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Interlayer c-axis transport in the normal state of cuprates
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A theoretical model ofc-axis transport properties in cuprates is proposed. Interplane and in-plane charge
fluctuations make hopping between planes incoherent and diffusive~the in-plane momentum is not conserved
after tunneling!. The non-Drude optical conductivitysc(v) and the power-law temperature dependence of the
dc conductivity are generically explained by the strong fluctuations excited in the process of tunneling. Several
microscopic models of the charge fluctuation spectrum are considered.
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Despite the strongly two-dimensional layered structure
the high-temperature cuprate superconductors, features
ciated with the third dimension, perpendicular to the Cu2

planes, may be an important ingredient in their supercond
tivity. In fact, it is well accepted that a certain degree
Josephson-type coupling between different planes is ne
sary to suppress the two-dimensional fluctuations, which
otherwise destroy the superconducting long-range or
However, the systematic dependence of the critical temp
tureTc on the number of layers in the unit cell~together with
the absence of evidence for strong fluctuations effects ab
Tc at optimal doping, which suggests that these fluctuati
are not the major reason for this systematic depende!
points almost unambiguously to the conclusion that theo
formulated for a single plane cannot be the whole story.
ther hopping between planes,1 or Coulomb interaction be
tween them,2 or both, is an important factor in raising th
critical temperature~and, perhaps, in some cases also
lowering it, see Ref. 2!. In light of this, the study of the
c-axis optical and transport properties is more than jus
minor diversion from the main issue.

Thesec-axis optical and transport properties are very p
zling and anomalous.3 Most remarkable is the fact that th
temperature dependence of the dcc-axis resistivityrc(T), in
sharp contrast to the well-known linearT dependence of the
in-plane resistivityrab(T), is nonuniversal, being describe
in most cases by a power lawrc(T);Tg, where, however,
the exponentg can be anything in between approximate
11 and22. The optical conductivitysc(v) is roughly fre-
quency independent from low frequencies up to midinfra
frequencies@except in the case of some overdoped cupra
~Y-123 and overdoped La-214!#; the numerical value is be
low the Mott-Ioffe-Regel minimum metallic conductivity
This behavior, which is dramatically different from the b
havior of the in-plane resistivity, has been christen
‘‘confinement.’’1 Thus, despite the dramatic differences
the raw data between the different cuprate families, one
isolate at least two elements which may be legitimat
called ‘‘universal:’’ a non-Drude optical conductivity of
magnitude below the Mott limit, and a power-law tempe
ture dependence of the dc resistivityrc(T) ~albeit with a
material-specific exponent!. In this paper we develop a
framework for the explanation of these universalities, wh
will hopefully shed light on the role of the interplane an
in-plane Coulomb interaction as well as on the more obvi
one of the interlayer hopping.
0163-1829/2001/63~6!/064518~8!/$15.00 63 0645
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On the basis of the above experimental observations,
can make the assumption of incoherent transport~diffusive
tunneling! in the c direction. The interplane~or rather inter-
unit cell! hopping timethop can be estimated from the d
c-axis resistivity. Relating the diffusion constantD to the
hopping timethop by D5d2/thop, we can derive a model
independent relation between the conductivitysc and the
hopping time sc5e2n2D(d/thop), where n2D is a two-
dimensional density of states. Using this formula and
experimental values for thec-axis conductivity we can esti
mate thec-axis hopping timethop. The strong two dimen-
sionality of the electron motion becomes obvious if we co
pare the hopping timethop with the in-plane scattering time
tab . As is well known, the in-plane scattering timetab is of
order of\/kT. Direct comparison4 shows that for most ma
terials thec-axis hopping time ismuch longerthan the scat-
tering time in the plane. These two times are compara
only for overdoped Y-123 and La-214 suggesting a cro
over to a different regime ofc-axis transport; this is con
firmed by the experimental observation of the Drude-li
frequency dependence of the conductivitysc(v) for these
compounds.

Many approaches have been suggested1,3 to describe the
c-axis transport properties. Most of them stem from pheno
enologically assumed in-plane Green functions. One rem
able example is a non-Fermi ‘‘Luttinger’’ liquid theor
which explains naturally the ‘‘confinement’’ forc-axis mo-
tion in the normal state.1 Many other theories are essential
based on the Fermi liquid theory modified by stro
correlations.3,5

We take a quite different approach to the problem. A
though in our approach the in-plane motion~expressed by
in-plane Green functions! is undeniably important, we show
that most of thec-axis properties can be qualitatively unde
stood on the basis of knowledge of the spectrum of in-pla
and interplane charge density fluctuations excited during
process of the interplane tunneling. The spectrum of cha
fluctuations can be directly measured experimentally by
tical reflectivity and electron-energy-loss spectrosco
~EELS!.

