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Force constant change upon isotopic substitution of hydrogen for deuterium
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It is shown that more accurate calculations of the hydrogen vibrational frequencies require more precise
calculations of corrections of the zero-temperature vibration. Using, as an example, the silane molecule, we
interpret the isotope frequency shift of the H~D!-stretch modes in terms of both the bond length change upon
isotopic substitution~due to cubic anharmonicity!, as well as of cubic and quartic anharmonic corrections to
vibrations. The Si-H bond length is always longer than that of Si-D. The harmonic force constant and anhar-
monic parameters depend not only on the electronic structure but also, indirectly, on the masses of the atoms
involved. The importance of intermode mixing by anharmonic terms is demonstrated.
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I. INTRODUCTION

Among the various possible isotopic substitutions, by
the most important in vibrational spectroscopy is the sub
tution of hydrogen~H! with deuterium~D!. During the past
few years, H has been widely investigated
semiconductors1 and molecules,2,3 and experiments with
both H and D have been performed. As the mass of D
twice that of H a very large frequency shift occurs for t
modes that mainly involve the displacement of the H~D!
atom. It is usually assumed that the theoretical values of
vibrational mode frequencies depend upon the force c
stants determined at the minimum of the adiabatic poten
energy surface. This leads to a theoretical ratiov(H)/v(D)
of the angular frequencies of the stretching H~D! modes that
always exceed the experimental data.1 Anharmonicity4,5 has
been proposed to be responsible for the lower value of
ratio. However, the residual persistent disagreement betw
the calculations and observations most likely arises from
proximations made in the estimation of the zero-point m
tion and from the neglect of the intermode mixing by anh
monicity. The aim of this paper is to calculate mo
accurately the dependence of the bond length on masse
to zero-point motion~and, consequently, to investigate th
indirect dependence of the force constants on the ato
masses! and to assess how this influences thev(H)/v(D)
ratio. By exploring the influence of various anharmonic c
rections to vibrational frequencies, we gain additional insi
into the nature of anharmonicity.

Many properties of solids and molecules can be de
mined by calculating the bond energy. Using tight-bindi
theory and some results coming out from density-functio
theory, Harrison6–8 simplified the calculations showing tha
the bond energy can be expressed in terms of one-elec
atomic energies and some ‘‘universal’’ parameters. Th
‘‘universal’’ parameters replace the complicated interact
integrals and are similar for many covalent crystals. In t
work, we apply Harrison’s theory to study the silane m
ecule, which is a prototype for investigations of the loc
vibrational modes due to light impurities in tetrahedrally c
ordinated semiconductors. The vibrational modes of t
molecule have been investigated both theoretically
0163-1829/2001/63~7!/075201~6!/$15.00 63 0752
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experimentally.2,3,9 The aim of this paper is to show that it i
more appropriate to determine the bond length from the n
perturbative minimization of the Helmholz energy rath
than from the minimization of the adiabatic potential ener
only with the perturbative account of the zero-point motio
In this respect, the use of Harrison’s simple formalism
sufficient for reaching this goal. The interaction between
~D! atoms is remarkably weaker as compared to that of S
and Si-D and will be ignored. Therefore the model used w
not describe the bending modes of vibration. We dem
strate that corrections to vibrational frequencies due to in
mode mixing are important.

II. THEORETICAL BACKGROUND

In the tight-binding theory for tetrahedrally coordinate
crystals, four orthogonal and normalizedsp3 hybrids are
chosen on each atom as basis wave functions. The electr
bond energies are given by6–8

«5
1

2
~«h

a1«h
b!6qAV2

21V3
21

qV2
2

ku«̄hu
. ~1!

In this formula,a andb represent the two atoms involve
in the bond,«h

a,b5(«s
a,b13«p

a,b)/4, where«s and«p are the
free-atom energies fors andp states;10 V35(«h

a2«h
b)/2 and

V25 f (h)\2/md2, m being the electron mass.V2 represents
the coupling between the two atoms and the functionf (h) is
expressed in terms of the four ‘‘universal’’ coefficient
hsss521.40, hsps51.84, hpps53.24, andhppp520.81.
For example, in the perfect silicon lattice, for twosp3-sp3

hybrids pointing towards each other,f sp32sp3(h)5hsss/4
22A3hsps/423hpps/4524.373. q is the electron occu-
pancy of the bond in units of the electron charge and«̄h is
the average of«h

a and«h
b . k is the only adjustable paramete

of this theory. It is determined from the requirement that t
calculated bond lengths for the C, Si, and Ge crystals is eq
to the experimental ones. The value ofk is the same for all
crystals built from the elements entering the same row of
©2001 The American Physical Society01-1
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periodic table. For instance,11 for the C rowk52.5, for the
Si row k51.445, and for the Ge rowk51.33.

