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Auger recombination in semiconductor quantum wells in a magnetic field

Georgii G. Samsonidze and Georgy G. Zegrya
A. F. Ioffe Physico-Technical Institute, 26 Polytekhnicheskaya, St. Petersburg 194021, Russia

~Received 24 July 2000; published 1 February 2001!

Auger process involving two electrons from the conduction band and a heavy hole from the valence band in
semiconductor heterostructures with quantum wells is investigated for the case of a magnetic field applied
normal to heteroboundaries. It is shown that there exist three different mechanisms of Auger recombination,
associated with~I! electron scattering at interface with transition into the continuous spectrum,~II ! short-range
Coulomb interaction in the quantum well with transition into the continuous spectrum, and~III ! resonance
transition into the discrete spectrum. All these processes are thresholdless. The Auger recombination coeffi-
cients analytically calculated for the processes I, II, and III show different dependencies on temperature,
magnetic field, and quantum well parameters. In the limit of an infinitely wide quantum well, processes I and
II merge to form a bulk threshold Auger process, while process III remains thresholdless resonance one. In the
limit of infinitely weak magnetic field, process I remains thresholdless, process II becomes a quasithreshold
process~i.e., its threshold energy slightly depends on temperature!, and process III transforms into a nonreso-
nance process with a threshold. The results obtained are new and have no analogies in the literature.

DOI: 10.1103/PhysRevB.63.075317 PACS number~s!: 73.40.2c, 71.20.Mq, 75.50.Pp, 78.66.Hf
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I. INTRODUCTION

The Auger process is one of the most important mec
nisms of nonradiative charge carrier recombination in se
conductors. Various Auger recombination channels in hom
geneous semiconductors have long been investigated in
absence of magnetic field.1–3 Two Auger recombination pro
cesses, the first involving two electrons and a heavy h
~CHCC Auger process!, and the second involving an electro
and two heavy holes~CHHS Auger process!, take place in
narrow-gap semiconductors.2 It has been shown that the ra
of Auger recombination depends on temperature expon
tially, i.e., Auger recombination processes are character
by a threshold.2 In an Auger recombination event, the thir
~excited! particle acquires, owing to the Coulomb intera
tion, a large amount of energy on the order of the gap wi
Eg . Therefore, the excited particle must also acquire a la
momentum. By virtue of the momentum conservation l
the system of interacting electrons and holes must also
sess a large momentum, and consequently high energy
fore recombination. Therefore, only those particles can p
ticipate in recombination whose total kinetic energy
sufficiently high ~much higher than the average kinetic e
ergy of particles!. This means that Auger recombination h
an energy threshold. However, the presence of magnetic
removes the threshold for the transitions to the discrete s
trum ~to high-excited Landau levels! in homogeneous
semiconductors.4

The disappearance of the threshold can be expla
qualitatively. The electron spectrum is discrete in the dir
tion perpendicular to the magnetic field. An Auger electr
with energy approximately equal to the gap width mak
vertical transition to a high Landau level without quasim
mentum change as a result of Coulomb interaction. The
fore, it is not required a large quasimomentum to be tra
ferred in a Coulomb interaction of two electrons. It is on
necessary that the Auger electron be delivered exactly to
Landau level. Therefore, the Auger process is resonant
0163-1829/2001/63~7!/075317~13!/$15.00 63 0753
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quantizing magnetic field. Hence, the Auger process rate
cillates as a function of the magnetic field strength.

An Auger process involving a transition to a light ho
state has been investigated in terms of three-band Ka
model in bulk semiconductors, and oscillations of the tran
tion rate as a function of magnetic field strength have b
observed.4 Auger transitions in quantum wells in strong ma
netic fields have been detected in luminescence5 and cyclo-
tron resonance6 experiments. Both these papers notice t
resonance behavior of the Auger process probability a
function of magnetic field. The Auger process rate in a qu
tum well with magnetic field has also been calculated.7 How-
ever, the real band structure of semiconductors has been
glected and only interband transitions between elect
Landau levels have been taken into account. The rate
Auger processes in semiconductors with complicated
lence band structure~i.e., with heavy hole states taken int
account! in a magnetic field have not been reported in t
literature.

It is commonly assumed that the reasons for Auger
combination in quantum wells are the same as in homo
neous semiconductors.8,9 Nevertheless, the threshold disa
pears in a quantum well for a transition to the discre
spectrum even without any magnetic field.10–12The presence
of heteroboundaries removes the limitations imposed on
electron–electron interaction processes by the energy
momentum conservation principles, since the excited Au
electron acquires necessary quasimomentum when inte
ing with ~being scattered at! the heteroboundary. Namely
the conservation of the momentum component normal to
heteroboundary surface is removed with new threshold
Auger recombination channels formed in heterostructu
All of them have been investigated repeatedly. In particu
threshold and thresholdless Auger recombination chan
have been analyzed for a single heteroboundary.10 The
thresholdless Auger recombination channel correlated w
small momenta transferred in Coulomb interaction of p
ticles has been studied.11 The threshold and thresholdles
©2001 The American Physical Society17-1
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GEORGII G. SAMSONIDZE AND GEORGY G. ZEGRYA PHYSICAL REVIEW B63 075317
Auger recombination channels in quantum wells, cor
sponding to electron scattering at heteroboundaries an
Coulomb electron scattering in the quantum well volum
have been calculated.12

The purpose of this work is to investigate theoretically t
basic Auger recombination channels in a semicondu
quantum well with perpendicularly applied magnetic fie
The Auger process involving two electrons from the cond
tion band and a heavy hole from the valence band~CHCC
Auger process! is studied. In this process, the first electr
recombines with the heavy hole, and the second proceed
high excited state as a result of the Coulomb interaction. T
state may lie in a continuous or discrete energy spectr
There are three fundamentally different Auger recombinat
channels based on~1! electron scattering at the heteroboun
ary and transition to a continuous spectrum state,~2! Cou-
lomb electron scattering in the volume of the quantum w
and transition to a continuous spectrum state, and~3! reso-
nance transition to a discrete spectrum state. It is shown
the rates of the Auger recombination processes corresp
ing to different channels have different dependencies on t
perature, magnetic field strength, and quantum well par
eters. The paper is organized in the following way. In Sec
a brief description of the wave functions and the ene
spectra of electrons and holes is given. In Sec. III, the Au
recombination coefficients are calculated. In Sec. IV, the
sults are analyzed and discussed. The summarizing rem
follow in Sec. V.

