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Auger recombination in semiconductor quantum wells in a magnetic field
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Auger process involving two electrons from the conduction band and a heavy hole from the valence band in
semiconductor heterostructures with quantum wells is investigated for the case of a magnetic field applied
normal to heteroboundaries. It is shown that there exist three different mechanisms of Auger recombination,
associated witlil) electron scattering at interface with transition into the continuous spectijrshort-range
Coulomb interaction in the quantum well with transition into the continuous spectrum(lihhadesonance
transition into the discrete spectrum. All these processes are thresholdless. The Auger recombination coeffi-
cients analytically calculated for the processes I, I, and Il show different dependencies on temperature,
magnetic field, and quantum well parameters. In the limit of an infinitely wide quantum well, processes | and
Il merge to form a bulk threshold Auger process, while process Il remains thresholdless resonance one. In the
limit of infinitely weak magnetic field, process | remains thresholdless, process Il becomes a quasithreshold
procesqi.e., its threshold energy slightly depends on tempergtared process Il transforms into a nonreso-
nance process with a threshold. The results obtained are new and have no analogies in the literature.
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[. INTRODUCTION guantizing magnetic field. Hence, the Auger process rate o0s-
cillates as a function of the magnetic field strength.

The Auger process is one of the most important mecha- An Auger process involving a transition to a light hole
nisms of nonradiative charge carrier recombination in semistate has been investigated in terms of three-band Kane’s
conductors. Various Auger recombination channels in homomodel in bulk semiconductors, and oscillations of the transi-
geneous semiconductors have long been investigated in thien rate as a function of magnetic field strength have been
absence of magnetic fiefd® Two Auger recombination pro- observed' Auger transitions in quantum wells in strong mag-
cesses, the first involving two electrons and a heavy hol@etic fields have been detected in luminesc@rrel cyclo-
(CHCC Auger procegsand the second involving an electron tron resonandeexperiments. Both these papers notice the
and two heavy holesCHHS Auger procegstake place in  resonance behavior of the Auger process probability as a
narrow-gap semiconductofdt has been shown that the rate function of magnetic field. The Auger process rate in a quan-
of Auger recombination depends on temperature exponenum well with magnetic field has also been calculatétbw-
tially, i.e., Auger recombination processes are characterizedver, the real band structure of semiconductors has been ne-
by a threshold.In an Auger recombination event, the third glected and only interband transitions between electron
(excited particle acquires, owing to the Coulomb interac- Landau levels have been taken into account. The rates of
tion, a large amount of energy on the order of the gap widthAuger processes in semiconductors with complicated va-
E4. Therefore, the excited particle must also acquire a largéence band structuré.e., with heavy hole states taken into
momentum. By virtue of the momentum conservation lawaccoun} in a magnetic field have not been reported in the
the system of interacting electrons and holes must also poésiterature.
sess a large momentum, and consequently high energy, be- It is commonly assumed that the reasons for Auger re-
fore recombination. Therefore, only those particles can pareombination in quantum wells are the same as in homoge-
ticipate in recombination whose total kinetic energy isneous semiconductofs. Nevertheless, the threshold disap-
sufficiently high(much higher than the average kinetic en-pears in a quantum well for a transition to the discrete
ergy of particles This means that Auger recombination hasspectrum even without any magnetic fiéfd?The presence
an energy threshold. However, the presence of magnetic fielof heteroboundaries removes the limitations imposed on the
removes the threshold for the transitions to the discrete speelectron—electron interaction processes by the energy and
trum (to high-excited Landau levelsin homogeneous momentum conservation principles, since the excited Auger
semiconductor§. electron acquires necessary gquasimomentum when interact-

The disappearance of the threshold can be explaineithg with (being scattered athe heteroboundary. Namely,
qualitatively. The electron spectrum is discrete in the directhe conservation of the momentum component normal to the
tion perpendicular to the magnetic field. An Auger electronheteroboundary surface is removed with new thresholdless
with energy approximately equal to the gap width makesAuger recombination channels formed in heterostructures.
vertical transition to a high Landau level without quasimo-All of them have been investigated repeatedly. In particular,
mentum change as a result of Coulomb interaction. Therethreshold and thresholdless Auger recombination channels
fore, it is not required a large quasimomentum to be transhave been analyzed for a single heteroboundaryhe
ferred in a Coulomb interaction of two electrons. It is only thresholdless Auger recombination channel correlated with
necessary that the Auger electron be delivered exactly to themall momenta transferred in Coulomb interaction of par-
Landau level. Therefore, the Auger process is resonant in ticles has been studiéd.The threshold and thresholdless

0163-1829/2001/63)/07531713)/$15.00 63 075317-1 ©2001 The American Physical Society



GEORGII G. SAMSONIDZE AND GEORGY G. ZEGRYA PHYSICAL REVIEW B3 075317

Auger recombination channels in quantum wells, corre- (E_Ec)\ps_yk.qrp+%ﬁwgzqu:(),
sponding to electron scattering at heteroboundaries and to
ﬁoulomb electron scattering in the quantum well volume, — kW + (E+ 6— EU)‘I’p—ié[O'.‘I’p]Jr%ﬁwUz‘I’p 3)
ave been calculatéd. 5 )
The purpose of this work is to investigate theoretically the _,_ﬁ_(y —2y,)k2W +ﬁ—6y k(k-W_)=0
basic Auger recombination channels in a semiconductor 2m" "t 2 Pi2m 3 P '

guantum well with perpendicularly applied magnetic field. ) , .

The Auger process involving two electrons from the conducHere v is Kane’s matrix elemertt, y; and y,= 3 are the
tion band and a heavy hole from the valence b&@sicC ~ 9generalized Luttinger parametéfs 5= A /3, Ago is the
Auger processis studied. In this process, the first electron SPin-orbit splitting,E; and E, are the conduction and va-
recombines with the heavy hole, and the second proceeds tgnce band-edge energies, is the free electron massr
high excited state as a result of the Coulomb interaction. This=(0x,0y,0,) are the Pauli matrices, k=—iV
state may lie in a continuous or discrete energy spectrum, (¢/(%C))A, eis the electron chargé is the vector poten-
There are three fundamentally different Auger recombinatiortial of the magnetic field of strengtH directed along the
channels based di) electron scattering at the heterobound-2axis, andw=|e[H/(mc) is the cyclotron frequency. In the
ary and transition to a continuous spectrum sté2g,Cou-  first equation of the systerf8) we neglect the free electron
lomb electron scattering in the volume of the quantum wellmass term. If the heavy hole mass describing the interaction
and transition to a continuous spectrum state, @deso-  With the higher bands is introduced phenomenologically in-
nance transition to a discrete spectrum state. It is shown th&tead of the Luttinger parameters, the syst@nis to be

