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Force constant change upon isotopic substitution of hydrogen for deuterium
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It is shown that more accurate calculations of the hydrogen vibrational frequencies require more precise
calculations of corrections of the zero-temperature vibration. Using, as an example, the silane molecule, we
interpret the isotope frequency shift of théJ-stretch modes in terms of both the bond length change upon
isotopic substitutior(due to cubic anharmonicityas well as of cubic and quartic anharmonic corrections to
vibrations. The Si-H bond length is always longer than that of Si-D. The harmonic force constant and anhar-
monic parameters depend not only on the electronic structure but also, indirectly, on the masses of the atoms
involved. The importance of intermode mixing by anharmonic terms is demonstrated.
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. INTRODUCTION experimentally>° The aim of this paper is to show that it is
more appropriate to determine the bond length from the non-

Among the various possible isotopic substitutions, by farperturbative minimization of the Helmholz energy rather
the most important in vibrational spectroscopy is the substithan from the minimization of the adiabatic potential energy
tution of hydrogen(H) with deuterium(D). During the past ©only with the perturbative account of the zero-point motion.
few vyears, H has been widely investigated inIn this respect, the use of Harrison's simple formalism is
Semiconductoﬂs and m0|ecu|e§"3 and experiments with sufficient for reaching this goal. The interaction between H
both H and D have been performed. As the mass of D i§D) atoms is remarkably weaker as compared to that of Si-H
twice that of H a very large frequency shift occurs for theand Si-D and will be ignored. Therefore the model used will
modes that mainly involve the displacement of the(B) not describe the bending modes of vibration. We demon-
atom. It is usually assumed that the theoretical values of thétrate that corrections to vibrational frequencies due to inter-
vibrational mode frequencies depend upon the force connode mixing are important.
stants determined at the minimum of the adiabatic potential
energy surface. This leads to a theoretical rat{¢1)/ » (D)
of the angular frequencies of the stretching® modes that Il. THEORETICAL BACKGROUND
always exceed the experimental datanharmonicity® has _In the tight-binding theory for tetrahedrally coordinated
been proposed to be responsible for the lower value of th'ﬁrystals, four orthogonal and normalizeg® hybrids are

ratio. However, the residual persistent disagreement betweeflgsen on each atom as basis wave functions. The electronic
the calculations and observations most likely arises from apgyng energies are given by

proximations made in the estimation of the zero-point mo-
tion and from the neglect of the intermode mixing by anhar-

monicity. The aim of this paper is to calculate more 1 V2

a, _b 72, dV2
accurately the dependence of the bond length on masses due e= 5(8h+8h)iq\/V2+V3+ ik 1)
to zero-point motion(and, consequently, to investigate the B

indirect dependence of the force constants on the atomic
ng)sfya(ra])?pltgriizstizsi:f(l)lz\ér:r(;g (;?U;ﬁgﬁisat:s:r)r/n z(nli) cor.. ! this formula,a andb represent the two atoms involved
- o . , artnomit “9%in the bond g 2°= (2 +3:3P)/4, wheres and e, are the
rections to vibrational frequencies, we gain additional ms'ghtfree-atom eﬁer ie(;?w angp gtateslo Vv is( a_s%)/z and
into the nature of anharmonicity. 9 b » V3T 8T &h
Many properties of solids and molecules can be deter

