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Exact diagonalization of many-fermion Hamiltonian with wave-function renormalization
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We propose a method of determining states for correlated fermions in Fock space, which we supplement
with the Lagrange-Euler equation for the single-particle wave functions$wi(r )% contained in the microscopic
parameters. The equation is derived by treating the ground state energy of the interacting system as a functional
of $wi(r )%. The method is applied to a linear chain up toN510 atoms with all pair interactions and all hopping
integrals included. Renormalized Wannier functions, the parameters, the distribution function, and the dimer-
ization energy, are all discussed as a function of the lattice parameter.
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In the description of interacting fermions, the secon
quantized form of Hamiltonian1 ~or Lagrangian2! is often
used, which is diagonalized subsequently, and the gro
state energy and other characteristics are expressed as a
tion of the interaction parametersVi jkl 5^wiwj uV12uwkwl&,
where V12 is the interaction for a single pair, and$wi

[wi(r )% is an arbitrary~but complete! single-particle basis

with the help of which we define the field operatorĈs(r )
5( iswi(r )xsais for the spin states561. In effect, the
Hamiltonian takes the usual formH5(t i j ais

† aj s

1(Vi jkl ais
† aj s8

† als8aks , where t i j 5^wi uTuwj& is the hop-
ping matrix element andT is the corresponding one-partic
energy operator. In this paper we propose the method
optimizing the wave functions$wi(r )% in the Hilbert space,
which is performed only after the diagonalization in Fo
space has been carried out first.

Such a method has a few advantages. First, as the F
and Hilbert spaces are separate, the optimization leads to
renormalized wave equationfor the single-particle wave
function in an interacting environment defined in spec
cases in Ref. 3. Within the existing insightful approach,4 the
single-particle wave function is defined first and then
corresponding electronic correlations are incorporated in
approximate manner. Therefore, the present two-step pr
dure in a reverse order is strictly speaking possible only
the situation when the exact solution of the many-parti
model is available5 or the numerical diagonalizatio
executable.6 Secondly, the proposed method is of fundame
tal importance when the interaction introduces a nonper
bative aspect to the solution~e.g., for the one-dimensiona
Hubbard model, where the insulating state sets in for an
bitrarily small interactionU,7 or for small systems such a
correlated quantum dots!. Thirdly, the present method repre
sents the second step in solving models of interacting
ticles, as it removes the arbitrariness in selecting the b

$wi(r )% when definingĈs(r ) andH, and thus connects th
first- and second-quantization aspects of the system anal
Finally, and probably most importantly, the determination
the basis$wi(r )% allows for an analysis of the system pro
erties as a function of interatomic distance, not only a
function of the microscopic parameters, which are also c
culated explicitly. In addition, a number of factors~e.g., the
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atomic part of the energy! vary with the distance and thus th
analysis in terms of model parameters may turn out to
insufficient.

We consider electrons with the Coulomb interactionV12
5e2/ur12r2u. Then the ground state energy for the syste
can be written as

EG[^H&5(
i j

t i j Ci j 1
1

2 (
i jkl

Vi jkl Ci jkl , ~1!

where

Ci j 5(
s

^ais
† aj s&,

Ci jkl 5(
s

^ais
† aj s

† alsaks1ais
† aj s̄

†
al s̄aks&,

and s̄52s. The correlation functions have the form o
functionalsCi j (t i j ,Vi jkl ) andCi jkl (t i j ,Vi jkl ) defined for the
basis functions$wi(r )%. Therefore, the diagonalization i
Fock space should be supplemented by minimization of
functional

F$wi%5EG$wi%2(
i< j

l i j S E d3rwi* ~r !wj~r !2d i j D , ~2!

where the Lagrange multipliersl i j express the fact that th
basis$wi(r )% should be orthonormal. Hence, the Lagrang
Euler equations can be symbolically written as

(
i j

]EG

]t i j

dt i j

dwn* ~r !
1(

i jkl

]EG

]Vi jkl

dVi jkl

dwn* ~r !
2(

i<n
l inwi~r !50.