the rates of the Auger recombination processes corresponéiansformed into the equations derived by Stititt. can be

ing to different channels have different dependencies on tenfihown that Egs.(3) are identical to those commonly
perature, magnetic field strength, and quantum well paraniised.™ " Let E,=4§ and E;=E4+ 6, whereEgy is the
eters. The paper is organized in the following way. In Sec. lls€miconductor band gap. By choosing the vector potential
a brief description of the wave functions and the energyA=(—HyY,0,0) corresponding to magnetic field of strength
spectra of electrons and holes is given. In Sec. IlI, the AugeH=(0,0H), one can find thak=—iV —(y/\?,0,0), where
recombination coefficients are calculated. In Sec. IV, the reX is the quantum magnetic length defined Xf=7%/(ma).

sults are analyzed and discussed. The summarizing remarks We first present the solution of syste@) for a homoge-
follow in Sec. V. neous semiconductor in a magnetic field. A Fourier trans-

form can be performed in the plane&,f) with the wave

function presented in the fornlf = exp(kx+ikz)®. Herek,

andk are the wave vectors along thxeand z axes, respec-

tively. Let us introduce the operatg=I+j,, wherel

Wave functions of charge carriers are to be known for=c'c,

analyzing the Auger recombination mechanism and calculat-

ing the Auger process rate. Wave functions are to be found ) c0 1 y

using a multiband approximation, as it has been done for Jz:_|£+§0'z and <p=arctan)z. 4

bulk Auger processe€sWe use four-band Kane’s model de-

scribing the wave functions and energy spectrum of carriersierec andc’ are the harmonic oscillator raising and lower-

in narrow-gap A,By semiconductors with the highest ing operators? andj,, which is thez-axis projection of the

precision™® Usually the eigenfunctions of the angular mo- total angular momentum, is equal to the sum of thaxis

mentum are taken as basis functions of the conduction angrojections of the orbital angular momentum and the spin

valence band$**However, we choose the representation ofangular momentum of the electron. It can be shown that the

the basis functions operatorp commutes with the Hamiltonian of the system.

Therefore, the eigenvalues of the opergi@re the same for

ISTYISEYIXTYIXI)IYTYIYD)IZT).0ZL), (1) each component of the wave function. Thus the wave func-

tion can be written in the basis of eigenfunctions of the total

angular momentum:

IIl. SPECTRA AND WAVE FUNCTIONS OF
CHARGE CARRIERS

more useful for our purposes, whei®), |X), |Y), and|Z)
are the Bloch functions of th& and P type with angular
momenta of 0 and 1, respectively. The first of them de- 8

scribes the conduction band state, and the others the valence o= Fifioj (Oliiizi)- (5)
band state at the center of the Brillouin zone. The arrows i=1 =

correspond to the spins quantized alongzlais. The wave

function of the carriers is given by Here f,(£)= exp(—Z2)H,({) is the harmonic oscillator
function,H, is the Hermite polynomial, angd=y/\ —\ K, is
V="V S)+W,|P), (2)  the normalized coordinate. In this way the wave vedtpr

just shifts the origin of harmonic oscillator function. The
where ¥ and W, are the spinors. In the vicinity of the wave function(5) is to be transformed to the bas($) in
center of the Brillouin zone, equations for the envelope funcorder to substitute into the syste(8) and obtain energy
tions ¥ and W, can be written in the spherical approxima- spectra and wave function coefficients of carriers. The basis
tion transformation can be found in Ref. 19. The energy spectra
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and wave functions are given in the Appendix. The quantum The wave function of the electron can be written as a
well can be presented in the following form: linear combination of two wave functions corresponding to
) _ . _ two spin orientations of the electron. Neglecting Luttinger
zl<al2: E;=Eg+d, E,=6, Aso=34, parameters, we can find from the boundary conditit®)s
. _ e e that the component¥ ¢ and V¥, of the wave function of
|Z>al2: Bo=EgtotVe, E,=0-V,, ASO_35('6) electron must be continuous at the heteroboundaries. The
o ) ) dispersion equation obtained from these boundary conditions
The magnetic field is gppl!ed .normally to the quantum wellfo; electrons is given in the Appendix.
plane. The wave function is given by The wave function of the hole is a superposition of three
W = elkxXeikzgh + ik~ kzgp (7)  subbands of the valence band: heavy, light, and SO holes.
However, the last subband decays exponentially away from
the heteroboundary. As a consequence, this branch mainly
affects the derivative of wave function near the heterobound-
ary, and its influence on the wave function itself is negli-
be written as a direct produ@=P®R, where the matriP giblg: Thus, we can seek for th_e wave function as a super-
acts on the coordinate components,'and the m&ron the Bosglro rédo f ethgfh;aevi//;glﬁczngahr?ur t<hr?]le [Srzbgigdri' Naer:r the
spinor components of the wave function._ By substituting dzﬁned b?/ EQ(AL2) in the Append.b}. T?wis rlneans tplat the
o e s o vy o e 552507 TG of 1 by oncies re epp-
— diaa(1—1) f th q tion. Thus. th é cqble._ In this approximation, Ilg_ht and heavy holes do not
=diag(1;-1) from the second equation. Thus, the maBix iy \ith each other and have different specéahe heavy
in the basis(1) is given by hole spectrum coincides with the quantum-mechanical spec-
S=diag1,-1,1-1,1—1,—1,1). (8)  trum of a particle in a rectangular quantum well. The disper-
sion equation for heavy holes is given in the Appendix.
Some approximate methods to derive boundary conditions

in the quantum well region. The factors expkz) in (7)
have to be replaced by expf|Z)) in the barrier regions. The
plus and minus signs iiG7) correspond to different wave
function symmetries in the quantum well. The mat8ixan

for quantum well heterostructures haye been dgvelop_ed re-  |1I. AUGER RECOMBINATION COEFFICIENTS
cently. Usually Kane’s parameter varies only slightly in - o .
A, By semiconductor heterostructures. Hencis often sup- The probability of Auger recombination in terms of first-

posed to be continuotfs For the sake of simplicity, we also order perturbation theory is given by the following expres-
consider that generalized Luttinger parametgrandy, and ~ SION:

dielectric constank (see below are continuous across the o

heteroboundaries. As shown in Ref. 12, the difference be- Wi =—|M4|28(E¢—E)), (10)
tween Kane’s parameters in the quantum well and barrier h

region almost does not change the Auger recombination cQynere

efficient. It is also shown in Ref. 12 that taking into account

the difference between the dielectric constants in these re-

gions influences only slightly the Auger recombination coef- ~ M= < W(ry,ro) alli=Tdl +o(ryra) ‘I’i(f17fz)>

ficient. Following the method elaborated by Brand as- o e (12)
suming the continuity of Kane’s parameter, the equations ) . )

that can be integrated across the heterobarrier are derivéd the matrix element of the Coulomb interactiop,andr,
from the systent3). Using these equations and the probabil-are the coordinates of carriers, anfr,r») is the additional

ity flux density conservation law, the boundary conditionsPotential arising from the difference between the quantum
for the wave function envelopes can be derived. The boundell dleliactrlc constank, and the barrier region dielectric
ary conditions require the continuity at the heteroboundariesonstantky. An explicit expression fotp(r 1,r,) is derived in

2

for the following quantities: Ref. 12.
Taking into account the antisymmetrized forms of the
YWpz, wave functions, the matrix elemefitl) becomes the follow-
P ing:
(71_272)E\pry Mfi:MI_M“, (12)
9 2
(71_272)E\Ppya 9 M|=<‘P3(I’1)‘I’4(I’2) m
h?  E.—E _h? d
yWst %6727‘1’5""%(71_272)5\1%2, +o(ry,r) | Vi(r)Wyry) ), (13
(y1-272) W, and expression foM' can be obtained fronil3) by inter-
change of indices 1 and 2 in the arguments of wave func-
(71—2'y2)\1’py. tions‘lfl andlpz.
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FIG. 1. Ground states of charge carriers in a semiconductor /

quantum well with perpendicularly applied magnetic field.
We now consider the CHCC process of Auger recombina- Electron Wave Vector k,
tion. Only a small number of ground statéthe first size FIG. 2. CHCC Auger process in a semiconductor quantum well
quantization level and few f'r.St Landau levetmrticipate in  with perpendicularly applied magnetic fielth) A transition to a
the Auger process at sufficiently low temperatures. Thesgontinuous spectrum statéh) a transition to a discrete spectrum
ground states are shown in Fig. 1. There are two dominardtate. HereE, is the energy of the electron, akd the wave vector
types of transitions which occur between the following of the electron.

states:
By substituting the wave functions given k1), (A7), and
(A18) for the proces$14) into matrix element13) and using
(e, . l=pt1lke ka) (), = I=sk ke) approximationV, ,<Eg, we obtain
_>(CT ,+,|=I’I+ 1,kf,kX3)+(hhl ,_,lzt_l,kh,kx4), 21/2e2,y
|~ +p+s+t —1/2
(14) M'= 7T3K0ng221/2)\3a3/2(2n PTS nlpl(s+1)!t!) =4,
17
(Cll_llzp!kC!kxl)_*—(cTl+y|:s+1lkrlk)(2) Where
—(c;,—,I=nk¢,kg3) +(hh , +,1=t+2Ky ,Kya). sz f f 426t g
(15 R3
Here the symbolsc;, c¢;, hh;, and hh, identify the xf f zei(kxl_kx3)xlei(kxz_kx4)x2dxldxz
branches of the electron and heavy hole spectra; the signs R
plus and minus denote the symmetries of wave functi@ns
in the quantum wellk., k, , k;, andk;, are the wave vectors XJ J LEp(Y1 /N =NK) Fr(y1 /A = AKys)
of size quantization ground statds;, . . . k., are thex-axis R
wave vectors;l is the Landau level index; ang,s,n,t X for1(Ya /N —=NKyo) X (Yo /N —NKy)dy; dy,
=0,1,2 ... Thenumbern may be equal to, or greater than,
Q, and equal to, or less thalmmaXEZEg/(ﬁwc)%l, agcord- Xf f 2¢(kc21)¢(kf21)¢(kr22)¢>(kh22) dz dz,,
ing to the energy conservation lawo{ is defined in the R
Appendi¥. We consider two main case&t) n=0,1,2 ... (18)
(transition to continuous spectrum statesid (2) N=nax o
(transition to discrete spectrum stateBoth processes are X @ndZ are normalization constants, and
shown in Fig. 2. According to the dispersion equatigsse <a/2: K _ k
the Appendiy, k.=k, <k;~kj, for the first case anét,=k, Izl plkerr2)= COTke g, 02),
=K<k, for the second. |z|>a2:  ¢(ke,z)=€ *erl?,
#(kiz)= cogkz), P(kiz)=0. (19

A. Transition into the continuous spectrum

The Auger transition to continuous spectrum states corretere and in the following we drop the prefactor:

sponds to the following conditions for the indexand wave 2 9 12
vectors of carriers 1— Yo ((ki—ke) "+ kp) Eq 1+2tﬁ (20)
2E] Eg— 6 kn/’
n=0,1,2... andk.=k,<k;=~kj,. (16)  which is about 1 in formulas for the matrix elemekit'.
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At sufficiently low temperatures <A w.;), when the
magnetic field effects become important, we can take into
account only the ground Landau levels of the initial states,

p=0 ands=0. In this approximation we still obtain a result The term (o— Ko) (ko + *o) in Eq. (27) arises from taking

of correct order, reflecting important features of the matriXiio account the additional potentialry,r,) in Eq.(13) (see
element as a function of temperature, magnetic field strengttpof 12. ’

and heterostructure parameters. However, for these levels the Expression(25) shows that the matrix element splits into

limit H—0 is equivalent to the limiky ,—0 in the absence , terms, The first termd, is related to the presence of
of magnetic field Note that the index takes all values  oterohoundaries, and the second tépneorresponds to the
between 0 ande due to the conditiorh wp<fiwc, and SO ghort.range Coulomb scattering. The latter is conditioned by
doesn (wy, is defined in the AppendjxWe also suppose that e fact that large energy is transferred in Auger transition

the magnetic field is not too high so that the Landau levelq this is possible only if the scattering particles find them-

2 al2
Jz=g$+—qlzja12¢(kh2) P (K 2) p(kz) p(KcZ) dz. (28)

coupling is much less than the size quantization endrgy

<#2k?/2m. This condition can be written in the forma?
<\2 ThengZ>q;+q5, and the factog 2 in (18) can be
expanded into the series ?=q, °—(a5+q;)q, *. Using

these approximations, the integid8) can be easily calcu-

lated as
|=(—1)"22-[(n+0/2] 7912 o~ k2o~ ki4H(k34’k13)J
X 5( kx1+ kx2_ kx3_ kx4) (21)
with the help of integral tableS. Here kij =\ (Ky—Ky;)/
V2 (,j=1,....,4),

=0t [ | stkzpakizn oz gz

X e—Q||Zl—22‘ le de, (22)
H(ka4,K13) =Hpp 14 1(Kza) +4KigHn 1 1(Kaa)
+4tH 4 1(Kaa), (23

0 = —[Hpot+ 3(Kaa) +8KygH s 1+ 2(Kag) + 4(4KE5+ 1)
X Hp s 1(Kag) — 4tkydH 4 (K I[2N2H (Kas, K191,
(24)

andH, (k) is a Hermite polynomial.

