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Exact diagonalization of many-fermion Hamiltonian with wave-function renormalization
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We propose a method of determining states for correlated fermions in Fock space, which we supplement
with the Lagrange-Euler equation for the single-particle wave funcfien&)} contained in the microscopic
parameters. The equation is derived by treating the ground state energy of the interacting system as a functional
of {w;(r)}. The method is applied to a linear chain up\te- 10 atoms with all pair interactions and all hopping
integrals included. Renormalized Wannier functions, the parameters, the distribution function, and the dimer-
ization energy, are all discussed as a function of the lattice parameter.
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In the description of interacting fermions, the second-atomic part of the energyary with the distance and thus the
quantized form of Hamiltonidn(or Lagrangiaf) is often  analysis in terms of model parameters may turn out to be
used, which is diagonalized subsequently, and the grounihsufficient.
state energy and other characteristics are expressed as a funcWe consider electrons with the Coulomb interactiép
tion of the interaction parametes; = (w;w;|Vyww;), =e?/|r;—r5|. Then the ground state energy for the system
where V,, is the interaction for a single pair, anfly,  can be written as
=w;(r)} is an arbitrary(but complete single-particle basis, 1
with the help of which we define the field operatén, (r) Ec=(H)=2 t;C;;+ 5 > Vi Cijur » (1)
=3,,W;(r)x,ai, for the spin stater==+1. In effect, the 4 1kl
Hamiltonian takes the wusual formHzEtijait,aj(, where
+Evijk,a?0a;rg,a|(,/ak,,, where t;;=(w;|T|w;) is the hop-
ping matrix element and is the corresponding one-particle Ci; :2 <ai‘rgajo>'
energy operator. In this paper we propose the method of o
optimizing the wave functionéw;(r)} in the Hilbert space,
which is performed only after the diagonalization in Fock
space has been carried out first.

Such a method has a few advantages. First, as the Fock — ) )
and Hilbert spaces are separate, the optimization leads to tf9'd = —o. The correlation functions have the form of

renormalized wave equatiofor the single-particle wave Lungtlofnals(.:”(t” Vi) "i‘rnhdciifk'(t” ’\r/]‘ik'zj.defmel(.j for the
function in an interacting environment defined in special asis functions{w(r)}. Therefore, the diagonalization in

cases in Ref. 3. Within the existing insightful approAthe Fock space should be supplemented by minimization of the

single-particle wave function is defined first and then thefunctlonal

corresponding electronic correlations are incorporated in an

approximate manner. Therefore, the present two-step proce- F{w;}=Eg{w;}— >, )\ij(f drwi (nw;(r)— & |, (2
dure in a reverse order is strictly speaking possible only in =)

the situation when the exact solution of the many-particlewhere the Lagrange multipliers; express the fact that the
model is availabR or the numerical diagonalization basis{w;(r)} should be orthonormal. Hence, the Lagrange-
executablé. Secondly, the proposed method is of fundamen-<uler equations can be symbolically written as

tal importance when the interaction introduces a nonpertur-

_ Tt toat
Cijui = (@58, ;8 aioaj;alo-ak0'>’
g

bative aspect to the solutiofe.g., for the one-dimensional JEg ot JEg  dVij B
Hubbard model, where the insulating state sets in for an ar- T ot owr(r)  iF Mi sw (r) —i;n NinW;(r)=0.
bitrarily small interactionU,” or for small systems such as " . 3

correlated quantum dotsThirdly, the present method repre- _ _ .
sents the second step in solving models of interacting parlhis equation can be called the renormalized wave equation
ticles, as it removes the arbitrariness in selecting the basi®r the wave functiongw;(r)} in the interacting environ-

{w;(r)} when defining¥ ,(r) andH, and thus connects the ment. . . .

first- and second-quantization aspects of the system analysis, 10 SPecify the basis on the lattice we construct the exact
Finally, and probably most importantly, the determination of Yvannier functiongfor a smgl_e banpwith t_he help of atomic
the basisw(r)} allows for an analysis of the system prop- fUnctions{¢;i(r)=¢(r—Ry); in the following way:

erties as a function of interatomic distance, not only as a N

function of the microscopic parameters, which are also cal- ) — N

culated explicitly. In addition, a number of factofs.g., the wi(r) 121 Bicith(n), @
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with tegraly for the Is-type trial wave function ¢(r)
1 =(a®/7)Y%exp(—ar —R||), wherea is the variational pa-
B,=N"1> [z Sp,cos(k~Rp,)] cosk-Ry), rameter. For example,
< |

ea=§ Bies+ quz  Babrta-r

where S,= (4|4 ) is the overlap integral fopth neigh- T

bors andR;, is the lattice site position. In that situation, the
orthonormality is built in automatically and then E@®) re-

duces to the form tng BqBp—q€at Zq%‘ér) BaBo-rtg—r
IEg at; Ot JEg  IViju 4 o
— — U=2 BaU'+2 X [BIBAK, +23; )
iji’j’ &tll ati,j 51//(]') ijkli’j k"1’ &Vijkl avi,'j’k’l/ q a qr(g>r) arr a-r a-r
N +8B38: Vo],
oY(r) '

