectorf̃a is (l max

11)2, so that every matrix-vector productGabf̃b involves
( l max11)4 complex multiplications. However, all of the
three matrices that appear on the right-hand side of Eq.~29!
are sparse, as can be seen from Eqs.~27! and~28!. A detailed
inspection leads to the conclusion that only'(10/3)(l max
11)3 complex multiplications are needed to evaluate
productGabf̃b when Gab is decomposed as shown in E
~29!. This is a factor of'3l max/10 smaller than the direc
matrix-vector product.

Further reduction in computational and storage dem
can be achieved if symmetry relations for the Green funct
and the rotation matrices48 are used ~e.g., Gab,lm,l 8m

z

5Gab,l 82m,l 2m
z ). The overall reduction in storage deman

comes ultimately from the decomposition of the Green fu
tions, as shown in this section, so that many of the rotat
matrices and propagators along thez axis ~all of them sparse
matrices! are shared by Green functions connecting differ
pairs of cluster atoms. In the examples reported below,
time needed to calculate and store the matrices define
Eqs.~27! and~28! is negligible compared with the time spe
in the iterative evaluation of Eq.~16!.

C. Electron attenuation, temperature effects, and
surface barrier

The effect of electron inelastic scattering is easily a
counted for in a phenomenological way by multiplying th

lts

s
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propagatorGab
z of Eq. ~28! by an exponentially decaying

function of the bond distance, exp(2dab/2l i), wherel i is
the inelastic electron mean free path,38–40 and the 1/2 factor
reflects the fact that this function goes inside the wave fu
tion rather than the electron probability. Also, the propa
tion from each atom to the detector has to be accompa
by a corresponding exponential attenuation that takes ca
the part of the path contained inside the cluster~or below the
surface in the case of a solid sample, of which the clus
represents just a part!. Inelastic scattering, together with MS
reduces the scattering range, making LEED and PD exce
surface analysis techniques. In the case of core-level ph
emission, the photoelectrons ejected from a solid or molec
thus provide information only on the vicinity of the ionize
atom, and features coming from the interaction with dist
atoms are attenuated by a finite inelastic mean free path.
effect of thermal vibrations has been incorporated as is g
erally done in LEED analyses4 by means of temperature
dependent phase shifts that take into account an average
placement of the cluster atoms in their thermal motion.

Refraction at the surface barrier or inner potentialV0 re-
quires correlating the direction of emission as seen from
side a solid with the actual direction of detection outside
it. The relation between these two is easily obtained by
voking conservation of the electron momentum parallel
the surface, and taking into account the loss of electron
netic energy in the motion normal to the surface. A transm
sion factor is also needed,57 especially for nearly grazing
emission~i.e., when the normal kinetic energy is only a fe
eV above the vacuum threshold!. Diffraction of electron
components reflected back from the surface has been
glected, although we note that this can play a very import
role at very low normal kinetic energies.

We now apply this general methodology to three imp
tant classes of experiment: core-level photoelectron diffr
tion, elastic electron scattering from molecules, and lo
energy electron diffraction at surfaces.

IV. CORE-LEVEL PHOTOELECTRON DIFFRACTION

In this section, our methods are applied to the case
photoelectron diffraction. Describing the interaction with t
external radiationH rad to first order, the perturbed part of th
time-dependent wave functionf(r )exp(2iEt) is given by

f~r !5E dr 8G~r ,r 8!H rad~r 8!f i~r 8!, ~30!

wheref i(r ) is the initial-state core-electron wave functio
andG(r ,r 8) is the cluster Green function discussed in Sec
and evaluated at the final electron energyE. The photo-
excitation of a core-level electron in a solid or molecule c
be well described within the dipole approximation when t
radiation wavelength is much larger than the dimensions
the initial core-electron state, in which case one can t
H rad5Cê•r , where ê is the photon-polarization unit vecto
andC is a normalization constant.

In matrix notation, expressingG in terms of T as G
5G01G0TG0 and using Eq.~5!, Eq. ~30! becomes
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f5G0H radf i1G0Ta0
G0H radf i1 (

bÞa0

G0LbG0H radf i

1 (
bÞa0

G0LbG0Ta0
G0H radf i ,

wherea0 is taken to be the emitter. Noting thatGa0
5G0

1G0Ta0
G0 is the Green function of atoma0 , one finds

f5Ga0
H radf i1 (

bÞa0

G0LbGa0
H radf i ,

which can be compared to Eq.~6! to redefine

fa
0~r !5daa0

CE dr 8Ga0
~r ,r 8!ê•r 8f i~r 8!. ~31!