II. SPECTRA AND WAVE FUNCTIONS OF
CHARGE CARRIERS

Wave functions of charge carriers are to be known
analyzing the Auger recombination mechanism and calcu
ing the Auger process rate. Wave functions are to be fo
using a multiband approximation, as it has been done
bulk Auger processes.2 We use four-band Kane’s model de
scribing the wave functions and energy spectrum of carr
in narrow-gap AIIIBV semiconductors with the highes
precision.13 Usually the eigenfunctions of the angular m
mentum are taken as basis functions of the conduction
valence bands.13,14However, we choose the representation
the basis functions

uS↑&,uS↓&,uX↑&,uX↓&,uY↑&,uY↓&,uZ↑&,uZ↓&, ~1!

more useful for our purposes, whereuS&, uX&, uY&, and uZ&
are the Bloch functions of theS and P type with angular
momenta of 0 and 1, respectively. The first of them d
scribes the conduction band state, and the others the val
band state at the center of the Brillouin zone. The arro
correspond to the spins quantized along thez axis. The wave
function of the carriers is given by

C5CsuS&1CpuP&, ~2!

where Cs and Cp are the spinors. In the vicinity of the
center of the Brillouin zone, equations for the envelope fu
tions Cs andCp can be written in the spherical approxim
tion
07531
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~E2Ec!Cs2gk•Cp1 1
2 \vszCs50,

2gkCs1~E1d2Ev!Cp2 id@s,Cp#1 1
2 \vszCp ~3!

1
\2

2m
~g122g2!k2Cp1

\2

2m
6g3k~k•Cp!50.

Here g is Kane’s matrix element,14 g1 and g25g3 are the
generalized Luttinger parameters,14 d5Dso/3, Dso is the
spin-orbit splitting,Ec and Ev are the conduction and va
lence band-edge energies,m is the free electron mass,s
5(sx ,sy ,sz) are the Pauli matrices, k52 i“
2(e/(\c))A, e is the electron charge,A is the vector poten-
tial of the magnetic field of strengthH directed along thez
axis, andv5ueuH/(mc) is the cyclotron frequency. In the
first equation of the system~3! we neglect the free electro
mass term. If the heavy hole mass describing the interac
with the higher bands is introduced phenomenologically
stead of the Luttinger parameters, the system~3! is to be
transformed into the equations derived by Suris.15 It can be
shown that Eqs.~3! are identical to those commonl
used.14,16–18 Let Ev5d and Ec5Eg1d, where Eg is the
semiconductor band gap. By choosing the vector poten
A5(2Hy,0,0) corresponding to magnetic field of streng
H5(0,0,H), one can find thatk52 i“2(y/l2,0,0), where
l is the quantum magnetic length defined byl25\/(mv).

We first present the solution of system~3! for a homoge-
neous semiconductor in a magnetic field. A Fourier tra
form can be performed in the plane (x,z) with the wave
function presented in the formC5 exp(ikxx1ikz)F. Herekx
and k are the wave vectors along thex and z axes, respec-
tively. Let us introduce the operatorp5 l 1 j z , where l
5c†c,

j z52 i
]

]w
1

1

2
sz and w5arctan

y

x
. ~4!

Herec andc† are the harmonic oscillator raising and lowe
ing operators,19 and j z , which is thez-axis projection of the
total angular momentum, is equal to the sum of thez-axis
projections of the orbital angular momentum and the s
angular momentum of the electron. It can be shown that
operatorp commutes with the Hamiltonian of the system
Therefore, the eigenvalues of the operatorp are the same for
each component of the wave function. Thus the wave fu
tion can be written in the basis of eigenfunctions of the to
angular momentum:

F5(
i 51

8

Fi f l 2 j zi
~z!u j i j zi&. ~5!

Here f l(z)5 exp(2z2/2)Hl(z) is the harmonic oscillator
function,Hl is the Hermite polynomial, andz5y/l2l kx is
the normalized coordinate. In this way the wave vectorkx
just shifts the origin of harmonic oscillator function. Th
wave function~5! is to be transformed to the basis~1! in
order to substitute into the system~3! and obtain energy
spectra and wave function coefficients of carriers. The ba
transformation can be found in Ref. 19. The energy spe
7-2
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AUGER RECOMBINATION IN SEMICONDUCTOR . . . PHYSICAL REVIEW B 63 075317
and wave functions are given in the Appendix. The quant
well can be presented in the following form:

uzu,a/2: Ec5Eg1d, Ev5d, DSO53d,

uzu.a/2: Ec5Eg1d1Vc , Ev5d2Vv , DSO53d̃.
~6!

The magnetic field is applied normally to the quantum w
plane. The wave function is given by

C5eikxxeikzF6eikxxe2 ikzSF ~7!

in the quantum well region. The factors exp(6ikz) in ~7!
have to be replaced by exp(2kuzu) in the barrier regions. The
plus and minus signs in~7! correspond to different wave
function symmetries in the quantum well. The matrixS can
be written as a direct productS5P^ R, where the matrixP
acts on the coordinate components, and the matrixR on the
spinor components of the wave function. By substitutin
2k for k andSF for F, we can obtainP5diag(1,1,1,21)
from the first equation of the system~3! and thenR5sz
5diag(1,21) from the second equation. Thus, the matrixS
in the basis~1! is given by

S5diag~1,21,1,21,1,21,21,1!. ~8!

Some approximate methods to derive boundary conditi
for quantum well heterostructures have been developed
cently. Usually Kane’s parameterg varies only slightly in
AIIIBV semiconductor heterostructures. Henceg is often sup-
posed to be continuous14. For the sake of simplicity, we als
consider that generalized Luttinger parametersg1 andg2 and
dielectric constantk0 ~see below! are continuous across th
heteroboundaries. As shown in Ref. 12, the difference
tween Kane’s parameters in the quantum well and bar
region almost does not change the Auger recombination
efficient. It is also shown in Ref. 12 that taking into accou
the difference between the dielectric constants in these
gions influences only slightly the Auger recombination co
ficient. Following the method elaborated by Burt16 and as-
suming the continuity of Kane’s parameter, the equatio
that can be integrated across the heterobarrier are de
from the system~3!. Using these equations and the probab
ity flux density conservation law, the boundary conditio
for the wave function envelopes can be derived. The bou
ary conditions require the continuity at the heterobounda
for the following quantities:

gCpz ,

~g122g2!
]

]z
Cpx ,

~g122g2!
]

]z
Cpy , ~9!

gCs1
\2

2m
6g2

Ec2E

g
Cs1 i

\2

2m
~g122g2!

]

]z
Cpz ,

~g122g2!Cpx ,

~g122g2!Cpy .
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The wave function of the electron can be written as
linear combination of two wave functions corresponding
two spin orientations of the electron. Neglecting Lutting
parameters, we can find from the boundary conditions~9!
that the componentsCs and Cpz of the wave function of
electron must be continuous at the heteroboundaries.
dispersion equation obtained from these boundary condit
for electrons is given in the Appendix.