The effect of isotopic substitutions on the vibrational fr
quency can be used for the identification of the chem
species that are involved in a complex. In particular,
large frequency shift that results from the substitution of
by D leads to an unambiguous identification of the H defe
in crystals. In the limit of the Born-Oppenheimer approxim
tion the force constant calculated at the minimum of the to
energy depends upon the electronic structure and not u
the masses of the atoms. Two different isotopic specie
the same atom will have different vibrational frequenc
only because of the difference in isotopic masses. For
ample, the ratior of the vibrational frequencies of th
stretchingA1 mode for SiH4 and SiD4 molecules is given in
harmonic approximation by

r[
v~H!

v~D!
5AMD

MH
5A251.4142, ~2!

while the experimental value~which includes anharmonic
effects! is '1.3988~see Table II!. Equation~2! is a particu-
lar case of a more general statement, known as the Teller
Redlich rule.12 However, this rule is never exactly satisfie
by experimental vibrational frequencies of isotopic subst
tion. The observed frequency ratio is always some perc
smaller than the theoretical ratio. The source of this disag
ment between theory and experiment is usually thought to
entirely due to anharmonic corrections to the vibrational f
quency determined in the harmonic approximation.4,5 How-
ever, the indirect isotope dependence of the force cons
was never taken into account.

The determination of the bond length from the minimu
of the bond energy~or from the minimum of the total energ
in ab initio theories! is only an approximation since the k
netic vibration energy is neglected~it is assumed that the
atoms possess an infinite mass!. More accurately,13–15 the
equilibrium interatomic distance can be determined from
minimum of the Helmholz free energyF,

F~d,T;M !5«~d!1
1

2
\v1kBT lnF12expS 2

\v

kBTD G ,
~3!

wherekB is the Boltzman constant and« is the bond energy
~1! for atoms interacting through Coulomb forces.v is the
stretching angular frequency for the given bond. The f
quency of the stretching mode isv5Akh /m, where kh
5]2«/]d2 is the harmonic force constant andm
5MSiMH /(MSi1MH) is the reduced mass of single bon
The second term in Eq.~3! is the energy of the zero
temperature vibration and it indirectly depends upon
atomic mass. We shall consider only the influence of t
term on the bond length, i.e., we consider the situation aT
50 K.

The equilibrium distanced at zero temperature is dete
mined from the minimum of the Helmholz free energy, i.
from the bond energy~1! supplemented by the zero-poin
07520
l
e

s
-
l

on
of
s
x-

nd

-
nt
e-
e
-

nt

e

-

e
s

,

stretching mode vibration energy for the Si-H bond. Th
the equation for the determination ofd is given as

]«

]d
1

\

4Am

]3«

]d3

A]2«

]d2

50. ~4!

The third derivative of« accounts for the anharmonic effe
and is usually negative. Therefore Eq.~4! will be fulfilled
when]«/]d is positive. This means that taking into accou
anharmonicity one always gets a larger bond length than
obtained from the minimization of the adiabatic potenti
It follows from Eq. ~4! that the Si-H bond length is longe
than that of Si-D~see Table I!. The isotopic dependence o
the bond length~the lattice constant! and other crystal
parameters was studied experimentally and theoretically.16,17

The theoretical estimations were based on the Lon
theory,15 which use, as a starting point, the expression for
Helmholz free energy. Using the first-order perturbati
theory the effect of the zero-point motion on the bond len
is expressed in terms of the Gru¨neisen parameter~which
depends on the cubic anharmonicity! and the isotherma
compressibility~or the bulk modulus!. Usually, both param-
eters are calculated at the minimum of the total energy of
crystal. From this approximation follows that two chemica
identical crystals formed by different isotopes possess
same isothermal compressibility atT50 K. Generally, it is
not true because of the zero-point motion of the atom
The calculation utilizing Eq.~4! avoids this approximation
and the three derivatives are calculated at the minimum
the free energy, i.e., at the appropriate equilibrium int
atomic distance. It is seen from Table I that the accoun
the zero-point vibration influences noticeably the value
the harmonic force constantkh . The influence of the zero
point motion on the harmonic, cubic, and quartic force co
stants is disproportionally larger than that on the equilibriu
interatomic distance. However, in the case of the28Si sub-
stitution by 29Si the value of the harmonic force consta
calculated from minimization of the bond energy« is close
to that calculated from the free energyF.