We are interested in values ofr outside the muffin-tin sphere
of the emittera0 , whereas the integral in Eq.~31! involves
r 8 inside the muffin-tin sphere~i.e., the region where the
core-electron wave function takes non-negligible value!.
Under these conditions,Ga0

can be written as48

Ga0
~r ,r 8!522k(

L
hL

(1)@k~r2Ra0
!#FL* ~r 8!exp~ id l

a0!,

~32!

where FL(r )5 i lFl(r )YL(V r) is a solution of (H01Va0

2E)FL50, andFl is chosen such that it is finite at the orig
~the regular solution!. Inserting Eq.~32! into Eq. ~31! and
comparing the result with Eq.~9!, one obtains

fa,L
0 522kCdaa0

eid
l

a0

^FLue•r uf i&,

which includes the dipole matrix elements^FLue•r uf i& and
phase shiftsd l

a0 that are well known in the theory of atomi
photoelectric cross sections.48 Finally, the MS coefficients
fa,L are obtained fromfa,L

0 as explained in Sec. III, and
f(r ) is given by Eq.~10! outside the muffin-tin spheres.

Whenr lies at the electron detector~i.e., for r much larger
than the interatomic distances of the cluster! we are in the
far-field limit, and can approximatehL@k(r2Ra)#' exp(ikr
2ik f•Ra)YL(V)/kr, wherek f5kr /r andV is the polar di-
rection ofr ~i.e., the detector!. Therefore, using Eq.~10!, the
measured electron intensity per unit of solid angle in the
field becomes

I ~V!5UCk (
a

e2 ik f•Ra2za/2l i(
L

YL~V!fa,LU2

, ~33!

whereza is the distance from atoma to the surface along the
direction of emission, andl i is the inelastic electron mea
free path. In general, comparison with experiments requ
performing an incoherent sum over different degenerate
tial states and possibly over various emittersa0 .

For PD from atoms on or below a solid surface, and
which the entire~focused! photon beam is intercepted by th
sample, the intensity can be given in electrons per stera
per incoming photon by choosing the normalization const
as uCu254pks(v/c)/cosui , wherev is the photon energy
4-9
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c is the speed of light,u i is the polar angle of incidence o
the light with respect to the surface normal, ands is the
surface density of emitters equivalent toa0 ~i.e., those of a
given layer parallel to the surface!.

The present formalism is particularly efficient when c
culating photoelectron angular distributions: once the coe
cientsfa,L have been obtained for a given electron ener
the photoelectron intensity for each emission direction
readily calculated using Eq.~33!. When using the modified
recursion method outlined in Sec. III A,^ f uf& corresponds
to the expression inside the modulus in Eq.~33! and the
momentn is given bymn5^ f ufn&2^ f ufn21&, where^ f ufn&
is calculated from the coefficientsfaL

n obtained in thenth
iteration.

The relative performances of the various iteration me
ods discussed in Sec. III A for calculating PD from a simp
sample consisting of two carbon atoms is analyzed in Fig
where the inset illustrates the details of the geometry. T
constitutes a severe test of multiple scattering, since the
teratomic distance is relatively small. Within the resoluti
of the figure, the recursion method~solid circles! converges
in just six iterations to the result of the exact giant-mat
inversion. In single scattering~SS!, that is, at iteration 1, the
direct Jacobi iteration~open circles! is already much worse
and subsequent scattering orders clearly show a lack of
vergence. Neither is such lack of convergence prevented
using the SR method~broken curves! over a wide range of
the relaxation parameterh. The lower the value ofh, the
slower is the increase in intensity with iteration step, but
lack of convergence remains.