The wave function of the hole is a superposition of thr
subbands of the valence band: heavy, light, and SO ho
However, the last subband decays exponentially away fr
the heteroboundary. As a consequence, this branch ma
affects the derivative of wave function near the heterobou
ary, and its influence on the wave function itself is neg
gible. Thus, we can seek for the wave function as a sup
position of the heavy hole and light hole subbands. Near
upper edge of the valence band,ml!mh @ml and mh are
defined by Eq.~A12! in the Appendix#. This means that the
second and third of the boundary conditions~9! are inappli-
cable. In this approximation, light and heavy holes do n
mix with each other and have different spectra.12 The heavy
hole spectrum coincides with the quantum-mechanical sp
trum of a particle in a rectangular quantum well. The disp
sion equation for heavy holes is given in the Appendix.

III. AUGER RECOMBINATION COEFFICIENTS

The probability of Auger recombination in terms of firs
order perturbation theory is given by the following expre
sion:

Wf i5
2p

\
uM f i u2d~Ef2Ei !, ~10!

where

M f i5 K C f~r 1,r 2!U e2

k0ur 12r 2u
1w~r 1,r 2!UC i~r 1,r 2!L

~11!

is the matrix element of the Coulomb interaction,r1 and r2
are the coordinates of carriers, andw(r1 ,r2) is the additional
potential arising from the difference between the quant
well dielectric constantk0 and the barrier region dielectri
constantk̃0. An explicit expression forw(r 1,r 2) is derived in
Ref. 12.

Taking into account the antisymmetrized forms of t
wave functions, the matrix element~11! becomes the follow-
ing:

M f i5M I2M II , ~12!

M I5 K C3~r 1!C4~r 2!U e2

k0ur 12r 2u

1w~r 1,r 2!UC1~r 1!C2~r 2!L , ~13!

and expression forM II can be obtained from~13! by inter-
change of indices 1 and 2 in the arguments of wave fu
tions C1 andC2.
7-3



na

es
a

ng

ig

n,

e

rr

ct

ell

GEORGII G. SAMSONIDZE AND GEORGY G. ZEGRYA PHYSICAL REVIEW B63 075317
We now consider the CHCC process of Auger recombi
tion. Only a small number of ground states~the first size
quantization level and few first Landau levels! participate in
the Auger process at sufficiently low temperatures. Th
ground states are shown in Fig. 1. There are two domin
types of transitions which occur between the followi
states:

~c↑ ,1,l 5p11,kc ,kx1!1~c↓ ,2,l 5s,kr ,kx2!

→~c↑ ,1,l 5n11,kf ,kx3!1~hh↓ ,2,l 5t21,kh ,kx4!,

~14!

~c↓ ,2,l 5p,kc ,kx1!1~c↑ ,1,l 5s11,kr ,kx2!

→~c↓ ,2,l 5n,kf ,kx3!1~hh↑ ,1,l 5t12,kh ,kx4!.

~15!

Here the symbolsc↑ , c↓ , hh↑ , and hh↓ identify the
branches of the electron and heavy hole spectra; the s
plus and minus denote the symmetries of wave functions~7!
in the quantum well;kc , kr , kf , andkh are the wave vectors
of size quantization ground states;kx1 , . . . ,kx4 are thex-axis
wave vectors;l is the Landau level index; andp,s,n,t
50,1,2, . . . Thenumbern may be equal to, or greater tha
0, and equal to, or less than,nmax>2Eg /(\vc)@1, accord-
ing to the energy conservation law (vc is defined in the
Appendix!. We consider two main cases:~1! n50,1,2, . . .
~transition to continuous spectrum states! and ~2! n>nmax
~transition to discrete spectrum states!. Both processes ar
shown in Fig. 2. According to the dispersion equations~see
the Appendix!, kc>kr,kf'kh for the first case andkc>kr
.kf,kh for the second.

A. Transition into the continuous spectrum

The Auger transition to continuous spectrum states co
sponds to the following conditions for the indexn and wave
vectors of carriers

n50,1,2, . . . and kc>kr,kf'kh . ~16!

FIG. 1. Ground states of charge carriers in a semicondu
quantum well with perpendicularly applied magnetic field.
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By substituting the wave functions given by~A1!, ~A7!, and
~A18! for the process~14! into matrix element~13! and using
approximationVc,v!Eg , we obtain

M I>
21/2e2g

p3k0EgX2Z1/2l3a3/2~2n1p1s1tn! p! ~s11!! t! !21/2I ,

~17!

where

I 5E E E
R3

q22eiq(r12r2)d3q

3E E
R2

ei (kx12kx3)x1ei (kx22kx4)x2dx1dx2

3E E
R2

f p~y1 /l2lkx1! f n~y1 /l2lkx3!

3 f s11~y2 /l2lkx2!3 f t~y2 /l2lkx4!dy1 dy2

3E E
R2

f~kcz1!f~kfz1!f~krz2!f~khz2! dz1 dz2 ,

~18!

X andZ are normalization constants, and

uzu,a/2: f~kc, f ,r ,hz!5 cos~kc, f ,r ,hz!,

uzu.a/2: f~kc,rz!5e2kc,r uzu,

f~kfz!5 cos~kfz!, f~kfz!50. ~19!

Here and in the following we drop the prefactor:

S 12
g2~~kf2kc!

21kr
2!

2Eg
2 D Eg

Eg2d S 112t
kr

kh
D , ~20!

which is about 1 in formulas for the matrix elementM I.

or

FIG. 2. CHCC Auger process in a semiconductor quantum w
with perpendicularly applied magnetic field.~a! A transition to a
continuous spectrum state,~b! a transition to a discrete spectrum
state. HereEc is the energy of the electron, andkc the wave vector
of the electron.
7-4
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AUGER RECOMBINATION IN SEMICONDUCTOR . . . PHYSICAL REVIEW B 63 075317
At sufficiently low temperatures (T<\vc), when the
magnetic field effects become important, we can take i
account only the ground Landau levels of the initial stat
p50 ands50. In this approximation we still obtain a resu
of correct order, reflecting important features of the mat
element as a function of temperature, magnetic field stren
and heterostructure parameters. However, for these level
limit H→0 is equivalent to the limitkx,y→0 in the absence
of magnetic field.20 Note that the indext takes all values
between 0 and̀ due to the condition\vh!\vc , and so
doesn (vh is defined in the Appendix!. We also suppose tha
the magnetic field is not too high so that the Landau le
coupling is much less than the size quantization energy\v
!\2k2/2m. This condition can be written in the forma2

!l2. Thenqz
2@qx

21qy
2 , and the factorq22 in ~18! can be

expanded into the seriesq22>qz
222(qx

21qy
2)qz

24 . Using
these approximations, the integral~18! can be easily calcu
lated as

I >~21!n222[(n1t)/2]p9/2le2k13
2

2k14
2

H~k34,k13!J

3d~kx11kx22kx32kx4! ~21!

with the help of integral tables.21 Here ki j 5l(kxi2kx j)/
A2 (i , j 51, . . . ,4),

J5ql
21E E

R2
f~kcz1!f~kfz1!f~krz2!f~khz2!

