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Lower bound on fermion binding energies
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We derive a lower bound for the ground-state endg§gN,S) of N fermions with total spirSin terms of
binding energie€™(N—1,S+1/2) of (N—1) fermions. Numerical examples are provided for some simple
short-range or confining potentials.
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There is a persisting interest in deriving lower bounds onwherer; =|[r;—ry| is the distance between two particles. The
the binding energy oN-particle systems. Some early inves- case of particles with different masses is treated in Ref. 3.
tigations were motivated by fundamental studies on the ther- A first decomposition of this Hamiltonian'is
modynamic limit or the stability of mattérAlso, the search
for a lower bound is rather natural once an upper bound is 1 0
provided by variational estimates. Hn(m9)=S—5 > HE,

Many efforts have been devoted in particular to express a '
bound on the binding energlfy of an N-body system in  where the constituent mass iy ; is increased, since the
terms of an N—1)-body energyEy_, with modified con-  kinetic energyp?/(2m), for instance, is shared byN(- 1)
stituent mass or interaction strength. Thanks to a proper aGarms. Theith particle is absent fronH{!) ,. Using the

count for the center-of-mass motion of the subsystethe, - i-viona) principle with the ground state of tNebody sys-
situation is now rather satisfactory in the zero-spin bosoqern as a trial wave function leads to an inequality on the

sector: the bound of Hall and P&s$ saturated for the har- . 15
monic oscillator and approaches closely the exact result foground-state energidsy ,
many other potentials. An extension has been derived for N
three and four particles with different masSesere, again, En(m,g)= _EN—1<
saturation is obtained in the case of harmonic forces. N-2

The situation is far more difficult for fermions. The el-
egant bound derived by Mg-Leblond suffers from the fact

N—1
(mmig)r (2)

N-1
), ©)

N—2™9

which can be rewritten differently, using the obvious identity

that the energy ofN—1)-body subsystems is replaced by its E(am,g)=E(m,ag)/a. This _mequahty is never saturated,
rest energy without including its overall kinetic energy. As abecause the qvgrall transiation energy of tINe—(l)—body
result, saturation is never reached. subsystems within th&l-body system is neglected. An im-
A significant but partial improvement was obtained by Provement consists in replacing the decomposit@rby the
Basdevant and Martifwho used subtle convexity inequali- 'dentity
ties. Their bound improves that of \yg-Leblond in some 1
cases, and becomes exact for the harmonic oscillator. Their Hy(m,g)= ——= 2 ﬁ(,\;[l
approach, however, is restricted to confining potentidls N—2 7
q>.1,. or superpositions of such power-law potentials Withrelating the translation-invariant Hamiltonians
positive weight factors.
In this Brief Report, we use group-theoretical techniques
to derive a general lower bound on tNebody energy of an >
interacting system of particles with internal degrees of free- ﬁNz Hy— ——so——. (5
dom. The decomposition of the Hamiltonian is supplemented 2Nm
by considerations on the symmetry structure of the waverhjs |eads to the new inequality
function. Numerical tests are presented and possible gener-
alizations are sketched, in particular for quantum dots, i.e., N N
particles interacting both among themselves and with an ex- En(m,g)= mEN1<mm,g)- (6)
ternal potential.
Let us consider firsh identical particles of mas®whose As Nm/(N—1) is smaller than N—21)m/(N—2) for N
interaction does not depend on their spins. This corresponds 3, the bound(6) is better than3), since any binding en-

)
mmvg ) (4)

2

to the Hamiltonian ergy in a given potential is a decreasing function of the con-
o2 stituent mass.
_ i By recursion, an inequality such #é3) or (6) provides a
H =S 4 V(T 1 y quality
N(m.g) E. 2m g;j (riy), @ bound onE, in terms of the two-body energi,. In the
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TABLE I. Results for Yukawa Y), Gaussian @), and expo-  wth hosons, while for fermions[\],r correspond to a
nential (E) potentials. The range parameter is set to unity by rescaIYOung tableau with rows and columns interchan@ed.

ing. The quantity shown is the ratio of the computed energy to the The S. Clebsch-Gordan coefficientENTrIA1rITNTS and
bound. In the first line, the entries are the number of particles, th N (EMIVIA] |[ D

boson(B) or fermion (F) character, and the total spin. The four- ?[)\]r[)\]r|[1'\‘]) are known exphcnlf, and theN-body state
body energy is compared to the three-body one, as petEdor ~ '€ads €=1 for bosons—1 for fermiong

bosons and Eq(12) for fermions. The constituent mass is set to

m=1 for N=3 particles andn=3/4 for N=4.

g 3B0 3F,12 3F,32 4B0 4F0 4F_2 |N'D\]>€:dﬁ/22 CINDININDLDL (@

Y 8 0933 0.673 0.759 0.966 0.743 0.855

15 0943 0757 0930 0971 0806 0964 VNere
G 10 0996 0960 0887 0998 0792 0.945
20 0999 0995 0994 0999 0898 0.997 T Ov—n+j—i)
1<i<j<n
E 6 00988 0906 0843 0994 0795 0.913 dpy=N! (9)
12 0994 0974 0982 0997 0886 0991 (N+n—i)!

