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Nonlinear ac response of an unpinned two-dimensional Wigner crystal
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We analyze the macroscopic response of an unpinned two-dimensional Wigner crystal~WC! for the case of
nonlinear losses with a nonuniform ac excitation in the Corbino geometry. For a WC above a liquid-helium
surface, the nonlinearity arises from the Bragg-Cherenkov resonance, which gives saturation of the drift
velocity with driving force. We present an analytical theory of the current distribution in the vicinity of the
resonance. The theory relates the measured magnetoconductivity of WC to the microscopic characteristics of
the resonance, in particular to the low-velocity tail of the frictional force.
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I. INTRODUCTION

Low-density free electrons tend to form a periodic stru
ture, a phenomenon predicted by Wigner in 1934. The tr
sition to the Wigner crystal~WC! phase was first discovere
experimentally for two-dimensional~2D! electrons above the
surface of liquid helium.1 More recently, evidence was foun
for 2D Wigner crystals in semiconductor heterostructure2

There are substantial differences in the physical propertie
the WC in semiconductor structures and on helium. In p
ticular, WC’s observed in semiconductors are pinned to
interface defects, so that the electron system is then ins
ing. In contrast, electrons above the helium surface are
localized by defects. Static disorder comes from the heli
atoms in the vapor. Their concentration, however,
negligible at temperatures below the WC melting tempe
ture Tm (Tm,1 K for typical electron concentration
n,109 cm22). The electron WC can thus move freely o
the helium surface and exhibits a finite static conductivity.
the case of4He, the scattering at low temperatures aris
from the losses due to the interaction of the WC with t
capillary waves on the helium surface~ripplons!.3

It was observed4–8 that the dissipative magnetoconducti
ity in the WC state is strongly nonlinear. The conductiv
increases with driving force or drift velocity6,7 and then, at
some threshold, the conductivity switches from a high to
low conducting state. Below the threshold, the magnetoc
ductivity is closely proportional to the excitation voltage
electron velocity.7 Hysteresis near the threshold force4,5 and
fluctuations~instabilities!8 above the threshold have been r
ported. The nonlinearity is a consequence of strong coup
to the ripplons with a wave vector close to a reciproc
lattice vector of the electron crystal~the Bragg ripplons!.1,9

As in Bragg scattering, the interference between the wa
emitted by different electrons allows only these ripplons
take away the energy of the moving crystal. The energy c
servation law for the ripplon emission implies the same c
dition as for the Cherenkov effect, leading to the Brag
Cherenkov scattering.10 The ripplon dispersion relation i
v(q)}q3/2 and the losses increase resonantly with the d
ing as the Hall velocity approaches the phase velocityv1
5v(G1)/G1 of the ripplons with the first reciprocal-lattic
vector G15(8p2n/A3)1/2. The Hall velocity then saturate
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to v1, and the dissipative magnetoconductivity increases p
portionally to the driving force.7

A particular feature of these Bragg-Cherenkov resonan
is their broadening even in an ideal two-dimensional WC10

This broadening is a consequence of the lack of true lo
range positional order in a 2D crystal. To characterize
resonance, it is convenient to introduce the frictional forceF
experienced by an electron in the WC due to the ripp
emission. It has been shown10 that the frictional force for a
perfect WC at low temperatures is described as a functio
the WC drift velocity v by power-shaped tails,F}uv1
2vu2(12a) with a !1. For an imperfect WC, e.g., a poly
crystal or a finite-size crystal, the frictional force does n
diverge atv5v1. Its maximum valueFm , which can be
estimated from scaling arguments,11 defines the switching of
the magnetoconductivity. The Bragg-Cherenkov scatter
from the classical point of view was considered by Vinen12

who, however, gave a Lorentzian shape for the resonanc
The shape of the Bragg-Cherenkov resonance reflects

structural properties of the WC and it is important to be a
to extract theF(v) dependence from the experimental da
The dynamics of the WC above helium in an applied ma
netic field has been studied4–8 using the capacitative cou
pling technique of Sommer and Tanner13 in the circular
Corbino geometry~Fig. 1!. A set of concentric Corbino disk
electrodes is placed below the helium surface. The cen
electrode is excited with an ac voltage, and the current fl
to the surrounding electrode~electrodes! is measured. This
method does not provide direct information about the dis
pative magnetoconductivity of the electron systems[sxx .
Nevertheless, in thelinear conductivity case, it is possible to

