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Vortex state in a doped Mott insulator
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We analyze the recent vortex core spectroscopy data on cuprate superconductors and discuss what can be
learned from them about the nature of the ground state in these compounds. We argue that the data are
inconsistent with the assumption of a simple metallic ground state and exhibit characteristics of a doped Mott
insulator. A theory of the vortex core in such a doped Mott insulator is developed based & 1he
gauge-field slave boson model. In the limit of vanishing gauge-field stiffness such a theory predicts two types
of singly quantized vortices: an insulating “holon” vortex in the underdoped and a metallic “spinon” vortex
in the overdoped region of the phase diagram. We argue that the holon vortex exhibits a pseudogap excitation
spectrum in its core qualitatively consistent with the existing experimental data,&mB8aCy0Og. As a test
of this theory we propose that the spinon vortex with a metallic core might be observable in the heavily
overdoped samples.
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. INTRODUCTION existence or absence of the vortex core bound stafég®
This debate, now resolved in favor of the absence of any
The nature of the ground state as a function of dopingoound states in the purd,-,. state}'®'® has somewhat
remains one of the recurring unresolved issues in the theorgclipsed the possibly more important issues related to the
of high-T, cuprate superconductors. The problem is partlynature of the ground state in cuprates.
due to formidable difficulties related to the theoretical de- The body of work based on mean-field, weak-coupling
scription of doped Mott insulators and partly due to experi-calculation§™'%*3yields results for the local density of states
mental hurdles in accessing the normal-state properties in tHe the vortex core which exhibit two generic featurég:the
T—0 limit because of the intervening superconducting or-coherence peak®ccurring atE=*+ A, in the bulk are sup-
der. Probes that suppress superconductivity and reveal tfR§essed, with the spectral weight transferred ti abroad

properties of the underlying ground state are therefore ofe@tureless peak centered around the zero energy. Here we
considerable value. So far only pulsed magnetic flelds wish to emphasize the heretofore little appreciated fact that

: : . L these features amgualitatively inconsistenivith the existing
X fH nd impuri in nd the critical .
excess ofHc, and impurity doping beyond the  critica experimental data on cuprate superconductors. STM spec-

concentratiof have been used towards this goal. Here Weroscopy on BiS,LCaCyOg (BSCCO at 4.2 K indicates a
argue that the vortex core spectroscopy performed usingseydogap” spectrum in the vortex core with the spectral

scanning tunneling microscog&TM) can provide insights \yeight from the coherence peaks At ,=40 meV trans-
into the nature of the ground state in cuprates. We analyZgred tohigh energiesand no peak whatsoever arouid
the existing experimental datd and conclude that they im- 0 4 Recent high-resolution data on the same compbund
ply a strongly correlated “normal” ground state, presumably confirmed these findings down to 200 mK and found evi-
derivable from a doped Mott insulator. We then develop adence for weak bound states at7meV. Experiments on
theoretical framework for the problem of tunneling in the YBa,Cu;0, (YBCO) (Ref. 3 also indicate low-energy
vortex state of such a doped Mott insulator. bound states, but are somewhat more difficult to interpret
In the vortex core the superconducting order parameter ibecause of the high zero-bias conductance of unknown ori-
locally suppressed to zero and the region within a coherencgin appearing even in the absence of magnetic field.
length ¢ from its center can be to the first approximation  The fundamental discrepancy between the theoretical pre-
thought of as normal. Spectroscopy of the vortex core theredictions and the experimental findings strongly suggests that
fore provides information on the normal-state electronic ex-models based on a simple weak coupling theory break down
citation spectrum in thef—0 limit. More accurately, the in the vortex core. The pseudogap observed in the core hints
core spectroscopy reflects the spectrum in the spatially northat the underlying ground state revealed by local suppres-
uniform situation where the order parameter amplitude rapsion of the superconducting order parameter is a doped Mott
idly varies in response to the singularity in the phase im-nsulator and not a conventional metal. Taking into account
posed by the external magnetic field. In order to extracthe effects of strong correlations appears to be necessary to
useful information regarding the underlying ground stateconsistently describe the physics of the vortex core. Con-
from such measurements a detailed understanding of the voversely, studying the vortex core physics could provide in-
tex core physics is necessary. So far the problem has bedormation essential for understanding the nature of the un-
addressed using the weak coupling approach based on tlderlying ground state in cuprates.
Bogoliubov—de Gennes theory generalized to thevave One step in this direction was taken by Arovetsa
symmetry of the order parameter’® and semiclassical who proposed that within the framework of the GD
calculations'}~33The early theoretical debate focused on thetheory® vortex cores could become antiferromag-
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netic (AF). They found that such AF cores can be stabilized
at low T but only in the close vicinity of the bulk AF phase.
In contrast, experimentally the pseudogap in the core is
found to persist into the overdoped regfbMore recently,
microscopic calculations within the same mddekvealed
electronic excitations in such AF cores with behavior
roughly resembling the experimental data. Quantitatively, spin gap tormi liquid
however, these spectra exhibit asymmetric shifts in the co- A0, bt o b
herence peakgelated to the fact that spin gap in the AF core ’
is no longer tied to the Fermi leyehot observed experimen-
tally. These discrepancies suggest that generically cores will
not exhibit the true AF order. Finally, these previous ap-
proaches are still of the Hartree-Fock-Bogoliubov type and
cannot be expected to properly capture the effects of strong
correlations.