The essential physical picture of our approach is that
c-axis tunneling is strongly suppressed by charge fluctuati
excited in the process of tunneling.6 This anomaly~the so-
called Coulomb blockade! is widely observed in many
strongly correlated and mesoscopic systems. Other exam
of this class of phenomena are orthogonality catastrop
©2001 The American Physical Society18-1
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and a zero-bias anomaly in diffusive systems. The ubiqu
of the Coulomb blockade phenomena~static or dynamic! in
correlated systems indicates that the anomalousc-axis trans-
port properties may be merely a consequence of strong
relations in the cuprates. The necessary condition for
appearance of the Coulomb blockade phenomenon is
strong effective coupling of the tunneling electron to the c
lective excitations of the liquid. In fact, we can think abo
the Coulomb blockade as a ‘‘high-energy’’ phenomenon
order of Coulomb energy per electron and independent of
low-energy quasiparticle spectral properties, be they Fer
or non-Fermi liquid. In other words, the tunneling electr
couples to the excitations in the broad range of frequen
from low up to high frequencies. The non-Fermi-liquid pro
erty ~property not present for a three-dimensional Fermi l
uid or for a electron gas in the RPA approximation! which is
responsible for the anomalousc-axis properties is simply the
large density of ‘‘detuning’’ charge fluctuations~as observed
by optical and Raman spectroscopy! over a broad frequency
range up to midinfrared frequencies.

Empirically, an overview of the in-plane conductivity an
the c-axis conductivity in various families of cuprates do
not reveal any obvious correlation between their tempera
dependencies. On the other hand, the perturbative diag
matic expression~assuming the equivalent Green’s functio
in each plane and uncorrelated impurities! for the in-plane
conductivity and out-of-plane conductivity9 are equivalent
up to the vertex functions. Therefore the difference in
temperature and frequency dependence of the in- and
plane conductivities must comeexclusivelyfrom the inter-
plane tunneling probability. For instance, the notion of t
‘‘two-dimensional Luttinger’’ liquid is not sufficient by itself
to explain the differencebetween the in-plane and out-o
plane resistivities.7

One particular approach to explaining the difference
tween the resistivities along the different directions is ba
on the highly anisotropic form of the tunneling matrix el
ment t'(kx ,ky) as a function of the in-plane momentum
Several authors5 developed a phenomenological approa
~assuming as well a strong anisotropy of quasiparticle l
times and the density of states around the fermi surfa!
which seem to fit successfully the experimental data. T
remarks are in order. First, this approach assumes tha
tunneling conserves the in-plane momentum. This may
the case in certain situations~possibly, in the superconduc
ing state and in the overdoped regime!, but in general this
assumption deserves close scrutiny by experiment
theory. In fact, we will argue that the in-plane momentum
not conserved whenthop@tab . Second, the anisotropy of th
tunneling matrix elementt'(kx ,ky) is different for some
variations of cuprates,8 and, in general, it can be doping d
pendent. Thus in some cases,t'(kx ,ky) may not vanish
along the diagonals of the Brillouin zone making the con
bution of the diagonal quasiparticles (kx56ky) to thec-axis
conductivity nonvanishing contrary to the assumptions
Ref. 5.

In the rest of the paper, we begin by generalizing
standard tunneling formalism, introducing a nontrivial tu
neling probability which accounts for the inelastic and elas
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~momentum scattering! processes. Then, we calculate th
tunneling probability from assumed spectra of ‘‘the detuni
fluctuations.’’ After that, we calculate the experimenta
measured optical conductivitysc(v,T) and the tunneling
conductancesc(V). Finally, we discuss the complex exper
mental situation and possible extensions of the propo
theory. In the Appendix we discuss several microsco
models giving the spectrum of the charge fluctuations.