This lack of convergence comes about in MS when
absolute value of any of the eigenvalues of the matrixX
discussed in Sec. III A is larger than 1. In a basis set t
makes this matrix diagonal, each eigenvaluexi enters the
direct Jacobi MS expansion of 1/(12X) as 1/(12xi)51
1xi1xi

21•••, and this expansion is only convergent wh
uxi u,1. This is a well-known problem in LEED,4,5 where
various schemes have been devised to prevent it, suc
renormalized forward scattering4,5,9 and reverse scatterin
perturbation.5,19 The SR method provides a cure in ma
cases,42 but it is not sufficiently general, as illustrated by Fi
2. Instead, the recursion method has a well-established
vergent behavior,44 and therefore, it will be employed from
now on unless otherwise specified.

Figure 3~a! shows our choice of the cluster used to rep
sent photoemission from a given atom~darker circle! within
a solid surface. The cluster is formed by those atoms c
tained within a parabolic surface where the emitter coinci
with its focus. The parameterdmax determines the size of th
cluster ~see Fig. 3!. The parabolic surface comes from th
condition that the maximum electron path length inside
solid, where the inelastic attenuation is effective, be at m
dmax within SS for normal emission.

Convergence with the number of cluster atomsN}dmax
3 is

analyzed in Fig. 3~b! for photoemission from a Cu 2s level
situated on the third layer of a Cu~111! surface and at a pola
emission angle ofu535°. The geometry under conside
ation is illustrated schematically in the lower left corner
07540
-
,
s

-

2,
is
n-

n-
by

e

e

t

as

n-

-

n-
s

e
st

the figure, and the atoms are again within the paraboloid
Fig. 3~a!. Plotted here is the reliability factor, defined as58

Rave5
uI N2I `u

I `
, ~34!

where the average is taken over all azimuthal directions
emission ~cf. inset!, I N is the intensity calculated for an
N-atom cluster, andI ` is actually obtained forN51856. The
solid curve and circles correspond to the result obtained fr
the recursion method, where convergence is achieved in
than 20 iterations. A smooth convergence can be seen in
N→` limit. For N'160, which is suggested by Fig. 1 as
convergence criterion for the electron energy under con
eration~100 eV!, one hasRave50.16. The inset shows azi
muthal scans obtained for different cluster sizes, in orde
facilitate an understanding of the actual meaning ofRave in
terms of curve comparisons. ForN5944 ~dotted curve in the
inset!, one hasRave50.03 and convergence is already qu
good as compared to theN51856 case, although some sma
discrepancies can still be distinguished in the height of
peaks around 30°, 60°, and 90°, so that over 1000 atoms
needed to obtain convergence within the resolution of
figure. We note, however, that most real experimental sit
tions involve averaging over some finite solid angles, a
this can lead to an effective reduction in the cluster s
needed.

The open circles in Fig. 3~b! show the reliability factor
obtained from the Jacobi method for various scattering
ders~5, 9, 13, 17, 21, and 25!, where the spread in the pos
tion of the circles makes evident a lack of convergence. T
latter is more pronounced for larger clusters. In this sen
the Jacobi method has to be regarded as an asymptotic s
unable to converge below a certain reliability factor in t
present case.

Figures 4~a! and 4~b! show the performance of the recu
sion method~solid circles, for which only odd iteration or
ders introduce variations by construction of the method! as
compared with that of direct Jacobi iteration~open circles! as
a function of iteration step for 4f photoemission from the
third W layer in a W~110! surface covered with one mono
layer of 131 O and with an emission angle of 46°.59 Two
different definitions of the reliability factor have been use
based upon either the relative average deviation given by
~34! by substitutingN by the iteration stepn (Rave, thick
curves!, or the maximum deviation over the azimuthal sc
~thin curves!

Rmax5
max$uI n2I `u%

I `
, ~35!

respectively, where the average is performed over azimu
scans for a polar angle of emissionu546°. Both iteration
methods show similar convergence behavior for the re
tively small cluster of Fig. 4~a!, consisting ofN565 atoms.
However, for the larger cluster of Fig. 4~b! (N5189), the
Jacobi method fails to converge, whereas the recurs
method shows a steady convergent trend.
4-10
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As pointed out above, the computational cost of EDA
scales as (l max11)3 with l max. Consequently, it is desirabl
to have a criterion to limit the value ofl max used in actual
MS calculations while maintaining the required degree
accuracy. This criterion is provided by the reliability fact
for the atomic scattering amplitudef,

Rf5
1

3AE dVu f l max2 f l max5`u2

E dVu f l max5`u2

, ~36!