V,=f(7)h%/md?, mbeing the electron mas¥, represents
mined by calculating the bond energy. Using tight-bindingthe couplmg_ hetween the two atom“s af‘d the ,“,“”Cf'@?)_'s )
theory and some results coming out from density—functionaFXpressed in terms of the four “universal” coefficients:
theory, Harrisof® simplified the calculations showing that 7ssr— ~ 140, 75p,=1.84, 77p5,=3.24, andzp,, = _30'813'

the bond energy can be expressed in terms of one-electrdfP! €xa@mple, in the perfect silicon lattice, for tvep’-sp
atomic energies and some “universal” parameters. Thes8YPrids pointing towards each othefsy:—sp(77) = 7ss,/4
“universal” parameters replace the complicated interaction— 2V37spol4— 37pp,/4=—4.373. q is the electron_occu-
integrals and are similar for many covalent crystals. In thispancy of the bond in units of the electron charge apds
work, we apply Harrison’s theory to study the silane mol-the average o} andsﬁ. k is the only adjustable parameter
ecule, which is a prototype for investigations of the localof this theory. It is determined from the requirement that the
vibrational modes due to light impurities in tetrahedrally co-calculated bond lengths for the C, Si, and Ge crystals is equal
ordinated semiconductors. The vibrational modes of thigo the experimental ones. The valuelofs the same for all
molecule have been investigated both theoretically andrystals built from the elements entering the same row of the
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periodic table. For instance,for the C rowk=2.5, for the TABLE I. Influence of zero-temperature vibration energy on the

Si row k=1.445, and for the Ge rok=1.33. interatomic distancel, and harmonic force constaht,, cubic «,
The effect of isotopic substitutions on the vibrational fre-and quarticd anharmonic parameters.

guency can be used for the identification of the chemicat

species that are involved in a complex. In particular, theParameter

Minimization of Minimization of F

large frequency shift that results from the substitution of Hdo (A) SiH, 1.5262 1.5490
by D leads to an unambiguous identification of the H defects SiD, 1.5262 1.5425
in crystals. In the limit of the Born-Oppenheimer approxima- (eVIA2) SiH 2156 18.63
tion the force constant calculated at the minimum of the total<h SiD4 21.56 19'43
energy depends upon the electronic structure and not upon V/AS S'H4 ' _2(') 1
the masses of the atoms. Two different isotopic species o‘f(e ) e '
the same atom will have different vibrational frequencies 4 SID, 208
only because of the difference in isotopic masses. For ex@(ewA ) 2:;4 ;;'Z
4 .

ample, the ratior of the vibrational frequencies of the
stretchingA; mode for SiH and SiD, molecules is given in
harmonic approximation by

_oH)  Mp_
=D I\/l_H_\/E_1.4142, 2

stretching mode vibration energy for the Si-H bond. Thus,
the equation for the determination dfis given as

3%
while the experimental valuéwvhich includes anharmonics de h ad®
effects is ~1.3988(see Table Ii. Equation(2) is a particu- at —\/— —220- (4)
lar case of a more general statement, known as the Teller and ANp J°e
Redlich rule!? However, this rule is never exactly satisfied E

by experimental vibrational frequencies of isotopic substitu-

tion. The observed frequency ratio is always some perce . o .
smaller than the theoretical ratio. The source of this disagregfzg ?2Irgsggﬁlva;geazseacﬁﬁgg% Igré(heg wﬁuﬂg‘mﬁlggmt
ment between theory and experiment is usually thought to b y heg i ’

entirely due to anharmonic corrections to the vibrational fre-When gelod is positive. This means that taking into account

quency determined in the harmonic approximafiérHow- anharmonicity one always gets a larger bond length than that

ever, the indirect isotope dependence of the force constarﬁtbftc‘;’ll'lgsvds ]:‘rrcc))rrrr]l tEhe (rz)'rlﬂ'tzfﬁg)giﬂ tggngdlgr?attrzcisp?ct)ing?l'
was never taken into account. 9. 9 9

The determination of the bond length from the minimumthan that of Si-D(see Table)l The isotopic dependence of

of the bond energyor from the minimum of the total energy the bond Iength(the_ lattice qonstamtand other c%/g,ﬁal
in ab initio theorie$ is only an approximation since the ki- parameters was studied experimentally and theoreti€alfy.