Theory. The tunneling formalism.The tunneling of an
electron from one plane to another plane can be consid
by using the time-dependent tunneling Hamiltonian form
ism. The ‘‘blockade effect’’ due to the excitation of the ele
tromagnetic modes is accounted by the modulation of
tunneling matrix element by the Coulomb interaction. Th
the part of the Hamiltonian responsible for the transfer
electrons between planes is

Hc5 (
r 1 ,r 2

t'~r 1 ,r 2 ;t !@a1
1~r 1!a2~r 2!1a2

1~r 2!a1~r 1!#,

~1!

where the quasiclassical tunneling matrix eleme
t'(r 1 ,r 2 ;t) is equal to t'(r 1 ,r 2)exp@2( ie/c)* r 1

r 2A(z,

t)dz#. Gauge invariance dictates the presence of the ph
factor w(r 1 ,t)5(e/c)* r 1

r 2A(z,t)dz, where the integral is

taken over a path connecting two pointsr 1 and r 2 on the
different planes. Since the optimal tunneling trajectory
perpendicular to the planes~along thez axis!, the tunneling
matrix element can be written ast'(r 1 ,r 2)5t'd(r 1

2r 2)exp@2( ie/c)*z1

z2A(z,t)dz#. It conserves the in-plane

momentum. Using the tunneling Hamiltonian formalism,9,10

we get the following expression for the tunneling curre
I (t) between two planes:

I ~ t !52
2e

\2
ReE E drdr8E

2`

1`

dt8e2 i (eVt/\)ut'u2

3P~r 2r 8,t2t8!S~r 2r 8,t2t8!,

P~r 2r 8,t2t8![^eiw(r ,t)e2 iw(r 8,t8)&, ~2!

S~r 2r 8,t2t8![Q~ t2t8!^GR
,~r 2r 8,t2t8!

3GL
.~r 82r ,t82t !2GL

,~r 2r 8,t2t8!

3GR
.~r 82r ,t82t !&,

whereP(r 2r 8,t2t8) is a phase-phase correlation functio
between two planes averaged over the equilibrium fluct
tions, andV is an applied voltage. The definitions of Green
functions and essential details of the derivation can be fo
in the Ref. 10. The fact that the hopping timethop is much
longer than the in-plane scattering timetab allows us to
separate the in-plane propagationS(r 2r 8,t2t8) and the
tunneling probabilityP(r 2r 8,t2t8). It is important to re-
mark at this stage that the long-wavelength fluctuat
modes~with the wavelength much longer than the in-pla
mean free path! can suppress the tunneling probability wit
out effecting the in-plane motion. The scattering by t
8-2
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INTERLAYER c-AXIS TRANSPORT IN THE NORMAL . . . PHYSICAL REVIEW B 63 064518
short-wavelength fluctuations is accounted by the spec
properties of the in-plane propagationS(r 2r 8,t2t8). The
understanding of the properties of the tunneling probabi
P(r 2r 8,t2t8), describing the effect of the ‘‘detuning fluc
tuations,’’ is imperative for any particular problem of th
tunneling. The importance of this correlation function w
first described in Ref. 11. The novel element here is
discussion of the spatial dependence of the tunneling p
ability function P(r 2r 8,t2t8). The spatial dependence a
pears to be very important for many questions of thec-axis
transport properties. As mentioned above, in previous stu
of c-axis transport in cuprates, specific properties of the t
neling probability ~e.g., the tunneling with or without the
conservation of the in-plane momentumki) were assumed
Here we analyze and calculate the tunneling probability fr
the fluctuation spectrum of the electromagnetic field. We
call the tunneling ‘‘diffusive’’ if the in-plane momentum i
not conserved~if the momentum is conserved, it can b
called specular!. In other words, the tunneling is diffusive,
the tunneling probabilityP(r 2r 8,t2t8) is significant only if
ur 2r 8u/ l &1 ~where l is a short length scale of order of
lattice constant!. It should be noted that, generally speakin
the question of the conservation of in-plane momentum d
ing tunneling is another aspect of tunneling not equivalen
the question of coherence or incoherence of tunneling~that is
the question of the dephasing of an electron!. Equation~2!
can be rewritten in the following form:10

I ~V!5
2eSt'

2

\ E dEdE8dkdk8A1~k,E!A2~k8,E8!

3$ f ~E!@12 f ~E8!#P~E1eV2E8,k2k8!

2 f ~E8!@12 f ~E!#P~E82eV2E,k2k8!%, ~3!

whereA1,2(k,E) are the spectral functions,f (E) is a Fermi
function, andP(E,k) is a Fourier transform of the functio
P(r 2r 8,t2t8).

The tunneling probability.We need to calculate the co
relation function^ei ŵ(r ,t)e2 i ŵ(r 8,t8)&. The averaging can be
done if we assume the fieldw(r ,t) is Gaussian correlated
Using gauge invariance, the phasew(r ,t) can be rewritten as
w(r ,t)5*2`

t dV(r ,t)dt, wheredV(r ,t) is the local voltage
difference between two planes. This way we get an exp
sion for the tunneling probability~the calculation is a gener
alization of the exact calculation from Ref. 9, pp. 273–27!:

P~dr 5r 2r 8,dt5t2t8![exp@2R~dr ,dt !#,

R~dr ,dt ![E dv

v2E d2q^dVq,v
2 &@12cos~vdt1qW dW r !#

3coth
v

2T
. ~4!