- , Kp=2 BB qU'+2 X BiBs K,
where t/;=(4i|T|¢;) and Vi =44Vl i) are the q ar(a>r)

matrix elements in the atomitnonorthogonal basis. The

variational deri\{ative is defined in a slightly nonstandard +4 2 ﬂqu—qﬂrﬁp—rJé—r

mannef  Noting  that  t;=;; B Bj; (il Tl ;) ar(g>r)

:Ei/j'lgii’ﬂjj'ti,’j/ and Vijkl ) ) )

:Ei/j'k”'ﬁii'ﬁjj’Bkk/ﬁulvi,’j’k’V ) we eaSI|y 0bta|n the de' +4qr§>r) (BQIBP—Q'BP_T+'BQ'BP—qB")Vq—"’ etc

rivatives dt;; /dtf; and oVij /9],y - The variational de-

rivatives can also be obtained explicitly; for example, ®

Additionally, as we include also all hopping terms for chains

5ti’j up toN=<10 atoms, it is necessary to calculate the hopping

590) =T(Ri—=N (R —Rj+1)+T(R =1 (R =R +r1), integrals between the sitégndj containing the potential of

(6)  thekth atom, which in atomic units takes the form

and analogously foﬁvi’jk,/6¢(r). As a result, the system of

equations is closed provided we know the expression for the
ground state energy of the interacting system. Here we apply _ NN 2 —a 1 2o
the procedure to a short chain and discuss physical results &_@ere T0=(4il ~ V7 ¢j)=a’e (1 +aa-za%a°), a

2
ti,j:<‘//i|_V2_§k: r_k|¢J>ETO_2§k: Tikj» ©

a function ofR=|R;|. Ri—Rj|, i<k<j, and

The Hamiltonian containindN sites with all two-center 3
. : ; T I exg —a(|r—Rj|+|r—R;
interactions and for the linear chain with periodic boundary Tikj:(_ f d3r H—a il +| J|)], (10)
conditions can be written as Ir =Rl

which is calculated in spheroidal coordinates.
= 1 The bare and renormalized Wannier functions obtained
JZ«O Kij = §‘Jij nin; for an exactly diagonalized chain bif=8 atoms are depicted

in Fig. 1 for the interatomic distancR=2a, (a, is the
Bohr radiug. The repulsive interaction shrinks the Wannier
function remarkably, even though all hopping terms have
been included. The renormalized values of the microscopic
parameters for differenR values are presented in Table I.
We note two essential features of these res(lt¢he atomic
energy e, depends relatively strongly on the distance, and
where the first three terms represent, respectively, the atomi#) the intersite Coulomb interaction falls off slowly and has
energy and intra- and intersite Coulomb interactions, théhe asymptotic fornK;;~2/R;; (in Ry). The exchange inte-
fourth describes Heisenberg exchange, the fifth is composegral (J;) and the correlated hoppiny() have amplitudes at
of the hopping tern{together with the so-called correlated least two orders of magnitude smaller thenor K;. The
hopping ~V;;), and the last expresses pair hopping pro-renormalized hoppind, is almost an order of magnitude

N—1
H= |20 (Gani‘i‘un”nil)‘F

—23;;S-S +2> [tij+Vij(niz+ nj?)](a?aajfﬁa;roam)

+Jij(a;‘1aﬂajlan+H.c.)], 7)

cesses. The intersite parameters &= (w;w;|Vw;w;), larger than eithet;, or t3, making the tight-binding approxi-
etc. mation realistic.

As established above, the parameteys U, t,, K, J,, The momentum distribution function,,=(0|a;, ay,|0)
and V, (for p=|i—j|) can be transformed to the atomic for different lattice parameter® is presented foN=10 in

