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Vortex state in a doped Mott insulator

M. Franz and Z. Tesˇanović
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218

~Received 15 February 2000; published 23 January 2001!

We analyze the recent vortex core spectroscopy data on cuprate superconductors and discuss what can be
learned from them about the nature of the ground state in these compounds. We argue that the data are
inconsistent with the assumption of a simple metallic ground state and exhibit characteristics of a doped Mott
insulator. A theory of the vortex core in such a doped Mott insulator is developed based on theU(1)
gauge-field slave boson model. In the limit of vanishing gauge-field stiffness such a theory predicts two types
of singly quantized vortices: an insulating ‘‘holon’’ vortex in the underdoped and a metallic ‘‘spinon’’ vortex
in the overdoped region of the phase diagram. We argue that the holon vortex exhibits a pseudogap excitation
spectrum in its core qualitatively consistent with the existing experimental data on Bi2Sr2CaCu2O8. As a test
of this theory we propose that the spinon vortex with a metallic core might be observable in the heavily
overdoped samples.

DOI: 10.1103/PhysRevB.63.064516 PACS number~s!: 74.20.Mn, 74.60.2w, 71.10.Pm
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I. INTRODUCTION

The nature of the ground state as a function of dop
remains one of the recurring unresolved issues in the the
of high-Tc cuprate superconductors. The problem is pa
due to formidable difficulties related to the theoretical d
scription of doped Mott insulators and partly due to expe
mental hurdles in accessing the normal-state properties in
T→0 limit because of the intervening superconducting
der. Probes that suppress superconductivity and revea
properties of the underlying ground state are therefore
considerable value. So far only pulsed magnetic fields1 in
excess ofHc2 and impurity doping beyond the critica

concentration2 have been used towards this goal. Here
argue that the vortex core spectroscopy performed u
scanning tunneling microscope~STM! can provide insights
into the nature of the ground state in cuprates. We ana
the existing experimental data3–6 and conclude that they im
ply a strongly correlated ‘‘normal’’ ground state, presumab
derivable from a doped Mott insulator. We then develop
theoretical framework for the problem of tunneling in th
vortex state of such a doped Mott insulator.

In the vortex core the superconducting order paramete
locally suppressed to zero and the region within a cohere
length j from its center can be to the first approximatio
thought of as normal. Spectroscopy of the vortex core the
fore provides information on the normal-state electronic
citation spectrum in theT→0 limit. More accurately, the
core spectroscopy reflects the spectrum in the spatially n
uniform situation where the order parameter amplitude r
idly varies in response to the singularity in the phase
posed by the external magnetic field. In order to extr
useful information regarding the underlying ground st
from such measurements a detailed understanding of the
tex core physics is necessary. So far the problem has b
addressed using the weak coupling approach based on
Bogoliubov–de Gennes theory generalized to thed-wave
symmetry of the order parameter,7–10 and semiclassica
calculations.11–13The early theoretical debate focused on t
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existence or absence of the vortex core bound states.12,14,15

This debate, now resolved in favor of the absence of a
bound states in the puredx2y2 state,9,10,16 has somewhat
eclipsed the possibly more important issues related to
nature of the ground state in cuprates.

The body of work based on mean-field, weak-coupli
calculations8–10,13yields results for the local density of state
in the vortex core which exhibit two generic features:~i! the
coherence peaks~occurring atE56D0 in the bulk! are sup-
pressed, with the spectral weight transferred to a~ii ! broad
featureless peak centered around the zero energy. Her
wish to emphasize the heretofore little appreciated fact
these features arequalitatively inconsistentwith the existing
experimental data on cuprate superconductors. STM s
troscopy on Bi2Sr2CaCu2O8 ~BSCCO! at 4.2 K indicates a
‘‘pseudogap’’ spectrum in the vortex core with the spect
weight from the coherence peaks at6D0.40 meV trans-
ferred tohigh energies, and no peak whatsoever aroundE
50.4 Recent high-resolution data on the same compou6

confirmed these findings down to 200 mK and found e
dence for weak bound states at67meV. Experiments on
YBa2Cu3O7 ~YBCO! ~Ref. 3! also indicate low-energy
bound states, but are somewhat more difficult to interp
because of the high zero-bias conductance of unknown
gin appearing even in the absence of magnetic field.