3e2ql uz12z2u dz1 dz2 , ~22!

H~k34,k13!5Hn1t11~k34!14k13Hn1t~k34!

14tHn1t21~k34!, ~23!

ql
252@Hn1t13~k34!18k13Hn1t12~k34!14~4k13

2 1t !

3Hn1t11~k34!24tk13Hn1t~k34!#/@2l2H~k34,k13!#,

~24!

andHn(k) is a Hermite polynomial.
An approximate expression for the integral~22! can be

obtained by integration by parts over thez1 coordinate.12 We
again use the approximationVc,v!Eg . Then~22! becomes

J>J11J2 , ~25!

where

J15F~a/2!E
2a/2

a/2

f~khz!f~krz!eqlz dz

2F~2a/2!E
2a/2

a/2

f~khz!f~krz!e2qlz dz, ~26!

F~6a/2!57
2

kf
21ql

2 e2qla/2f~6kfa/2!f~6kca/2!

3S 3Vc1Vv

4Eg
2

k02k̃0

k01k̃0
D , ~27!
07531
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J25
2

kf
21ql

2E
2a/2

a/2

f~khz!f~krz!f~kfz!f~kcz! dz. ~28!

The term (k02k̃0)/(k01k̃0) in Eq. ~27! arises from taking
into account the additional potentialw(r 1,r 2) in Eq. ~13! ~see
Ref. 12!.

Expression~25! shows that the matrix element splits in
two terms. The first termJ1 is related to the presence o
heteroboundaries, and the second termJ2 corresponds to the
short-range Coulomb scattering. The latter is conditioned
the fact that large energy is transferred in Auger transit
and this is possible only if the scattering particles find the
selves very close to each other. We suppose thata2!l2, and
therefore,qlz!1 in J1 which corresponds to scattering
both heteroboundaries simultaneously. Calculation of the
tegralsJ1 andJ2 gives

J1>
8kh

~kf
21ql

2!~kh
21ql

2!

kckr

A~kc
21kc

2!~kr
21k r

2!

3S 3Vc1Vv

4Eg

2
k02k̃0

k01k̃0
D cos~kfa/2!,

J2>2
kh

~kf
21ql

2!~~kf2kc2kr !
22kh

2!
cos~~kf2kc2kr !a/2!,

~29!

where we use conditions~16! to ignore six less significan
terms of the eight ones inJ2 and the boundary condition
~A22! to expressf(6kja/2) in J1.

Both termsJ1 and J2 are thresholdless matrix element
Indeed, there are no restrictions imposed on the initial m
menta of carriers. However, the mechanisms responsible
the momentum nonconservation inJ1 and J2 are different.
The mechanism inJ1 is related to carrier scattering at th
heteroboundary. The same reason gives rise to a thresh
less Auger process in scattering on a single heteroba
point.10 The mechanism inJ2 is determined by the restriction
of the volume of integration with respect to thez coordinate
to the quantum well region. This restriction results in t
appearance of a function of the typek21 sin(ka/2) instead of
the delta functiond(k).

The probabilities of Auger transition~10! have to be
summed over all initial and final states of charge carriers
obtain the Auger recombination rate. This sum can be w
ten as the integral

G5
1

XY

2p

\ E uM f i u2d~Ef2Ei ! FdG ~30!

with the density of states

FdG5ncXY
dkx1

KX
nrXY

dkx2

KX

KXKZXZ

~2p!2

dkx3dkf

KXKZ
nhXY

dkx4

KX
.

~31!

HereKX , KZ andY5l2KX are normalization constants;nc ,
nr , andnh are the densities of electrons and holes;M f i is the
7-5
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GEORGII G. SAMSONIDZE AND GEORGY G. ZEGRYA PHYSICAL REVIEW B63 075317
matrix element defined by~12! and ~13!; Ei5E11E2 and
Ef5E31E4 are the initial and final energies of the syste
respectively; and indices 1, . . . ,4, c, r, f, h are the same a
those used in~14! and ~15!. The rate~30! is to be summed
over the indicesn andt. The matrix elementM f i in ~30! can
be written as the sum

M f i5M1
I 2M1

II1M2
I 2M2

II1M3
I 2M3

II, ~32!

where the termsM II can be calculated similarly toM I by
interchanging the indices 1 and 2 in the arguments of w
functionsC1 and C2 in ~13!. However, the termsM II are
negligible with respect to the corresponding termsM I for
processes~14! and ~15! due to the small coupling betwee
statesc↑ and c↓ . The termsM1 and M2 correspond to the
terms J1 and J2 @see ~21! and ~25!#, and the termM3 is
derived below for the Auger transition to discrete spectr
states.

The contributions to the Auger rate~30! from the matrix
elementsM1 andM2, on the one hand, andM3, on the other,
can be separated. The reason is that these matrix elem
describe transitions of a particle to a continuous or disc
spectrum state, respectively. Separating the contribut
from M1 and M2 is more difficult. Even though there is
physical difference between these matrix elements, a term
interference between them appears in the total Auger
~30!. However, neglecting the interference betweenM1 and
M2, we still obtain the result of correct order, reflecting
important features of the Auger recombination rate as a fu
tion of magnetic field strength, temperature, and parame
of a quantum well structure.

According to the aforesaid, the rate of Auger recombin
tion can be written as the sum

G5G11G21G3 , ~33!

where the termsGj correspond to the matrix elemen
M j ( j 51, . . . ,3). Therate G3 will be derived below. The
rates G1 and G2 can be obtained from~30! and ~31! by
substituting the matrix elementsM1 andM2 from ~12!, ~17!,
~21!, ~23!, ~25!, and~29!. The substitution gives

Gi>ncnrnh

e4g2

k0
2\Eg

2a3

4p

22(n1t)n! t!
Qi

2I xiI z , ~34!

I xi5KX
21E E E E

R4
Li

2H2~k34,k13!d~kx11kx22kx32kx4!

3e22k13
2

22k34
2

dkx1 dkx2 dkx3 dkx4 , ~35!

I z5E
R
d~E31E42E12E2! dkf . ~36!

Here i 51,2 and the matrix elementsJi from ~29! are factor-
ized as the following product:

Ji5LiQi , where Qi[Ji uql50 . ~37!
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In the casea2!l2, the factorsL1 andL2 can be written as a
Taylor series in the small parameterql

2/kz
2 . Ignoring high-

order terms, we can derive from~29! and ~37!

Li512Ki
22ql

2 , where K1
225kh

221kf
22

and K2
225kf

22 . ~38!