Here we consider a model for the vortex core based on a x

version of theU(1) gauge-field slave boson theory formu- £\ 1. schematic phase diagram of the system with spin-charge

0 . .
lated recently by Leé Originally proposed by Andersﬁh separation in the doping-temperature plane, as applied to cuprate
the slave boson theory was formulated to describe stronglyyperconductors.

correlated electrons in the Cy®lanes of the high-. cu-

prates. Various versions of this theory have been extensively, -+ nlike the physical electromagnetic fieddthe gauge
discussed in the I|Feratu?é.‘zelrlt2%r2eost In spm-charge S€P2a- fie|d a has no independent dynamics in the underlying mi-
rated systems revived recerfily***°due to the realization croscopic model since it serves only to enforce a constraint.

that they provide a r_natural description of the pseudogap pheg;chdet? and Nagaosa and L¥eassumed that upon inte-
nomenon observed in the underdoped cuprates. The comm ating out the microscopic degrees of freedom a term

ingredient in these theories is “splintering” of the electron
into quasiparticles carrying its spin and charge degrees of

"strange metal"
A=0, b=0

superconductor
A#0, b0

g
freedom. Within the theories based on Hubbard &danod- fgauge=§(v><a)2 3
els this splintering is formally implemented by the decompo-
sition of the electron creation operator is generated in the free energy. They then analyzed vortex

f 1 solutions of the free energi2) and came to the conclusion
Cig=Tighi @ that two types of vortices are permissible: a “holon vortex”

into a fermionic spinorf;, and bosonic holom; . The local ~ With the singularity in thé field and a “spinon vortex” with
constraint of the single occupandyb;+f' f,,=1 is en- the singularity in theA field. Because holons carry electric
forced by a fluctuatingJ (1) gauge fielda. The mean-field chargee the holon vortex is threaded by electronic flux quan-

phase diagram is known to contain four phases distinguishe@m hc/e, i.e., twice the conventional superconducting flux
by the formation of spinon pairﬁij=<eggrffgffgr>, and quantun@ozhc/_Ze. Spinons on the other hand condense in
Bose-Einstein condensation of the individual holohs P23 and_the spinon vortex there_fore carnesﬁz@(Stabn-
—(by) 2 and is illustrated in Fig. 1 ity analysis then implies that spinon vortex will be stable
Tlhé effects of magnetic field .on.such a spin charge sep over the most of the superconducu'n.g phase d@gram, while
rated system is most conveniently studied in the frameworkhe. hc/e holon vortex can be stabilized only in the close

of an effective Ginzburg-LandaiGL) theory for the conden- V'ﬁ.m'f{y ofd'_[he phase boundaryforr]w t?e ur;]derd_op?d §‘?d*é__ d
sate fieldsA andb. The corresponding effective action can This is a direct consequence of the fact that singly quantize

31 : vortices are always energetically favorafte?®
be constructet!** based on the requirements of local gauge As far as the electronic excitations are concerned, the

invariance with respect to the physical electromagnetic vec-,_ . o L
i ) . spinon vortex is virtually indistinguishable from the vortex
tor potentialA and the internal gauge fiekt

in a conventional weak-coupling mean-field theory: the spin
1 gapA, which gives rise to the gap in the electron spectrum,
for=[(V—2ia)A|?+r,|A]2+zu,|Al* vanishes in the core. Consequently, the vortex state based on
2 the results of Sachdev-Nagaosa-L@&AL) theory’®3! does
1 not exhibit the pseudogap in the core and suffers from the
+|(V—ia—ieA)b|?+r|b|?+ Eub|b|4+v|A|2|b|2 same discrepancy with the experimental data as the weak-
coupling theorie§'°based on the conventional Fermi-liquid
1 description. Moreover, no evidence exists at present for
+@(VXA)2+fgauge (2)  stable doubly quantized holon vortices predicted by SNL.
What is needed to account for the experimental data is a
The factor of 2 in the spinon gradient term reflects the facingly quantized holon vortestable over the large portion of
that pairs of spinons were assumed to condenfsg,,.de-  the superconducting phase in the phase diagram of Fig. 1. In
scribes the dynamics of the internal gauge fizldVe note  the core of such a holon vortex the spin gapemains finite
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and leads naturally to the pseudogap excitation spectrum. In We have thus arrived at an effective theory of a spin-
what follows we show that under certain conditions the freecharge separated system containing one phase degree of free-
energy(2) permits precisely such a solution. dom Q and two amplitudesp, andp,. Deep in the super-
The results of the SNL theory are predicated upon theonducting phase, where both amplitudes are finite, the
assumption that the “stiffness¢ of the gauge field is rela- physics of Eq.(4) will be very similar to that of a conven-
tively large and that singular configurations in whiEh<a  tional GL theory. In the situations where the superconducting
contains a full flux quantum through an elementary plaquett®rder paramete® is strongly suppressed, such as in the
are prohibited. Consider now a precisely opposite physicabortex core, near an impurity or a wall, the theory has an
situation, allowing unconstrained fluctuations @ This  extra degree of richness, associated with the fact that it is
amounts to the assumption that thg,qterm (3) can be  sufficient (and generally preferred by the energetitisat
neglected in Eq(2), i.e., c—0. Physically this corresponds only oneof the two amplitudes is suppressed. Since the two
to the “extreme type-I” limit of the GL “superconductor” amplitudes play very different roles in the electronic excita-
(2) with respect to fluctuations im. Based on Elitzur's tion spectrum, the effective theof$) will lead to a number
theorent* Nayal® recently argued that the exact lot#(1)  of nontrivial effects.
symmetry of the model cannot be broken, implying absence To illustrate this consider what will happen in the core of
of the phase stiffness ter3) at all energy scales. Our as- a superconducting vortex. Under the influence of the mag-
sumption therefore appears reasonable and in Sec. Il weetic field the phasé€) will develop a singularity such that
shall give a more thorough discussion of the significance oV~ 1/r close to the vortex center. For the free energy to
the f g, geterm for the vortex solutions of interest here. For remain finite the amplitude prefactor in the second term of
the time being we shall assume tHgf,q.can be neglected Eq. (4) must vanish for —0. This is analogous tbP| van-
and explore physical consequences of the resulting theory.ishing in the core of a conventional vortex. In the present
feL given by Eq.(2) is quadratic ina and with theV case, however, it is sufficient when the prodpglp, van-
X a term absent the gauge fluctuations can be trivially inteishes. Since suppressing any of the two amplitudes costs
grated out. Within the closely related microscopic model thiscondensation energy, in general only one amplitude will be
procedure has been recently implemented by °éehe re-  driven to zero. Which of the two is suppressed will be deter-
sulting effective free-energy density reads mined by the energetics of the amplitude tei® On gen-
eral grounds we expect that the state in the vortex core will
1 be the same as the corresponding bulk “normal” state ob-
f="fampt W(V¢—2VG+2€A)2+ B_(VXA)Z’ tained by raising the temperature aboVg. Thus, very
PATPb m 4 crudely, we expect that the holon vortex will be stable in the
) underdoped while the spinon vortex will be stable in the
where we have sel=p,e'®, b=ppe'’, and overdoped region of the phase diagram Fig. 1.
An important point by which our approach differs from
the SNL theory is that in the present thedsgth types of