The fundamental discrepancy between the theoretical
dictions and the experimental findings strongly suggests
models based on a simple weak coupling theory break do
in the vortex core. The pseudogap observed in the core h
that the underlying ground state revealed by local supp
sion of the superconducting order parameter is a doped M
insulator and not a conventional metal. Taking into acco
the effects of strong correlations appears to be necessa
consistently describe the physics of the vortex core. C
versely, studying the vortex core physics could provide
formation essential for understanding the nature of the
derlying ground state in cuprates.

One step in this direction was taken by Arovaset al.17

who proposed that within the framework of the SO~5!
theory18 vortex cores could become antiferroma
©2001 The American Physical Society16-1
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netic ~AF!. They found that such AF cores can be stabiliz
at low T but only in the close vicinity of the bulk AF phase
In contrast, experimentally the pseudogap in the core
found to persist into the overdoped region.4 More recently,
microscopic calculations within the same model19 revealed
electronic excitations in such AF cores with behav
roughly resembling the experimental data. Quantitative
however, these spectra exhibit asymmetric shifts in the
herence peaks~related to the fact that spin gap in the AF co
is no longer tied to the Fermi level! not observed experimen
tally. These discrepancies suggest that generically cores
not exhibit the true AF order. Finally, these previous a
proaches are still of the Hartree-Fock-Bogoliubov type a
cannot be expected to properly capture the effects of str
correlations.

Here we consider a model for the vortex core based o
version of theU(1) gauge-field slave boson theory form
lated recently by Lee.20 Originally proposed by Anderson21

the slave boson theory was formulated to describe stron
correlated electrons in the CuO2 planes of the high-Tc cu-
prates. Various versions of this theory have been extensi
discussed in the literature.22–26 Interest in spin-charge sepa
rated systems revived recently27–29,20due to the realization
that they provide a natural description of the pseudogap p
nomenon observed in the underdoped cuprates. The com
ingredient in these theories is ‘‘splintering’’ of the electro
into quasiparticles carrying its spin and charge degree
freedom. Within the theories based on Hubbard andt-J mod-
els this splintering is formally implemented by the decomp
sition of the electron creation operator

cis
† 5 f is

† bi ~1!

into a fermionic spinonf is and bosonic holonbi . The local
constraint of the single occupancybi

†bi1 f is
† f is51 is en-

forced by a fluctuatingU(1) gauge fielda. The mean-field
phase diagram is known to contain four phases distinguis
by the formation of spinon pairs,D i j 5^ess8 f is

† f j s8
† &, and

Bose-Einstein condensation of the individual holonsb
5^bi&,

26 and is illustrated in Fig. 1.
The effects of magnetic field on such a spin charge se

rated system is most conveniently studied in the framew
of an effective Ginzburg-Landau~GL! theory for the conden-
sate fieldsD and b. The corresponding effective action ca
be constructed30,31 based on the requirements of local gau
invariance with respect to the physical electromagnetic v
tor potentialA and the internal gauge fielda:

f GL5u~¹22ia!Du21r DuDu21
1

2
uDuDu4

1u~¹2 ia2 ieA!bu21r bubu21
1

2
ububu41vuDu2ubu2

1
1

8p
~¹3A!21 f gauge. ~2!