Calculation of the integrals~35! and ~36! gives

I xi5pl222n1t11@~n1t11!! 24nt~n1t21!!

2l22K i
22~2~n1t12!! 23t~n1t11!! 22t2~n1t !! !#

~39!

and

I z>223/23g21 ~40!

with the help of integral tables.21

The Boltzmann distribution often takes place for hole
Taking into account the heavy hole spectrum~A17!, we can
write for the densitiesnc , nr , andnh

nc>nr>
n

2
and nh>

p

2
e2(\vh /T)t~12e2\vh /T!.

~41!

In what follows we study the Auger coefficientsCi instead of
the Auger ratesGi , related byGi5n2pCi . The expressions
for the Auger coefficientsC1 andC2 obtained by substitut-
ing ~29! and~37!–~41! into ~34! and summing over the indi
cesn and t are given by

Ci521/23p2
e4g

k0
2\Eg

2a3l2Qi
2S 12

8N

l2K i
2D , ~42!

where

N5
9

8

1

12e2\vh /T
2

1

8
. ~43!

The same expression can be obtained for process~15!. The
only difference is the correction factor

S 12
g2~~kf2kc!

21kr
2!

2Eg
2 D Eg

2

~Eg2d!~Eg12d!
2

kr

kh
~44!

instead of~20!. Summation of the Auger coefficients~42! for
both processes~14! and ~15! gives the final expressions

C15213/23p2
e4g

k0
2\Eg

2a3l2

kc
4

kf
4kh

2~kc
21kc

2!2

3S 3Vc1Vv

4Eg
2

k02k̃0

k01k̃0
D 2S 128N

kf
21kh

2

l2kf
2kh

2D ~45!

and
7-6
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C2521/23p2
e4g

k0
2\Eg

2a3l2

kh
2

kf
4~~kf22kc!

22kh
2!2

3~11 cos~~kf22kc!a!!S 12
8N

l2kf
2D . ~46!

B. Transition into the discrete spectrum

The Auger transition to discrete spectrum states co
sponds to the following conditions for the indexn and the
wave vectors of charge carriers:

n>~Egl/g!2@1 and kc>kr.kf,kh . ~47!

The matrix element of the process~14! is given by the same
expressions~17! and ~18! with the quantum well widtha
substituted forZ. The integrals overx1 , x2 , qx , y1, andy2
d
r

r
-

t-
i-

07531
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in ~18! can be calculated by the same method as that used
transition into the continuous spectrum. The only differen
is the integral overqy . It can be shown thatqy

2} ln(n)Eg
2/g2

in the casea2!l2. This means thatqz
2!qy

2 and therefore the
factor q22 in ~18! can be expanded into the seriesq22

>qy
222(qz

21qx
2)qy

24 . Calculation of the integrals overqz ,
z1 , z2, andqy gives a result similar to~21!, ~25!, and ~29!.
However, due to the conditionqz

2!qy
2 , the termJ1 can be

neglected compared with the termJ2. The final expression
for the integral~18! is of the form

I >~21!n11242[(n1t)/2]p9/2al3e2k13
2

2k14
2

H~k34!A

3d~kx11kx22kx32kx4!. ~48!

Hereki j 5l(kxi2kx j)/A2 (i , j 51, . . . ,4),
A5
i

16 (
s1, . . . ,4561

sin~~s1ke1s2kr1s3kf1s4kh!a/2!

~s1kc1s2kr1s3kf1s4kh!a/2
, ~49!

H~k34!5Hn1t21~k34!12~l2kc
212t !Hn1t23~k34!. ~50!
res-
he
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The rate of the Auger recombination is given by~30! with
the density of states

FdG5ncXY
dkx1

KX
nrXY

dkx2

KX

KXX

2p

dkx3

KX
nhXY

dkx4

KX
,

~51!

which is different from~31!. Substituting~12!, ~17!, ~48!,
~50!, and~51! into ~30! and integrating overkx1 , . . . ,kx4, we
obtain the Auger recombination coefficient

C35~2p!3
e4g2l2

k0
2\Eg

2a2~12e2(\vh /T)!e2(\vh /T)tA2

3
~n1t21!! 1~l2kc

212t !2~n1t23!!

2n2tn! t!
d~Ef2Ei !.

~52!

Here the delta function appears because of the entirely
crete spectrum of the system. The delta function can be w
ten in the following form:

d~Ef2Ei !5
\G

p~\2G21~Ef2Ei !
2!

, ~53!

where G is the normal width of the transition. The Auge
recombination coefficient~52! is to be summed over the in
dices n and t, taking into account that the final energyEf
depends on the indexn, and the initial energyEi on the index
t. The result of this summing is quite different in two limi
ing casesG!v and G@v. We calculate this sum numer
is-
it-

cally in the next section. Let us present here only the exp
sion for the difference of the final and initial energies of t
system

Ef2Ei5«c↑~kf ,l 5n11!1«hh↓~kh ,l 5t21!

2«c↑~kc ,l 51!2«c↓~kr ,l 50!2Eg . ~54!

The terms«c↑ , «c↓ , «hh↑ , and«hh↓ are given by~A6! and
~A17!.

The same coefficient~52! can be obtained for proces
~15!. The energy difference for this process is given by

Ef2Ei5«c↓~kf ,l 5n!1«hh↑~kh ,l 5t12!

2«c↓~kc ,l 50!2«c↑~kr ,l 51!2Eg . ~55!

IV. RESULTS

Let us consider in detail the Auger recombination coe
cientsC1 , C2, andC3 given by~45!, ~46!, and~52!, respec-
tively. The dependencies of these three coefficients on
magnetic field strength, quantum well width, and tempe
ture are shown in Figs. 3, 4, and 5, respectively. Here
coefficientsC1 and C2 ~Figs. 3 and 4! are calculated for
GaAs–GaAlAs heterostructures (Eg51.52 eV,mc50.07m,
mh50.68m, d50.1 eV,Vc50.1 eV,Vv50.1 eV,k0510),
and the coefficientC3 ~Fig. 5! for InSb–InGaSb heterostruc
tures (Eg50.23 eV,mc50.016m, mh50.40m, d50.3 eV,
Vc50.1 eV, Vv50.1 eV, k0510, G51012s21). The same
InSb–InGaSb heterostructure is used below in Fig. 6.