TABLE I. Influence of zero-temperature vibration energy on t
interatomic distanced0 and harmonic force constantkh , cubic a,
and quarticb anharmonic parameters.

Parameter Minimization of« Minimization of F

d0 ~Å! SiH4 1.5262 1.5490
SiD4 1.5262 1.5425

kh(eV/Å2) SiH4 21.56 18.63
SiD4 21.56 19.43

a(eV/Å3) SiH4 220.1
SiD4 220.8

b(eV/Å4) SiH4 27.9
SiD4 28.9
1-2
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III. HARMONIC APPROXIMATION AND ANHARMONIC
CORRECTIONS

The bond energy can be expanded into a Taylor se
over the stretching displacementui around the equilibrium
positiond0 found in the harmonic approximation

« i5«~d0!1
1

2
khui

21aui
31bui

41•••. ~5!

If we express the positions of the 1, 2, 3, and 4 hydrog
atoms in the SiH4 molecule by their Cartesian coordinates
units of d0 /A3 as ~1,1,1!, (1,21,21), (21,1,21), and
(21,21,1), respectively, the displacementsui along the par-
ticular bonds are u15@z12(xc1yc1zc)/A3#, u25@z2

2(xc2yc2zc)/A3#, u35@z32(2xc1yc2zc)/A3#, andu4

5@z42(2xc2yc1zc)/A3#. To simplify the notation, the
displacementsxc , yc , zc of the Si atom are given in Carte
sian coordinates while the stretching displacements of th
atoms are given along their bond directions. The elastic
ergy of the SiH4(SiD4) molecule can be written as a supe
position of the four bond energiesH5( i

4« i . Then, using the
collective displacement coordinatesQ and T given in the
Appendix we can write in the harmonic approximation

H54«~d0!1
kh

2 (
i

4

ui
25H01

kh

2
Q1

21
kh

2
~T4

21T5
21T6

2!.

~6!

Q1 involves only displacements of the H atoms. It has to
noted that in Eq.~6!, the same force constants are employ
for A1 andT2 stretching modes. TheTi ’s measure the rela
tive displacement of the H atoms with respect to the Si at
from their equilibrium values. The eigenvalue ofH0 is
4«(d0). The equations of the motion of the SiH4 molecule in
terms of these coordinates aremAd2Q1 /dt252khQ1 and
mTd2Ti /dt252khTi , where the reduced masses aremA
5MH and mT53MHMSi /(4MH13MSi), respectively. The
corresponding harmonic vibrational frequencies arevA1

5Akh /mA andvT2
5Akh /mT.

The harmonic treatment of vibrational frequencies, d
cussed above, implies that atoms are bounded inside a p
bolic potential well. The atoms in this approximation cann
diffuse through a crystal and a molecule cannot dissoci
The anharmonic terms in the potential allow diffusion a
dissociation. For vibrations involving the displacement
light atoms, such as hydrogen stretching motions that ar
rather large amplitude, the anharmonic corrections can
quite important. The energy of the SiH4(SiD4) molecule can
be written as

E5(
i

4

« i54«~d0!1vA1
~nA1

1 1
2 !1vT2

~nT2
1 3

2 !1Eanh ,

~7!

where Eanh is the eigenvalue of the Hamiltonian~8! ex-
pressed in terms of the collective coordinates given in
Appendix:
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a

2
Q1

31
3a

2
Q1~T4

21T5
21T6

2!13aT4T5T6

1
b

4
Q1

41
3b

2
Q1

2~T4
21T5

21T6
2!1

b

4
~T4

41T5
41T6

4!

1
3b

2
~T4

2T5
21T5

2T6
21T4

2T6
2!16bQ1T4T5T6 . ~8!