The factor of 2 in the spinon gradient term reflects the f
that pairs of spinons were assumed to condense.f gauge de-
scribes the dynamics of the internal gauge fielda. We note
06451
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that unlike the physical electromagnetic fieldA the gauge
field a has no independent dynamics in the underlying m
croscopic model since it serves only to enforce a constra
Sachdev30 and Nagaosa and Lee31 assumed that upon inte
grating out the microscopic degrees of freedom a term

f gauge5
s

2
~¹3a!2 ~3!

is generated in the free energy. They then analyzed vo
solutions of the free energy~2! and came to the conclusio
that two types of vortices are permissible: a ‘‘holon vortex
with the singularity in theb field and a ‘‘spinon vortex’’ with
the singularity in theD field. Because holons carry electr
chargee the holon vortex is threaded by electronic flux qua
tum hc/e, i.e., twice the conventional superconducting fl
quantumF05hc/2e. Spinons on the other hand condense
pairs, and the spinon vortex therefore carries fluxF0. Stabil-
ity analysis then implies that spinon vortex will be stab
over the most of the superconducting phase diagram, w
the hc/e holon vortex can be stabilized only in the clos
vicinity of the phase boundary on the underdoped side.30,31

This is a direct consequence of the fact that singly quanti
vortices are always energetically favorable.32,33

As far as the electronic excitations are concerned,
spinon vortex is virtually indistinguishable from the vorte
in a conventional weak-coupling mean-field theory: the s
gapD, which gives rise to the gap in the electron spectru
vanishes in the core. Consequently, the vortex state base
the results of Sachdev-Nagaosa-Lee~SNL! theory30,31 does
not exhibit the pseudogap in the core and suffers from
same discrepancy with the experimental data as the w
coupling theories7–10 based on the conventional Fermi-liqu
description. Moreover, no evidence exists at present
stable doubly quantized holon vortices predicted by SN
What is needed to account for the experimental data i
singly quantized holon vortexstable over the large portion o
the superconducting phase in the phase diagram of Fig. 1
the core of such a holon vortex the spin gapD remains finite

FIG. 1. Schematic phase diagram of the system with spin-cha
separation in the doping-temperature plane, as applied to cup
superconductors.
6-2



.
re

th
-

et
ic

s

nc
-
w
o

or

ry

te
hi

th
e

-

d

i
a

co

e
de
re
E
ef

in-
free-

the
-
ing
he
an
it is

wo
ta-

of
ag-
t
to
of

nt

osts
be
er-

will
ob-

he
he

se-
s
of
-
s a

rre-
ore.

the
on-
ints

ow
the

s,

VORTEX STATE IN A DOPED MOTT INSULATOR PHYSICAL REVIEW B63 064516
and leads naturally to the pseudogap excitation spectrum
what follows we show that under certain conditions the f
energy~2! permits precisely such a solution.

The results of the SNL theory are predicated upon
assumption that the ‘‘stiffness’’s of the gauge field is rela
tively large and that singular configurations in which¹3a
contains a full flux quantum through an elementary plaqu
are prohibited. Consider now a precisely opposite phys
situation, allowing unconstrained fluctuations ina. This
amounts to the assumption that thef gauge term ~3! can be
neglected in Eq.~2!, i.e., s→0. Physically this correspond
to the ‘‘extreme type-I’’ limit of the GL ‘‘superconductor’’
~2! with respect to fluctuations ina. Based on Elitzur’s
theorem,34 Nayak35 recently argued that the exact localU(1)
symmetry of the model cannot be broken, implying abse
of the phase stiffness term~3! at all energy scales. Our as
sumption therefore appears reasonable and in Sec. III
shall give a more thorough discussion of the significance
the f gaugeterm for the vortex solutions of interest here. F
the time being we shall assume thatf gaugecan be neglected
and explore physical consequences of the resulting theo

f GL given by Eq.~2! is quadratic ina and with the¹
3a term absent the gauge fluctuations can be trivially in
grated out. Within the closely related microscopic model t
procedure has been recently implemented by Lee.20 The re-
sulting effective free-energy density reads

f 5 f amp1
rD

2 rb
2

4rD
2 1rb

2~¹f22¹u12eA!21
1

8p
~¹3A!2,

~4!

where we have setD5rDeif, b5rbeiu, and

f amp5~¹rD!21r DrD
2 1

1

2
uDrD

4 1~¹rb!21r brb
21

1

2
ubrb

4

1vrD
2 rb

2 ~5!

is the amplitude piece. The most important feature of
effective free energy~4! is that it no longer depends on th
individual phasesf andu but only on their particular com
bination

V5f22u. ~6!