FIG. 1. Showing schematically the electron Wigner crys
above the liquid He surface and the Corbino electrodes below
surface in the typical experimental setup Refs. 5–8. The separa
d is much smaller than the electrode radii, but much greater than
interelectron distance.
©2001 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW B 63 073401
relate the phase shift of the observed ac current with res
to the excitation voltage to the conductivity.14,15 The phase
shift can be written as (p/22f), and, in particular,s}1/f
for smallf. The same relation for the phase shift of the fi
harmonic of the measured current was used to obtain the
magnetoconductivity in the nonlinear case. Obviously,
value should be referred to as aneffectiveCorbino conduc-
tivity. The applied ac electric field is nonuniform over th
electron system, and so are the drift velocities of differ
parts of the WC. The effective magnetoconductivity depe
on the geometry of the Corbino electrodes and only qua
tively reflects the nonlinear WC transport.

In this Brief Report, we present an analysis of the mac
scopic nonlinear ac response of an unpinned Wigner solid
the case of resonant behavior of the frictional force, the m
roscopic equations for the density of the WC electric curr
have, in general, bistable solutions, describing domains
the WC moving with small (v,v1) and high (v.v1) drift
velocities. The analysis of these solutions is complica
since the current can exhibit an azimuthal dependence e
under axisymmetric excitation conditions, one has to all
for the edge magnetoplasmons, etc. In the regionbefore
switching, however, the solution is unique. We develop h
a simple analytical approach for the analysis of the curr
distribution. This approach is particularly useful in th
Bragg-Cherenkov limit, when the azimuthal~Hall! velocity
becomes saturated to the phase velocity of the Bragg
plonsv1.

II. GENERAL EQUATIONS

At low excitation frequencies, one can neglect the ind
tance in the WC response, and the electric current den
j (r ,t) can be found from the equations of motion along w
the continuity equation,

2e~E1E!1
1

cn
~ j3B!1F~ j !50, ~1!

e
]dn

]t
2“• j50. ~2!

HereE(r ,t) is the applied nonuniform ac electric field in th
WC plane,E„r ,t) is the ‘‘internal’’ electric field due to the
change in the electron densitydn(r ,t), and the magnetic
field B is applied perpendicular to the electron layer. T
frictional force F is assumed to be a local function of th
current density. We neglect the shear forces in the Wig
solid ~see the end of Sec. III!.

The electron-electron interaction for the electrons on
is effectively screened over distances of the electr
electrode separationd. This separation is made usually5,7

much smaller than the radii of the Corbino electrodes be
the helium surface. For an excitation with the typical sc
about the size of the WC~low excitation frequenciesv), dn
is a smooth function ofr on the screening length, and on
can write15
07340
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en
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where Cs5eHe/(4pd) is the capacitance of the electron
electrode system per unit area (eHe is the dielectric constan
of liquid He!. In this ‘‘screened’’ limit, when there is a loca
relation betweenE anddn, the WC can be characterized b
the longitudinal sound velocitycl in zero magnetic field, as
introduced in Eq.~3!: cl

25e2n/mCs .
When the voltageV0cos(vt) is applied to the centra

Corbino electrode with the radiusr 1, the WC is subject to an
electric fieldE, which is sharply peaked at the circumferen
r 1. The width of the peak is aboutd, and it is consistent with
the local approximation~3! to replace this peak with a
d-function spike. Then, the radialEr and azimuthalEf com-
ponents of the applied field are

Er5V0 cos~vt !d~r 2r 1!, Ef50. ~4!

In what follows, we will analyze the axisymmetric solu
tions for the radialj r(r ,t) and azimuthalj f(r ,t) components
of the current in classically strong magnetic fields, whe
i j r i!i j fi and Fr!Ff'F( j f). Equations~1!–~4! in this
case are reduced to

cl
2D̂r j r5

]

]t S vcj f2
e2n

m
Er D , ~5!

j r5
en

mvc
F~ j f!, ~6!

where

D̂r5
]2

]r 2
1

1

r

]

]r
2

1

r 2
~7!

and vc5eB/mc is the cyclotron frequency. Equations~5!
and~6! should be solved with the condition of the absence
the current at the outer boundary of the WC at the rad
r 2.r 1 : j r(r 2)5 j f(r 2)50. As already mentioned, the fric
tional forceF in Eq. ~6! is a nonmonotonic function of the
current in the vicinity of the Bragg-Cherenkov resonan
and this equation can have multiple solutions with respec
j f . If we restrict ourselves to the region below the thresho
i.e., assume

u j fu, j 15env1 , ~8!

it is possible to resolve Eq.~6! and expressj f as

j f~r ,t !5F@ j r~r ,t !#. ~9!

