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Lower bound on fermion binding energies
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1Institut de Physique Nucle´aire, UniversitéClaude Bernard, CNRS-IN2P3, 43 boulevard du 11 Novembre 1918,

F 69622 Villeurbanne, France
2Institut des Sciences Nucle´aires, Universite´ Joseph Fourier, CNRS-IN2P3, 53 avenue des Martyrs, F 38026 Grenoble, France

3Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381
and Institute for Nuclear Research of the Hungarian Academy of Sciences, Debrecen, Hungary

~Received 10 August 2000; published 22 January 2001!

We derive a lower bound for the ground-state energyEF(N,S) of N fermions with total spinS in terms of
binding energiesEF(N21,S61/2) of (N21) fermions. Numerical examples are provided for some simple
short-range or confining potentials.
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There is a persisting interest in deriving lower bounds
the binding energy ofN-particle systems. Some early inve
tigations were motivated by fundamental studies on the th
modynamic limit or the stability of matter.1 Also, the search
for a lower bound is rather natural once an upper boun
provided by variational estimates.

Many efforts have been devoted in particular to expres
bound on the binding energyEN of an N-body system in
terms of an (N21)-body energyEN21 with modified con-
stituent mass or interaction strength. Thanks to a proper
count for the center-of-mass motion of the subsystems,2 the
situation is now rather satisfactory in the zero-spin bos
sector: the bound of Hall and Post2 is saturated for the har
monic oscillator and approaches closely the exact result
many other potentials. An extension has been derived
three and four particles with different masses3 where, again,
saturation is obtained in the case of harmonic forces.

The situation is far more difficult for fermions. The e
egant bound derived by Le´vy-Leblond1 suffers from the fact
that the energy of (N21)-body subsystems is replaced by
rest energy without including its overall kinetic energy. As
result, saturation is never reached.

A significant but partial improvement was obtained
Basdevant and Martin,4 who used subtle convexity inequal
ties. Their bound improves that of Le´vy-Leblond in some
cases, and becomes exact for the harmonic oscillator. T
approach, however, is restricted to confining potentialsr q,
q>1, or superpositions of such power-law potentials w
positive weight factors.

In this Brief Report, we use group-theoretical techniqu
to derive a general lower bound on theN-body energy of an
interacting system of particles with internal degrees of fr
dom. The decomposition of the Hamiltonian is supplemen
by considerations on the symmetry structure of the w
function. Numerical tests are presented and possible ge
alizations are sketched, in particular for quantum dots,
particles interacting both among themselves and with an
ternal potential.

Let us consider firstN identical particles of massm whose
interaction does not depend on their spins. This correspo
to the Hamiltonian

HN~m,g!5(
i

pi
2

2m
1g(

i , j
V~r i j !, ~1!
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wherer i j 5ur j2r i u is the distance between two particles. T
case of particles with different masses is treated in Ref.

A first decomposition of this Hamiltonian is1,5

HN~m,g!5
1

N22 (
i

HN21
( i ) S N21

N22
m,gD , ~2!

where the constituent mass inHN21 is increased, since the
kinetic energyp1

2/(2m), for instance, is shared by (N21)
terms. Thei th particle is absent fromHN21

( i ) . Using the
variational principle with the ground state of theN-body sys-
tem as a trial wave function leads to an inequality on
ground-state energiesEN ,1,5

EN~m,g!>
N

N22
EN21S N21

N22
m,gD , ~3!

which can be rewritten differently, using the obvious ident
E(am,g)5E(m,ag)/a. This inequality is never saturated
because the overall translation energy of the (N21)-body
subsystems within theN-body system is neglected. An im
provement consists in replacing the decomposition~2! by the
identity

H̃N~m,g!5
1

N22 (
i

H̃N21
( i ) S N

N21
m,gD , ~4!

relating the translation-invariant Hamiltonians

H̃N5HN2

S ( pi D 2

2Nm
. ~5!

This leads to the new inequality

EN~m,g!>
N

N22
EN21S N

N21
m,gD . ~6!

As Nm/(N21) is smaller than (N21)m/(N22) for N
>3, the bound~6! is better than~3!, since any binding en-
ergy in a given potential is a decreasing function of the c
stituent mass.

By recursion, an inequality such as~3! or ~6! provides a
bound onEN in terms of the two-body energyE2 . In the
©2001 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW B 63 073102
case of the harmonic oscillator for bosons, the bound deri
from ~6! is saturated, whereas the bound derived from~3! is
smaller by a factorA2 than the exact result at largeN.

Some numerical illustration of the inequality~6! for
bosons is provided in Table I. Other examples are given
Ref. 2.

In the case of fermions, the bound~6! is not satisfactory.
Indeed, it is not necessarily the ground state ofH̃N21 that is
relevant, but the lowest state with quantum numbers com
ible with the symmetry of theN-body state of interest. Thu
looking at the structure of the wave function seems import
to improve the inequalities.