1 1
famp=(VpA)2+rApi+§uApi+(Vpb)2+ rbp§+ Eubpﬁ vortices carry thesamesuperconducting flux quantur®
and thus compete on equal footing. This is a direct conse-
+UP§P§ (5) quence of our assumption of the vanishing phase stiffoess

In what follows we study in detail the vortex solutions of
is the amplitude piece. The most important feature of théhe free energy4). Our main objective is to obtain the pre-
effective free energy4) is that it no longer depends on the cise estimates for the energy of the two types of vortices as a

individual phasesp and @ but only on their particular com- function of temperature and doping and deduce the corre-
bination sponding phase diagram for the state inside the vortex core.

We show that for generic parameters in E4) the singly
Q=¢-20. (6) quantized holon vortex with a pseudogap spectrum in the
core can be stabilized over a large portion of the supercon-
Since the physical superconducting order parameker ducting phase, as required by the experimental constraints
=A*b?=p,pe (¥729 it is reasonable to identiff) with ~ discussed above.
the phase of a&ooper pair Physically, the unconstrained
fluctuations of the gauge field in E€R) resulted in partial Il. SOLUTION FOR A SINGLE VORTEX
restoration of the original electronic degrees of freedom in
Eq. (4). In the underlying microscopic model this means that
on long length scales spinons and holons are always con- In order to provide a more quantitative discussion we now
fined, in agreement with Elitzur's theoreth®® On length ~adopt some assumptions about the coefficients entering the
scales shorter than the confinement length, such as inside tfi€e energy(4). We assume that
vortex core, spinons and holons can still appear locally de- _ o
coupled. In the present effective theory this aspect is re- ri=ai(T=T), 1=b.4, @)
flected by two amplitude degrees of freedom present in Eqwhere T, are corresponding “bare” critical temperatures,
(4). More detailed discussion of these issues is given in Refsvhich we assume depend on doping concentratiam the
20 and 35. following way:

A. General considerations
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TA:To(ZXm_X), Tb:Tox. (8)

Herex,, denotes the optimal doping afg sets the overall
temperature scale. We furthermore assumeuhanduv are
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A in the superfluid velocitys. In a singly quantized vortex
Q winds by 27 around the origin leading to a singularity of

the formve= 3 VQ= @/2r. First, for theholon vortex we

all positive and independent of doping and temperature. It i@SSUme thap,, vanishes ir.1 the core as some povpe(r)
easy to see that such choice of parameters qualitatively re=r” and p,(r)~p, remains approximately constant. Eg.

produces the bulk phase diagram of cuprates irxtiieplane
shown in Fig. 1. The effect of the term is to suppres$.

from its bare value away from the optimal doping. In real

systems fluctuations will lead to additional suppressiom of
which we do not consider here.

In the absence of perturbations the bulk values of th
amplitudes are given by

pi=—(ryUp—rw)/D,

pi=—(rpupy—r,v)/D, 9

with D=u,u,—v?. In analogy with conventional GL theo-
ries we may define coherence
amplitude®

£3%=—(ra—rplup),

& 2= —(rp—rav/uy), (10

one of which always diverges at. as (T—T.) 2
Minimization of the free energy4) with respect to the
vector potentialA yields an equation

VXVXA=ep(VQ—2eA), (11
where
4p3ph
=% > (12
Ps 4pi+pp

is the effective superfluid density. The term in brackets ca
be identified as twice the conventional superfluid velocity

1
VSZEVQ—eA.

Making use of the Ampere’s law# =V X B, we see that

lengths for the two

(13b) then becomes

(1

4

V2|17 24 (rp+upR)r '+ Upppr =0, (14)

here we have neglecteg(r) compared to ;2 in the de-
v A

nominator of the last term in Eq13b). The most singular
term in Eq.(14) is the first one and we must demand that the

coefficient of r”~2 vanishes. This impliesv= 3. The
asymptotic short distance behavior of the holon amplitude
therefore can be written as

[\
Pb(r)zcbpb(§_> : (19

b
wherec, is a constant of order unity which may be deter-
mined by the full integration of Eq$138 and(13b). Similar
analysis of EQ.(138 in the vicinity of the spinon vortex

yields
3
&a)’
with p, approximately constant.

We notice the different power laws in the holon and
spinon results. Operationally this difference arises from dif-
ferent numerical prefactors of the respective superfluid ve-
locity terms in Egs.(13). Physically, the unusual depen-
dence of the holon amplitude in the core reflects the fact that
the fieldb describes a condensate of single holons, each car-

m(r)zc@( (16)

r}ying chargee. Superconducting vortex with the flux quan-

tum &, represents a magnetic “half flux” for the holon field
which results in nonanalytic behavior pf(r) at the origin.
Singly quantized holon vortex is therefore a peculiar object
and we shall discuss it more fully in Sec. Ill. Here we note
that the physical superconducting order parameter amplitude

Eq. (11) specifies the supercurrent in terms of superfluid dent¥|=papi remains analytic in the core of both the spinon

sity and velocity:j=2epgvs. Minimization of Eq.(4) with
respect to() then impliesV-j=0; the supercurrent is con-
served.