All three Auger recombination processes are thresho
less. Indeed, in the limit of zero temperature all coefficie
7-7
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FIG. 3. Auger recombination
coefficientC1 for electron scatter-
ing on interband with transition
into continuous spectrum as
function of ~a! magnetic field,~b!
quantum well width, and~c! tem-
perature in GaAs–GaAlAs hetero
structures. HereH is the magnetic
field strength in Tesla, a is the
quantum well width in Å, andT is
temperature in K; the same fo
Figs. 4–6.
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have nonzero values@see Figs. 3~c!, 4~c!, and 5~c!#. How-
ever, the reasons for the absence of a threshold are diffe
for the transitions to continuous and discrete spectrum sta
The threshold arises because a large momentum has t
transferred in Auger recombination by virtue of the ener
and momentum conservation principles. For the transit
into the continuous spectrum, the presence of a quantum
removes the conservation principle for the momentum co
ponent normal to heteroboundaries. For the transition
the discrete spectrum, the transferred momentum is s
because the final electron in a sufficiently high Landau le
has the momentum approximately equal to that of the ini
electron.

The coefficientsC1 and C2 increase, and the coefficien
C3 oscillates, with magnetic field strength@see Figs. 3~a!,
4~a!, and 5~a!#. These effects can be explained as follows.
it is known from the quantum mechanics, the magnetic fi
localizes wave functions. The localization makes the C
lomb matrix element larger, and the Auger recombinat
rate higher, compared with the case without magnetic fi
The reason for the oscillations of the coefficientC3 is the
resonant nature of the Auger recombination process wi
transition into the discrete spectrum. The process is thre
oldless; however, a small factor 22n replaces the threshol
factor exp(2Eth /T) in the coefficientC3. One can obtain
from ~47! thatn>2Eg /(\vc), wherevc5vm/mc andmc is
the electron mass in the case of zero constant of spin-o
interaction given bym/mc52mg2/(\2Eg). The numbern is
usually much greater than unity in real fields. Thus, there
a threshold with respect to field, instead of temperature,
07531
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ing to the factor exp(2Hth /H in the Auger coefficientC3.
Therefore, the amplitude of oscillations increases with m
netic field @see Fig. 5~a!#. Note that the local maximums o
the coefficient C3 as a function of magnetic field ar
smoother on the higher field side and sharper on the lo
field side. The right-hand slopes of the local maximums
produce the thermal distribution of heavy holes~Boltzmann
distribution!, because the energy of a high-Landau-lev
electron is much more sensitive to the magnetic field stren
than the energy of a low-Landau-level heavy hole.

The Auger coefficients vanish when the magnetic fie
strength approaches zero@see Figs. 3~a!, 4~a!, and 5~a!#. The
reason is the factor 22n in the coefficientC3. In order to
explain the behavior of the coefficientsC1 and C2, let us
compare these coefficients with the corresponding exp
sions derived in the absence of magnetic field:12

C1~H !

C1~0!
.

3

2

kc
2kh

2

kc
2~kc

21kc
2!

\vh

T
,

C2~H !

C2~0!
.

3

4

kh
2

kc
2

\vh

T
.

~56!

One can see that the reciprocal quantum magnetic len
l21 is to be replaced by the thermal momentumqT

5A2mT/\ in order to obtain the correct limiting expres
sions. Indeed, the wave vectors of the electrons and holes
on the order of thermal momentumqT owing to the interac-
tions between charge carriers. On the other hand, transit
involving higher Landau levels of electrons have to be co
sidered in the limitH→0.20 Thus, the indicesp ands of the
FIG. 4. Auger recombination
coefficient C2 for short-range
Coulomb interaction in quantum
well with transition into continu-
ous spectrum as a function of~a!
magnetic field,~b! quantum well
width, and ~c! temperature in
GaAs–GaAlAs heterostructures.
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FIG. 5. Auger recombination
coefficientC3 for resonance tran-
sition into discrete spectrum as
function of ~a! magnetic field,~b!
quantum well width, and~c! tem-
perature in InSb–InGaSb hetero
structures.
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initial electron states are on the order ofT/(\vc) instead of
zero. This additionally decreases the Auger recombina
coefficients.

Comparing Figs. 3~b! and 4~b!, one can see that the coe
ficient C2 decreases much faster than the coefficientC1 with
increasing quantum well width. Indeed, the following facto
a part ofC2, transforms into the delta function expressing t
momentum conservation principle:

kh
2~11 cos~~kf22kc!a!!

a~~kf22kc!
22kh

2!2 → p

4
d~kf22kc2kh! ~57!

when the quantum well width tends to infinity. The de
function then has to be averaged over the heavy hole di
bution. As a result, the coefficientC2 multiplied bya2 trans-
forms in the limitH→0 into a 3D expression derived for th

FIG. 6. Total Auger recombination coefficient as a function
~a! magnetic field and~b! quantum well width in InSb–InGaSb
heterostructures.
07531
n

,

ri-

bulk semiconductor in the absence of magnetic field.2 On the
other hand,a2C1 decreases as inverse quantum well width
the limit a→` due to the heteroboundaries moving away
infinity.

The coefficientC3 is negligible in comparison withC1
and C2 for wide gap semiconductors in not too high ma
netic fields owing to the factor 22n. Therefore, we have cal
culated the total Auger recombination coefficientC5C1
1C21C3 shown in Fig. 6 for a heterostructure with narrow
gap semiconductor InSb. One can see that the proce
dominates at higher fields and wider quantum wells, the p
cess II dominates at lower fields and narrower quant
wells, and the process III becomes significant only at hig
fields. The total Auger recombination coefficientC shows a
rather complex dependence on magnetic field strength
quantum well width.

V. CONCLUSIONS

In conclusion we have shown that three fundamenta
different Auger recombination channels exist in semicond
tor quantum wells with perpendicularly applied magne
field. The Auger recombination coefficients have been cal
lated analytically for each of these channels. The calculati
have been performed for the CHCC Auger process. A sim
analysis of the CHHS process will be the subject of futu
work. A four-band Kane’s model and the first-order pertu
bation theory were used to obtain the wave functions
charge carriers and to derive the probability of Auger reco
bination. The dependencies of the calculated Auger rec
bination coefficients on the magnetic field strength, quant
well parameters, and temperature are investigated. I
shown that all channels are of the threshold type. The lim
ing cases of an infinite quantum well width and negligib
magnetic field strength are analyzed. It is shown that a r
sonable agreement exists between the limiting expression
formulas derived in the paper and the results known from
literature. The Auger recombination coefficients for the tra
sition into continuous spectrum show a linear dependence
magnetic field broken down at too high~Landau quantization
energy exceeds the size quantization energy! and too small
~magnetic length much exceeds the heavy hole thermal
mentum! magnetic field strength. These limiting cases w
be the subject of future investigations. The Auger recom
nation coefficient for the transition into the discrete spectr
shows an oscillating dependence on the magnetic fi
strength owing to the resonant nature of the process.

f
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APPENDIX: WAVE FUNCTIONS OF CARRIERS

The wave function~5! is written in the basis of eigenfunc
tions of the total angular momentum. This wave function

F51
M f l 21~z!uS↑.