Since our Hamiltonian acts in the orbital Hilbert spa
only, the behavior of the wave function with respect to t
space variables has to be specified by an irreducible re
sentation of the symmetry group SN . This corresponds to a
partition @l#5@l1 ,l2 , . . . ,ln# of the N particles defining
an invariant orbital subspace spanned by orthogonal st
that are associated to a Young tableau or a Yamanouchi s
bol r.6 Both specify the transformation under permutatio
and the matrix element of any transposition operatorPi j is
known analytically. For example, in the case of three p
ticles, we can have the following partitions:

@3#, @2,1#, @1,1,1#. ~7!

The first and the third ones are in the familiar symmetric a
antisymmetric representations of dimension 1, respectiv
The second one, of dimension 2, is the mixed symme
representation spanned by the two statesr 5(2,1,1) andr
5(1,2,1), which are, respectively, symmetric and antisy
metric in the exchange of particles 1 and 2.

Each orbital stateuN,@l#,r &o must be associated with
similar stateuN,@ l̄#, r̄ & i for the intrinsic degrees of freedom
such as spin, isospin, color, etc. The coupling of@ l̄# to @l#
gives a symmetric representation@N# of SN for bosons or a
fully antisymmetric representation@1N# for fermions. This
implies that@ l̄#, r̄ are identical to@l#,r when we are dealing

TABLE I. Results for Yukawa (Y), Gaussian (G), and expo-
nential~E! potentials. The range parameter is set to unity by res
ing. The quantity shown is the ratio of the computed energy to
bound. In the first line, the entries are the number of particles,
boson~B! or fermion ~F! character, and the total spin. The fou
body energy is compared to the three-body one, as per Eq.~3! for
bosons and Eq.~12! for fermions. The constituent mass is set
m51 for N53 particles andm53/4 for N54.

g 3,B,0 3,F,1/2 3,F,3/2 4,B,0 4,F,0 4,F,2

Y 8 0.933 0.673 0.759 0.966 0.743 0.85
15 0.943 0.757 0.930 0.971 0.806 0.96

G 10 0.996 0.960 0.887 0.998 0.792 0.94
20 0.999 0.995 0.994 0.999 0.898 0.99

E 6 0.988 0.906 0.843 0.994 0.795 0.91
12 0.994 0.974 0.982 0.997 0.886 0.99
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with bosons, while for fermions,@ l̄#, r̄ correspond to a
Young tableau with rows and columns interchanged.6

The SN Clebsch-Gordan coefficients^@l#r @l#r u@N#& and

^@l#r @ l̄# r̄ u@1N#& are known explicitly,6 and theN-body state
reads (e51 for bosons,21 for fermions!

uN,@l#&e5d[l]
21/2(

r
esuN,@l#,r &ouN,@ l̄#, r̄ & i , ~8!

where

d[l]5N!
)

1< i , j <n
~l i2l j1 j 2 i !

)
1< i<n

~l i1n2 i !!

~9!

is the dimension of the representation@l# ands is the num-
ber of permutations that have to be performed to obtain
Yamanouchi symbol from the normal one.6 To obtain the
(N21)-body parts of state~8!, one has now just to remov
the Nth particle in each symbolr, thus leading to an (N
21)-Yamanouchi symbol that belongs to a different orbi
symmetry @l#p5@l1 , . . . ,lp21 ,lp21,lp11 , . . . ,ln#,
where p is the row number of particleN in the original
Young tableau. Moreover, this new symbol needsa
5(q.p51

N lq fewer permutations thanr to appear in the nor-
mal form. Hence theN-body wave function~8! can be re-
written as

(
p

d[l] p

1/2

d[l]
1/2

eau~N21,@l#p!e~1,@1# !& [l],e , ~10!

with p running over all the lines of@l# where a box can be
dropped. When this is used with the decomposition~4! of the
Hamiltonian, it leads to a new and very general inequalit

EN
[l]~m,g!>

N

N22 (
p

d[l] p

d[l]
EN21

[l] p S N

N21
m,gD . ~11!

If one considers, as a first application, a system of spin
bosons for which the orbital Young pattern@l# is necessarily
symmetric, the inequality~11! coincides with our previous
result ~6!.

Consider now fermions with spin 1/2. The conjugate p
tition @ l̄# of @l# is an irreducible representation of U(2) an
contains at most two rows that are related to the spinSby the
relationsl̄11l̄25N and l̄12l̄252S. Writing our inequal-
ity ~11! with @ l̄# gives the following result: the ground-sta
energy ofN spin 1/2 fermions with total spinS is bound in
terms of binding energies of (N21)-body systems with
neighboring spinsS61/2,

l-
e
e
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EN
S~m,g!>

1

~N22!~2S11!

3FS~N12S12!EN21
S21/2S Nm

N21
,gD

1~S11!~N22S!EN21
S11/2S Nm

N21
,gD G . ~12!

The generalization is straightforward: the energetically
vored state has the most symmetric space partition@l# that
admits a conjugate partition@ l̄# which can be a representa
tion of U(V), whereV is the number of intrinsic degrees o
freedom. As a result,@ l̄# has a maximum ofV rows and
@l#5@Vn,N2nV# for the N-body ground state withn the
integer part ofN/V. Denoting byEN21

0 the binding energy
of (N21) particles with the favored orbital symmetr
@Vn,N2nV21# and byEN21

1 the energy associated to th
first excited partition@l#5@Vn21,V21,N2nV#, the rela-
tion ~11! takes the form

EN~m,g!>
1

~N22!~11V1nV2N!