1

|
"

I=n

case of the harmonic oscillator for bosons, the bound derivet the dimension of the representation] ando is the num-
from (6) is saturated, whereas the bound derived f@nis  ber of permutations that have to be performed to obtain the
smaller by a factor/2 than the exact result at larde Yamanouchi symbol from the normal ofélo obtain the

Some numerical illustration of the inequalit$) for  (N—1)-body parts of staté8), one has now just to remove
bosons is provided in Table I. Other examples are given inhe Nth particle in each symbal, thus leading to anN
Ref. 2. —1)-Yamanouchi symbol that belongs to a different orbital

In the case of fermions, the bour@) is not satisfactory. symmetry  [A]p=[X1, ... Apo1. Ap=LXhpuq, ..o Npl,
Indeed, it is not necessarily the ground statélgf ; thatis ~ where p is the row number of particlN in the original
relevant, but the lowest state with quantum numbers compatfoung tableau. Moreover, this new symbol needs
ible with the symmetry of thé\-body state of interest. Thus =E’$‘>p=l)\q fewer permutations thanto appear in the nor-
looking at the structure of the wave function seems importanmal form. Hence theN-body wave function8) can be re-
to improve the inequalities. written as

Since our Hamiltonian acts in the orbital Hilbert space
only, the behavior of the wave function with respect to the

space variables has to be specified by an irreducible repre- d[lﬁp A
sentation of the symmetry group, S This corresponds to a % g2 € [((N=1[A]p)(1[1])) g e (10
[M]

partition [N ]=[A1,\,, ... \,] Of the N particles defining

an invariant orbital subspace spanned by orthogonal states
that are associated to a Young tableau or a Yamanouchi synith p running over all the lines ofA ] where a box can be
bol r.6 Both specify the transformation under permutation,dropped. When this is used with the decompositirof the
and the matrix element of any transposition operdtgris ~ Hamiltonian, it leads to a new and very general inequality
known analytically. For example, in the case of three par-

ticles, we can have the following partitions: d
N mg)= s S el N omg|.
N ’ N_2 p d[)\] N-1 N_ 1 ’ '

(3], [21, [111] @)

The first and the third ones are in the familiar symmetric and If one considers, as a first application, a system of spinless
antisymmetric representations of dimension 1, respectivelybosons for which the orbital Young pattdra] is necessarily
The second one, of dimension 2, is the mixed symmetrysymmetric, the inequality11l) coincides with our previous
representation spanned by the two stateg2,1,1) andr result(6).
=(1,2,1), which are, respectively, symmetric and antisym- Consider now fermions with spin 1/2. The conjugate par-
metric in the exchange of particles 1 and 2. tition [A] of [\ ] is an irreducible representation of U(2) and
Each orbital stat¢N,[\],r), must be associated with a contains at most two rows that are related to the Sy the
similar state|N,[\],r); for the intrinsic degrees_of freedom relationsfﬁfz:N andfl—fz:ZS. Writing our inequal-
such as spin, isospin, color, etc. The couplind®f to[N] ity (11) with [\] gives the following result: the ground-state
gives a symmetric representatipN] of Sy for bosons or a  energy ofN spin 1/2 fermions with total spisis bound in
fully antisymmetric representatiofl] for fermions. This terms of binding energies ofN—1)-body systems with
implies thaf N\ ],r are identical td A\ ],r when we are dealing neighboring spinS+1/2,
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Ex(m 9)2; . N=35=1/2
N (N—=2)(2S+1)

Nm
X | S(N+2S+ 2)Ef,__11/2(m,g>

+(S+ 1)(N—28)Eﬁt11’2(%,g”. (12)

The generalization is straightforward: the energetically fa- I I
vored state has the most symmetric space partjtiohthat N=38=3/2
admits a conjugate partitigi\ ] which can be a representa- 1.4 o]
tion of U(Q)), where( is the number of intrinsic degrees of ' a
freedom. As a resulf,A] has a maximum of) rows and
[AN]=[Q",N—vQ] for the N-body ground state withy the
integer part ofN/). Denoting byER‘_l the binding energy
of (N—1) particles with the favored orbital symmetry 1
[Q”,N—»Q—1] and byE},_, the energy associated to the : |
first excited partition{A\]=[Q" 1, Q—1N-»Q], the rela- N=4 S=0
tion (11) takes the form

1
En(m.0)= N2 1ra+0-N)

X[ (N=vQ)(1+Q+ v+ vQ—N)ES_,;
m 1
X m,g +V(Q+1)(Q+VQ—N)EN,1
Nm 13
X m,g . (13

We have calculated the lower bound and the exact energy C
with a selection of potentials, using the method of Gaussian | .
expansion described, for instance, in Ref. 7. The variational 1 2 3 4
parameters are determined by a stochastic optimizatidre 4
method has proved to be powerful and reliable.