An approximate expression for the integfal) can be
obtained by integration by parts over thecoordinatet? We
again use the approximatior, ,<E4. Then(22) becomes

J=J,+J,, (25

where

al2
31=F(a/2) Jia&(ﬁ(khZ)qb(krz)e“IZdz

—F(—a/2)in(ﬁ(khz)(j)(krz)e*‘“zdz, (26)

2
F(+al2)= :me—qla/%( +ksal2) p( +keal2)
f |

3V.+V, ko= Ko
4E,

: (27)

Ko+ Ko

selves very close to each other. We supposeahat\ 2, and
therefore,q,z<1 in J; which corresponds to scattering at
both heteroboundaries simultaneously. Calculation of the in-
tegralsJ; andJ, gives

8k, Kek,
(K2+ g2 (K24 0%) /(K2 + <) (K2+ 52
T (Kt a0 (kK2 + k) (K2+ k2)

1=

3V.+V, ko~ kKo
X — — | cog k;a/2),
4Eq Kot Ko
K
(KE+a7) (kg —ke—k,)2—kp)

Jo= cog (k—ke—k;)al2),

(29

where we use condition€l6) to ignore six less significant
terms of the eight ones id, and the boundary conditions
(A22) to expressp(=k;al2) in J;.

Both termsJ; andJ, are thresholdless matrix elements.
Indeed, there are no restrictions imposed on the initial mo-
menta of carriers. However, the mechanisms responsible for
the momentum nonconservation Jp and J, are different.
The mechanism ird; is related to carrier scattering at the
heteroboundary. The same reason gives rise to a threshold-
less Auger process in scattering on a single heterobarrier
point1® The mechanism id, is determined by the restriction
of the volume of integration with respect to theoordinate
to the quantum well region. This restriction results in the
appearance of a function of the type® sinka/2) instead of
the delta functions(k).

The probabilities of Auger transitioil0) have to be
summed over all initial and final states of charge carriers to
obtain the Auger recombination rate. This sum can be writ-
ten as the integral

1 27 5
G:WTJ [M+i|28(E;—E;) FdT’ (30
with the density of states
dk,, dk,, KyK;XZ dkysdk; dkya
FdI'=nXY Koy n XY Ky (212 KeKy ny, Ky
(31

HereKy, K, andY=X\2Ky are normalization constants;,
n,, andn, are the densities of electrons and holds; is the
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matrix element defined byl2) and (13); E,;=E,;+E, and In the case®<\?, the factord_; andL, can be written as a
E;=Es+E, are the initial and final energies of the system, Taylor series in the small parametgf/k2. Ignoring high-
respectively; and indices, 1. . ,4, ¢, r, f, h are the same as order terms, we can derive frof29) and(37)
those used i{14) and (15). The rate(30) is to be summed
over the indices andt. The matrix elemeniy; in (30) can Li=1-K;2g?, where K; %=k, ?+k; 2
be written as the sum
and K, ?=k; 2. (38)
| 1] | 1] | 1l
=M;—M;j;+M5—M5+Msz— . . .
Mgi=M;=My+Mz=Mz+ M= Mg, (32) Calculation of the integralé35) and (36) gives
where the termavl"' can be calculated similarly tv' by

— —29n+t+1 _ _
interchanging the indices 1 and 2 in the arguments of wavéxi = A 2" [(n+t+D)!=4nt(n+t—1)!

functions ¥, and ¥, in (13). However, the term$/" are SNT2K2(2(n+ t+2)1 - 3t(n+ t+ 1)1 — 22(n+ )]
negligible with respect to the corresponding terMs for
processe$14) and (15) due to the small coupling between (39

statesc, andc;. The termsM; and M, correspond to the

terms J; and J, [see(21) and (25)], and the termMg is nd
derived below for the Auger transition to discrete spectrum |=p-323.,-1 (40)
states. 2= Y
The contributions to the Auger rat80) from the matrix  \yith the help of integral table&.
elementsM; andM, on the one hand, arid ;, on the other, The Boltzmann distribution often takes place for holes.

can be separated. The reason is that these matrix elementgking into account the heavy hole spectrGid7), we can
describe transitions of a particle to a continuous or discretyite for the densities., n,, andn;,

spectrum state, respectively. Separating the contributions

from M, and M, is more difficult. Even though there is a n p
physical difference between these matrix elements, a term of n,=n,= > and n,= Ee‘(’”"h”)t(l—e‘h“’h”).
interference between them appears in the total Auger rate (41)
(30). However, neglecting the interference betwéén and

M5, we still obtain the result of correct order, reflecting all |n what follows we study the Auger coefficiers instead of
important features of the Auger recombination rate as a functhe Auger ratess, , related byG,=n?pC;. The expressions
tion of magnetic field strength, temperature, and parametefgr the Auger coefficient€; andC, obtained by substitut-

of a quantum well structure. ~ing (29) and(37)—(42) into (34) and summing over the indi-
According to the aforesaid, the rate of Auger recombinacesn andt are given by

tion can be written as the sum
4

e’y 8N
— —_n1/2 2 2 _

where the termsG; correspond to the matrix elements
M; (j=1,...,3). Therate Gz will be derived below. The where
ratesG; and G, can be obtained front30) and (31) by

substituting the matrix elemenks,; andM, from (12), (17), -9 1 1
(21), (23), (25), and(29). The substitution gives N= 8 1—e fonlT 8 (43
ety? At 5 The same expression can be obtained for pro¢Ess The

Gi=ncn,ny, <ZHEZS 22001y Qilxilz, (34 only difference is the correction factor
YAk —ko)*H k) ES L

|xi=K§1f f f jRALisz(k34:k13)5(kx1+kxz_kxs_kx4) 2Eg (Eg=0)(Eg+26) ky
o2 o2 instead of(20). Summation of the Auger coefficien(42) for
xe Tk dkg dkys Ak, (35 both processe€l4) and(15) gives the final expressions
4 4
IZ: f 5(E3+ E4_ El_EZ) dkf . (36) C1:213/23’772 ey kc
R

KkohEGaN? Kikp(K2+ k2)?