In this paper, we assume that the most effective ‘‘det
ing’’ fluctuations are the voltage fluctuations~or related
charge fluctuations!. It is important to point out that the sam
method can be used to calculate the ‘‘blocking’’ of the tu
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neling due to any mechanism of in-plane scattering. Si
the nature of the ground state of cuprates and therefore
spectrum of the fluctuations is not known, later we exam
several general forms of the spectrum. The problem of in
herent tunneling between a couple of two-dimensional pla
is a natural generalization of the spin-boson model of qu
tum dissipation.

In view of the importance of the spatial dependence of
tunneling probability, we giveseveral different argument
proving the diffusive nature of the tunneling~if thop@tab) in
the normal state. First of alla qualitative argument: if the
hopping time is much longer the in-plane scattering time,
electron experiences many inelastic and elastic scatte
processes~both not conserving the direction of the in-plan
momentum! before the hopping between planes. Thus it
intuitively natural to think that the momentum is not co
served after the hopping.A straightforward quantitative ar-
gumentis given by the analysis of the functionR(dr ,dt) in
the exponent of the expression for the tunneling probabi
@Eq. ~4!#. To separate the spatial and time dependence of
function R(dr ,dt), we rewrite the multiplier in the integra
as @12cos(vdt1qxdr )#5@12cos(vdt)#1cos(vdt)@1
2cos(qxdr )#2sin(qxdr )sin(vdt). The integral with the
last term vanishes, because this term makes the integra
pression antisymmetric with respect to integration overqx .
Thus, we can write

R~dr ,dt !5R0~dr ,dt !1R1~dr ,dt !,

R0~dt !5E dv

v2E dqxqy^dVq,v
2 &coth

v

2T
@12cos~vdt !#,

R1~dr ,dt !52E dv

v2E dqxqy^dVq,v
2 &coth

v

2T
cos~vdt !

3sin2@~qxdr !/2#. ~5!

The space-independent partR0(dt) is calculated later in the
paper @see Eq. ~9!#. Below we calculate the function
R1(dr ,dt) which describes the spatial dependence of
tunneling probability. For this calculation we assume that
fluctuations are uncorrelated in two planes~see below for a
more general discussion!, and the interplane noise is jus
twice the in-plane Johnson-Nyquist~JN! noise ~voltage
fluctuations!.12 The Johnson-Nyquist noise can be calcula
from the spectral density of Coulomb noise in the tw
dimensional plane valid in the hydrodynam
approximation13

^dVq,v
2 &.4psQ

s2v

v214p2s2
2q2

, ~6!

where s2 is a two-dimensional conductance, andsQ
[e2/\. We substitute Eq.~6! into the expression~5! for
R1(dr ,dt) and impose an upper cutoffqc on theq integra-
tion to take into account of the fact that the expression~5! is
strictly valid only in the long-wavelength limit; thus we tak
q!qF ~but still of the general order ofqF). We also impose
on thev integration a lower cutoffv l , the choice of which
8-3
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will be discussed below. Then, taking into account the f
that we are interested in values ofdt which are of the genera
order of magnitudethop and thus several orders of magnitu
larger than (s2qc)

21, we see that to a good approximatio
R1(dr ,dt) factorizes into a product of a function ofdr and a
function of dt:

R1~dr ,dt !.F~dr !G~dt !,

F~dr ![E
0

2p

duE
0

qcdr

dx
12cos~x cosu!

x
,

G~dt ![
2sQ

ps2
E

v l

`dv

v
cothS v

2kTD cos~vdt !. ~7!

The expressionF(dr ) is approximately (p/8)(qcdr )2 for
qcdr !1 and 2p ln(qcdr ) for qcdr @1. As for the function
G(dt), we will see below that the ‘‘interesting’’ values ofdt
@i.e., those for which the functionR0(dt) does not suppres
P(dr ,dt) too badly# are less or of order of\/2pakT, where
the dimensionless quantitya is typically less or of order of
1. Under these conditions, provided\v l!kT which will be
satisfied by our choice ofv l ~see below!, the integral defin-
ing G(dt) is dominated by its lower limit and approximate
given by thedt-independent expression

G~dt !.
2sQ

ps2

kT

\v l
. ~8!

We will make the choicev l;1/thop, on the grounds tha
once we need to allow for appreciable interplane hoppi
Eq. ~6! for the noise is no longer applicable@and we expect
the expression for̂dVq,v

2 & to decrease as a higher power
v for v→0, thereby effectively cutting off the integral~7!#.
We thus have forR1(dr ,dt) the approximate expression

R1~dr ,dt !.~kTthop/\!~sQ /s2!~2/p!F~qcdr !.