The Hamiltonian~8! contains anharmonic terms that involv
the coupling between theA1 andT2 stretching modes of the
molecule. At this point, one limitation of our model shou
be noted. Neither does it include the interaction between
hydrogen~deuterium! atoms, nor does it describe theE and
T2 bending modes of vibration of the molecule. Reference
gives the anharmonic oscillator potential for the investigat
of the T2 local impurity modes in tetrahedrally coordinate
crystals. Equation~8! expresses the constants imposed
symmetry in Eq.~3.6! of Ref. 18 in terms of the single an
harmonic parametersa and b. Moreover, Eq.~8! contains
coupling terms not included in Eq.~3.6! of Ref. 18 since this
latter equation does not involve coupling to theA1 mode.

Contrary to all previous calculations of the H~D! vibra-
tional frequencies, we account self-consistently, by using
~4!, for the influence of zero-temperature vibrations on t
bond length. The account of zero-temperature motion ene
increases the calculated equilibrium distance and decre
the vibrational frequency. Consequently, the force consta
depend indirectly on masses. Since in the SiH4(SiD4) mol-
ecule the reduced mass of theA1 mode depends only on th
H ~D! mass, the deviation of the ratior from A2 is due to the
mass dependence of the corresponding force constan
well as due to anharmonic corrections to frequency.

IV. RESULTS AND DISCUSSION

A. Harmonic approximation

In the SiH4 molecule there are four Si(sp3)-H(s) bonds
@ f sp32s(h)522.293, k51.445#, each bond being occupie
by two electrons, i.e.,q52. Without taking into account
zero-temperature vibration, the calculation yieldsd0
51.5262 Å,kh521.56 eV/Å~see Table I!. In this case, the
Si-H ~D! pairs have the same bond length and ther factor for
the A1 mode isA251.4142 ~see Table II!. The harmonic
frequencies are 2412 cm21 for the A1 mode and 2469 cm21

for the T2 mode.
We repeated the calculations of vibrational frequencies

the harmonic approximation employing Eq.~4!. From the
results given in Table I it is seen that the Si-D bond is sho
by 0.0065 Å than the Si-H bond. As a consequence, the fo
constantkh for the Si-D bond is about 5% larger than th
Si-H one. Columns 3 and 4 of Table II clearly show th
staying in the framework of the harmonic approximation f
frequencies and taking into account the different force c
stants for Si-H and Si-D~because of the different equilibrium
bond lengths!, one obtainsr factors for bothA1 and T2
modes clearly smaller than those expected usually with
account of the zero-point motion. This is due to the co
1-3
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TABLE II. Fundamental transition energies calculated using minimization of the bond energy« and of
the Helmholz free energyF. The ratior 5v(SiH4)/v(SiD4) for each case is indicated.

Minimization Minimization Minimization
Parameter of« of F of F with Experiment

anharmonic ~Ref. 9!
corrections

vA1
(cm21) SiH4 2412 2243 2234.6 2186.87

SiD4 1706 1619.6 1617.2 1563.3
r 1.4142 1.3849 1.3818 1.3988
vT2

(cm21) SiH4 2469 2295.9 2193.9 2189.19
SiD4 1785 1695.0 1642.6 1598.40

r 1.3831 1.3544 1.3356 1.3695
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bined effects of the anharmonicity of the potential@]3«/]d3

in Eq. ~4!# and the difference in masses of H and D.

B. Anharmonic corrections

The anharmonic corrections have been obtained by
turbation theory treating the cubic part of the anharmo
Hamiltonian~8! in second order and the quartic part in t
first order. The analytical corrections for the three low
vibrational levels are given in the Appendix. Table III give
the numerical values for the correctionsDvA1

andDvT2
for

the two fundamental transitions and Table II gives the res
ing wave numbersvA1

andvT2
of these transitions for both

SiH4 and SiD4. The inclusion of anharmonic corrections d
creases again ther factors. It turns out that the decrease or
due to the indirect dependence of the harmonic force c
stant on masses is of the same order of magnitude as tha
to anharmonic corrections to frequency.