3F ~N2nV!~11V1n1nV2N!EN21
0

3S Nm

N21
,gD1n~V11!~V1nV2N!EN21

1

3S Nm

N21
,gD G . ~13!

We have calculated the lower bound and the exact ene
with a selection of potentials, using the method of Gauss
expansion described, for instance, in Ref. 7. The variatio
parameters are determined by a stochastic optimization.8 The
method has proved to be powerful and reliable.

In Table I, we show the ratio of the accurately comput
energy to the lower bound for monotonic short-range pot
tials of Yukawa, V52g exp(2r)/r; Gaussian, V
52g exp(2r2), and exponential,V52g exp(2r) types. For
N53 andS51/2, each pair is in an equal-weight admixtu
of singlet and triplet, whileS53/2 involves only triplet
states. ForN54 andS50 (2), each three-body subsyste
hasS51/2(3/2).

It appears from Table I that the bound is close to the ex
result, especially for antisymmetric orbital wave functio
(N53, S53/2 or N54, S52) and for deeply bound state

The results in Fig. 1 correspond to power-law potenti
r i j

q with q>1. For comparison, we also display the bound
Lévy-Leblond,1 initially designed for large systems but als
applicable at smallN. The decomposition

HN~m,g!5
1

2 (
i

(
j Þ i

F pj
2

~N21!m
1gV~r j i !G ~14!

expressesHN in terms of Hamiltonians with (N21) inde-
pendent particles. For fermions, one gets
07310
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EN~m,g!>
N

2
f N21„m~N21!,g…, ~15!

wheref N is the cumulated energy of a system ofN indepen-
dent fermions, a notation borrowed from Ref. 4. In Eq.~15!,
the translation energy of the (N21)-body subsystem is ne
glected. This problem was already raised by Manning a
Balbutsev in their discussion of the work of Carr and Pos9

These authors have proposed several improved bounds
pressed like Eq.~15! in terms of (N21) independent par-
ticles.

Also shown in Fig. 1 is the bound of Basdevant a
Martin,4 who started from the identity

(
i

pi
21r i

25
P2

N
1NR21Tr1

1

N (
i , j

r i j
2 , ~16!

FIG. 1. Comparison of various lower bounds forN53 or 4
fermions with total spinS , in the case of power-law potentialsr q.
The quantity shown is the ratio of the exact energy to our bou
~thick line! to that of Basdevant and Martin~dotted line! and that of
Lévy-Leblond ~thin line!.
2-3
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BRIEF REPORTS PHYSICAL REVIEW B 63 073102
whereP is the total momentum,R is the center-of-mass po
sition, andTr is the relative kinetic energy, and succeeded
generalizing it in the form of inequalities when the pow
q52 is replaced by another powerq>1. Then the Hamil-
tonian ~1! or its translation-invariant part~5! with V}r i j

q is
bounded~on both sides! by independent-particle Hamilto
nians with a potential proportional tor i

q . This leads to

EN>2(q24)/(q12)@N(2/q12)f N2N42q/(q12)E2#,
~17!

EN<22q/(q12)@N2/(q12)f N2Nq/(q12)E2#,

for 1<q<2. The inequalities are reversed forq>2.
Clearly from Fig. 1, Basdevant and Martin always gi

the best bound nearq52, but their result quickly deteriorate
when the potential departs from the harmonic case. Our
equality is saturated atq52 for N53 fermions and for some
spin configurations ofN54, but saturation is lost at largerN.
For small systems, our bound dramatically improves tha
Lévy-Leblond.

Our result can be extended to more general Hamiltonia
for instance with spin-spin interaction or with external co
straints. More details will be given elsewhere. Let us j
mention that our bound can be applied to the ‘‘quantum d
systems

H5(
i 51

N pi
2

2m
1

mv2

2
r i

21(
i , j

e2

r i j
, ~18!
B

cl.
-
h
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once the center-of-mass contribution~a mere harmonic
oscillator! is removed. In the case ofN53 electrons
with massm51 and chargee51, one obtains, forS53/2
and orbital momentum and parityLP511, a bound
e>0.1668 if the oscillator frequency isv50.01 and e
>54.968 if v510, to be compared to the exact valu
e50.1680 ande554.973. ForN54, S52, LP502, one
obtains e>0.297 if v50.01 and e>84.895 if v510,
close to the exact valuese50.299 ande584.907. The
bound is better for largev, as the system becomes a pu
oscillator.

To conclude, we have derived a lower bound on the
ergy of N-fermion systems, which is independent of th
shape of the potential. For small systems, it improves sign
cantly a previous bound expressed in terms of (N21) inde-
pendent fermions.

Saturation is not always obtained for the harmon
oscillator. When our bound is iterated to express theN-body
energy in terms of the two-body energy, the corre
large-N behavior is not reached in the case of maximu
spin. For other spin configurations, further studies are
quired.
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