where the integrals are extended over all scattering direct
V. Figure 4~c! shows the dependence ofRf on l max for
250-eV electrons scattered on W atoms~open circles! as
compared with the reliability factor for MS under the sam
conditions as in Fig. 4~a! for N5123 atoms~solid circles!.
The latter has been obtained from Eq.~34! by varying l max
rather thanN for azimuthal scans with polar angle of emi
sion u546°. Both Eqs.~34! and ~36! are proportional to
relative variations of the atomic scattering amplitude, so t
one is comparing quantities of the same order of magnitu
Actually, they exhibit a similar behavior withl max, as shown
in Fig. 4~c!, which indicates that Eq.~36!, whose computa-
tion requires a negligible time as compared with MS cal
lations, offers a good estimate of the error that is made w
finite values ofl max are used, thus providing a criterion t
determine the appropriate value ofl max before performing
actual MS calculations. Similar results are obtained for ot
values ofu. Interestingly, all angles of scattering enter in
the definition ofRf , and this is consistent with the fact th
MS in a solid involves a dense set of single scattering ang
Also shown in Fig. 4~c! is the l max value obtained from the
simple criterion mentioned earlier (l max5krmt), which is
11.3.

As another PD example, Fig. 5 shows the angular dis
bution over the upper-hemisphere for W 4f photoelectrons
coming from the outer W layer of a W~110! surface covered
with one monolayer of 131 O and illuminated with left
circularly polarized~LCP! light under normal incidence, a
shown in the insets. The quantity actually plotted
@ I (u,w)2I 0(u)#/I 0(u), whereI 0 is the average of the inten
sity over azimuthal angles. In calculating the data displa
in Fig. 5~a!, the MS procedure has been carried out only on
for all directions of emission, as explained in Sec. III A, th
saving considerable time. Figure 5~a! exhibits reduced sym
metry with respect to that expected for W~110! owing to the
fact that LCP light is used, and also because the oxy
atoms are displaced with respect to a center of symmetr
the surface~see the schematic top view!. Two different do-
mains can also exist on this surface:59 the one depicted in the
insets, and another one with the oxygen lying in a mirr
image symmetry-equivalent W valley. The average over
result obtained from both domains has been performed.
maximum intensity~bright regions! near the@001# azimuthal
direction is rotated clockwise, as expected from the use
LCP light andf core levels.60,61,59 This rotation reproduces
very well the available experimental data shown in Fig. 5~b!,
and taken from Ref. 59.
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As a last example of PD, we consider photoemission fr
atoms near surface steps, where the lack of symmetry m
it difficult to use layer-by-layer methods in simulation
while the cluster approach is perfectly suited for that p
pose. Prior x-ray PD experiments on O adsorbed on step
Cu surfaces indicated, for instance, a high sensitivity
structure via SS calculations.62 Here we show calculated az
muthal scans of photoelectrons coming from Xe atoms
sorbed near a step on a Pt~111! surface~Fig. 6!. The insets on
the right-hand side of the figure schematically show the
ometry under consideration. Two different possible stru
tures have been studied: one row of Xe atoms located ei
on the lower terrace~upper part of the figure! or on the upper
terrace~lower part!, continuing the bulk Pt structure in bot
cases. Experimental evidence coming from low-energy
scattering63 indicates that the lower terrace is the preferr
geometry. The results presented in Fig. 6 permit one to c
clude that the features exhibited by PD scans would al
one to distinguish between the two possibilities, although
actual experimental data are available for this case. Mo
over, at least 100 atoms are needed to obtain the domi
features when the Xe atoms are sitting on the upper terr
However, strong forward scattering, dominated by nea
neighbors of the emitter, occurs when the Xe atoms are
ting on the lower terrace, and therefore, a 22-atom clu
produces good qualitative results. In both cases, converg
in the fine structure requires approximately 500 atoms.