netic vibration energy is neglectgd is assumed that the The ‘TEO“"‘."C""' estimations were based on thg London
atoms possess an infinite mashlore accurately3-° the theory;”which use, as astartlng pomt_, the expression for_the
equilibrium interatomic distance can be determined from th elmholz free energy. Usmg_ the f|_rst-0rder perturbation
minimum of the Helmholz free energy, _heory the effe_ct of the zero-point motion on the bond_ length
' is expressed in terms of the Gmisen parametefwhich
1 5 depends on the cubic anharmonigitgnd the isothermal
N = _ _ ho compressibility(or the bulk modulus Usually, both param-
F(d T;M)=e(d)+ 2hw+kBT In 1 ex;{ kBT) eters are calculated at the minimum of the total energy of the
(3 crystal. From this approximation follows that two chemically
identical crystals formed by different isotopes possess the
wherekg is the Boltzman constant andis the bond energy same isothermal compressibility &t=0 K. Generally, it is
(1) for atoms interacting through Coulomb forces.is the  not true because of the zero-point motion of the atoms.
stretching angular frequency for the given bond. The fre-The calculation utilizing Eq(4) avoids this approximation
quency of the stretching mode ie=+k,/u, where k, and the three derivatives are calculated at the minimum of
=0%¢/9d® is the harmonic force constant angk the free energy, i.e., at the appropriate equilibrium inter-
=MgMy/(Mg+My) is the reduced mass of single bond. atomic distance. It is seen from Table | that the account of
The second term in Eq(3) is the energy of the zero- the zero-point vibration influences noticeably the value of
temperature vibration and it indirectly depends upon thehe harmonic force constait, . The influence of the zero-
atomic mass. We shall consider only the influence of thigpoint motion on the harmonic, cubic, and quartic force con-
term on the bond length, i.e., we consider the situatiol at stants is disproportionally larger than that on the equilibrium
=0 K. interatomic distance. However, in the case of #i8i sub-
The equilibrium distancel at zero temperature is deter- stitution by 2°Si the value of the harmonic force constant
mined from the minimum of the Helmholz free energy, i.e.,calculated from minimization of the bond energyis close
from the bond energyl) supplemented by the zero-point to that calculated from the free energy
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11l. HARMONIC APPROXIMATION AND ANHARMONIC o 3a
CORRECTIONS Hanh=§Q§+ 7Ql(T§+ T2+ T2)+3aT,TsTe
The bond energy can be expanded into a Taylor series 3 33 3
ove.r.the stretchln_g dlsplacemepit arounq the. equilibrium _,_ZQ‘ll_,_ 7Q§(T¢21+ T2+T2)+ Z(T3+ Ti+TY
positiond, found in the harmonic approximation
3B
1 + —(T2T24+ T2T24+ T2T2) + 6 8Q, T4 T:sTs. (8
gi=e(do) + 5 kg7 + aul+ Buit+ . (5) 2 (TaTst TsTet TaTe) +65QuTaTsTs. (8