Since the physical superconducting order parameterC
5D* b25rDrb

2e2 i (f22u) it is reasonable to identifyV with
the phase of aCooper pair. Physically, the unconstraine
fluctuations of the gauge field in Eq.~2! resulted in partial
restoration of the original electronic degrees of freedom
Eq. ~4!. In the underlying microscopic model this means th
on long length scales spinons and holons are always
fined, in agreement with Elitzur’s theorem.34,35 On length
scales shorter than the confinement length, such as insid
vortex core, spinons and holons can still appear locally
coupled. In the present effective theory this aspect is
flected by two amplitude degrees of freedom present in
~4!. More detailed discussion of these issues is given in R
20 and 35.
06451
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We have thus arrived at an effective theory of a sp
charge separated system containing one phase degree of
dom V and two amplitudes,rD andrb . Deep in the super-
conducting phase, where both amplitudes are finite,
physics of Eq.~4! will be very similar to that of a conven
tional GL theory. In the situations where the superconduct
order parameterC is strongly suppressed, such as in t
vortex core, near an impurity or a wall, the theory has
extra degree of richness, associated with the fact that
sufficient ~and generally preferred by the energetics! that
only oneof the two amplitudes is suppressed. Since the t
amplitudes play very different roles in the electronic exci
tion spectrum, the effective theory~4! will lead to a number
of nontrivial effects.

To illustrate this consider what will happen in the core
a superconducting vortex. Under the influence of the m
netic field the phaseV will develop a singularity such tha
¹V;1/r close to the vortex center. For the free energy
remain finite the amplitude prefactor in the second term
Eq. ~4! must vanish forr→0. This is analogous touCu van-
ishing in the core of a conventional vortex. In the prese
case, however, it is sufficient when the productrDrb van-
ishes. Since suppressing any of the two amplitudes c
condensation energy, in general only one amplitude will
driven to zero. Which of the two is suppressed will be det
mined by the energetics of the amplitude term~5!. On gen-
eral grounds we expect that the state in the vortex core
be the same as the corresponding bulk ‘‘normal’’ state
tained by raising the temperature aboveTc . Thus, very
crudely, we expect that the holon vortex will be stable in t
underdoped while the spinon vortex will be stable in t
overdoped region of the phase diagram Fig. 1.

An important point by which our approach differs from
the SNL theory is that in the present theoryboth types of
vortices carry thesamesuperconducting flux quantumF0
and thus compete on equal footing. This is a direct con
quence of our assumption of the vanishing phase stiffness.

In what follows we study in detail the vortex solutions
the free energy~4!. Our main objective is to obtain the pre
cise estimates for the energy of the two types of vortices a
function of temperature and doping and deduce the co
sponding phase diagram for the state inside the vortex c
We show that for generic parameters in Eq.~4! the singly
quantized holon vortex with a pseudogap spectrum in
core can be stabilized over a large portion of the superc
ducting phase, as required by the experimental constra
discussed above.

II. SOLUTION FOR A SINGLE VORTEX

A. General considerations

In order to provide a more quantitative discussion we n
adopt some assumptions about the coefficients entering
free energy~4!. We assume that

r i5a i~T2Ti !, i 5b,D, ~7!

where Ti are corresponding ‘‘bare’’ critical temperature
which we assume depend on doping concentrationx in the
following way:
6-3
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M. FRANZ AND Z. TEŠANOVIĆ PHYSICAL REVIEW B 63 064516
TD5T0~2xm2x!, Tb5T0x. ~8!

Herexm denotes the optimal doping andT0 sets the overall
temperature scale. We furthermore assume thatui andv are
all positive and independent of doping and temperature.
easy to see that such choice of parameters qualitatively
produces the bulk phase diagram of cuprates in thex-T plane
shown in Fig. 1. The effect of thev term is to suppressTc
from its bare value away from the optimal doping. In re
systems fluctuations will lead to additional suppression ofTc
which we do not consider here.