V. ELASTIC ELECTRON SCATTERING FROM
MOLECULES

The scattering of an external electron beam from a m
ecule represented by an atomic cluster is discussed in
section. The initial electron state of Eq.~1! will be described
by a plane wavew0(r )5exp(ik i•r ), which can be expanded
in partial waves around each of the cluster atoms, and u
Eqs.~7!–~9! and ~13!, one finds

fa,L
0 54pta,lYl 2m~Vk!~21!meiki•Ra2za/2l i, ~37!

where za has the same meaning as in Eq.~33!, with the
surfacenow defined as the boundary of the molecular el
tronic charge distribution. These are the input wave-funct
coefficients from which one can obtain those of the se
consistent wave function@Eq. ~10!#, fa,L , after MS is per-
formed using the methods described in Sec. III. The lat
upon insertion into Eq.~33!, permits one to compute th
diffracted electron intensity. ChoosingC51, Eq.~33! repre-
sents the scattering cross section.

This procedure is carried out for C60 molecules and
809-eV electrons in Fig. 7~a!, where experimental result
taken from Ref. 64 are compared with SS calculations~also
reported in Ref. 64! and MS calculations represented by br
ken and solid curves, respectively, as a function of scatte
angle. MS results in better agreement for the relative he
of the prominent diffraction peaks at around 5° and 8.5°,
compared with the SS analysis.

In order to emphasize the contribution of MS, lower ele
tron energies~100 eV! and a backscattering geometry a
considered in Fig. 7~b! for electron scattering by C60 mol-
4-11
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FIG. 8. Calculation of the
LEED pattern of the Si~111!-(7
37) surface for 50-eV electrons
coming along the surface norma
The surface structure factorS2

~upper-left figure! has been ob-
tained for the symmetry of the
Si~111!-(737) surface, and for a
beam diameter of 100 Å. The en
velope functionI ~lower-left fig-
ure, on a logarithmic scale!, which
contains all the information abou
the atomic positions within a
given surface unit cell as well a
near-neighbor scattering, stand
for the angular distribution of
scattered electrons assuming th
the first atomic scattering even
occurs within the selected uni
cell. The full LEED pattern~right
figure, in linear scale! is obtained
as the direct product of the struc
ture factor and the envelope func
tion @Eq. ~38!#. The axis labels
represent the components of th
electron momentum parallel to th
surface.
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ecules. The thick solid curve represents the fully conver
result obtained by using the recursion method~convergence
has been obtained after 11 iterations within the scale of
figure!. The thin solid curve shows the results obtained a
only five iterations, which are in qualitative good agreem
with the exact result. By contrast, direct Jacobi iteration is
from convergence even after 25 iterations~thick broken
curve!. A similar lack of convergence is also found when t
SR method is used in this case. The C60 molecule, like the
C-C cluster of Sec. IV, is a severe test of multiple scatter
because the carbon atoms are reasonably strong scat
placed relatively close together.

VI. LOW-ENERGY ELECTRON DIFFRACTION

The cluster approach followed in this work finds applic
tion in the simulation of LEED intensities for large-unit-ce
surfaces, where conventional layer-by-layer schemes bec
quite expensive computationally. It is also directly applica
to nonperiodic surfaces, including disordered overlayers,
ordered alloys, point defects, steps and kinks, adsorbed c
ters, quasicrystals, etc.

In a periodic surface, the scattering of electrons in a
surface unit cell differs from that of the first unit cell by
phase factor, exp@i(k i2k f)Ra#, wherek i (k f) is the incom-
ing ~outgoing! electron momentum vector, andRa is a Bra-
vais lattice vector. Therefore, LEED intensities can be cal
lated within the present cluster approach by takingfa

0 as in
Eq. ~37! for the atoms of the first unit cell, and zero els
where. One obtains

I LEED~V!5I ~V!uS~k i
i2k f

i !u2, ~38!
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where

S5(
a

ei (ki2k f )Ra,

is the surface structure factor,4 andI (V) is an envelope func-
tion given by Eq.~33!, where the coefficientsfa,L are ob-
tained from a MS calculation within a cluster containing t
first unit cell and atoms around it up to a distance far enou
to guarantee convergence. The cluster size is thus determ
by the electron inelastic mean free path and the size of
first unit cell, with the cluster extending beyond the unit c
by roughly the electron inelastic attenuation length.