Equations ~9! and ~5! give a nonlinear diffusion-type
equation for the radial currentj r . We write this current as

j r~r ,t !5 f ~r ,t !1g~r ,t !, ~10!

where f (r ,t) is chosen to cancel the excitation term withEr
in Eq. ~5!. Introducing the dimensionless variables

x5r /r 2 , x15r 1 /r 2 , t5vt, x5vvc~r 2 /cl !
2,

~11!
1-2
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BRIEF REPORTS PHYSICAL REVIEW B 63 073401
we define the Green functionG(x,x8) for the operatorD̂x

~7!, so thatD̂xG(x,x8)52d(x2x8) with the boundary con-
ditions G(0,x8)5G(1,x8)50:

G~x,x8!5
x,

2

2x
~12x.

2 !, ~12!

wherex,5min$x,x8% and x.5max$x,x8%. Then, for the ap-
plied electric field given by Eq.~4!,

f ~x,t!52 f 0G~x,x1!sin~t! f 05vr 2CsV0 , ~13!

and

D̂xg~x,t!5x
]

]t
F@ f ~x,t!1g~x,t!#. ~14!

The two parts of the radial current~10! have different
meanings. The first term,f (x,t), describes the pure capac
tative current in the electron layer. This current is pha
shifted byp/2 with respect to the applied ac voltage. T
second term,g(x,t), contains both an in-phase with voltag
component and higher harmonics, providing informati
about the losses in the electron system. The parametx
}v entering Eq.~14! is typically small,5,7 x!1, andg(x,t)
can be calculated by iterating Eq.~14!. When the excitation
frequency is small enough andigi!i f i , the solution of Eq.
~14! is given by the first iteration

g~x,t!5xE
0

1

G~x,x8!
]

]t
F@ f 0G~x8,x1!sin~t!#dx8.

~15!

Before considering the nonlinear response of the WC,
note that for linear conductivity one hasF( j )5(vct0) j ,
where t0

21 is the relaxation rate. Then Eq.~15! gives the
in-phase component of radial current,g(x,t)} cos(t). Using
Eqs. ~12!, ~13!, ~15!, and representing the current~10! as
j r(x,t)5 j r

maxcos@t1(p/2)2f#, we obtain for the phase shif

f5
1

2 F x2

12x2
ln~1/x!2

1

4
~x1

21x2!G vCsr 2
2

s
. ~16!

Heres5e2n/mvc
2t0 andx5r /r 2 corresponds to the circum

ference where the current is measured experimentallyx1
<x,1. Under the assumptions used, the expression~16! is
valid for f!1. In the case of nonlinear losses, Eq.~16!
defines the effective Corbino magnetoconductivitys from
the observed phase shiftf.

III. THE BRAGG-CHERENKOV RESONANCE

In this section, we study the current oscillations in t
vicinity of the Bragg-Cherenkov saturation, when the a
muthal drift velocity reaches the phase velocity of the re
nant ripplonsv1. The frictional force experienced by th
electrons in the Wigner crystal resonantly increases atu j fu
→ j 15env1. This behavior corresponds to the followin
properties of the functionF in Eq. ~14!: ~i! F(2 j )
52F( j ); ~ii ! F( j )'(vct0) j at smallj; and ~iii ! F( j ) ap-
07340
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proachesj 1 at a large values of the argument. In classica
strong magnetic fields (vct0@1), the azimuthal current~9!
reaches the resonant valuej 1 at small values f 0
; j 1 /(vct0) of the radial current injected in the system~13!,
and j f changes betweenj 1 and 2 j 1 during one cycle. The
subsequent increase of the driving only sharpens the sw
ing between these limiting values. As a result, the dissipa
component of the radial currentg(x,t), which is defined by
the time derivative ofj f , has a form of the sequence o
peaks~Fig. 2!.