The salient point, now, is that the quantitykTthop/\,
which is essentially the ratio of theab plane andc-axis con-
ductivities, is of order 1022104 for most of the cuprates
while the ratios2 /sQ is never greater than about 10. Thu
the quantityR1 has a value large compared to unity for va
ues ofdr small compared to 1/qc , and we can approximat
the expressionF(dr ) by its limiting form (p/8)(qcdr )2.
Thus, the ‘‘effective area’’Seff[(dr eff)

2 for which R1 is
appreciable is defined by

Seff;
4~s2 /sQ!

qc
2~kTthop/\!

and by the above argument this is much smaller than 1qc
2

and thus at most of the order of 1/qF
2 . At distances of this

order formulas such as Eq.~6! should no longer be take
seriously, but the crucial upshot of the argument is that
herence between tunneling events separated in space by
than ;1/qF can be simply neglected. To put it differentl
the tunneling is effectively local~diffusive!; the effective rms
change in momentum in the course of a tunneling event i
06451
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order ofqF ~see below!. It is noteworthy that this is so eve
if the momentum cutoffqc on the voltage fluctuations is onl
a small fraction ofqF ; consideration of shorter-wavelengt
fluctuations can only strengthen this conclusion.

Another argument estimates directly the change of m
mentum in the process of tunneling. The change of the m
mentum due to a fluctuation of the electromagnetic poten
is dp;(edA)/c, thereforê dp2&5(e/c)2^dA2&. We can re-
late the correlation function of the vector potential with t
correlation function of the scalar potential by gauge transf
mation ~assuming only longitudinal fluctuations! ^Aq,v

2 &
5(c2q2/v2)^dVq,v

2 &. Using Eq. ~6! at low frequencies
v,s2q, the correlation function can be approximate
as ^Aq,v

2 &5(4ps2c2/v2)@q2/(v21s2
2q2)#.(4pc2/v2s2).

Thus the variance of momentum̂dp2& is ^dp2&5(e2/
\c2)*dqq*dv(c2/v2)@v coth(v/2T)/s2#. We see that the
integral over frequency is diverging forv,T as*(dv/v2).
This integral can be cut off again on 1/thop, therefore
^dp2&;qc

2(sQ /s2)(thopkT) ~at any finite temperature!. This
estimate gives a result equivalent to the earlier calculat
This indicates again that the in-plane momentum is co
pletely randomized after the process of tunneling. All the
arguments validate theories ofc-axis transport in the norma
state assuming nonconservation of in-plane momentum
ing tunneling. The fact of the nonconservation of moment
ki in the normal state~if thop@tab) is quite general, a suffi-
cient condition as can be seen from the above discussio
the ohmic density of the noisêdVr(v)2&;v for v→0. It is
important to stress that the ‘‘diffusivity’’ of the tunneling i
due to specific form of the spectrum of the voltage fluctu
tions ~and not due to short links or impurities!, for instance,
it may not be true in the superconducting state. It is imp
tant to point out that the question of the in-plane moment
conservation for c-axis tunneling can be examine
experimentally14 supporting or disproving the above arg
ments.

When the tunneling is diffusive, the ‘‘detuning fluctua
tions’’ are simply the local voltage fluctuations

^dVv
2 &5E d2q^dVq,v

2 &[av,

wherea is the microscopic parameter describing the ohm
density of the noise. As can be seen below this microsco
parametera is sufficient to describe all dc and ac depende
cies of thec-axis conductivity. When the two planes a
widely separated and isolated~the situation possibly realized
in Bi-2201!, the noise spectra in each plane are uncorrela
so that the interplane noise spectrum is just the sum of
noise spectra in each plane. In such a case, the coefficiea
should be determined only by the properties of the copp
oxygen plane. If the planes are moved closer together, so
the interplane Coulomb interaction become relevant, the
tensity of the interplane noise~assuming no interplane hop
ping! increases due to the presence of the acoustic~out-of-
phase! plasmon in this bi-layer structure. Unfortunatel
realistically the noise between planes can be suppressed
correlated at low frequencies because of interplane hopp
and become dependent on the interlayer structure thus im
8-4
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INTERLAYER c-AXIS TRANSPORT IN THE NORMAL . . . PHYSICAL REVIEW B 63 064518
ing different values ofa for different cuprate materials. It is
known experimentally that the detailed temperature dep
dence of thec-axis resistivity is very sensitive to sever
factors~sample preparation, interlayer structure and dopin!.
The role of the interlayer structure~different intercalating
atoms, chains and additional layers present in some c
pounds! and the structure of the tunneling matrix eleme
t'(kx ,ky) ~e.g., in-plane anisotropy! is not clear, it makes the
question of the interlayer noise and thec-axis transport prop-
erties even more complex.