For an infinitely extended incoming beam and a perf
infinite surface, the two-dimensional structure factorS van-
ishes except along those directions for which the compon
of k i2k f parallel to the surface equal a reciprocal surfa
lattice vectorG denoted by Miller indices (hk), giving rise
to a factord(k i

i2k f
i 2G); this corresponds to the so-calle

(hk) beam at the polar directionVG . Integrating over direc-
tions of emission aroundVG , the probability that the elec
tron is reflected along such a direction is found to be

PG5S 2p

AkD 2 I ~VG!

cosu i cosu f
,

whereu i (u f) is the polar angle of incidence~reflection! with
respect to the surface normal,A is the surface unit-cell area
andk is the electron momentum. With the normalization
Eq. ~37! and takingC51 in Eq. ~33!, PG is actually the
fraction of incoming electrons that are reflected in theG
beam.
4-12
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FIG. 9. Comparison of ob-
served ~upper figures, from Ref.
66! and calculated~lower figures!
LEED patterns for the Si~111!-(7
37) surface using two differen
electron energies: 50 eV~left! and
75 eV ~right!. The electron beam
is coming perpendicular to the
surface and it has a diameter o
100 Å. The axis labels represen
the components of the electro
momentum parallel to the surface
Some white lines have bee
drawn to guide the eye.
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In practice, the electron beam has a finite coherence w
of the order of 100 Å, depending on the angular and ene
spread of the electron gun. This effect can be accounted
in a phenomenological way by considering that only a fr
tion of the unit cells contribute coherently with respect to
arbitrarily chosen central unit cell. Assuming a Gaussian p
file for this effect with half widthH, and assuming further
more that there is no substantial variation of cohere
across any given unit cell, one finds

S5(
a

e2Ra
2 /2H2

ei (ki2k f )Ra5~2p!3
H2

A (
G

e2uki
i
2k f

i
2Gu2H2/2,

~39!

where the first~last! sum is extended over surface lattice sit
Ra ~reciprocal surface lattice vectorsG). Obviously, the sum
in reciprocal space reduces to a single term at most in
H→` limit, and a few more terms allow achieving goo
convergence for typical values ofH;100 Å. Inserting Eq.
~39! into Eq.~38!, one finds a finite reflection probability fo
every directionV.

The present formalism has been applied to the Si~111!-
(737) surface. The atomic positions were taken from a p
vious LEED analysis,65 in which intensive use was made o
the symmetry of the surface. By contrast, the results p
sented here were obtained directly without any symme
considerations beyond the surface unit-cell geometry. Fig
8 shows the final LEED patternI LEED ~right figure! as well as
the surface structure factorS2 ~upper left figure! and the
envelope functionI ~lower left figure! for an incident beam
of 50-eV electrons coming along the surface normal. T
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axis labels represent the components of the electron mom
tum parallel to the surface. The structure factor exhibits
dense spot pattern that reflects the symmetry of the large
cell of the Si~111!-(737) surface. This is a purely geometr
cal quantity which does not contain any information abo
the actual positions of the atoms within the surface unit c
but does reflect the quality of the electron beam via Eq.~39!.
That information is fully contained in the envelope functio
~lower left figure!, which presents marked maxima near t
positions expected for the LEED spots of the unreco
structed Si~111! surface~see the six prominent peaks in th
figure!. The envelope function modulates the intensity tha
observed around each of the spots of the structure fac
leading to the complex LEED pattern shown in the right p
of the figure.

The calculation of the envelope functionI (V) was per-
formed using a cluster consisting of 1545 atoms, of wh
only 494 are contained within the surface unit cell. The clu
ter extends up to 15 Å below the surface, and the elect
inelastic mean free path has been taken as 5.5 Å.

This calculation has been compared with experimen
observations in Fig. 9 both for 50-eV electrons and for 75-
electrons~left and right side of the figure, respectively!.66

Note the large change in the measured distribution of
brightest spots when one goes from 50 to 75 eV~upper fig-
ures!, which is well reproduced by the present calculati
~lower figures! using an inner potential of 10 eV.