3V, +V, Kko—Ko| k24 k2
— 2 0 1-8N—p g (45)

Herei=1,2 and the matrix elemeng from (29) are factor- 2
4E, Ko+ Ko N2kZKs

ized as the following product:

Ji=LiQ;, where Qi=Ji|q-o- @7 and
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ey kh

_9ll2q 2
Co=273m KkohEZa3N2 K ((Ki—2Ke)?—ki)?

X (1+ cog(ki—2ky)a))

1 SN) (46)
NKE)

B. Transition into the discrete spectrum

PHYSICAL REVIEW B 63 075317

in (18) can be calculated by the same method as that used for
transition into the continuous spectrum. The only difference
is the integral oven, . It can be shown thagje In(n)EY/»?

in the case?<\?. This means thay;<qj and therefore the
factor 2 in (18) can be expanded into the serigs?
=q, >~ (g +0aZ)a, *. Calculation of the integrals ove,,

z,, Z,, andqy gives a result similar t¢21), (25), and(29).
However, due to the condition;<q;, the termJ; can be

The Auger transition to discrete spectrum states correneglected compared with the terdg. The final expression

sponds to the following conditions for the indexand the

wave vectors of charge carriers:

n=(Eg\/y)?>1 and ke=k,=k¢<ky,. (47

The matrix element of the proce€s) is given by the same

expressiong17) and (18) with the quantum well widtha
substituted forZ. The integrals oveky, X,, Oy, Y1, andy,

for the integral(18) is of the form
| =(—1)"* 124 [(n+0/2] 79125 3~ k§3—kf4H(k34)A
X 5( kx1+ kx2_ I(x3_ kx4)- (48)

Hereki; =N (ki—ky)/V2 (,i=1,...,4),

i sin((s;ke+ Sok, + S5k + 4k} a/2)

(49)

(S1ke+Sok, +s3ks+ 54k ) al2

H(Kg)=Hp - 1(Kag) +2(N2KZ+ 20 H 4 ¢ 3(Kag)- (50

The rate of the Auger recombination is given 80) with
the density of states

dk,q dk, KyX dkys dky4
FdI'=n.XY K, n, X K, 27 Ky Ny Ky’
(51
which is different from(31). Substituting(12), (17), (48),
(50), and(51) into (30) and integrating ovek,, . . . Ky, We
obtain the Auger recombination coefficient
eAyz)\z
_ 3 _ o (hopIT)y a—(hop IT)t A2
(n+t—1)1 +(N2K2+2t)%(n+t—3)!
X 2n2t(;-]|t| 5(Ef_Ei)'
(52

cally in the next section. Let us present here only the expres-
sion for the difference of the final and initial energies of the
system

Ef_EiZSCT(kf ,|:n+1)+8hhl(kh,| =t—1)
1)—ec (ki |1 =0)—Ey.  (54)

The termse¢;, ¢, epp, andey,, are given by(A6) and
(A17).

The same coefficienf52) can be obtained for process
(15). The energy difference for this process is given by

_SCT(kC'I =

Ef_EiZSCJ'(kf ,|=n)+shm(kh,| :t+2)
— /(K |=0)—g¢; (K ,I=1)~E,. (55

IV. RESULTS

Let us consider in detail the Auger recombination coeffi-

Here the delta function appears because of the entirely digientsC,, C,, andC; given by (45), (46), and(52), respec-
crete spectrum of the system. The delta function can be writvely. The dependencies of these three coefficients on the

ten in the following form:

- a)
- (BT (E—E)?)

S5(Es—E;) (53

magnetic field strength, quantum well width, and tempera-

ture are shown in Figs. 3, 4, and 5, respectively. Here the

coefficientsC; and C, (Figs. 3 and 4 are calculated for
GaAs—GaAlAs heterostructureg{=1.52 eV, m.=0.07m,
m,=0.68n, 6=0.1 eV,V,=0.1 eV,V,=0.1 eV, ko= 10),

whereI" is the normal width of the transition. The Auger and the coefficienC; (Fig. 5 for InSb—InGaSb heterostruc-
recombination coefficien52) is to be summed over the in- tures Ey=0.23 eV, m;=0.016n, m,=0.40m, 6=0.3 eV,
dicesn andt, taking into account that the final ener@  Vv.=0.1 eV,V,=0.1 eV, k,=10, [ =10'%"1). The same
depends on the index and the initial energ¥; on the index  InSb—InGaSh heterostructure is used below in Fig. 6.

t. The result of this summing is quite different in two limit- All three Auger recombination processes are threshold-
ing cased’<w andI'>w. We calculate this sum numeri- |ess. Indeed, in the limit of zero temperature all coefficients
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12 25
1—a=40A T=3K a=50A 3 FIG. 3. Auger recombination
10] 2—a=50A 0.85- .
- 3 — ac60A 520 = _coeff|C|e'nt(31 for elegtron scat_t_er-
E > > ing on interband with transition
o 081 1 ® s e 0.80 ;: :::;I into continuous spectrum as a
= 27 =4 3_—H=18T 2 function of (a) magnetic field(b)
%8 2 o g / quantum well width, andc) tem-
E o4 s £ 19 £ 0.75; perature in GaAs—GaAlAs hetero-
sf::: ] % ,}—: structures. Herél is the magnetic
3 02, 8 0.5 3 1 field strength in Tesla, a is the
. 0-70-/ quantum well width in A, and is
wl& 00 B e te_mperature in K; the same for
0 2 4 6 8 10 12 14 0O 20 40 60 80 100 0 5 10 15 20 25 Figs. 4-6.
(a) Magnetic Field H (Tesla) (b) Quantum Well Width a (A) (C) Temperature T (K)

have nonzero valuefsee Figs. &), 4(c), and 8c)]. How-  ing to the factor exptHy,/H in the Auger coefficienCs.

ever, the reasons for the absence of a threshold are differemherefore, the amplitude of oscillations increases with mag-

for the transitions to continuous and discrete spectrum stategetic field[see Fig. %a)]. Note that the local maximums of