n he Hamiltonian(8) contains anharmonic terms that involve
the coupling between th&; andT, stretching modes of the
molecule. At this point, one limitation of our model should
be noted. Neither does it include the interaction between the
hydrogen(deuterium atoms, nor does it describe tleand
B T, bending modes of vibration of the molecule. Reference 18
~ (X~ Ye 29/ V3], u3—[23—(—?<c+yc—zc)/\/§], andu, gives the anharmonic oscillator potential for the investigation
2.[24_(_X°_y°+20)/‘/§]' To simplify the notation, the oy T, local impurity modes in tetrahedrally coordinated
displacements,, y., z; of the Si atom are given in Carte- (. a15™ Equation(8) expresses the constants imposed by
sian coordinates while the stretching displacements of the ymmetry in Eq.(3.6) of Ref. 18 in terms of the single an-
atoms are given along their bond directions. The elastic e armonic parametera and 8. Moreover, Eq.(8) contains
ergy of the Siki(SiD,) molecule can be written as a super- coupling terms not included in E¢3.6) of i?ef. 18 since this
position of the four bond energi¢s=3{¢;. Then, using the  |5tter equation does not involve coupling to the mode.
collective displacement coordinat€y and T given in the Contrary to all previous calculations of the (B) vibra-
Appendix we can write in the harmonic approximation tional frequencies, we account self-consistently, by using Eq.
4 . y (4), for the influence of zero-temperature vibrations on the
h h h bond length. The account of zero-temperature motion energy
H=4e(do) + 2 Z ui2:H0+§Qi+ ?(T§+T§+T§). increases the calculated equilibrium distance and decreases
(6)  the vibrational frequency. Consequently, the force constants
depend indirectly on masses. Since in the S%iD,) mol-
Q; involves only displacements of the H atoms. It has to beecule the reduced mass of tAg mode depends only on the
noted that in Eq(6), the same force constants are employedH (D) mass, the deviation of the raticdrom \/E is due to the
for A; and T, stretching modes. Th&;’s measure the rela- mass dependence of the corresponding force constants as
tive displacement of the H atoms with respect to the Si atomyell as due to anharmonic corrections to frequency.
from their equilibrium values. The eigenvalue &f, is
4e(dp). The equations of the motion of the Silfholecule in
terms of these coordinates ape,d?Q,/dt?*=—k,Q, and IV. RESULTS AND DISCUSSION
prd?Ti/dt?=—k,T;, where the reduced masses aig A. Harmonic approximation
=My and u1=3MyMg/(4My+3Mg), respectively. The
corresponding harmonic vibrational frequencies R

If we express the positions of the 1, 2, 3, and 4 hydroge
atoms in the SilF molecule by their Cartesian coordinates in
units of dg/\/3 as(1,1,), (1,-1,-1), (-1,1-1), and
(—1,—1,1), respectively, the displacemenisalong the par-
ticular bonds areu;=[z;— (Xc+VYe+2z)/V3], Ur=[2,

In the SiH, molecule there are four Sip)-H(s) bonds
[fspm_s(m)=—2.293, k=1.445), each bond being occupied
= Vkn/pa andor, = Vkn/pr. by ptgwo electrons, i.e.q=2. Without taking into account

The harmonic treatment of vibrational frequenCies, diS'Zero_temperature Vibration, the calculation y|e|djb
cussed above, implies that atoms are bounded inside a para- 5262 A k,=21.56 eV/A(see Table)l In this case, the
bolic potential well. The atoms in this approximation cannots;j-H (D) pairs have the same bond length andtffector for
diffuse through a crystal and a molecule cannot dissociatgpe A, mode is J2=1.4142 (see Table ). The harmonic
The anharmonic terms in the potential allow diffusion a”dfrequencies are 2412 crh for the A, mode and 2469 crit
dissociation. For vibrations involving the displacement ofy,, the T, mode.
light atoms, such as hydrogen stretching motions that are of \yg repeated the calculations of vibrational frequencies in
rat.her. large amplitude, the anharm_on!c corrections can bge harmonic approximation employing E@). From the
quite important. The energy of the Sje8iD,) molecule can  egyits given in Table I it is seen that the Si-D bond is shorter
be written as by 0.0065 A than the Si-H bond. As a consequence, the force
constantk;, for the Si-D bond is about 5% larger than the
B B 1 3 Si-H one. Columns 3 and 4 of Table Il clearly show that,

E= Z ei=4e(do) + wa,(Na, +2) + w1, (N7, +5)+Eann, staying in the framework of the harmonic approximation for
(7)  frequencies and taking into account the different force con-
stants for Si-H and Si-Dbecause of the different equilibrium
where E,,, is the eigenvalue of the Hamiltoniaf8) ex- bond lengths one obtainsr factors for bothA; and T,
pressed in terms of the collective coordinates given in thenodes clearly smaller than those expected usually without
Appendix: account of the zero-point motion. This is due to the com-

4
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TABLE Il. Fundamental transition energies calculated using minimization of the bond eaeagy of
the Helmholz free energlf. The ratior = w(SiH,)/ w(SiD,) for each case is indicated.