Minimizing the free energy4) with respect to the ampli-
tudes results in the pair of coupled GL equations:

4p2 2
2 3 2 AFb 2_
—Vepatrapatuspytvpppat WVS—O,
AT P
(133
16p%pp
—V2pu+ T oppt Uppptvpapet ——2——23Vo=
PbT TpPp™ UpPpTUPAPL (4P2+Pt2>)2 s
(13b)

and the holon vortex.

B. Holon vs spinon vortex: the phase diagram

We are now in the position to estimate the energies of the
two types of vortices and deduce the phase diagram for the
“normal” state in the vortex core. To this end we consider a
single isolated vortex centered at the origin. The total vortex
line energy can be divided into electromagnetic and core
contributions>® The electromagnetic contribution consists of
the energy of the supercurrents and the magnetic field out-
side the core region. It may be estimated by assuming that

the amplitudeg, andp, have reached their bulk valugs
andpy,, respectively. Taking curl of Eq11) and noting that

We are interested in the behavior of the amplitudes in th&/ XVQ=274(r) for a singly quantized vortex we obtain

vicinity of the vortex center. In this region, for a strongly

the London equation for the magnetic fidde=V X A of the

type-Il superconductor, we may neglect the vector potentiaform
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B—\2V2B=d,4(r), (17 60 r
where S
— 0
4 —_
)\722871'6'24—2;PE2 (18 E wr
pA+pb 20 |
has the meaning of the London penetration depth for the 10l holon 1L spinon
effective GL theory(4). Aside from the unusual form of, vortex g Varlex
Eq. (17) is identical to the conventional London equation. 0 o oz 03 o4
The corresponding electromagnetic energy is therefore the x
same for both types of vortices and can be calculated in the _
usual manné?'33’3°0btaining FIG. 2. Vortex core phase diagram for GL parameters chosen as
follows: a,=0.13, @,=0.10, T;,=200 K, X,=0.2, uy=u,=1.0,
0 2 andv =0.5. Dashed line marks the phase boundgyfx) obtained
Eep= m) In «, (199 from Eq. (25) while the solid circles correspond to the numerical

calculation with the same parameters.
with k=X/max(, ,&,) being the generalized GL ratio.

To estimate the core contribution to the vortex line energyJsing Egs.(7)—(9) one can obtain an explicit expression for
we assume that one of the amplitudes is suppressed to zerotife transition temperaturgy; between two types of vortices

the core as a function of doping
pi(r)=0, r<§, (20 2Xm— X X
: . Tg(x)=Tp + — | (25
while the other one stays constant and equal to its bulk value. 1-8 1-8
This is a very crude approximation which we justify below ith
by an exact numerical computation. With these assumptioné’f’I
the core energy is ap(Uy+0v)
5 =—. (26)
0 (O ap(Uptv)
Ecore2 1 (21) . . . . . ..
4N Equation(25) describes a straight line in theT plane, origi-

and Nating at[xm,, ToXy], i.e., maximalT, at optimum doping,
and terminating ak2x,,/(1+ 8),0]. Generically, we expect
)\i_2=877e2;i2. (22) that parameterg; anq u; will be comparable in mggnitqde
for the holon and spinon channels. Parametedefined in
Such a crude approximation overestimates the core energgq. (26) will therefore be of order unity. The typical situa-
A more accurate analysié,**which we do not pursue here, tion for g=0.77 is illustrated in Fig. 2. More generally the
allows for a more realistic variation @fi(r) in the core and  quartic coefficientss; andv could exhibit weak doping and
indicates that the value &, has the same form as EQ1)  temperature dependences leading to a curvature in the phase
multiplied by a numerical factot;~0.53%% Thus, the total  boundary.
energy of the vortex line can be written as The appealing feature of the present theory is that param-
) eter 8 may vary from compound to compound. Thus, the
, (23) experimental fact that in BSCCO the pseudogap in the core
persists into the overdoped region is easily accounted for in
the present theory. It would be interesting to see if the tran-
sition from holon to spinon vortex as a function of doping
could be experimentally observed. A good candidate for such
observation would be LSCO, where the transport measure-
ments in pulsed magnetic fiefdsestablished a metal-
insulator transition around optimal doping, i.@8=1. The

vortex with lower energyE® will be stabilized. Equation current theory predicts a holon vortex with the pseudogap

o . ; spectrum in the underdopethsulating region and spinon
(23) implies .that the d|ffer_encg in energy between Fhe .tWOvortex with conventional metallic spectrum on the overdoped
types of vortices comes primarily from the core contribution, _.

. . sgje.
as expected on the basis of the physical argument presenté
above. Conditior\ , =\, marks the transition point between
the two solutions. For fixed GL parametdrg, X, «;, U;,

wherei=A,b for spinon and holon vortex, respectively,

. D, |2 (ON
()= —2
E (477')\) InK+C1(4'n’)\i

where againi=A,b for spinon and holon vortex, respec-
tively. Equation(23) parallels the Abrikosov expression for
the vortex line energy in a conventional GL thetrwherex
and\; are identical and equal to the ordinary London pen-
etration depth.