We have examined several models describing the volt
noise to estimate the microscopic parametera ~see the Ap-
pendix for the discussion of this question, also Ref. 15!. The
goal of such exercise is to verify a crude consistency
tween the estimate ofa from microscopic noise and the pa
rametera required to describe thec-axis transport dependen
cies. The difficulty~not surprising since these calculatio
assume Fermi-liquid or diffusive spectra of density fluctu
tions! common to all of the calculations~see the Appendix!
is that the ‘‘microscopic’’ value ofa is significantly smaller
than the value of order of 1 necessary to explain thec-axis
transport properties. For our approach to be valid a la
(a;1) density of ‘‘detuning fluctuations’’~not present in
RPA or Fermi-liquid pictures! is vital. An alternative ap-
proachis to extract the charge fluctuation noise directly fro
the optical reflectivity measurements. The most dramatic
ference between good metals and cuprates seen in Ra
and optical measurements of the in-plane dielectric cons
eab(q,v) is that the low-frequency noise for cuprates
ohmic ~linear! even for q→0. If we write Im@21/
eab(q,v)#5gv for q.0, then from the experimental data16

g.0.2 eV21. Since ^dVv
2 &5*@dqq/(2p)2#V2(q)Im(21/

ek,v).(e2qc/2p)gv, we geta.(e2qc/2p)g. If we take the
upper cutoff wave vectorqc;2p/a (a is a in-plane lattice
constant!, we geta.(e2/a)g.1.2. It shows thata may be
of order of 1, exactly what is required to explain thec-axis
transport properties. We now use the ‘‘local’’ approximati
justified above to calculate the dc and acc-axis conductivity.

First of all, we calculate the local tunneling probabili
P(r 50,t) @or rather its Fourier transformP(e,k2k8)#. The
quantity P(e,k2k8) can be interpreted as a probability
exchange an energye and momentum (k2k8) with fluctu-
ating fields. Since, as argued above, the tunneling probab
is strongly peaked atr 50 ~if thop@tab), the Fourier trans-
form in momentum spaceP(e,k2k8) is essentially indepen
dent of (k2k8), therefore we omit the index (k2k8) below.
For the small values of the coefficienta (a!1) describing
the spectral density of the local voltage noise^dVv

2 &5av,
the tunneling probability can be calculated analytically. T
function R0(dt) in the exponent of theP(dr 50,dt) is

R0~dt !5E dv

v2
^dVv

2 &@12cos~vdt !#cothS v

2kTD
5E

0

`dv

v2
av@12cos~vdt !#cothS v

2kTD
.

dt

tf
12a ln~vc /kT!, ~9!
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where tf51/2pakT and vc is a high-frequency cutoff
which we associate with the inverse of the underbarrier
versal time \/t tr;1 eV. After a Fourier transform, it
gives the probability of tunneling P(e)5Seff(kT/
vc)

2a$2pakT/@e21(2pakT)2#%, where Seff is the effec-
tive area of tunneling discussed above. Fora of order of 1,
the tunneling probability is strongly suppressed and wea
depends one ~for e<kT). It cannot be calculated explicitly
analytically, but at smalle can be approximated as a functio
independent ofe: P(e).Seff(kT/vc)

2a(1/2pakT).
The optical conductivitysc(v,kT). The tunneling con-

ductancesc(V). Equation ~3! can be further transformed
assuming the diffusive tunneling probability. In this case,
can integrate over the in-plane momenta (k,k8) separately.
The next transformation is due to the detailed balance c
dition ~see Ref. 11!, eventually we can write the expressio
for the dc conductivitysc(V) as a function of the applied
voltageV:

sc~V!5
et'

2 dn2D
2

\

12e2beV

V E
2`

1`

de
eP~eV2e!

12e2be
. ~10!

From Eq.~10! in the limit of small voltage (V!kT) ~for all
a as long as the tunneling is diffusive! appropriate for the dc
measurements, we calculate the temperature dependen
the c-axis conductivity

sc~T!5
e2

\
t'
2 dn2D

2 SeffS kT

vc
D 2a 1

2pa
. ~11!

This result describes thec-axis resistivityrc(T) either con-
stant or diverging at low temperatures found experimenta
in several compounds~Bi-family, Hg-1201, Tl-2212, Tl-
1212, and slightly underdoped La-214!.