As another example of application of the present meth
to LEED with a large unit cell, the case of a W~110! surface
covered with one monolayer of Gd is considered in Fig.
4-13
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FIG. 10. ~a!–~d! Calculated LEED patterns for a W~110! surface covered with one monolayer of Gd. The electron energy is 102 eV.
electron beam is coming along the surface normal and its diameter is 100 Å.~a! Schematic representation of model A for the structure w
W ~solid circles! and Gd~open circles! shown, leading to a large Moire´ structure.~b! LEED intensity for modelA. ~c! and~d! Same as~a!
and ~b! for modelB, as shown in~c!. The average over the geometry depicted in~c! and its mirror reflection with respect to the W@001#
direction is performed in~e!. ~e! Experimental result, taken from Ref. 68. The axis labels represent the components of the e
momentum parallel to the surface. Some white lines have been drawn on the LEED images to guide the eye.
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Various experimental LEED studies of this structure we
reported in the past.67,68 Fig. 10~a! shows the model~A! pro-
posed by Toberet al.,68 wherein the Gd overlayer forms
rectangular coincidence lattice with 7314 periodicity and
with a mismatch of 0.6% area increase relative to b
Gd~0001!. The calculated LEED pattern represented in F
10~b! for this model is obtained from Eqs.~38! and ~39! for
an electron beam diameter of 100 Å and an energy of
eV. The surface is described by five W layers below the
overlayer, so that 648 atoms are contained in the surface
cell, and 2516 atoms are used in the calculation to incl
the regions surrounding the surface unit cell. Some of
spots are clearly highlighted, by the envelope function, a
in particular the six brighter spots coming from the Gd ov
layer. Six satellites around each of them are clearly hi
lighted, forming a quasisixfold satellite pattern~see the white
lines drawn to guide the eye!, in reasonable agreement wit
the experimental result shown in Fig. 10~e! ~taken from Ref.
68!.

Since the spot pattern imposed byS for this model is a
rectangular one, leading to the emergence of spurious s
lites not observed in the experiment, a different model str
ture ~modelB) with a 1.8% overall area reduction relative
Gd~0001! has been tried, as represented in Figs. 8~c! and
8~d!. Two different domains are possible in this case. T
corresponding LEED pattern averaged over both domain
shown in Fig. 8~d!. This results in a somewhat poorer agre
ment with experimental observations68 @Fig. 10~e!#, and
demonstrates the power of such simulations to assist in s
tural studies.
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In summary, the present method allows one to calcu
LEED patterns for complex structures using large clusters
up to several thousand atoms, which are now beyond pra
cal reach of currently available layer-by-layer methods
LEED simulation.

VII. CONCLUSIONS

A method for the simulation of electron diffraction i
atomic clusters~EDAC! was introduced. The computatio
time was shown to behave likeN2( l max11)3, whereN is the
number of atoms andl max is the maximum angular momen
tum quantum number. Actual calculations using above 10
atoms have been presented. This was made possible v
convenient separation of the exact free-electron Green fu
tions into rotation matrices and propagators along thez axis.

The resulting EDAC code relies on the iterative soluti
of the multiple scattering~MS! secular equation, for which
various iteration techniques have been compared. In part
lar, the recursion method was shown to prevent even
cases of lack of convergence in the MS expansion series
to result in faster convergence as compared with the di
MS approach. A modified recursion method was introduc
in order to be able to quickly obtain angular distributions
scattered or emitted electrons from a single MS calculat
~see Sec. III A!.

The computational effort in EDAC is not very sensitive
the detailed form of the atomic scatteringt matrices~e.g.,
diagonal vs nondiagonal!, and it therefore constitutes a goo
4-14
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platform for including the effects of non-spherical atoms
MS. Further research in this direction is in progress.56

Examples of application of EDAC to PD were given f
Cu~111!, O/W~110!, and Xe adsorbed near steps of a Pt~111!
surface. The present cluster approach is particularly suit
for these cases due to the lack of translational symme
Also, PD from a C-C dimer was shown to lead to a lack
convergence in the MS expansion, and this pathology
prevented by using the recursion method. Electron ela
scattering on C60 molecules was also discussed, and MS w
shown to result in improved agreement with experiment
compared to single scattering.

Finally, a formalism for studying LEED within the cluste
approach was presented and applied to LEED from lar
unit-cell surfaces. In particular, the relative intensity of t
different LEED spots observed experimentally for t
Si~111!-(737) are well reproduced by this theory. Also, tw
e

r

i
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different models for the surface structure of one monola
of Gd on W~110! were considered, and the resulting LEE
patterns discussed in the light of the available experime
results. The formalism can also be applied to a wide vari
of nonperiodic surface structures, and to free molecules.
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