basis, where they can be explicitly calculatglde Slater in-  Fig. 2. For a small lattice constanRE 2a,) a clear sign of
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FIG. 2. Momentum distributiom,,. for electrons in the first
FIG. 1. Renormalizedsolid line) and bare(dashed ling Wan- Brillouin zone for a chain ofN=10 atoms and the interatomic
nier functions for the chain dfi=8 atoms. All overlap integralS;; _distancesR specified. All pair interactions and hopping integrals are
have been taken into account for the interatomic distaRce included.
=2ay (ap=0.53A).
tion. In Fig. 3 we have repeated all diagonalization procedure
the Fermi wave vectdke~ mR/2 (corresponding to the half- in the dimerized state and plotted the chang&Ei(R) in
filled band is present, whereas f®®=5a, ny, is smeared that state, wittR, as the shorter lattice parameté is then
out throughout the Brillouin zone, meaning that a metal-the average lattice parameteWWe observe a clear sign of
insulator transformation is taking place fé& in between. dimerization (+R;/R~0.15) aroundR~(3-5)a,. These
Unfortunately, the small size of the system does not allow ugalculations, while making the computation longer by an or-
to differentiate between the Fermi- and Luttinger-liquid der of magnitude, prove that neither the zero-point motion
types of behaviof. The extension to larged~10? with the  nor the dimerization greatly influences the values of elec-
help of the e.g., DMRG methdd would be required to  tronic parameters displayed in Table I, as they almost com-
clarify this point. The ground stal®) of the system for any pensate each other.
N is a true singlet, i.e., Witm0|2i’\‘:18,|0>=0. Two basic aspects of the method should be explained.
As the method determines the evolution of the systenfirst, the linear chain with isotropic orbitals is globally stable
with increasing lattice constant, we also calculate the amplienly in special situationd This means that in order to stabi-
tude of the zero-point motion of the nuclei. For the chainlize such a configuration of a linear chain we have to either
with massesn andM of electrons and ions, respectively, we put the system in an external binding potentily., make a
can determine the mean-square amplitude. [Rer10 and correlated quantum dot on the substrate consider aniso-
R/ap=3-4 it is of the order 0.0647%) (for M=My tropic orbitals, e.g.sp® hybrids. Both these projects are ex-
=1838n), whereas the corresponding increasef is  ecutable, but make the calculations purely numerical and
~10 2 Ry (note that?’Eg/JR? has been obtained numeri- thus unsuitable for the type of discussion presented above.
cally). Leaving this interesting feature of the proposed ap-The second aspect concerns the relatively long-range nature
proach to a detailed discussion elsewhere, we mention hew the interactiorK;; (cf. Table ) which one can overcome
the special test, namely, the possibility of lattice dimeriza-by redefining the atomic level position in the following man-

TABLE |. Microscopic parameterén Ry) as a function of interatomic distan&efor different neighbors

p=1.2,3.
R/ag €, t, 10, 10°%t, U K, K, Ky 10%; 10V, 10%V,
2.0 —4.043 —-0.585 89.6 —98.3 2301 1.077 0.676 0.450 9.54-—18.07 33.58
25 —3.734 —0.331 455 —450 1.949 0.843 0.499 0.331 7.39-17.45 1958
3.0 —3.422 -0.200 244 -219 1717 0.692 0.391 0.259 559-16.08 11.95
4.0 -2916 —-0.083 74 -53 1452 0508 0.269 0.179 290-1292 4.49
5.0 -2558 —0.037 42 —-27 1327 0403 0206 0.138 1.26 —-9.64 156
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' . T T TABLE Il. Intersite discrete density-density correlation func-
0.00 tions versus interatomic distance.

R/a, (6N Sny1) (6Ni6n42) (6N Sny3)
2.0 —-0.1312 —1.02x10°3 —4.4x10°°

= 2.5 —0.1022 -5.2x10°3 —-2.0x10°°

£ -0.01 s s

= 3.0 —0.0707 —2.4x10 —1.4x10
4.0 —0.0245 —-3.4x10°* —-1.4x10*
5.0 —0.0068 —3.5x10°° -8x10°°

0.02 oA
; L . (—4/R;;). This attraction is roughly compensated by the
25 3.0 3.5 Ria 4.0 4.5 5.0 electron repulsion;;~2/R;; and the ion-ion part (&;;).
Therefore, we are left effectively with thaurely electronic
FIG. 3. Ground state energy change in the dimerized state fopart, with R dependent parameters.
N=4-8 atoms vs average interatomic distance. In summary, we have devised a method of solving the
models of interacting fermions on a lattice, combined with
ner: e5'=€,+ N"13;;(2/R;; +Kjj). In effect, the effective the a posteriori optimization of the single-particle wave
electronic model containing the lattice contribution function contained in their microscopic parameters. The re-
(2/R; [Ry]) implicitly in €5 is represented by the Hamil- sults are obtained as a function of lattice paramétere are
tonian up to ten microscopic parameters we calculate explicitly
We apply this approach to a finitél 10) linear chain, with
HR:Z (fgffnﬁUnmnuHE’ tijaitrajo aII_ hopping elements and all pair int_eractions includgd_. In
i this manner, the approach puts on a firm basis the variational
optimization of orbitals?! since we use, albeit in a model
+>, Kijon;an; (11  Situation, an exact expression for the total energy. The
i< method, nonperturbative in nature, can be applieghtiitio
description of correlated quantum dots and to two-
dimensional cluster systems, both as a function of inter-
atomic distance.

where sn;j=n;—1. We have neglected the termsJ;; and
~Vij;, as they provide much smaller contributions. In Table
Il we list the intersite correlation functiodn;én;,) and
show that indeed the residual intersite interacfil@st term The work was supported by KBN of Poland, Grant No.
in Eq. (11)] decays with increasing, making the application 2P03P 092 18. We would also like to acknowledge the dis-
of a procedure such as DMRG possible. The reason for theussions with our colleagues participating in the workshop in
decomposition in Eq(11) is that the attractive potential act- Bled (“Open Problems in Strongly Correlated Systems”
ing on an electron located on sitérom neighboring ions is  particularly with G. Czycholl, T. M. Rice, and N. Ptakida.
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