N fl~z!uS↓.

~A fl 22~z!1B fl~z!!uX↑.

~S fl 21~z!1T fl 11~z!!uX↓.

i ~A fl 22~z!2B fl~z!!uY↑.

i ~S fl 21~z!2T fl 11~z!!uY↓.

C fl 21~z!uZ↑.

D f l~z!uZ↓.

2 ~A1!

transformed to basis~1! and multiplied by V21 exp(ikxx
1ikz) is to be substituted into the system~3! in order to
obtain the spectra and wave function coefficients of carr
~see basis transformation in Ref. 19!. HereV is the normal-
ization constant. It is easy to show that

V25Ap2l 21~ l 22!!XZ~A21~ l 21!~M21C212S2!

12l ~ l 21!~N21D212B2!18~ l 11!l ~ l 21!T2!.

~A2!

The substitution gives the following system of eight line
algebraic equations for the coefficients of wave funct
~A1!:

~E2Eg2d1 1
2 \v!M1

g

l
X50,

~E2Eg2d2 1
2 \v!N1

g

l
Y50,

g

l
~ l 21!M1~E2d1a2 3

2 b1 1
2 \v!A12~ l 21!hX50,

g

2l
M1~E1d1a1 1

2 b1 1
2 \v!B1hX2dD50,

~A3!

2gkM1~E1a2 1
2 b1 1

2 \v!C22lkhX12dS50,

g

l
lN1~E1d1a2 1

2 b2 1
2 \v!S12lhY1dC50,

g

2l
N1~E2d1a1 3

2 b2 1
2 \v!T1hY50,

2gkN1~E1a1 1
2 b2 1

2 \v!D22lkhY22dB50,
07531
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where

X5A12lB2lkC, Y5S12~ l 11!T2lkD, ~A4!

a5
\2

2m
~g122g2!S k21

2l

l2D ,

b5
\2

2m
~g122g2!

2

l2 , h5
\2

2m
6g2

1

2l2
. ~A5!

To solve system~A3! for the electron states, one can n
glect the terms witha, b, andh ~i.e., let g15g250). The
presence of these terms in the equations for electrons giv
far too exact model. Then the electron spectrum splits i
two branches:

Ec↓
c↑5«c↓

c↑1Eg1d7 1
2 \v@11O~«c↓

c↑/Eg!#,

«c↓
c↑~«c↓

c↑1Eg!~«c↓
c↑1Eg13d!

«c↓
c↑1Eg12d

5g2k21
g2

l2 S 2l 717
d

«c↓
c↑1Eg12d

D . ~A6!

Here the spectrum branchc↑ corresponds to the minus sign
and the conditionN50 for the wave function coefficients
and the branchc↓ corresponds to the plus signs and the co
dition M50. The wave function coefficients derived from
system~A3! are given by

Mc↑51, Nc↑50, Ac↑5
g~ l 21!/l

E2d
, Tc↑50,

Bc↑52
gE/~2l!

~E12d!~E2d!
, Cc↑5

gk~E1d!

~E12d!~E2d!
,

Sc↑52
gkd

~E12d!~E2d!
, Dc↑52

gd/l

~E12d!~E2d!
,

~A7!

Mc↓50, Nc↓51, Ac↓50, Tc↓5
g/~2l!

E2d
,

Bc↓5
gkd

~E12d!~E2d!
, Cc↓5

2lgd/l

~E12d!~E2d!
,

Sc↓52
lgE/l

~E12d!~E2d!
, Dc↓5

gk~E1d!

~E12d!~E2d!
.

To solve Eqs.~A3! for the hole states, we have to intro
duce the coefficients

P5
l

g
~E2Eg2d!M and R5

l

g
~E2Eg2d!N

~A8!
7-10
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instead ofM and N. Finding the coefficientsA, B, C, S, T,
andD from the last six equations of system~A3! and substi-
tuting them into the first two equations gives the followin
system of two equations, which completely describes
hole states:

P1
2~ l 21!uP

E21,2
3
2 ,

1
2

1
2luE0,

1
2 ,2

1
2

P24llkduR

E1,
1
2 ,

1
2

E0,
1
2 ,2

1
2
22d2

1
2l2k2uE1,2

1
2 ,2

1
2

P14llkduR

E1,2
1
2 ,2

1
2

E0,2
1
2 ,

1
2
22d2

50,

R1
2~ l 11!uR

E21,
3
2 ,2

1
2

1
2luE0,2

1
2 ,

1
2

R12lkduP

E1,2
1
2 ,2

1
2

E0,2
1
2 ,

1
2
22d2

1
2l2k2uE1,

1
2 ,

1
2

R22lkduP

E1,
1
2 ,

1
2

E0,
1
2 ,2

1
2
22d2

50, ~A9!

where

End ,nb ,nv
5E1ndd1a1nbb1nv\v, ~A10!

u5
1

4 S m

ml
2

m

mh
D\v, ~A11!

m

ml
5

2mg2

\2~Eg1d2E!
1

m

mh
16g2 and

m

mh
5g122g2 .

~A12!

Heremh coincides with the heavy hole mass, andml with the
light hole mass, in the case of zero constant of spin-o
interaction. Similarly, the electron mass is given by

m

mc
5

2mg2

\2Eg

Eg12d

Eg13d
. ~A13!

The system~A9! can be easily solved under conditio
g15g250 used above to obtain the electron spectrum~A6!.
This approximation helps to separate the heavy h
branches from the hole spectra. The mixing between
states of heavy and light holes~and, respectively, that be
tween states of heavy and spin-orbit split off holes! is low
due to a certain difference in the massesml!mh . This mix-
ing is described below in detail. Now let us write down t
hole spectra in the approximationg j50( j 51,2):

Elh↑↓
so↑↓52 1

2 ~d1«↓
↑!7dso

lhA2d21 1
4 ~d2«↓

↑!21c↓
↑ 1

2 d\v l

2c↓
↑ 1

2 \v@11O~«↓
↑/Eg!#, ~A14!

«↓
↑5\v l~ l 7 1

2 !1
\2k2

2ml
, c↓

↑561, dso
lh 561.

Here \v j5\vm/mj with j 5$ l ,h,c%; c↓
↑511 for the lh↑

and so↑ branches of the spectrum, andc↓
↑521 for the lh↓

and so↓ branches;dso
lh 511 for lh↑ and lh↓, anddso

lh 521
07531
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for so↑ andso↓ ; the minus sign inElh↑↓
so↑↓ corresponds toso↑

andso↓ , and the plus sign tolh↑ andlh↓ ; the minus sign in
«↓

↑ corresponds tolh↑ andso↑ , and the plus sign tolh↓ and
so↓ . The wave function coefficients are similar to those o
tained for electrons~A7!. Indeed, thelh↑ andso↑ branches
correspond to the conditionR50 ~and therefore,N50) im-
posed on the wave function coefficients, andlh↓ andso↓ to
P50 ~and therefore,M50). We do not write down the
wave function coefficients because of the complexity of
corresponding expressions.