In the absence of perturbations the bulk values of
amplitudes are given by

r̄D
2 52~r Dub2r bv !/D,

r̄b
252~r buD2r Dv !/D, ~9!

with D5ubuD2v2. In analogy with conventional GL theo
ries we may define coherence lengths for the t
amplitudes30

jD
2252~r D2r bv/ub!,

jb
2252~r b2r Dv/uD!, ~10!

one of which always diverges atTc as (T2Tc)
21/2.

Minimization of the free energy~4! with respect to the
vector potentialA yields an equation

¹3¹3A5ers~¹V22eA!, ~11!

where

rs5
4rD

2 rb
2

4rD
2 1rb

2 ~12!

is the effective superfluid density. The term in brackets c
be identified as twice the conventional superfluid velocity

vs5
1

2
¹V2eA.

Making use of the Ampere’s law 4p j5¹3B, we see that
Eq. ~11! specifies the supercurrent in terms of superfluid d
sity and velocity:j52ersvs . Minimization of Eq. ~4! with
respect toV then implies¹• j50; the supercurrent is con
served.

Minimizing the free energy~4! with respect to the ampli-
tudes results in the pair of coupled GL equations:

2¹2rD1r DrD1uDrD
3 1vrb

2rD1
4rD

2 rb
2

~4rD
2 1rb

2!2 vs
250,

~13a!

2¹2rb1r brb1ubrb
31vrD

2 rb1
16rD

2 rb
2

~4rD
2 1rb

2!2 vs
250.

~13b!

We are interested in the behavior of the amplitudes in
vicinity of the vortex center. In this region, for a strong
type-II superconductor, we may neglect the vector poten
06451
is
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A in the superfluid velocityvs . In a singly quantized vortex
V winds by 2p around the origin leading to a singularity o

the form vs.
1
2 ¹V5ŵ/2r . First, for theholon vortex we

assume thatrb vanishes in the core as some powerrb(r )
;r n and rD(r )'r̄D remains approximately constant. E
~13b! then becomes

S 1

4
2n2D r n221~r b1v r̄D

2 !r n1ubr̄b
2r 3n50, ~14!

where we have neglectedrb
2(r ) compared to 4r̄D

2 in the de-
nominator of the last term in Eq.~13b!. The most singular
term in Eq.~14! is the first one and we must demand that t

coefficient of r n22 vanishes. This impliesn5 1
2 . The

asymptotic short distance behavior of the holon amplitu
therefore can be written as

rb~r !.cbr̄bS r

jb
D 1/2

, ~15!

wherecb is a constant of order unity which may be dete
mined by the full integration of Eqs.~13a! and~13b!. Similar
analysis of Eq.~13a! in the vicinity of the spinon vortex
yields

rD~r !.cDr̄DS r

jd
D , ~16!

with rb approximately constant.
We notice the different power laws in the holon an

spinon results. Operationally this difference arises from d
ferent numerical prefactors of the respective superfluid
locity terms in Eqs.~13!. Physically, the unusualr depen-
dence of the holon amplitude in the core reflects the fact
the fieldb describes a condensate of single holons, each
rying chargee. Superconducting vortex with the flux quan
tum F0 represents a magnetic ‘‘half flux’’ for the holon fiel
which results in nonanalytic behavior ofrb(r ) at the origin.
Singly quantized holon vortex is therefore a peculiar obj
and we shall discuss it more fully in Sec. III. Here we no
that the physical superconducting order parameter amplit
uCu5rDrb

2 remains analytic in the core of both the spino
and the holon vortex.