It is of interest to look at the detail of the anharmon
corrections. In Table III, together with the total contributio
the contributions of the terms involving onlyQ1 or Ti ’s
~‘‘intrinsic’’ contribution! on the one hand and those invol
ing bothQ1 andTi ’s on the other hand, are given. It clear
appears that the contribution of the anharmonic coupling
tween theA1 andT2 modes is most important. For the tra
sition towards the first excitedT2 level, these terms eve
change the sign of the anharmonic correction. It has to
noted that the anharmonic coupling between the differ
modes is very often ignored~because it is difficult to deter
mine it theoretically! and obviously this leads to very impo
tant errors in the anharmonic contributions. As alrea
pointed out previously, our calculations ignore the bend

TABLE III. Anharmonic correctionDv ~in unit of cm21) to
fundamental transitions.

Mode Total ‘‘Intrinsic’’ A1-T2 coupling
contribution contribution

SiH4 A1 27.7 235 27.3
T2 2101.9 57 2158.9

SiD4 A1 22.4 217.2 14.8
T2 252.4 29.9 282.3
07520
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modes and therefore, the total anharmonic contribution gi
in Table III does not intend to be very accurate.

V. DISCUSSION

Due to the asymmetric form of the interatomic potent
arising from the cubic anharmonic termau3 in Eq. ~5!, the
equilibrium bond length depends both on the atomic mas
and the atomic vibrational state occupied. The mean posi
shift due to anharmonicity is well known in the classic
theory of vibrations.19 The quantum and classical theories
vibrations differ in the limitT→0 K. According to the clas-
sical theory the amplitude of vibration approaches zero w
T→0 K. At enough low temperature the anharmonic ter
in Eq. ~5! can be neglected as compared to the harmo
term. Therefore, below this temperature the bond length
the harmonic force constant do not depend on the isoto
substitution. The classical calculations of the bond len
shift upon isotopic substitution use the force constants de
mined at the minimum of the adiabatic potential. These e
mations are sufficiently accurate for the heavy atoms wh
have the relatively small amplitude of vibrations. In such
case the calculations based on Eq.~4! give the similar result.
However, there is a different situation for the light atom
where the anharmonic effects are large. For example,
amplitude of the vibration of the hydrogen atom is'0.1 Å,
i.e., it includes a region which is outside of the harmon
regime.

The different description is given by the quantum theo
of vibrations from which the classical limit ofT→0 K is
obtained taking the Planck constant\→0. According to the
quantum theory the atoms vibrate even atT50 K. This is
consequence of the Heisenberg uncertainty principle for
sition and momentum. Therefore, due to the anharmo
terms in the potential, the isotopic mass substitution chan
the bond length even atT50 K. Due to zero-temperature
vibrations the H-Si and D-Si bond lengths differ atT50 K.
The H-Si iteratomic potential is a steep function of the d
tance and the force constants change with the bond len
Therefore it is reasonable to calculate the force constan
the bond length determined by the minimum of the free
ergy. Though the bond length determined from the minim
zation of« or F differs slightly, this leads to the dispropor
1-4
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tional change in the harmonic force constant and he
modifies the fundamental frequency.

The results for the fundamental transitions obtained
minimizing the free energy in the ‘‘harmonic’’ approxima
tion are in reasonable agreement with the experimental d
In particular, the firstT2 level is calculated to be above th
first excited A1 level. The r factors obtained are clearl
smaller than those obtained by minimizing the total ener
The inclusion of the anharmonic contribution further d
creases ther factors. It does not improve the agreement w
experiment. This is not surprising because our model, ign
ing the interaction between bonds, cannot take into acco
the bending modes and their anharmonic coupling with
stretching modes. The theoretical expressions can be use
the analysis of the observed stretching vibrational modes~the
bending modes usually fall out into phonon spectrum a
they are difficult to observe! due to the light impurities in
semiconductors. An important point to be noted is that
anharmonic contribution arising from the coupling betwe
the A1 andT2 modes is quite large and comparable with t
‘‘intrinsic’’ contributions for each mode.

As a matter of fact, the effect reported in the ‘‘harmonic
approximation resulting from the minimization of the fre
energy involves, according to Eq.~4!, the third derivative of
« with respect tod. The anharmonicity parametera also
involves this third derivative of«. In this respect, what we
call ‘‘harmonic’’ approximation in this paper is not reall
fully harmonic, but the important conclusion is that, in ord
to have a homogeneous description of the problem,one
should take into account the difference in bond length for
different isotopes together with the anharmonic correctio
to frequency.