In the vortex state described by the free enefdythe

C. Numerical results

andv this defines a transition line in theT plane. Accord- In order to put the above analytical estimates on firmer

ing to Eq.(22) the equation for this line is ground we now pursue numerical computation of the vortex
. . line energy. For simplicity we consider the strongly type-ll
pA(X, T)=pu(X,T). (24)  situation («>1) where the vector potential termg can be
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(a) holon vortex. temperaturdl 4 for givenx tends to deviate slightly from the

2.0 Ps - value predicted by Eq(25). This is illustrated in Fig. 2
where we compare the vortex core phase diagrams obtained
Py numerically and from Eq(25). Interestingly, the deviation

always tends to enlarge the holon vortex sector of the phase
diagram at the expense of the spinon vortex sector. This is
presumably because the sharpeyr suppression of the ho-

lon order parameter in the core costs less condensation en-
0.0 : : : : ergy.

(b) spinon vortex
20°F |

Ill. GAUGE FLUCTUATIONS AND THE SPECTRAL
PROPERTIES IN THE CORE

The theory of the vortex core based on the effective action
(4) appears to yield results consistent with the STM data on
cuprate$® in that it implies a stable holon vortex solution
over the large portion of the superconducting phase diagram.
00 10 20 3.0 2.0 5.0 The state inside the core of such a holon vortex is character-

, ized by vanishing amplitude of the holon condensate field,
|b|=0, and a finite-spin gapA|~Ap,k. This is the same

FIG. 3. Order parameter amplitudes near a single isolated vortextate as in the pseudogap region ab®dye One would thus
for GL parameters spgcifieq in Fig. 2. The holon vortex is pIottedeXpect the electronic spectrum in the core to be similar to
for T=0 andx=0.22 (implying coherence length§,=0.63 and  that found in the normal state of the underdoped cuprates, in
¢,=0.70), while the spinon vortex is plotted fof=0 andx  44reement with the dafd The holon vortex with this prop-
=0.24(implying £,=0.75 andg,=0.60). erty carries conventional superconducting flux quantbig

in accord with experiment. This general agreement between
neglected to an excellent approximation, as long as we focuheory and experiment would suggest that the effective ac-
on the behavior close to the core. We are then faced with th#on (4) provides the sought for phenomenological descrip-
task of numerically minimizing the free energ$) with re-  tion of the vortex core physics in cuprates. In what follows
spect to the two cylindrically symmetric amplitudgs(r) we amplify our argumentation that it is also tenable in a
andpy,(r). As noted by Sachdé¥direct numerical minimi-  broader theoretical context in that it naturally follows from
zation of the free energi4) provides a more robust solution theU(1) slave boson models extensively studied in the clas-
than the numerical integration of the coupled differential Eq.sic and more recent highz literature. We then provide a
(13). more detailed discussion of the vortex core spectra and pro-

We discretize the free-energy functiorid) on a disk of a pose an explanation for the experimentally observed core
radiusR>¢; in the radial coordinate with up to N=2000 bound states.
spatial points. We then employ the Polak-Ribiere variant of
the conjugate gradient methtido minimize this discretized A. Significance of thef g ,qe term

functional with respect tg,(r;) and py(r;), initialized to o . .
suitable single vortex trial functions. The procedure con- Derivation of the effective actio) from the more gen-

verges very rapidly and the results are insensitive to the det'@U(1) action(2) hinges on our assumption that the stiff-

tailed shape of the trial functions as long as they saturate t8€SS0 Of the gauge fieldis low and that the ga geterm (3)
the correct bulk values outside the vortex core. can be neglected. Assumption of largeby SNL leads to

Typical results of our numerical computations are dis-Ve'Y different vortex sqluti0ﬁ§'3lwhich appear inconsistent
played in Fig. 3 and are in complete agreement with thé/v_lth thg recent experimental datg. _We first expand on our
analytical considerations of the preceding subsections. Nof@iScussion as to why thig, geterm is important and then we.
in particular thatp,(r) in the holon vortex vanishes with 2'9Ue why it may be permissible to neglect it in the realistic
infinite slope, consistent with Eq15). Plotting p2(r) con- madels of cuprates. . .
firms that the exponent is indeed 1/2. In the spinon vortex T_o facilitate the d|scu35|0|j let us rewntg E@) by re-
pa(r) is seen to vanish linearly as expected on the basis O§olvmg the gomplex matter fields into amplitude and phase
Eqg. (16). The nonvanishing order parameter is slightly el_components.
evated in the core reflecting the effective “repulsion” be-
tween the two amplitudes contained in théerm of the free
energy. The results for the spinon vortex are consistent with 1 o
those of Ref. 30. + 8_W(VXA)2+§(an)2' (27)

We explored a number of other parameter configurations
and obtained similar results. We find that E24) is a good  with f,,, specified by Eq(5). Now consider a situation in
predictor of the transition line between the holon and spinorwhich the sample is subjected to uniform magnetic fild
vortex, although the precise numerical value of the transition=V X A. Two scenariogdiscussed previously by SNlap-

foL=fampt PA(V d—22)°+pj(Vo—a—eA)?
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pear possible. In the first, the internal gauge field develops -
no net flux,(Vxa)=0, and the holon phasé develops 2(Vxa)=-VxXVe=—272 8(r-T), (30
singularities in response # such that J
completely localized at the vortex centers. The gauge field of
this form indeed completely cancels the singularities in the
VXV9:2W2 o(r=rj, spinon phase gradient in E7) andp, is no longer forced
. to vanish in the core. The singularities now appear in the
wherer; denotes the vortex positions. The holon amplitudelolon term, but they stem frora rather thanv & which re-
py is driven to zero at;, essentially to prevent the free Mains nonsingular. Consequently, is forced to vanish in
energy from diverging due to the singularity in the phaseihe vortex cores. By construction, the vortices are located at
gradient. Since holons carry chargeeach vortex is threaded r; and are therefore singly quantized. This is the singly quan-
by flux hcle, i.e. twice the superconducting flux quantum tized holon vortex solution identical to the one discussed
®,=hc/2e. This solution represents the doubly quantizedabove on the basis of the free enefgy. Based on the above
holon vortex lattice, considered by SNL. discussion the singly quantized holon vortex can be thought
In the second scenaria, develops a net flux such that of as a composite object formed by attaching half quantum
~ —eA, which screens out tha field in the holon term but of fictitious gauge fluxV X a to the spinon vortex.
produces a net flux- 2eA in the spinon term. In response to  In the framework of the free enerd27) one pays a pen-
this flux, spinon phase develops singularities such that  alty for such a singular solution due to the gauge stiffness
term. In the present continuum model this penalty per single
- vortex is actually infinite, since according to E®O) it in-
V><V¢=27r; o(r=ry, volves a spatial integral ovés(r—T;)]2 Thus, in the con-
tinuum model the singular solutions of this type are prohib-
ited. In reality, however, we have to recall that our effective