B. Holon vs spinon vortex: the phase diagram

We are now in the position to estimate the energies of
two types of vortices and deduce the phase diagram for
‘‘normal’’ state in the vortex core. To this end we consider
single isolated vortex centered at the origin. The total vor
line energy can be divided into electromagnetic and c
contributions.33 The electromagnetic contribution consists
the energy of the supercurrents and the magnetic field
side the core region. It may be estimated by assuming
the amplitudesrD andrb have reached their bulk valuesr̄D

andr̄b , respectively. Taking curl of Eq.~11! and noting that
¹3¹V52pd(r ) for a singly quantized vortex we obtai
the London equation for the magnetic fieldB5¹3A of the
form
6-4
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B2l2¹2B5F0d~r !, ~17!

where

l2258pe2
4r̄D

2 r̄b
2

4r̄D
2 1 r̄b

2
~18!

has the meaning of the London penetration depth for
effective GL theory~4!. Aside from the unusual form ofl,
Eq. ~17! is identical to the conventional London equatio
The corresponding electromagnetic energy is therefore
same for both types of vortices and can be calculated in
usual manner32,33,30obtaining

EEM.S F0

4pl D 2

ln k, ~19!

with k5l/max(jD ,jb) being the generalized GL ratio.
To estimate the core contribution to the vortex line ene

we assume that one of the amplitudes is suppressed to ze
the core

r i~r !50, r ,j i , ~20!

while the other one stays constant and equal to its bulk va
This is a very crude approximation which we justify belo
by an exact numerical computation. With these assumpti
the core energy is

Ecore
( i ) .S F0

4pl i
D 2

, ~21!

wherei 5D,b for spinon and holon vortex, respectively, an

l i
2258pe2r̄ i

2 . ~22!

Such a crude approximation overestimates the core ene
A more accurate analysis,32,33 which we do not pursue here
allows for a more realistic variation ofr i(r ) in the core and
indicates that the value ofEcore

( i ) has the same form as Eq.~21!
multiplied by a numerical factorc1'0.5.36,37 Thus, the total
energy of the vortex line can be written as

E( i )5S F0

4pl D 2

ln k1c1S F0

4pl i
D 2

, ~23!

where againi 5D,b for spinon and holon vortex, respec
tively. Equation~23! parallels the Abrikosov expression fo
the vortex line energy in a conventional GL theory32 wherel
and l i are identical and equal to the ordinary London pe
etration depth.

In the vortex state described by the free energy~4! the
vortex with lower energyE( i ) will be stabilized. Equation
~23! implies that the difference in energy between the t
types of vortices comes primarily from the core contributio
as expected on the basis of the physical argument prese
above. ConditionlD5lb marks the transition point betwee
the two solutions. For fixed GL parametersT0 , xm , a i , ui ,
andv this defines a transition line in thex-T plane. Accord-
ing to Eq.~22! the equation for this line is

r̄D~x,T!5 r̄b~x,T!. ~24!
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Using Eqs.~7!–~9! one can obtain an explicit expression f
the transition temperatureTg between two types of vortice
as a function of doping

Tg~x!5T0F2xm2x

12b
1

x

12b21G , ~25!

with

b5
ab~uD1v !

aD~ub1v !
. ~26!

Equation~25! describes a straight line in thex-T plane, origi-
nating at@xm ,T0xm#, i.e., maximalTc at optimum doping,
and terminating at@2xm /(11b),0#. Generically, we expec
that parametersa i and ui will be comparable in magnitude
for the holon and spinon channels. Parameterb defined in
Eq. ~26! will therefore be of order unity. The typical situa
tion for b50.77 is illustrated in Fig. 2. More generally th
quartic coefficientsui andv could exhibit weak doping and
temperature dependences leading to a curvature in the p
boundary.

The appealing feature of the present theory is that par
eter b may vary from compound to compound. Thus, t
experimental fact that in BSCCO the pseudogap in the c
persists into the overdoped region is easily accounted fo
the present theory. It would be interesting to see if the tr
sition from holon to spinon vortex as a function of dopin
could be experimentally observed. A good candidate for s
observation would be LSCO, where the transport meas
ments in pulsed magnetic fields1 established a metal
insulator transition around optimal doping, i.e.,b'1. The
current theory predicts a holon vortex with the pseudog
spectrum in the underdoped~insulating! region and spinon
vortex with conventional metallic spectrum on the overdop
side.