In order to calculate the optical conductivitysc(v), we
make the following observation. If we apply the external
voltage, the tunneling probability acquires an addition
phase factorP(t2t8);exp@( i /\)* t8

t Vdt# @in Eq. ~3! it gives
a shift in the energy difference~after a Fourier transform!
P(E1eV2E8)#. Thus schematically, the conductance
sc(V);(1/V)*dt8e( i /\)V(t2t8)(•••). For the ac voltage,

P~ t2t8!;expS i

\Et8

t

Veivtdt D
5expS i

\
V

eivt2eivt8

iv
D

'11
V

\

eivt

v
~12eiv(t2t8)!. ~12!

In the linear response~the optical conductivity is a linea
response! and separating a corresponding harmonic of
current proportional toeivt, we conclude that the depen
dence of the conductivitysc(v) on the frequencyv is
equivalent to the dependence on the voltageV, such that
sc(v)5sc(V→v) ~if the tunneling is incoherent and diffu
sive!. Namely,
8-5
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sc~v!5
et'

2 dn2D
2

\

12e2bv

v E
2`

1`

de
eP~v2e!

12e2be
. ~13!

A ubiquitous nearly flat optical response forsc(v) is ob-
served experimentally~if measurements exist! in these com-
pounds. Indeed, a qualitative and numerical analysis of
frequency dependencesc(v) of Eq. ~13! ~or equivalently
dependence on the voltage! indicates a very weak depen
dence on frequency.

It is interesting that under the conditions of incohere
tunneling OhmicI -V curves@constant conductancesc(V) as
a function of voltage# correspond to a flat optical conductiv
ity sc(v). The correspondencesc(v)5sc(V→v) can be
directly checked experimentally by comparing the tunnel
conductancesc(V)5I (V)/V and the frequency dependen
of sc(v) from the optical reflectivity measurements. Th
graphs ofsc(V) andsc(v) can be taken from experimenta
papers.17 It appears to be roughly true for optimally dope
and underdoped compounds in the normal state.

Discussion of experiments.The above results are insuffi
cient to describe all experimental data for different dopin
In optimally doped La-214 and Y-123 and some other ov
doped cuprates thec-axis resistivity has a linear temperatu
dependence with a large ‘‘residual’’ value~intercept atT
50 K).18 In these compounds the hopping time becom
comparable to the in-plane scattering time. Thus we can
sume that specular tunneling becomes possible. In this cr
over situation between two limiting pictures of the tunneli
between planes and the anisotropic band alongc-axis, we
can think about two channels of conduction. One channe
diffusive, while another one is specular. The tunneling pr
ability is the sum of probabilities to tunnel without and wi
the conservation of the in-plane momentum. In this case,
total c-axis conductivity is the sum of conductivities in ea
channel. If the Fermi surface has very anisotropic propert
electrons from one part of the Fermi surface can tun
specularly, while electrons from other parts tunnel diff
sively. In this scenario, the second channel of conduc
~conservingki) can be due to the diagonal parts of the Fer
surface in the normal state. It appears from photoemiss
experiments that the quasiparticles along diagonals of
Brillouin zone (kx56ky) have longer lifetimestab,diag
~which should be compared with the hopping time!. These
quasiparticles can tunnel then with conserved momentum
is natural to suggest that for overdoped cuprates thec-axis
transport is dominated by incoherent, but specular chan
while for underdoped cuprates the diffusive channel is o
present.

We can calculate the conductivity of a specular channe
we assume that the time dependence of the specular tu
ing probability is P(dt).exp(2dt/tf) with tf calculated
for a weak detuning, that istf51/2pakT. Thus we substi-
tute the tunneling probability of the formP2(e2e8,k2k8)
5d(k2k8)$2pakT/@(e2e8)21(2pakT)2#% „or any form
P2(e2e8,k2k8).d(k2k8)1/kT f@(e2e8)/kT#… to the Eq.
~3!, we get the contribution to thec-axis conductivity
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e2

\
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2 dn2D

A

kT
, ~14!

where A is a numerical coefficient. This result is a wel
known result for incoherent tunneling with conservation
the in-plane momentum.19 It is suggested to explain the lin
ear temperature dependence ofc-axis resistivity observed in
some compounds.20 Another important consideration is tha
the band calculations predict a significant angular dep
dence oft' in some families of cuprates.8 Due to this reason,
the contribution from specular channel~from diagonal parts
of the Fermi surface! can be reduced.