~3!

This equation can be called the renormalized wave equa
for the wave functions$wi(r )% in the interacting environ-
ment.

To specify the basis on the lattice we construct the ex
Wannier functions~for a single band! with the help of atomic
functions$c i(r )[c(r2Ri)% in the following way:

wi~r !5(
j 51

N

b i 2 jc j~r !, ~4!
©2001 The American Physical Society01-1
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with

bp5N21(
k H(

p8
Sp8cos~k•Rp8!J 21/2

cos~k•Rp!,

whereSp[^c i uc i 1p& is the overlap integral forpth neigh-
bors andRp is the lattice site position. In that situation, th
orthonormality is built in automatically and then Eq.~3! re-
duces to the form

(
i j i 8 j 8

]EG

]t i j

]t i j

]t i j8

dt i j8

dc~r !
1 (

i jkl i 8 j 8k8 l 8

]EG

]Vi jkl

]Vi jkl

]Vi 8 j 8k8 l 8
8

3
dVi 8 j 8k8 l 8

8

dc~r !
50, ~5!

where t i j8 [^c i uTuc j& and Vi jkl8 5^c ic j uV12uckc l& are the
matrix elements in the atomic~nonorthogonal! basis. The
variational derivative is defined in a slightly nonstanda
manner.8 Noting that t i j 5( i 8 j 8b i i 8b j j 8^c i uTuc j&
5( i 8 j 8b i i 8b j j 8t i 8 j 8

8 and Vi jkl

5( i 8 j 8k8 l 8b i i 8b j j 8bkk8b l l 8Vi 8 j 8k8 l 8
8 , we easily obtain the de

rivatives]t i j /]t i j8 and]Vi jkl /]Vi 8 j 8k8 l 8
8 . The variational de-

rivatives can also be obtained explicitly; for example,

dt i j8

dc~r !
5T~Ri2r !c~Ri2Rj1r !1T~Rj2r !c~Rj2Ri1r !,

~6!

and analogously fordVi jkl8 /dc(r ). As a result, the system o
equations is closed provided we know the expression for
ground state energy of the interacting system. Here we a
the procedure to a short chain and discuss physical resul
a function ofR[uRi j u.

The Hamiltonian containingN sites with all two-center
interactions and for the linear chain with periodic bounda
conditions can be written as

H5 (
i 50

N21

~eani1Uni↑ni↓!1(
j 50

i 21 H S Ki j 2
1

2
Ji j Dninj

22Ji j Si•Sj1(
s

@ t i j 1Vi j ~ni s̄1nj s̄!#~ais
† aj s1aj s

† ais!

1Ji j ~ai↑
† ai↓

† aj↓aj↑1H.c.!J , ~7!

where the first three terms represent, respectively, the ato
energy and intra- and intersite Coulomb interactions,
fourth describes Heisenberg exchange, the fifth is compo
of the hopping term~together with the so-called correlate
hopping ;Vi j ), and the last expresses pair hopping p
cesses. The intersite parameters are:Ki j 5^wiwj uV12uwjwi&,
etc.

As established above, the parametersea , U, tp , Kp , Jp ,
and Vp ~for p5u i 2 j u) can be transformed to the atom
basis, where they can be explicitly calculated~the Slater in-
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tegrals! for the 1s-type trial wave function c i(r )
5(a3/p)1/2exp(2aur2Ri u), wherea is the variational pa-
rameter. For example,

ea5(
q

bq
2ea812 (

qr(q.r )
bqb r tq2r8 ,

tp5(
q

bqbp2qea812 (
qr(q.r )

bqbp2r tq2r8 ,

U5(
q

bq
4U812 (

qr(q.r )
@bq

2b r
2~Kq2r8 12Jq2r8 !

18bq
3b rVq2r8 #,

Kp5(
q

bq
2bp2q

2 U812 (
qr(q.r )

bq
2bp2r

2 Kp2r8

14 (
qr(q.r )

bqbp2qb rbp2rJq2r8

14 (
qr(q.r )

~bq
2bp2qbp2r1bqbp2q

2 b r !Vq2r8 , etc.