C. Numerical results

In order to put the above analytical estimates on firm
ground we now pursue numerical computation of the vor
line energy. For simplicity we consider the strongly type
situation (k@1) where the vector potential term invs can be

FIG. 2. Vortex core phase diagram for GL parameters chose
follows: aD50.13, ab50.10, T05200 K, xm50.2, uD5ub51.0,
andv50.5. Dashed line marks the phase boundaryTg(x) obtained
from Eq. ~25! while the solid circles correspond to the numeric
calculation with the same parameters.
6-5
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neglected to an excellent approximation, as long as we fo
on the behavior close to the core. We are then faced with
task of numerically minimizing the free energy~4! with re-
spect to the two cylindrically symmetric amplitudesrD(r )
andrb(r ). As noted by Sachdev30 direct numerical minimi-
zation of the free energy~4! provides a more robust solutio
than the numerical integration of the coupled differential E
~13!.

We discretize the free-energy functional~4! on a disk of a
radiusR@j i in the radial coordinater with up to N52000
spatial points. We then employ the Polak-Ribiere variant
the conjugate gradient method38 to minimize this discretized
functional with respect torD(r j ) and rb(r j ), initialized to
suitable single vortex trial functions. The procedure co
verges very rapidly and the results are insensitive to the
tailed shape of the trial functions as long as they saturat
the correct bulk values outside the vortex core.

Typical results of our numerical computations are d
played in Fig. 3 and are in complete agreement with
analytical considerations of the preceding subsections. N
in particular thatrb(r ) in the holon vortex vanishes with
infinite slope, consistent with Eq.~15!. Plotting rb

2(r ) con-
firms that the exponent is indeed 1/2. In the spinon vor
rD(r ) is seen to vanish linearly as expected on the basi
Eq. ~16!. The nonvanishing order parameter is slightly
evated in the core reflecting the effective ‘‘repulsion’’ b
tween the two amplitudes contained in thev term of the free
energy. The results for the spinon vortex are consistent w
those of Ref. 30.

We explored a number of other parameter configurati
and obtained similar results. We find that Eq.~24! is a good
predictor of the transition line between the holon and spin
vortex, although the precise numerical value of the transit

FIG. 3. Order parameter amplitudes near a single isolated vo
for GL parameters specified in Fig. 2. The holon vortex is plot
for T50 and x50.22 ~implying coherence lengthsjD50.63 and
jb50.70), while the spinon vortex is plotted forT50 and x
50.24 ~implying jD50.75 andjb50.60).
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temperatureTg for givenx tends to deviate slightly from the
value predicted by Eq.~25!. This is illustrated in Fig. 2
where we compare the vortex core phase diagrams obta
numerically and from Eq.~25!. Interestingly, the deviation
always tends to enlarge the holon vortex sector of the ph
diagram at the expense of the spinon vortex sector. Thi
presumably because the sharper;Ar suppression of the ho
lon order parameter in the core costs less condensation
ergy.

III. GAUGE FLUCTUATIONS AND THE SPECTRAL
PROPERTIES IN THE CORE

The theory of the vortex core based on the effective act
~4! appears to yield results consistent with the STM data
cuprates4,6 in that it implies a stable holon vortex solutio
over the large portion of the superconducting phase diagr
The state inside the core of such a holon vortex is charac
ized by vanishing amplitude of the holon condensate fie
ubu50, and a finite-spin gapuDu'Dbulk . This is the same
state as in the pseudogap region aboveTc . One would thus
expect the electronic spectrum in the core to be similar
that found in the normal state of the underdoped cuprates
agreement with the data.4,6 The holon vortex with this prop-
erty carries conventional superconducting flux quantumF0,
in accord with experiment. This general agreement betw
theory and experiment would suggest that the effective
tion ~4! provides the sought for phenomenological descr
tion of the vortex core physics in cuprates. In what follow
we amplify our argumentation that it is also tenable in
broader theoretical context in that it naturally follows fro
theU(1) slave boson models extensively studied in the cl
sic and more recent high-Tc literature. We then provide a
more detailed discussion of the vortex core spectra and
pose an explanation for the experimentally observed c
bound states.