For the heavy hole states,N50 andM50 simultaneously
in the g j50 approximation. Furthermore, the expressionM
5N50 is valid for heavy hole states wheng j terms are
taken into account in the absence of magnetic field.12 In this
case, the spectrum of heavy holes is given byEh5d
2\2k2/2mh .12 However, the conditionM5N50 is broken
in the presence of magnetic field. In this case the heavy h
spectrum can be written in the formE5d2a1« where
u«u!d by analogy with the result obtained in the absence
magnetic field.12 Supposingu«u!d helps to ignore the spin
orbit split off holes. SubstitutionE5d2a1« into system
~A9! gives

«41 8
3 ~l2k212l !u«3

1@ 16
9 ~~l2k212l !22 9

4 !u226ub2 5
2 b2#«2

2@ 16
3 ~l2k212l !u2b16~l2k21 2

3 l !ub2#«

2@4~~l2k21 l !22 l 22 1
4 !u2b21 3

2 ub31 9
16 b4#50.

~A15!

Here we omit the terms6 1
2 \v in system~A9! to simplify

Eq. ~A15!. These terms can be added directly to the spe
obtained from~A15!. Two small parameters can be intro
duced in Eq.~A15!. One of these, (lk)22, is much less than
unity in the casea2!l2, and the other,b/u, does so by
virtue of the conditionml!mh . The spectra of heavy an
light holes can be derived from Eq.~A15! with the use of
perturbation theory based on expansion in the small par
eter (lk)22. The light hole spectrum series

Elh↓
lh↑5d2a1« lh↓

lh↑7 1
2 \v@11O~« lh↓

lh↑/Eg!#,

« lh↓
lh↑52

4

3
uS l2k212l 7

3

2
7

3b

8u D ~A16!

demonstrates that the mixing of the heavy hole states to
light hole states is negligible in the common cases. This
pression is equal to~A14! in the limits b!u and uE2du
!d. The heavy hole spectrum series

Ehh↓
hh↑5d2a1«hh↓

hh↑7 1
2 \v@11O~«hh↓

hh↑/Eg!#,

«hh↓
hh↑56

3

2
bF12~ l 71!~lk!22

1S 3

2
~ l 71!26

3b

4u
~ l 71! D ~lk!24G ~A17!
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shows even less mixing than that of the light holes~A16!.
The heavy hole wave function coefficients are given by

Mhh↑52
2gk

E2Eg2d
, Nhh↑5

g/l

E2Eg2d
,

Ahh↑5
8u

3b
~lk!3, Bhh↑52

2u

3b
lk, Chh↑5

8u

3b
~lk!2,

Shh↑52
4u

3b
~lk!2, Thh↑5

u

3b
, Dhh↑52

4u

3b
lk,

Mhh↓52
l ~ l 11!g/l

E2Eg2d
, Nhh↓5

~ l 11!gk

E2Eg2d
, ~A18!

Ahh↓52
2u

3b
~ l 21!l ~ l 11!, Bhh↓5

2u

3b
~ l 11!~lk!2,

Shh↓52
2u

3b
l ~ l 11!lk, Thh↓5

2u

3b
~lk!3,

Chh↓5
4u

3b
l ~ l 11!lk, Dhh↓5

4u

3b
~ l 11!~lk!2.

It can be seen from the analysis given above that thehh and
lh states do not mix in the limitH→0. This limit is equiva-
lent to the limitkx,y→0 in the absence of magnetic field~see
above!, where thehh and lh components are known to b
decoupled.20

The lowest Landau levels require special attention. So
components of the wave function~A1! disappear when the
Landau level index takes the valuesl 521,0,1. The wave
function is identically zero atl ,21. Investigating each o
three casesl 521,0,1 separately shows that only thehh↓
branch exists forl 521, only hh↓ , lh↓ , so↓ , and c↓
branches forl 50, and all branches buthh↑ for l 51.19 In
other words, different branches of the spectrum have dif
ent minimal Landau level indices:

hh↓ : l>21,

lh↓ ,so↓ ,c↓ : l>0, ~A19!

lh↑ ,so↑ ,c↑ : l>1,

hh↑ : l>2.

This implies that thel 521 level is a purelyhh↓ state.22

Indeed, one can see from~A17! that Ehh↓5d2a2 3
2 b for

l 521, i.e., thelh states are not mixed to the levelhh↓ ,l
521.
07531
e
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The wave function of a carrier in the quantum well~6! is
given by ~7!, ~8!, and~A1!. The electron wave function is a
superposition ofc↑ and c↓ states. The dispersion equatio
can be obtained from boundary conditions~9!. For the elec-
tron states, these boundary conditions require only contin
at the heteroboundaries for the componentsCs and Cpz of
the wave function. Substituting the electron wave functi
C5Cc↑Cc↑1Cc↓Cc↓ into these boundary conditions give
the following dispersion equation for electrons:

S kc↑ tan
kc↑a

2
2Gkc↑D S kc↓ cot

kc↓a

2
1Gkc↓D

52
2ld2~12G̃!

l2~Eg12d1«c!
2

. ~A20!

Here the chosen symmetry of wave functionsCc↑ andCc↓
corresponds to the sign plus in~7!, kc is the modulus of the
z component of the electron wave vector in the barrier
gion, andG andG̃ are the coefficients defined by

G5
~Eg1«c!~Eg13d1«c!~Eg1Vv12d̃1«c!

~Eg1Vv1«c!~Eg1Vv13d̃1«c!~Eg12d1«c!
,

G̃5
d̃

d

Eg12d1«c

Eg1Vv12d̃1«c

G. ~A21!

The dispersion equation splits into two parts if the Land
level numberl is small or the coefficientG̃ is close to unity.
The last condition is usually fulfilled in semiconductors wi
similar band structures. Choosing the opposite wave func
symmetry @i.e., the sign minus in the wave function~7!#
gives the same dispersion equation~A20! with interchanged
indicesc↑ andc↓ . Finally, the electron spectrum is approx
mately given by the following two separated dispersi
equations:

kc↑↓ tan
kc↑↓a

2
5Gkc↑↓ and kc↑↓ cot

kc↑↓a

2
52Gkc↑↓ .

~A22!

They are similar to the dispersion equations for heavy ho

khh↑↓ tan
khh↑↓a

2
5khh↑↓ and khh↑↓ cot

khh↑↓a

2
52khh↑↓

~A23!

obtained in the approximation of unmixed light and hea
hole states~i.e., the quantum mechanical spectrum of a p
ticle in a rectangular quantum well!.
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