Minimization Minimization Minimization

Parameter ot of F of F with Experiment
anharmonic (Ref. 9

corrections
wp, (cm™1) SiH, 2412 2243 2234.6 2186.87
SiD, 1706 1619.6 1617.2 1563.3
r 1.4142 1.3849 1.3818 1.3988
wT, (cm™1) SiH, 2469 2295.9 2193.9 2189.19
SiD, 1785 1695.0 1642.6 1598.40
r 1.3831 1.3544 1.3356 1.3695

bined effects of the anharmonicity of the potenfiafe/9d®  modes and therefore, the total anharmonic contribution given
in Eq. (4)] and the difference in masses of H and D. in Table Il does not intend to be very accurate.

B. Anharmonic corrections
_ _ _ V. DISCUSSION
The anharmonic corrections have been obtained by per-

turbation theory treating the cubic part of the anharmonic Due to the asymmetric form of the inge_ratomic potential
Hamiltonian (8) in second order and the quartic part in the arising from the cubic anharmonic terau® in Eq. (5), the
first order. The analytical corrections for the three lowestequilibrium bond length depends both on the atomic masses
vibrational levels are given in the Appendix. Table Il gives and the atomic vibrational state occupied. The mean position
the numerical values for the correctioﬁg)Al andAsz for shift due to anharmonicity is well known in the classical
. . 9 . .

the two fundamental transitions and Table Il gives the result!h€ory of V't_)rat'(?”é The quantum and classical theories of
ing wave numbers), and . of these transitions for both vibrations differ in the limitT— 0 K. According to the clas-

. . 1 .2 . . sical theory the amplitude of vibration approaches zero when
SiH, and Si0y. The inclusion of anharmonic corrections de- y P bp

in thefact It t t that the d ¢ T—0 K. At enough low temperature the anharmonic terms
creases again tetactors. 1t s out that the decreaserot Eq. (5) can be neglected as compared to the harmonic
due to the indirect dependence of the harmonic force co

. ) ferm. Therefore, below this temperature the bond length and
stant on masses Is of t_he same order of magnitude as that dH?e harmonic force constant do not depend on the isotopic
to ﬁn_harrfnprllc cotrrtectllonks t(: irheqlaer;c_)ll. f th h ._substitution. The classical calculations of the bond length

IS of Interest 1o look at the detail of the anharmonic gp,;q upon isotopic substitution use the force constants deter-
corrections. In Table l1I, together with the total contribution, .0 1"+t the minimum of the adiabatic potential. These esti-
th.e qon_trlPutlon_s Of_ the terms involving oni@, or Ti S mations are sufficiently accurate for the heavy atoms which
(“intrinsic” contribution) on the one hand and those involv-

. . have the relatively small amplitude of vibrations. In such a
ing bothQ; andT,’s on the other hand, are given. It clearly y P

oo : . case the calculations based on E4.give the similar result.
appears that the contribution of the anharmonic coupling b E4.9

heA a7 des i . For th ®However, there is a different situation for the light atoms
tvygent 1 and’, modes Is most important. For the ran-  here the anharmonic effects are large. For example, the
sition towards the first excited, level, these terms even

li f the vibrati f the h 0.1 A
change the sign of the anharmonic correction. It has to bamp itude of the vibration of the hydrogen atom-<) '

. . ; fe., it includes a region which is outside of the harmonic
noted that the anharmonic coupling between the d'ﬁere”Fegime

modes is very often ignore@ecause it is difficult to deter- The different description is given by the quantum theory

mine it theoretically and obviously this leads to very impor- of vibrations from which the classical limit 6f—0 K is

tant errors in the anharmonic contributions. As alreadyobtained taking the Planck constant0. According to the

pointed out previously, our calculations ignore the bendingquantum theory the atoms vibrate evenTat0 K. This is
consequence of the Heisenberg uncertainty principle for po-
sition and momentum. Therefore, due to the anharmonic
terms in the potential, the isotopic mass substitution changes
the bond length even &=0 K. Due to zero-temperature

TABLE lIl. Anharmonic correctionAw (in unit of cm™ ) to
fundamental transitions.