~8!

Additionally, as we include also all hopping terms for chai
up to N<10 atoms, it is necessary to calculate the hopp
integrals between the sitesi and j containing the potential of
the kth atom, which in atomic units takes the form

t i j8 5^c i u2¹22(
k

2

r k
uc j&[t022(

k
t ik j , ~9!

where t05^c i u2¹2uc j&5a2e2aa(11aa2 1
2 a2a2), a

5uRi2Rj u, i ,k, j , and

t ik j5S a3

p D E d3r
exp@2a~ ur2Ri u1ur2Rj u!#

ur2Rku
, ~10!

which is calculated in spheroidal coordinates.
The bare and renormalized Wannier functions obtain

for an exactly diagonalized chain ofN58 atoms are depicted
in Fig. 1 for the interatomic distanceR52a0 (a0 is the
Bohr radius!. The repulsive interaction shrinks the Wanni
function remarkably, even though all hopping terms ha
been included. The renormalized values of the microsco
parameters for differentR values are presented in Table
We note two essential features of these results:~i! the atomic
energyea depends relatively strongly on the distance, a
~ii ! the intersite Coulomb interaction falls off slowly and h
the asymptotic formKi j '2/Ri j ~in Ry!. The exchange inte-
gral (J1) and the correlated hopping (Vi j ) have amplitudes a
least two orders of magnitude smaller thanU or K1. The
renormalized hoppingt1 is almost an order of magnitud
larger than eithert2 or t3, making the tight-binding approxi-
mation realistic.

The momentum distribution functionnks5^0uaks
† aksu0&

for different lattice parametersR is presented forN510 in
Fig. 2. For a small lattice constant (R52a0) a clear sign of
1-2
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BRIEF REPORTS PHYSICAL REVIEW B 63 073101
the Fermi wave vectorkF;pR/2 ~corresponding to the half
filled band! is present, whereas forR>5a0 nks is smeared
out throughout the Brillouin zone, meaning that a met
insulator transformation is taking place forR in between.
Unfortunately, the small size of the system does not allow
to differentiate between the Fermi- and Luttinger-liqu
types of behavior.9 The extension to largerN;102 with the
help of the e.g., DMRG method10 would be required to
clarify this point. The ground stateu0& of the system for any
N is a true singlet, i.e., witĥ0u( i 51

N Si u0&50.
As the method determines the evolution of the syst

with increasing lattice constant, we also calculate the am
tude of the zero-point motion of the nuclei. For the cha
with massesm andM of electrons and ions, respectively, w
can determine the mean-square amplitude. ForN510 and
R/a053 –4 it is of the order 0.067(7%) ~for M5MH
.1838m), whereas the corresponding increase ofEG is
;1022 Ry ~note that]2EG /]R2 has been obtained numer
cally!. Leaving this interesting feature of the proposed a
proach to a detailed discussion elsewhere, we mention
the special test, namely, the possibility of lattice dimeriz

FIG. 1. Renormalized~solid line! and bare~dashed line! Wan-
nier functions for the chain ofN58 atoms. All overlap integralsSi j

have been taken into account for the interatomic distanceR
52a0 (a0.0.53rA).
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tion. In Fig. 3 we have repeated all diagonalization proced
in the dimerized state and plotted the change inEG(R) in
that state, withR1 as the shorter lattice parameter (R is then
the average lattice parameter!. We observe a clear sign o
dimerization (12R1 /R;0.15) aroundR;(3 –5)a0. These
calculations, while making the computation longer by an
der of magnitude, prove that neither the zero-point mot
nor the dimerization greatly influences the values of el
tronic parameters displayed in Table I, as they almost co
pensate each other.