positions which will be different front; since at the fixed action (2) descended from a microscopic lattice model for

field B there will be twice as many spinon vortices as holonSPinons and holons in which the gauge fieldives on the
vortices. (Spinon vortices carry conventional superconduct-”eareSt'”e'ghbor bonds .of the ionic lattice. The ionic lattice
ing quantum of flux®,.) In this casep, is driven to zero at constantd therefore provides a natural short-distance cutoff

the vortex centers. In this scenario one pays a penalty foRnd thed function in Eq.(30) should be interpreted as a flux
nucleating the net flux iV X a due to last term in Eq(27). guantumd, piercing an elementary pIaquetFel of the I.att|r.:e.
This energy cost can be estimated as The energy cost per vortex thus becomes finite and is given

by

(28) E’ :E(%)z. (31)

corresponding to the spinon vortex Iattifff?.denotes vortex

2

47\

P
E,= 8770'ez< 0

per vortex. Stiffnessr must be small enough so thif, is  Again, for the solution to be stabl&,, must be negligible
small compared to the vortex ener@®8). Taking the domi- compared to the vortex enerdg23). This implies
nantEgy, term and neglecting IR, this implies that

<T1 d\® 32

- 1 29 T=gm2e?\ N ] (32)
o< ——
8me?’

which is a much more stringent condition than E2P) since
in cupratesd<<\.
When condition(32) is satisfied it is permissible to ne-
lect thef g, geterm in the effective actiof2) and it becomes
lly equivalent to Eq(4) as far as the vortex solutions are

which is the same condition as considered in Ref. 30.
Now consider dhird scenario in which &ingly quantized
holon vortex emerges. As a starting point consider the spino

vortex solution just described. In the underdoped regime th%oncerned. Equatiof2) gives the precise meaning to the

ar_“p“t“‘_je piecefampyvould favor suppressing the_ holon am- requirement of the weak stiffness of the gauge field loosely
plitude in the core instead of the spinon amplitude but ac,

X . . . . .~ ““stated when deriving the effective acti¢f).
cording to our previous considerations this would ordinarily
require formation of a doubly quantized vortex whose mag-
netic energy is too large. However, if the gauge-field-
stiffnesso is sufficiently small, the system could lower its ~ As mentioned in the introduction, the gauge fialdas no
free energy by setting up singularitiesarwhich would pre-  dynamics in the originall(1) microscopic model, as it only
cisely cancel the singularities i¥¢ and shift them to the serves to enforce a constraint on spinons and holons. The
holon term. To arrive at this situation imagine contractingstiffness term(3) in the effective theory was assumed to arise
the initially uniform fluxV X a so that it becomes localized in in the process of integrating out the microscopic degrees of
the individual vortex core regions. Taking this procedure tofreedom®>3! While such a term is certainly permitted by
the extreme, i.e., taking the limit— 0, the gauge field will symmetry, assessing its strengthis a nontrivial issue since
form “flux spikes” of the form even deep in the superconducting phase neither holons nor

B. Microscopic considerations
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spinons are truly gapped. Thus, in general, integrating ougests that upon integrating out all of the microscopic degrees
these degrees of freedom may lead to singular and nonlocaf freedom, the resulting gauge stiffness term will be of the
interactions between the condensate and the gauge fields. Tarm

our knowledge, the procedure has not been explicitly per-

formed for theU (1) model and the precise form or magni- oA oy

tude of the gauge stiffness term is unknown. General féauge=7[V><(2a—V¢)]2+ - [Vx(at eA-Vo)]%.

consideration® suggest that the gauge stiffness term is neg- (35)
ligible in the class of models with exact lodd(1) symme-
try connecting the phases of holons and spinons. Clearly, such a term is permitted by the gauge symmetry.

Consider now an intermediate representation of the probgyrthermore, we note that for smodite., vortex-freg con-
lem where only high-energy microscopic degrees of freedofigrations of phases the gradient terms will contribute noth-

have been integrated out. In the presence of a cutoff this is gg and we recover the gauge term considered in Ref. 31.

well defined procedure even for gapless excitations, as ex- | the presence of a vortex i or @ theféaugeterm will

plicitly shown by Kwon and Dor;é? for a simple BCS  niripute formally divergent energy. Regularizing this on
model. The corresponding effective Lagrangian density oty,q lattice, as discussed above E3fl), this energy will be-

the present)(1) model can be written as come finite and can be interpreted simply as the energy of
the spinon or holon vortex core states, which have been in-

K 5 Kb 5 tegrated out. In the microscopic theo(8$3) such energy
Leti=— (du¢—28,)"+ 5 (d,0-a,—€A,) " Tamp would arise upon solving the relevant fermionic or bosonic
vortex problem.
+(d,—2a,)I5+(d,0—a,—eA,)I; We stress that, as concluded in the preceding subsection,
+ + the main theoretical obstacle to the formation of a singly
+ Ld hspshsprpal+ Lol thn nippl+ Leml ALl quantized holon vortex in the original SNL theory was the

(33 appearance of a formally divergent contribution in tyg,ge
term (3). The argument above suggests that,qein EQ. (2)