The threshold arises because a large momentum has to B coefficientC; as a function of magnetic field are

transferred in Auger recombination by virtue of the energysmoother on the higher field side and sharper on the lower

and momentum conservation principles. For the transitiofield side. The right-hand slopes of the local maximums re-

into the continuous spectrum, the presence of a quantum welroduce the thermal distribution of heavy hol@vltzmann

removes the conservation principle for the momentum comdistribution), because the energy of a high-Landau-level

ponent normal to heteroboundaries. For the transition int@lectron is much more sensitive to the magnetic field strength

the discrete spectrum, the transferred momentum is smaghan the energy of a low-Landau-level heavy hole.

because the final electron in a sufficiently high Landau level The Auger coefficients vanish when the magnetic field

has the momentum approximately equal to that of the initiaktrength approaches zdsee Figs. &), 4(a), and 5a)]. The

electron. reason is the factor 2 in the coefficientC5. In order to
The coefficientsC, and C; increase, and the coefficient explain the behavior of the coefficien®, and C,, let us

C; oscillates, with magnetic field strengfsee Figs. @, compare these coefficients with the corresponding expres-

4(a), and 33)]. These effects can be explained as follows. Assjons derived in the absence of magnetic fiéld:

it is known from the quantum mechanics, the magnetic field

localizes wave functions. The localization makes the Cou- 2 2 2

lomb matrix element larger, and the Auger recombination Ci(H) 2§ kekn  fiwn  Co(H) :§& hon

rate higher, compared with the case without magnetic field. Ci1(0) 2 ki(ki+xZ) T ' Cy0) 4kZ T

The reason for the oscillations of the coefficigdy is the (56)

resonant nature of the Auger recombination process with a

transition into the discrete spectrum. The process is thresfone can see that the reciprocal quantum magnetic length

oldless; however, a small factor 2 replaces the threshold A1 is to be replaced by the thermal momentumy

factor exp(-Ey/T) in the coefficientC;. One can obtain  =2mT/4 in order to obtain the correct limiting expres-

from (47) thatn=2E /(% w.), wherew,= wm/m; andm¢is  sions. Indeed, the wave vectors of the electrons and holes are

the electron mass in the case of zero constant of spin-orban the order of thermal momentugy owing to the interac-

interaction given byn/mC=2my2/(ﬁ2Eg). The numbenis  tions between charge carriers. On the other hand, transitions

usually much greater than unity in real fields. Thus, there isnvolving higher Landau levels of electrons have to be con-

a threshold with respect to field, instead of temperature, owsidered in the limitH—0.2° Thus, the indicep ands of the

1.4 08 2.4
1 —a=48A T=3K T=3K 1— H=14T a=50A
{1 2—a=504A 2—H=16T

1 —H= 3T
3 —a=52A 5 — H- 6T 3 —H=18T

3—H=12T

-
n

~
o
i
o
@»
)
n
=)

FIG. 4. Auger recombination
coefficient C, for short-range
Coulomb interaction in quantum
well with transition into continu-
ous spectrum as a function ¢d)
magnetic field,(b) quantum well

o
©
N
-
®

Coefficient C, (10" cm'/s)

o o

s (-]
Coefficient C, (107 em®s)

N
W
Coefficient C, (10" cm's)
b G .
w
[\V]

o
a
'

/ 2

1 24 . .
3 0 1 width, and (c) temperature in
024 084 GaAs—GaAlAs heterostructures.
0.0 +&E e 0.0 —————— ————————
0 2 4 6 8 10 12 14 b 0 10 20 30 40 50 0 5 10 15 20 25
(a) Magnetic Field H (Tesla) ( ) Quantum Well Width a (A) (C) Temperature T (K)
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05 06 0.20

T=1K 1 1—H=18T T=1K a=50A
_04{ 1—a-50A _ 95 gonmeT _
2 2 —a=60A 2 2 0.151
§ 3 — a=70A 5§ 0.4 § FIG. 5. Auger recombination
% 031 2 b b A\ coefficientC, for resonance tran-
= 3 = sl 2 = 5104 sition into discrete spectrum as a
2 0z, : 2 ; function of (a) magnetic field,(b)
2 2 02] 3 x quantum well width, andc) tem-
§ § § 0.05- perature in InSb—InGaSb hetero-
© ol © o1 ) © | HetsT structures.

2 —H=18T
0.0 r r 0.04— , r 0.00 ————

14 16 18 20 40 60 80 100 0 2 4 & 8 10

(a) Magnetic Field H (Tesla) (b) Quantum Well Width a (A) (C) Temperature T (K)

initial electron states are on the order®{(%w.) instead of  bulk semiconductor in the absence of magnetic fielih the
zero. This additionally decreases the Auger recombinatiomther handa®C, decreases as inverse quantum well width in

coefficients. the limit a—o due to the heteroboundaries moving away to
Comparing Figs. @) and 4b), one can see that the coef- infinity. . . S . .
ficient C, decreases much faster than the coeffic@ntvith The coefficientC3 is negligible in comparison witC,

increasing quantum well width. Indeed, the following factor,and C, for wide gap semiconductors in not too high mag-
a part ofC,, transforms into the delta function expressing thenetic fields owing to the factor2'. Therefore, we have cal-

+C,+ C3 shown in Fig. 6 for a heterostructure with narrow-
k2(1+ cog(Ki—2k)a)) gap semiconductor InSbh. One can see that the process |

———5—— —0(ki—2k.—kp) (57)  dominates at higher fields and wider quantum wells, the pro-

a((ki—2ke)“—kp) 4 cess Il dominates at lower fields and narrower quantum
, oo wells, and the process Il becomes significant only at higher

when the quantum well width tends to infinity. The de.ltafields. The total Auger recombination coefficigbtshows a

function then has to be averaged over the heavyz hole distraiher complex dependence on magnetic field strength and

bution. As a result, the coefficie@, multiplied bya“ trans- quantum well width.

forms in the limitH— 0 into a 3D expression derived for the

V. CONCLUSIONS

analysis of the CHHS process will be the subject of future
work. A four-band Kane’s model and the first-order pertur-
bation theory were used to obtain the wave functions of
0.00 charge carriers and to derive the probability of Auger recom-
bination. The dependencies of the calculated Auger recom-
bination coefficients on the magnetic field strength, quantum
well parameters, and temperature are investigated. It is
shown that all channels are of the threshold type. The limit-
ing cases of an infinite quantum well width and negligible
magnetic field strength are analyzed. It is shown that a rea-
sonable agreement exists between the limiting expressions of
formulas derived in the paper and the results known from the
literature. The Auger recombination coefficients for the tran-
sition into continuous spectrum show a linear dependence on
magnetic field broken down at too highandau quantization
energy exceeds the size quantization enegeqnd too small
60 80 100 120 (magnetic length much exceeds the heavy hole thermal mo-
(b) Quantum Well Width a (A) mentum) magnetic field strength. These limiting cases will
be the subject of future investigations. The Auger recombi-
FIG. 6. Total Auger recombination coefficient as a function of nation coefficient for the transition into the discrete spectrum
(a) magnetic field andb) quantum well width in InSb—InGaSb shows an oscillating dependence on the magnetic field
heterostructures. strength owing to the resonant nature of the process.