Two basic aspects of the method should be explain
First, the linear chain with isotropic orbitals is globally stab
only in special situations.3 This means that in order to stab
lize such a configuration of a linear chain we have to eit
put the system in an external binding potential~e.g., make a
correlated quantum dot on the substrate! or consider aniso-
tropic orbitals, e.g.,sp3 hybrids. Both these projects are e
ecutable, but make the calculations purely numerical a
thus unsuitable for the type of discussion presented ab
The second aspect concerns the relatively long-range na
of the interactionKi j ~cf. Table I! which one can overcome
by redefining the atomic level position in the following ma

FIG. 2. Momentum distributionnks for electrons in the first
Brillouin zone for a chain ofN510 atoms and the interatomi
distancesR specified. All pair interactions and hopping integrals a
included.
TABLE I. Microscopic parameters~in Ry! as a function of interatomic distanceR for different neighbors
p51,2,3.

R/a0 ea t1 103t2 103t3 U K1 K2 K3 103J1 103V1 103V2

2.0 24.043 20.585 89.6 298.3 2.301 1.077 0.676 0.450 9.54218.07 33.58
2.5 23.734 20.331 45.5 245.0 1.949 0.843 0.499 0.331 7.39217.45 19.58
3.0 23.422 20.200 24.4 221.9 1.717 0.692 0.391 0.259 5.59216.08 11.95
4.0 22.916 20.083 7.4 25.3 1.452 0.508 0.269 0.179 2.90 212.92 4.49
5.0 22.558 20.037 4.2 22.7 1.327 0.403 0.206 0.138 1.26 29.64 1.56
1-3
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ner: ea
e f f[ea1N21( i , j (2/Ri j 1Ki j ). In effect, the effective

electronic model containing the lattice contributio
(2/Ri j @Ry#) implicitly in ea

e f f is represented by the Hami
tonian

HR5(
i

~ea
e f fni1Uni↑ni↓!1( 8

i j
t i j ais

† aj s

1(
i , j

Ki j dnidnj , ~11!

wheredni[ni21. We have neglected the terms;Ji j and
;Vi j , as they provide much smaller contributions. In Tab
II we list the intersite correlation function̂dnidni 1p& and
show that indeed the residual intersite interaction@last term
in Eq. ~11!# decays with increasingp, making the application
of a procedure such as DMRG possible. The reason for
decomposition in Eq.~11! is that the attractive potential ac
ing on an electron located on sitei from neighboring ions is

FIG. 3. Ground state energy change in the dimerized state
N54 –8 atoms vs average interatomic distance.
s-

v.

e

ob
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e

(24/Ri j ). This attraction is roughly compensated by t
electron repulsionsKi j ;2/Ri j and the ion-ion part (2/Ri j ).
Therefore, we are left effectively with thepurely electronic
part, withR dependent parameters.

In summary, we have devised a method of solving
models of interacting fermions on a lattice, combined w
the a posteriori optimization of the single-particle wav
function contained in their microscopic parameters. The
sults are obtained as a function of lattice parameter~there are
up to ten microscopic parameters we calculate explicit!.
We apply this approach to a finite (N<10) linear chain, with
all hopping elements and all pair interactions included.
this manner, the approach puts on a firm basis the variatio
optimization of orbitals,11 since we use, albeit in a mode
situation, an exact expression for the total energy. T
method, nonperturbative in nature, can be applied toab initio
description of correlated quantum dots and to tw
dimensional cluster systems, both as a function of int
atomic distance.
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TABLE II. Intersite discrete density-density correlation fun
tions versus interatomic distance.

R/a0 ^dnidn11& ^dnidn12& ^dnidn13&

2.0 20.1312 21.0231023 24.431023

2.5 20.1022 25.231023 22.031023

3.0 20.0707 22.431023 21.431023

4.0 20.0245 23.431024 21.431024

5.0 20.0068 23.531025 2831026
ms

s

1See, e.g., A.L. Fetter and J.D. Walecka,Quantum Theory of
Many-Particle Systems~McGraw-Hill, New York, 1971!,
Chaps. 1 and 2.

2See, e.g., A.M. Tsvelik,Field Theory in Condensed Matter Phy
ics ~Cambridge University Press, Cambridge, 1995!.

3J. Spal”ek, R. Podsiadl”y, W. Wójcik, and A. Rycerz, Phys. Rev. B
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