The Greek indexu runs over time and two spatial dimen- should be replaced by E¢35), in which such formally di-

sions, x? are compressibilities of the holon and spinon con-Vergent contribution appears farbitrary vortex configura-
densates, while tion and upon regularization has a simple physical interpre-

tation in terms of the energy of the vortex core states. Usage
of the physically motivated terni35) in place of Eq.(3)
therefore removes the bias against the singly quantized holon
. ] . vortex solution, which appears to be realized in real materi-
are the respective phase stiffnessi.and Jij are spinon  4i5. Wwith Eq.(35) any bias between the holon and spinon
and holon three currents, respectively, dhgand,, are the  yortex solutions can result only from the difference between
low-energy effective Lagrangians for the fermionic spinonthe two stiffness constants, and oy,. It is reasonable on
Lagrangian for the physical electromagnetic field. Thligs  the similar magnitudes. Furthermore, on the basis of Ref. 35
describes an effective low-energy theory of spinons and hoye expect these constants to be negligibly small in the physi-
lons Coupled to their reSpeCtive collective modes and a ﬂUCCa"y relevant models. Consequenﬂy we expect that neg'ect_
tuatingU(1) gauge field. A similar theory has been recentlying thef . term as in our derivation of effective acti¢d)

considered by Leé’ _ _ _ will result in accurate determination of the phase diagram for
The precise form of the microscopic Lagrangiahigand  the state in the vortex core.

Ly is not important for our discussion. The salient feature
which we exploit here is that only the amplitude of the re-
spective condensate field enters idlg and Ly, . Coupling to
the phases and the gauge field is contained entirely in the The phenomenological theory based on the effective ac-
Doppler shift termgsecond line of Eq(33)]. Such form of  tion (4) does not allow us to address the interesting question
the coupling is largely dictated by the requirements of theof the nature of the fermionic states in the vortex core. To do
gauge invariance and the particular form of E83) can be  this we need to consider the microscopic Lagrangian density
explicitly derived by gauging away the respective phase fac¢33). While the fully self-consistent calculation is likely to be
tors from they fields?®3° prohibitively difficult, one can obtain qualitative insights by

The gauge fielda, enters the effective LagrangidB83)  first solving the GL theory(4) as described in Sec. Il, and
only via two gauge invariant termsdf¢—2a,) and (4,6  then using the order parameters andp,, as an input to the
—a,—eA,), which may be interpreted as the three veloci-fermionic and bosonic sectors of the theory specified by Eq.
ties of the spinon and holon condensates, respectively. Fu(33). The work on a detailed solution of this type is in
thermore, the only coupling between holons and spinonprogress. Here we wish to point out some interesting features
arises froma, . Therefore, if we now proceed to integrate of such a theory and argue that it may indeed exhibit struc-
out the remaining microscopic degrees of freedom fidum, ture in the low-energy spectral density similar to that found
the two velocity terms will not mix. This consideration sug- experimentally*®

kKl==2(p)?, i=Ab, j=12 (34)

C. Vortex core states
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It is instructive to integrate out the gauge fluctuationswe expect the spinon wave functions to be essentially unper-
from the Lagrangiar(33) as first discussed by Lé8.Since turbed by the diverging superfluid velocity. Spinon spectral
Ly is quadratic ina, the integration can be explicitly per- density in the core should be qualitatively similar to that far
formed resulting in the Lagrangian of the form outside the core. This is our basis for expecting a pseudo-

gaplike spectrum in the core of a holon vortex.

1 2 We now address the possible origin of the experimentally
effngu(Us) ~ fampt Lem observed vortex core staféswithin the present scenario for
a holon vortex. To this end consider the effect of the last
2xf Akh term in Eq.(36) which we ignored so far. Upon expanding
_ LT Y TR STy V7 i ' i
i (Vs Isp) i (Vs In) the binomial the temporal component is seen to contain a
Axyt Ky Aryt Kp ; L ) B g
density-density interaction of the forﬂ@p\]h , whereJ; is the
1 oL 2 local density ofuncondensediolons. Since the holon order
+Lspt Ln— 2 AKk+ Kl (2J55+ )%, (36) parameter vanishes in the core and the electric neutrality dic-

tates that the total density of holons must be approximately
whereK =4 xk«f/(4xk+ ) and constant in space, we expect that uncondensed holon density
will behave roughly as

1

e 1 3 _
vs =\ 2uf Za”¢ A 37 J(r)=pp—pp(r);
is the physical superfluid velocity. The first line reproducesJ®(r) will have a spike in the core of a holon vortex. Insofar
the GL effective action(4) for the condensate fields, the gg Jg(r) can be viewed as a static potential acting on
second line describes the Doppler shift coupling of the suspinons, the uncondensed holons in the vortex core can be
perﬂuid VelOCity to the minOSCOpiC currents, and the thlrdthought of as Creating a Scattering potentiaL akin to an im-
line contains Spinon and holon pieceS with additionalpurity embedded in a-wave Superconductor_ In fact, for-
current-current  interactions generated by the gaugenally the spinon problem is identical to the problem of a
fluctuations’ fermionic quasiparticle in @-wave superconductor in zero

We now discuss the physical implications of B86) for  field in the presence of a localized impurity potential. It is
the two types of vortices. We focus on the static solutionnown that such a problem exhibits a pair of marginally
(i.e., we ignore the time dependences of various quantitiesyound impurity statéd at low energies which result in sharp
e.g., taking) =0) of L in the presence of a single isolated resonances in the spectral density inside the gap. Such states
vortex. We are interested in the local spectral function of ehave been extensively studied theoreticiiif* and their ex-
physical electron. This is given by a convolution in the en-istence was recently confirmed experimentally by Btal’
ergy variable of the spinon and holon spectral functions. Ac\We propose here that, within the formalism of E86), the
cording to the analysis presented in Ref. 28, at low temperasame mechanism could give rise to the low-energy quasipar-
tures the electron spectral function will be essentially equaticle states in the core of a holon vortex. Such structure, if
to the spinon spectral function. Convolution with the holonindeed confirmed by a microscopic calculation, could ex-
spectral function which is dominated by the sharp coherenplain the spectral features observed experimentally in the
peak due to the condensate merely leads to a small broadevertex cores of cuprate superconductdfs.
ing of the ordefT. In the following we therefore focus on the
behavior of spinons in the vicinity of the two types of vorti-
ces.