The typical height of the peaks ing(x,t) is aboutgm
5(vct0)x f 0. In the case of (vct0)x!1 ~which, in particu-
lar, can be achieved at low excitation frequencies!, the dis-
sipative radial current can be calculated using Eq.~15! and
written as a Fourier series,

g~x,t!5a1~x!cos~t!1a3~x!cos~3t!1•••, ~17!

where only the odd harmonics are present. When the driv
force f 0 increases, the azimuthal current approaches the s
rated oscillation shown in Fig. 2 in practically the who
region ofx, except forx'0 andx'1. This also produces a
decrease in the widthDt5 j 1 /vvct0f 0 of the peaks in
g(x,t). The asymptotic form for the low harmonics in E
~17!, with numbersi !(vDt)21, can be easily calculated
from Eq. ~15!,

ai~x!'ai
`~x!5

4

3p
x~12x!x j 1 . ~18!

Using Eqs.~13!, ~18!, and~11!, we obtain the phase shift o
the first harmonic of the radial current,

f`
215zp

eV0

mvcr 2v1
, zp5

3pr 1
2

8r 2 S 11
r

r 2
D . ~19!

This asymptotic decrease of the phase shift with the driv
force depends only on the ripplon velocityv1, and is not
sensitive to the details of the electron-ripplon interactio
Note also that the result~19! is not changed by any renor
malization of the electron mass.

More precisely, the amplitude of the first harmonic can
written as a1(x)5a1

`(x)2Da1(x), which gives the phase

FIG. 2. The oscillations of the currents in the vicinity of th
Bragg-Cherenkov resonance~qualitatively!. The azimuthal current
j f and two components of the radial currentj r5 f 1g are shown.
1-3
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BRIEF REPORTS PHYSICAL REVIEW B 63 073401
shift f215f`
211Df, whereDf5(Da1 /a1

`)f`
21 . The first

correction comes from the deviation ofg(x,t) from the ap-
proximate solution~15! and a small shift of the peaks~to the
right in Fig. 2!. It can be shown that this givesDa1}V0

22 and
Df}V0

21. However, the more important contribution
Da1(x) for large V0 is due to the incomplete saturation
the azimuthal current toj 1. This correction is determined b
the tail of the Bragg-Cherenkov resonance, and its dep
dence on the driving voltageV0 reflects a decrease of th
frictional force with the detuning (j 12 j f). We consider a
general power-shaped tail of the frictional forceF( j )}( j 1
2 j )21/n. This corresponds toF( j )> j 1@12(g/ j )n# ~for
large j .0), whereg is a constant depending on the electro
ripplon interaction. Then, for 0,n,2,

Da1~x!5S g

f 0
D n 2x j 1GS 12

n

2D
ApGS 3

2
2

n

2D E0

1 G~x,x8!

G~x8,x1!n
dx8. ~20!

It is seen that the Lorentzian (n51/2) tail of the resonance
results inDa1(x)}V0

21/2, so that the correction to the phas
shift Df}V0

1/2. In contrast, the tail due to the lack of long
range order in the Wigner crystal (n511a with a!1, Ref.
10! givesDa1(x)}V0

2(11a) and approximately constant shi
Df}V2a.

In the above analysis, we did not allow for the rigidity
the WC, i.e., we assumed the plastic deformation of the c
tal. Shear forces can be incorporated into Eqs.~5! and ~6!
along the lines of Ref. 15, where the linear conductivity ca
was considered. This, in particular, removes the local re
tionship ~5! and ~9! between the components of the curre
v
i

s
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density and substantially complicates the analysis of the
response. The effect of the shear modulus, however, ca
qualitatively understood by considering the rigid limit, whe
the azimuthal currentj f(x,t)}x. In the Bragg-Cherenkov
rigid limit, the azimuthal current reaches the resonant va
j 1 at the outer boundary of the WC (x51). The asymptotic
behavior off21 differs from Eq.~19! by a numerical factor
only: zp should be replaced byz rid5p(r 1 /r )2.zp . We con-
sidered the plastic response in this Brief Report because
experimental increase of the effective magnetoconducti
s is closer to the dependence given by Eqs.~19! and~16!.16

Comparison of the theory with the experimental data will
given elsewhere.17

IV. CONCLUSIONS

In conclusion, we presented an analytical theory of
nonlinear oscillations of the current in an unpinned tw
dimensional Wigner crystal under the nonuniform ac exc
tion in the Corbino geometry. The experimentally measu
phase shift of the current, related to the magnetoconducti
of WC, is analyzed in the vicinity of the Bragg-Cherenko
resonance. The asymptotic increase of the magnetocon
tivity with the driving is sensitive to the tail of the resonanc
and we showed how different microscopic shapes of
resonance can be distinguished experimentally.
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