Mode — Total Colrr:,:rr:gjlfo . Alczatfgt%mg vibrations the H-Si and D-Si bond lengths differt0 K.
The H-Si iteratomic potential is a steep function of the dis-
SiH, Ay -7.7 -35 27.3 tance and the force constants change with the bond length.
T, -101.9 57 —158.9 Therefore it is reasonable to calculate the force constants at
SiD, A, —2.4 -17.2 14.8 the bond length determined by the minimum of the free en-
T, —52.4 29.9 —-823 ergy. Though the bond length determined from the minimi-

zation ofe or F differs slightly, this leads to the dispropor-
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tional change in the harmonic force constant and hencéhe velocities, the system is set to its equilibrium staté@ at
modifies the fundamental frequency. =0 K. The molecular dynamics simulations provide infor-
The results for the fundamental transitions obtained bymation on anharmonicity of the interatomic potential. The
minimizing the free energy in the “harmonic” approxima- Vibrational modes are determined by the Fourier transform of
tion are in reasonable agreement with the experimental dat#e velocity-velocity autocorrelation function. Since the mo-
In particular, the firsfl, level is calculated to be above the Iecu]ar dynamics is based on the Newtonian 'equations of
first excited A, level. Ther factors obtained are clearly motion, it gives the same results as the classical theory of
smaller than those obtained by minimizing the total energyVibrations in the limit ofT—0 K. At some higher tempera-
The inclusion of the anharmonic contribution further de-tures the results of the molecular dynamics simulation should
creases the factors. It does not improve the agreement with@pproach the quantum theory prediction because it explicitly
experiment. This is not surprising because our model, ignorincludes the kinetic energy of atoms. _
ing the interaction between bonds, cannot take into account First-principle — calculations based on the density-
the bending modes and their anharmonic coupling with thdunctional theory determine the interatomic dista(@gsum-
stretching modes. The theoretical expressions can be used fd that they are determined by the first derivative of the total
the analysis of the observed stretching vibrational mgthes ~ €nergy with an accuracy of about 1%. In our calculations we
bending modes usually fall out into phonon spectrum and'e€d the third and fourth derivatives; it is clear that they
they are difficult to obseryedue to the light impurities in cannot be determined as preC|s_er as the first one. Errors of
semiconductors. An important point to be noted is that thdhe order of 50—-100 % on the third and fourth derivatives are
anharmonic contribution arising from the coupling betweenPlausible. The anharmonic parametersaind 8 used in this
the A; andT, modes is quite large and comparable with theWork are determined by the accuracy of expressibnfor
“intrinsic” contributions for each mode. the bond energy. It is seen from Table Il that calculated
As a matter of fact, the effect reported in the “harmonic” frequenciegat the equilibrium distance derived from the free
approximation resulting from the minimization of the free €N€rgy are in reasonable agreement with the experimental
energy involves, according to E6#), the third derivative of ONes. Since the anharmonic cubic and quartic contributions

e with respect tod. The anharmonicity parameter also 0 Vvibrational frequencies partially cancel each other, it is
involves this third derivative of. In this respect, what we Impossible to conclude how accurate the calculated force

call “harmonic” approximation in this paper is not really constants are even if the calculated frequencies are in reason-

fully harmonic, but the important conclusion is that, in order@ble agreement with experimental ones.
to have a homogeneous description of the probleme
should take into account the difference in bond length for the
different isotopes together with the anharmonic corrections
to frequency. Contrary to all previous calculations of the (B) vibra-