) 125 a=80A In conclusion we have shown that three fundamentally
"g 1.00- ¢ T=2K different Auger recombination channels exist in semiconduc-
2 tor quantum wells with perpendicularly applied magnetic
< 0.75 field. The Auger recombination coefficients have been calcu-
) lated analytically for each of these channels. The calculations
+= 0.50- have been performed for the CHCC Auger process. A similar
3

3

3

Coefficient C (10 cm®/s)
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APPENDIX: WAVE FUNCTIONS OF CARRIERS 5 )
h 2 h 1
~ The wave function(5) is written in the basis of eigenfunc- B= 2m(y1 yz)v, n= 2m6y2—2. (A5)
tions of the total angular momentum. This wave function 2\
Mf _1(0)|ST> To solve systentA3) for the electron states, one can ne-
Nf,(2)|S] > glect the terms withw, 8, and % (i.e., lety;=7y,=0). The
! presence of these terms in the equations for electrons gives a
(Afi_2(0)+Bf())IXT> far too exact model. Then the electron spectrum splits into
oo| Si-OFThaO)X]> A two branches:
= . Al
H(Af-2(O=BR(DIYT> ES= eS| + Byt 67 bhiw[1+0(8]/Eg) ],
(Sfi-1(O)—ThHa ()Y >
Cfi_1(DIZ1> el (e8] +Egy) (e8] +E4+30)
Dfy(9)|Z] > el +Eg+26
transformed to basigl) and multiplied by Q! exp(k,x 72 5
+ik2) is to be substituted into the syste{8) in order to =yk?+ 2I_1_cT— . (AB)
obtain the spectra and wave function coefficients of carriers A gc|tEgt26

(see basis transformation in Ref.)1®lere() is the normal-

ization constant. It is easy to show that Here the spectrum branahj corresponds to the minus signs

and the conditiolN=0 for the wave function coefficients

02= 72" "1 =2)IXZ(A%+ (1 —1)(M2+ C2+2S?) and the brancle, corresponds to the plus signs and the con-
by 5 5 dition M=0. The wave function coefficients derived from
+2I(1=1)(N“+D“+2B)+8(I+1)I(1-1)T%). system(A3) are given by
(A2)
Lo . . y(I=1)/\
The substitution gives the following system of eight linear Mc =1, N¢; =0, ACT=?5, T =0,
algebraic equations for the coefficients of wave function
Al):
(AL) B vE/(2\) c vK(E+ 6)
ST T (E428)(E—2o)’ ST (E+28(E—28)’
(E—Eg—5+%hw)M+%X=0, (E+25)(E~9) (E+25)(E~9)
vké vOIN
(E—E,— 8- HhwN+ Ly=0 ST T Er20)(E-9 DU (Ev28)(E-0)
9 2 A ’ (A7)
Y /(2N
X(I—l)M +(E=S6+a—3B+3hw)A+2(1—1)yX=0, Mc =0, N¢ =1, A, =0, cFVE(_ 5),
X|\/|+(E+ 5+a+ % B+ihw)B+yX—8D=0, B ___ YKo o 2lyol
CT(E+28)(E-06) T (E+28)(E-)’
(A3)
— ykM+(E+ a— 3B+ ihw)C—2\kpX+255=0, s I yE/N _ YK(E+9)
¢l (E+28)(E—6)" ¢ (E+28)(E—6)"
Y 1 1 _
X|N+(E+ o+ a—3zB—32hw)S+2l9Y+5C=0, To solve Eqs(A3) for the hole states, we have to intro-
duce the coefficients
%N+(E—5+a+gﬁ—%hw)T+ nY=0, A A
P=;(E—Eg—5)M and R=;(E—Eg—5)N
— YykKN+(E+ a+ 38— 3hw)D—2\kyY—26B=0, (A8)
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instead ofM and N. Finding the coefficient#\, B, C, S T,

andD from the last six equations of systg#3) and substi-

PHYSICAL REVIEW B 63 075317

for so, andso ; the minus sign ir‘E,Sr?Tll corresponds tgo,
andso , and the plus sign tth; andlh ; the minus sign in

tuting them into the first two equations gives the following ¢! corresponds tth, andso,, and the plus sign tth| and
system of two equations, which completely describes th%ol. The wave function coefficients are similar to those ob-

hole states:

2(1-1)0p 210Eq} 1 P—4INks6R

E.i-32 E llgyl 1-242
202 15,5 50,5,—5

2\%K%0E, _ 1 _1 P+4INkS6R
+ Lz 2 =0

E iR 3y

2(1+1)6R 21 0E, _ %% R+2\kdoP

3 1 1 1 11_9452
B15-3 Ei-}-1Ep-11-26

2\?k?0E; 1 1 R—2\ko6P

+ =0, (A9)
E;L1E,L _1-242
207 %273
where
EnévnﬁvanE-l—n(g&—l— atngB+n,io, (A10)
0—1 m_ h All
“4lm my w, (Al11)
m__ 2 m o d—=y,—2
a— hz(Eg-i-&— E) m_h Y2 an m_h—h Y2-

(A12)
Herem;, coincides with the heavy hole mass, angwith the

light hole mass, in the case of zero constant of spin-orbi

interaction. Similarly, the electron mass is given by

m  2my® Eg+26
m, hZ%Ey Eg+36°

(A13)

tained for electrongA7). Indeed, thdh, andso,; branches
correspond to the conditioR=0 (and thereforeN=0) im-
posed on the wave function coefficients, dhg andso, to
P=0 (and thereforeM =0). We do not write down the
wave function coefficients because of the complexity of the
corresponding expressions.