A semiempirical model has been developed for fitting
stretching modes of experimental data including a la
number of overtones.2,3,9 This model is also based on th
superposition of single bonds, but includes bond-bond in
actions. Indeed, it would be of interest to compare the res
coming out from both models. Unfortunately, the compa
son is not easy as Refs. 2, 3, and 9 work in the framewor
a local mode model whilst the present work is performed
the frame work of a normal mode model; this leads to
differences. For instance, in the framework of the local mo
model theA1 andT2 modes have the same frequencies in
harmonic approximation if one ignores the bond-bond int
actions; it is still the case when anharmonic corrections
included.

The accurate determination of the bond length and
fundamental frequency is the difficult task. In the past f
years the molecular dynamics20 is playing increasingly im-
portant role in the study of materials. In this context, it
interesting to compare the principal results obtained fr
molecular dynamics simulation and the present semiem
ical calculation. Molecular dynamics simulation needs
empirical input. The motion of the atoms is described
equations of classical mechanics. In a ‘‘start-up’’ configu
tion the positions and velocities of atoms are assigned.
temperature of the system is varied by changing the ma
tude of velocities that correspond to the kinetic energy
propriate to the temperature used in the simulation. Redu
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the velocities, the system is set to its equilibrium state aT
50 K. The molecular dynamics simulations provide info
mation on anharmonicity of the interatomic potential. T
vibrational modes are determined by the Fourier transform
the velocity-velocity autocorrelation function. Since the m
lecular dynamics is based on the Newtonian equations
motion, it gives the same results as the classical theory
vibrations in the limit ofT→0 K. At some higher tempera
tures the results of the molecular dynamics simulation sho
approach the quantum theory prediction because it explic
includes the kinetic energy of atoms.

First-principle calculations based on the densi
functional theory determine the interatomic distance~assum-
ing that they are determined by the first derivative of the to
energy! with an accuracy of about 1%. In our calculations w
need the third and fourth derivatives; it is clear that th
cannot be determined as precisely as the first one. Error
the order of 50–100 % on the third and fourth derivatives
plausible. The anharmonic parametersa andb used in this
work are determined by the accuracy of expression~1! for
the bond energy. It is seen from Table II that calculat
frequencies~at the equilibrium distance derived from the fre
energy! are in reasonable agreement with the experime
ones. Since the anharmonic cubic and quartic contributi
to vibrational frequencies partially cancel each other, it
impossible to conclude how accurate the calculated fo
constants are even if the calculated frequencies are in rea
able agreement with experimental ones.

VI. SUMMARY

Contrary to all previous calculations of the H~D! vibra-
tional frequencies we directly account for the influence
zero-temperature vibrations on the bond length by using E
~3! and ~4!. The inclusion of the zero-temperature vibratio
energy increases the calculated equilibrium distance and
creases the vibrational frequency. Consequently, the
monic force constant depends indirectly on isotope mass
cause it is calculated at the distance where Eq.~4! is fulfilled.
Equation ~4! links self-consistently the first, second, an
third ~anharmonicity! derivatives of the adiabatic potentia
We described the stretching modes of SiH4(SiD4) with full
account of third- and fourth-order anharmonic correctio
involving the stretching modes.

It is seen from Table II that the calculated ratior of the
isotopic frequencies is closer to the experimental values
the ‘‘harmonic’’ approximation. It has been shown that t
anharmonic corrections involving the coupling betwe
modes give strong corrections to the vibrational levels a
should definitively to be taken into account together with t
‘‘intrinsic’’ harmonic corrections to the modes.

The effect of mass on the force constant considered in
paper is especially important in the case of substitution
hydrogen by deuterium because of the factor 2 in mass
tween the two isotopes; this does not mean that it should
ignored in other cases. For instance, the described cons
ation can be applied for the studies of the local frequenc
due to the light impurities in tetrahedrally coordinated sem
conductors.
1-5
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The orthogonal transformations between the displa
mentszi along the bonds and the collective displaceme
coordinateQ1 andQ4 , Q5 , Q6, which transform according
to the representationsA1 andT2, respectively:

Q15~z11z21z31z4!/2,

Q45~z11z22z32z4!/2, T45Q424xc /A3,

Q55~z12z21z32z4!/2, T55Q524yc /A3,

Q65~z12z22z31z4!/2, T65Q624zc /A3.