A semiempirical model has been developed for fitting thetional frequencies we directly account for the influence of
stretching modes of experimental data including a largeero-temperature vibrations on the bond length by using Egs.
number of overtone$>® This model is also based on the (3) and(4). The inclusion of the zero-temperature vibration
superposition of single bonds, but includes bond-bond interenergy increases the calculated equilibrium distance and de-
actions. Indeed, it would be of interest to compare the resultsreases the vibrational frequency. Consequently, the har-
coming out from both models. Unfortunately, the compari-monic force constant depends indirectly on isotope mass be-
son is not easy as Refs. 2, 3, and 9 work in the framework ofause it is calculated at the distance where(Eyis fulfilled.

a local mode model whilst the present work is performed inEquation (4) links self-consistently the first, second, and
the frame work of a normal mode model; this leads to bigthird (anharmonicity derivatives of the adiabatic potential.
differences. For instance, in the framework of the local modéNe described the stretching modes of JFisiD,) with full
model theA; andT, modes have the same frequencies in theaccount of third- and fourth-order anharmonic corrections
harmonic approximation if one ignores the bond-bond interinvolving the stretching modes.

actions; it is still the case when anharmonic corrections are It is seen from Table Il that the calculated ratiof the
included. isotopic frequencies is closer to the experimental values in

The accurate determination of the bond length and the¢he “harmonic” approximation. It has been shown that the
fundamental frequency is the difficult task. In the past fewanharmonic corrections involving the coupling between
years the molecular dynamf€sis playing increasingly im- modes give strong corrections to the vibrational levels and
portant role in the study of materials. In this context, it is should definitively to be taken into account together with the
interesting to compare the principal results obtained froni‘intrinsic” harmonic corrections to the modes.
molecular dynamics simulation and the present semiempir- The effect of mass on the force constant considered in this
ical calculation. Molecular dynamics simulation needs nopaper is especially important in the case of substitution of
empirical input. The motion of the atoms is described byhydrogen by deuterium because of the factor 2 in mass be-
equations of classical mechanics. In a “start-up” configura-tween the two isotopes; this does not mean that it should be
tion the positions and velocities of atoms are assigned. Thignored in other cases. For instance, the described consider-
temperature of the system is varied by changing the magnation can be applied for the studies of the local frequencies
tude of velocities that correspond to the kinetic energy apdue to the light impurities in tetrahedrally coordinated semi-
propriate to the temperature used in the simulation. Reducingonductors.

VI. SUMMARY
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APPENDIX

The orthogonal transformations between the displace-
mentsz; along the bonds and the collective displacements

coordinateQ; andQ,, Qs, Qg, Which transform according
to the representation; andT,, respectively:

Q1=(Zl+ 22+ 23+ 24)/2,

Qu=(z1+2,-25—24)12, T4=Qu—4x./\/3,

Qs=(z1—

Z,+23—24)12,

T5:Q5_4Yc/\/§,

Qe=(21—2,—231+24)/2, T6=Q6—4ZC/\/§.

Q. is the breathing type distortion in which the Si atom

does not participate. Each component of Thedisplacement
corresponds to a situation where two (B) atoms move

inward while the two other move outward from the mol-

ecule. The Si atom moves in antiphase with alilj atoms.
2;=(Q1+ Q4+ Q5+ Qp)/2,

2,=(Q1+Q,—Qs5—Qp)/2,

23=(Q1— Q4+ Q5—Qp)/2

2,=(Q1—Q4— Q5+ Qp)/2

Below we list the corrections calculated usiad 5, of

Eq. (8) as the perturbation and the product of the oscillator

PHYSICAL REVIEW B63 075201
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wave functions as given in the harmonic approximation. The The anharmonic corrections to fundamental transitions are

ground state correction is

AﬁwA1=8A—sg andAﬁwT2=sT—gg.
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