For the heavy hole statedd=0 andM =0 simultaneously
in the y;=0 approximation. Furthermore, the expressMn
=N=0 is valid for heavy hole states whep terms are
taken into account in the absence of magnetic fiéla. this
case, the spectrum of heavy holes is given By=4
—%2k?/2m;, .12 However, the conditioM =N=0 is broken
in the presence of magnetic field. In this case the heavy hole
spectrum can be written in the forleB=6—a+e& where
|e|< & by analogy with the result obtained in the absence of
magnetic field? Supposinge|< & helps to ignore the spin-
orbit split off holes. SubstitutiorE= §— a+¢ into system
(A9) gives

e+ 8(\%k2+2l1)0e3
SN2 +20)2—2) 67~ 60— 5 5°]e?
[ (N2K?+21)6?B+6(N\2k*+ 21)0B%]e
—[4((N%k2+1)2—12—-1)6?B%+ 2 B3+ Z B*]=0.
(A15)

Here we omit the terms: 34w in system(A9) to simplify

Eq. (A15). These terms can be added directly to the spectra
obtained from(A15). Two small parameters can be intro-
duced in Eq(A15). One of these,Xk) 2, is much less than
unity in the casea®<\?, and the otherB/6, does so by
virtue of the conditionm;<my. The spectra of heavy and
light holes can be derived from E¢A15) with the use of

The system(A9) can be easily solved under condition perturbation theory based on expansion in the small param-
y,=v,=0 used above to obtain the electron spectfd®).  eter (k) ~>. The light hole spectrum series
This approximation helps to separate the heavy hole
branches from the hole spectra. The mixing between the
states of heavy and light holdand, respectively, that be-
tween states of heavy and spin-orbit split off holeslow o A ., 3 _3B
due to a certain difference in the massgs<my,. This mix- €h =~ §‘9 Ak 2 MY
ing is described below in detail. Now let us write down the

Enl=8—a+ep| 7 3ho[1+0(e| [Ey)],

(A16)

hole spectra in the approximation=0(j=1,2):

Efl=—1(6+e))7dN\252+ 3(5-¢])2+c| L ohiwy

—c|3hw[1+0(e|/Ey)], (A14)
1.2Kk?
s[:ﬁwl(|:%)+2—m|, cj==1, dii==1.

Hereiwj=fwm/m; with j={l,h,c}; cj=+1 for thelh,
andso,; branches of the spectrum, an@= —1 for thelh,
andso, branchesgd! = +1 for Ih, andlh, and dih=—1

demonstrates that the mixing of the heavy hole states to the
light hole states is negligible in the common cases. This ex-
pression is equal t9A14) in the limits B< @ and |E—J|

< 8. The heavy hole spectrum series

Efnl=0—a+el T3ho[1+O0(ePn/Eg)],

hm_+3

ehn = *5 | 1= (I F1)(Ak) 2

g(|:1)2+3—ﬂ(|:1))(>\k)4

+ +
46

(A17)
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shows even less mixing than that of the light ho(846).
The heavy hole wave function coefficients are given by

2vk

yIN
Man =~ E7E,—5"

Non “E—E,— 5"
86
3B

20)\k 860
3 Cm=3p

(k)% 3

Apm = Bhn=— Chni =575 (NK)?,

40 o 40
Shm:—@()\k), ThhT:@a Dhmz—@?\k,

1+ 1)y
hh| — E—Eg—5 ,

(I+1)yk

hmzﬁg_&, (A18)

260 20 ,
Ahhiz_ﬁ(l_l)l(l‘l'l). thl:%“%-l)()\k) ,
20 20

35 (K)?,

0| I+1)\k, D 20 I+1)(\k)?
@( INK, hm—@( J(NK)“.
It can be seen from the analysis given above thahthand
Ih states do not mix in the limid— 0. This limit is equiva-
lent to the limitk, ,— 0 in the absence of magnetic figlsee

Chm:

above, where thehh andlh components are known to be

decoupled?®

The lowest Landau levels require special attention. Som

PHYSICAL REVIEW B3 075317

The wave function of a carrier in the quantum w@) is
given by(7), (8), and(Al). The electron wave function is a
superposition ofc; andc, states. The dispersion equation
can be obtained from boundary conditioi®. For the elec-
tron states, these boundary conditions require only continuity
at the heteroboundaries for the componefitsand V¥ ,, of
the wave function. Substituting the electron wave function
V=C, V¥ +C ¥V into these boundary conditions gives
the following dispersion equation for electrons:

K @
kCl COt—+chl

2 2

Kera
Koy tan———Gxg;

218%(1-G)
=—— - (A20)
N2(Eg+28+e,)

Here the chosen symmetry of wave functiobg, and ¥,
corresponds to the sign plus (@), «. is the modulus of the
z component of the electron wave vector in the barrier re-

gion, andG andG are the coefficients defined by

_ (Egtec)(Egt38+ec)(EgtV,+25+8)
(Eg+V,+eo)(Eq+tV,+38+e.)(Egt26+8,)

~ 8 Egt+25+e,
G=-_—9 =% "¢ (A21)
O Eg+V,+25+e,

The dispersion equation splits into two parts if the Landau
level numbet is small or the coefficien is close to unity.

components of the wave functidil) disappear when the The last condition is usually fulfilled in semiconductors with

Landau level index takes the values —1,0,1. The wave

similar band structures. Choosing the opposite wave function

function is identically zero at< — 1. Investigating each of Symmetry[i.e., the sign minus in the wave functidf)]

three cases=—1,0,1 separately shows that only thé,
branch exists forl=—1, only hh;, Ih;, so, andc
branches foil =0, and all branches buth; for =1 In

gives the same dispersion equati@®0) with interchanged
indicesc; andc, . Finally, the electron spectrum is approxi-
mately given by the following two separated dispersion

other words, different branches of the spectrum have differéauations:

ent minimal Landau level indices:
hh 1 I=-1,
lh,,so ,c;: =0, (A19)
lh,,so;,c; 0 1=1,
hh,:

This implies that thd = —1 level is a purelyhh, state?”
Indeed, one can see frofA17) that Eyp, = 5—a—3p for
|=—1, i.e, thelh states are not mixed to the levieh, |
=—1.

|=2.

Kepja Kep @
kCTitanT:GKCTl and kCTl COtT:_GKCTl'

(A22)

They are similar to the dispersion equations for heavy holes

khhTLa_ khma_
khmltanT—Khml and khhTL COtT__Khth

(A23)

obtained in the approximation of unmixed light and heavy
hole statedi.e., the quantum mechanical spectrum of a par-
ticle in a rectangular quantum well
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