In Table I, we show the ratio of the accurately compute FIG. 1. Comparison of various lower bounds fir=3 or 4
’ y P dfermions with total spir§, in the case of power-law potentiai8.

energy to the lower bound for monotonic short-ra_mge potenthe quantity shown is the ratio of the exact energy to our bound
tials of Yukawa, V=-—gexp(-r)ir; Gaussian, V. (hickline) to that of Basdevant and Martiotted lin@ and that of
=—gexp(-r?), and exponentialy = —g exp(—r) types. FOr | ay.i eblond (thin line).

N=3 andS=1/2, each pair is in an equal-weight admixture

of singlet and triplet, whileS=3/2 involves only triplet N

states. FoON=4 andS=0 (2), each three-body subsystem En(m,g)= 5 fy-2(M(N—1),9), (19
hasS=1/2(3/2).

It appears from Table | that the bound is close to the exactvherefy is the cumulated energy of a systemNbfndepen-
result, especially for antisymmetric orbital wave functionsdent fermions, a notation borrowed from Ref. 4. In Etp),
(N=3,S=3/2 orN=4, S=2) and for deeply bound states. the translation energy of theN(— 1)-body subsystem is ne-

The results in Fig. 1 correspond to power-law potentialsglected. This problem was already raised by Manning and
rd with g=1. For comparison, we also display the bound byBalbutsev in their discussion of the work of Carr and Post.
Levy-Leblond? initially designed for large systems but also These authors have proposed several improved bounds ex-

applicable at smalN. The decomposition pressed like Eq(15) in terms of (N—1) independent par-
ticles.

1 pj2 Also shown in Fig. 1 is the bound of Basdevant and
Hy(mg)== > > [ ———+gV(rj) (14 Martin* who started from the identity
25 J#I (N 1)m
- . ; ; p? 1
expressedy in terms of Hamiltonians with—1) inde- 242" L NR24 T+ — r2 16
pendent particles. For fermions, one gets Z PITTi=yN "N |E<, v (16)
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whereP is the total momentun®R is the center-of-mass po- once the center-of-mass contributig@ mere harmonic
sition, andT, is the relative kinetic energy, and succeeded inoscillatop is removed. In the case oN=3 electrons
generalizing it in the form of inequalities when the powerwith massm=1 and chargee=1, one obtains, foS=3/2
q=2 is replaced by another powee1. Then the Hamil- and orbital momentum and paritt."=1", a bound
tonian (1) or its translation-invariant pafg) with Verl is  ¢=0.1668 if the oscillator frequency i=0.01 and e
bounded(on both sidef by independent-particle Hamilto- =>54.968 if w=10, to be compared to the exact values

nians with a potential proportional 1@'. This leads to €=0.1680 ande=54.973. ForN=4, S=2, LP=0", one
obtains €=0.297 if ®=0.01 and e=84.895 if w=10,
Ey=2@-4/@r2N@at2)f — N4~ @r2)E, ] close to the exact values=0.299 ande=84.907. The

(17) bound is better for large, as the system becomes a pure

oscillator.

To conclude, we have derived a lower bound on the en-
ergy of N-fermion systems, which is independent of the
shape of the potential. For small systems, it improves signifi-
cantly a previous bound expressed in termsNf-(1) inde-
pendent fermions.
© Saturation is not always obtained for the harmonic
oscillator. When our bound is iterated to expressiHgody
. . nergy in terms of the two-body energy, the correct
For small systems, our bound dramatically improves that o argeN behavior is not reached in the case of maximum

Levy-Leblond. ... spin. For other spin configurations, further studies are re-
Our result can be extended to more general Hamlltonlan%uired

for instance with spin-spin interaction or with external con-

straints. More details will be given elsewhere. Let us just We would like to thank Ica Stancu, Jean-Louis Basdevant,

mention that our bound can be applied to the “quantum dot’Andre Martin, and Piet van Isacker for very useful com-

systems ments, and Vladimir Belyaev for pointing out useful refer-
ences. The research of K. V. was sponsored by the U. S.

2 ) ) Department of Energy under Contract No. DE-ACO05-

HIE ﬂJr m_“’rz+z e (18) 000R22725 with the Oak Ridge National Laboratory, man-

=2m 2 ! i’ aged by UT-Battelle, LLC.

ENSZ_ql(q+2)[N2/(Q+2)fN— Nq/(q+2)E2],

for 1=q=2. The inequalities are reversed fpr=2.

Clearly from Fig. 1, Basdevant and Martin always give
the best bound neay=2, but their result quickly deteriorates
when the potential departs from the harmonic case. Our in
equality is saturated af=2 for N=3 fermions and for some
spin configurations ol =4, but saturation is lost at larghtk.
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