Q1 is the breathing type distortion in which the Si ato
does not participate. Each component of theT2 displacement
corresponds to a situation where two H~D! atoms move
inward while the two other move outward from the mo
ecule. The Si atom moves in antiphase with all H~D! atoms.

z15~Q11Q41Q51Q6!/2,

z25~Q11Q42Q52Q6!/2,

z35~Q12Q41Q52Q6!/2,

z45~Q12Q42Q51Q6!/2.

Below we list the corrections calculated usingDHanh of
Eq. ~8! as the perturbation and the product of the oscilla
wave functions as given in the harmonic approximation. T
ground state correction is
07520
-
s

r
e

«g52a2F11

32

1

\vA
S \

mAvA
D 3

1
27

32S 3

\vA
1

2

\~vA12vT! D
3

\

mAvA
S \

mTvT
D 2

1
3

8

1

\vT
S \

mTvT
D 3G

1bF 3

16S \

mAvA
D 2

1
9

8

\

mAvA

\

mTvT
1

27

16S \

mTvT
D 2G .

The correction to the first excitedA1 state is

«A52a2F71

32

1

\vA
S \

mAvA
D 3

1
27

32S 3

\vA
1

2

\~2vA12vT!
1

4

\~vA12vT! D
3

\

mAvA
S \

mTvT
D 2

1
3

8

1

\vT
S h

mTvT
D 3G

1bF15

16S \

mAvA
D 2

1
27

8

\

mAvA

\

mTvT
1

27

16S \

mTvT
D 2G .

The correction to the first excitedT2 state is

«T52a2F11

32

1

\vA
S \

mAvA
D 3

1
45

32S 5

\vA
1

2

\~vA12vT! D
3

\

mAvA
S \

mTvT
D 2

1
15

8

1

\vT
S \

mTvT
D 3G

1bF 3

16S \

mAvA
D 2

1
15

8

\

mAvA

\

mTvT
1

63

16S \

mTvT
D 2G .

The anharmonic corrections to fundamental transitions
D\vA1

5«A2«g andD\vT2
5«T2«g .
J.

.

.

*Electronic address: biern@ifpan.edu.pl
1S.J. Pearton, J.W. Corbett, and M. Stavola,Hydrogen in Crystal-

line Semiconductors~Springer, Berlin, 1992!.
2M.S. Child and L. Halonen, Adv. Chem. Phys.57, 1 ~1984!.
3L. Halonen, Adv. Chem. Phys.104, 41 ~1998!.
4R.C. Newman, Semicond. Sci. Technol.5, 911 ~1990!.
5R.C. Newman, Physica B170B, 409 ~1991!.
6W.A. Harrison,Electronic Structure and the Properties of Solids

~W.H. Freeman, San Francisco, 1980!.
7W.A. Harrison, Phys. Rev. B27, 3592~1983!.
8W.A. Harrison, Phys. Rev. B34, 2787~1986!.
9L. Halonen and M.S. Child, Mol. Phys.46, 239 ~1982!.

10F. Herman and S. Skilman,Atomic Structure Calculations
~Prentice-Hall, Englewood Cliffs, NJ, 1963!.

11J.M. Baranowski, J. Phys. C19, 4613~1986!.
12S. Califano,Vibrational States~Wiley, London, 1976!.
13S.W. Biernacki and M. Scheffler, J. Phys.: Condens. Matter6,
4879 ~1994!.

14P.O. Astrand, G. Karistroen, A. Engdahl, and B. Nelander,
Chem. Phys.102, 3534~1995!.

15H. London, Z. Phys. Chem.~Munich! 16, 302 ~1958!.
16R.C. Buschert, A.E. Merlini, S. Pace, S. Rodriguez, and M.H

Grimsditch, Phys. Rev. B38, 5219~1988!.
17H. Holloway, K.C. Hass, M.A. Tamor, T.R. Anthony, and W.F

Banholzer, Phys. Rev. B44, 7123~1991!.
18R.C. Newman,Infrared Studies of Crystal Defects~Taylor and

Francis, London, 1973!.
19L.D. Landau and E.M. Lifshitz,Mechanics~Pergamon Press, Ox-

ford, 1960!, p. 84.
20G. Galli and M. Parrinello, inComputer Simulation in Materials

Sciences, edited by M. Meyer and V. Pontilis~Kluwer Academic
Dodrucht, 1991!, p. 283.
1-6