Yet another complexity of cuprates with multiple plan
per unit cell is the question of intraunit cell and interce
conduction. In this case, the resistance associated with
ping between planes of the unit cell~intracell resistance! and
the resistance associated with hopping between different
cells ~intercell resistance! should be discussed. The total r
sistance is certainly a sum of intraunit and interunit cell
sistances. It may not be correct to assume~as is frequently
done in the literature! that the intracell resistance is negl
gible; a systematic experimental investigation of this qu
tion is necessary. In the discussion of this paper we assu
the voltage noise to be uncorrelated between different pla
and neglected the interplane Coulomb interaction; these
tors must be taken into account in the consideration of
intracell hopping.

In conclusion, a picture ofc-axis interlayer~and intercell!
tunneling strongly suppressed by voltage fluctuations is p
posed. This approach can provide a consistent understan
of observed temperature and frequency dependencie
c-axis conductivity in the normal state.

This work was supported by the National Science Fo
dation through the Science and Technology Center for
perconductivity ~Grant No. DMR-91-20000! and through
Grant No. DMR-99-86199. We thank A. Shnirman and L.-
Shieh for useful discussions.

APPENDIX

In this appendix, we demonstrate an example of a ca
lation of the parametera describing the low frequency volt
age fluctuations based on a particular microscopic mode
the density fluctuation spectrum. At the end of the Append
we list several results calculated for various other mic
scopic models.

If the two planes are widely separated, then the volta
fluctuations can be treated independently in each plane
this case, the interplane noise is just twice the in-plane lo
Johnson-Nyquist noise in each plane. For a high-den
electron gas in a hydrodynamic approximation (vt!1 and
ql!1), the charge density-density susceptibility of the tw
dimensional electron gas can be written as21

x~k,v!5
s2kTFk

2

2pe2

1

v~v1 i /t!2s2k22s2kTFk
,

8-6



i
e.
e

-
th
ca
f t

e

e

of

am-
be

cu-
ctly
her
to

e to
ri-

um-
is

as-

the
o-

p-

ns

INTERLAYER c-AXIS TRANSPORT IN THE NORMAL . . . PHYSICAL REVIEW B 63 064518
where s25vF
2/2, kTF52pn0e2/ms2 is the Thomas-Ferm

wave number, andt is a phenomenological relaxation tim
Using the fluctuation-dissipation theorem, the spectral d
sity of the voltage fluctuations is

^Vk,v
2 &5

2\

p
Vk

2 Im x~k,v!,

whereVk52pe2/k is the two-dimensional Coulomb interac
tion, and a factor of 2 in the above expression is due to
doubled Johnson-Nyquist noise. Eventually, we need to
culate the partial frequency-dependent spectral density o
voltage noisê Vv

2 &5(1/\2)*(dkk/2p)^Vk,v
2 &. The calcula-

tion gives

^Vv
2 &5

2

p\E dkk

2p

~2pe2!2

k2

s2kTFk
2

2pe2

3
v~1/t!

~v/t!21~s2k21s2kTFk!2

.
2e2

p\s2kTFt
v lnS s2kTF

2 t

vc
D ,

wherevc is an infrared cutoff frequency. It implies to th
accuracy of the value of the logarithm that the parametera is

a[
e2

s2kTFt

2

p\
5

\

peFt
.

n
te

-

06451
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We can rewrite this expression in the following form:

a5
2

p2

sQ

s2D
,

wheresQ5e2/\, s2D5e2n2DD5(2/p)@e2(eFt)/\2# is the
two-dimensional conductivity~it can be shown to have a
Drude frequency dependence!. The above results may b
used to estimate the value of the parametera in the cuprates.
Two difficulties can be seen from such literal application
the above model. First of all, the value ofa is significantly
smaller than one. Second, and more importantly, the par
eter a appears to be temperature dependent. It should
realized that the spectrum of charge fluctuations in the
prates is much more complex and not represented corre
by the above simple model. We investigated several ot
simple microscopic models in order to get further insight in
this question. At this moment, it seems more reasonabl
extract the charge fluctuation spectrum directly from expe
ment as shown in the text of this paper.

The results for several other microscopic models are s
marized below. If the spectrum of charge fluctuations
given by the weakly damped acoustic two-dimensional pl
mon, then the parametera is a;sQ

2 /s2(11kTFd), whered
is the interplane distance. Another calculation taking
voltage noise due to electron-hole pairs of the tw
dimensional Fermi liquids givesa.1/4p. If the interplane
Coulomb interaction is taken into account in the RPA a
proximation for the same calculation (el-hole pairs),a
51/(2pkFd). We hope to present the details of calculatio
and expanded arguments elsewhere.
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