By inspecting Eq(36) it is easy to see that the excitations  Scanning tunneling spectroscopy of the vortex cores af-
inside thespinon vortexwill be qualitatively very similar to  fords a unique opportunity for probing the underlying “nor-
those found in the conventional vortex described by the weaknal” ground state in cuprate superconductors. The existing
couplingd-wave BCS theory='°In particular, according to  experimental data on YBCO and BSCCO strongly suggest
Eq. (16) we havex,~r?, andk,~ const in the core. Recall- that conventional mean-field weak-coupling thedriéfail
ing furthermore thafv¢~1/r we observe that the spinon to describe the physics of the vortex core. Our main objec-
currentJg, is coupled to a term that diverges as it the  tive was to develop a theoretical framework for understand-
core (just as in a conventional vortgxwhile the holon cur- ing these spectra and the nature of the strongly correlated
rent J, is coupled to a nonsingular term. Thus, one mayelectronic system which emerges once the superconducting
conclude that holons remain essentially unperturbed by therder is suppressed. We have shown that phenomenological
phase singularity in the spinon vortex while the spinons obeynodel(2) based on a modern variant of thé1) gauge-field
the essentially conventional Bogoliubov—de Gennes equaslave boson theof§) contains the right physics, provided that
tions for ad-wave vortex. the gauge-field stiffness is vanishingly small. The latter as-

In theholon vortexthe situation is quite different. Accord- sumption is consistent with the general arguments involving
ing to Eq.(15) we havex,~r and k,~ const in the core. local gauge symmetri”. In such a theory the gauge field can
The spinon currendg, is now coupled to a nonsingular term be explicitly integrated out, resulting in the effective action
(1/r divergence irvgis canceled by,~r). Therefore, there (4) which contains one phase degree of freedom representing
will be no topological perturbation in the spinon sector andthe phase of a Cooper pair and two amplitude degrees of

IV. CONCLUSIONS
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freedom representing the holon and spinon condensates. pseudogap must be operative on extremely short length

Analysis of the effective theor{4) in the presence of a scales, of order of several lattice spacings. Thel) slave
magnetic field establishes existence of two types of vorticeshoson theory considered in this work apparently satisfies this
spinon and holon, with contrasting spectral properties in theirequirement. Obtaining the correct vortex core spectral func-
core regions. Our holon vortex is singly quantized and theretions could serve as an interesting test for other theoretical
fore differs in a profound way from the doubly quantized approaches describing the physics of the underdoped
holon vortex discussed by SNP:3! As indicated in Fig. 2 cuprates®4546
such a singly quantized holon vortex is expected to be stable It will be of interest to explore the implications of the
over the large portion of the phase diagram on the undereffective theorie$4) and(36) in other physical situations. Of
doped side. Quasiparticle spectrum in the core of a holospecial interest are situations where the holon condensate
vortex is predicted to exhibit a “pseudogap,” similar to that amplitude is suppressed, locally or globally, giving rise to
found in the underdoped normal region abdlg This is  “normal” transport propertiegvanishing superfluid density
consistent with the data of Rennetral* who pointed out a but quasiparticle excitations that are characteristic of a super-
remarkable similarity between the vortex core and the noreonducting state. These include the spectra in the vicinity of
mal state spectra in BSCCO. Spinon vortex, on the othean impurity, twin boundary, or a sample edge. In the latter
hand, should be virtually indistinguishable from the conven-case one might hope to observe a signature of the zero bias
tional d-wave BCS vortex and is expected to occur on thetunneling peak anomalynormally seen for certain geom-
overdoped side of the phase diagram. Transition from thetries deep in the superconducting phase in the optimally
insulating holon vortex to the metallic spinon vortex as adoped cupratgseven abovel, in the underdoped samples.
function of doping is a concrete testable prediction of the Note added in proofAfter submission of this manuscript
present theory. we learned about complementary microscopic treatments of

Phenomenological theory based on the effective a¢dpn the spin-charge separated state in the vortex core witkin
does not permit explicit evaluation of the electronic spectralRef. 47 and SU2) (Ref. 48 slave boson theories. The
function. To this end we have considered the correspondinéprmer agrees qualitatively with our phenomenological
microscopic theory36) and concluded that a holon vortex theory. Reference 38 proposes a new type of vortex which
will indeed exhibit a pseudogaplike spectrum. Such qualitatakes advantage of the larger symmetry gr@ig2). In a
tive analysis furthermore suggests a plausible mechanism faelated development Senthil and Fislatiscussed &, vor-
the sharp vortex core states observed in YBEef. 3 and  tex (which is essentially equivalent to our singly quantized
BSCCO® We stress that conventional mean-field weak-holon vortey and proposed a “vision detection” experiment
coupling theories yield neither pseudogap nor the core statebased on trapping such a vortex in the hole fabricated in a
In the core of a holon vortex such states will arise as a resutrongly underdoped superconductor. Here we wish to point
of spinons scattering off of the locally uncondensed holonsput that the experiment will produce the same general out-
in a manner analogous to the quasiparticle resonant states dame in a system described by th&1) theory where the
the vicinity of an impurity in ad-wave superconductd?=**  role of a vision will be played by a flux quantum of the
The latter conclusion is somewhat speculative and must bfictitious gauge fielca.
confirmed by explicitly solving the fermionic sector of the
microscopic theory36). ACKNOWLEDGMENTS
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