A. Significance of thef gauge term

Derivation of the effective action~4! from the more gen-
eral U(1) action~2! hinges on our assumption that the stif
nesss of the gauge fielda is low and that thef gaugeterm ~3!
can be neglected. Assumption of larges by SNL leads to
very different vortex solutions30,31which appear inconsisten
with the recent experimental data. We first expand on
discussion as to why thef gaugeterm is important and then we
argue why it may be permissible to neglect it in the realis
models of cuprates.

To facilitate the discussion let us rewrite Eq.~2! by re-
solving the complex matter fields into amplitude and pha
components:

f GL5 f amp1rD
2 ~¹f22a!21rb

2~¹u2a2eA!2

1
1

8p
~¹3A!21

s

2
~¹3a!2, ~27!

with f amp specified by Eq.~5!. Now consider a situation in
which the sample is subjected to uniform magnetic fieldB
5¹3A. Two scenarios~discussed previously by SNL! ap-
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pear possible. In the first, the internal gauge field devel
no net flux, ^¹3a&50, and the holon phaseu develops
singularities in response toA such that

¹3¹u52p(
j

d~r2r j !,

wherer j denotes the vortex positions. The holon amplitu
rb is driven to zero atr j , essentially to prevent the fre
energy from diverging due to the singularity in the pha
gradient. Since holons carry chargee, each vortex is threade
by flux hc/e, i.e. twice the superconducting flux quantu
F05hc/2e. This solution represents the doubly quantiz
holon vortex lattice, considered by SNL.

In the second scenario,a develops a net flux such thata
'2eA, which screens out theA field in the holon term but
produces a net flux22eA in the spinon term. In response t
this flux, spinon phasef develops singularities such that

¹3¹f52p(
j

d~r2 r̃ j !,

corresponding to the spinon vortex lattice.r̃ j denotes vortex
positions which will be different fromr j since at the fixed
field B there will be twice as many spinon vortices as hol
vortices.~Spinon vortices carry conventional supercondu
ing quantum of fluxF0.! In this case,rD is driven to zero at
the vortex centers. In this scenario one pays a penalty
nucleating the net flux in¹3a due to last term in Eq.~27!.
This energy cost can be estimated as

Es.8pse2S F0

4pl D 2

~28!

per vortex. Stiffnesss must be small enough so thatEs is
small compared to the vortex energy~23!. Taking the domi-
nantEEM term and neglecting lnk, this implies that

s!
1

8pe2 , ~29!

which is the same condition as considered in Ref. 30.
Now consider athird scenario in which asingly quantized

holon vortex emerges. As a starting point consider the spi
vortex solution just described. In the underdoped regime
amplitude piecef amp would favor suppressing the holon am
plitude in the core instead of the spinon amplitude but
cording to our previous considerations this would ordinar
require formation of a doubly quantized vortex whose m
netic energy is too large. However, if the gauge-fie
stiffnesss is sufficiently small, the system could lower i
free energy by setting up singularities ina which would pre-
cisely cancel the singularities in¹f and shift them to the
holon term. To arrive at this situation imagine contracti
the initially uniform flux¹3a so that it becomes localized i
the individual vortex core regions. Taking this procedure
the extreme, i.e., taking the limits→0, the gauge field will
form ‘‘flux spikes’’ of the form
06451
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2~¹3a!52¹3¹f522p(
j

d~r2 r̃ j !, ~30!

completely localized at the vortex centers. The gauge field
this form indeed completely cancels the singularities in
spinon phase gradient in Eq.~27! andrD is no longer forced
to vanish in the core. The singularities now appear in
holon term, but they stem froma rather than¹u which re-
mains nonsingular. Consequently,rb is forced to vanish in
the vortex cores. By construction, the vortices are locate
r̃ j and are therefore singly quantized. This is the singly qu
tized holon vortex solution identical to the one discuss
above on the basis of the free energy~4!. Based on the above
discussion the singly quantized holon vortex can be thou
of as a composite object formed by attaching half quant
of fictitious gauge flux¹3a to the spinon vortex.

In the framework of the free energy~27! one pays a pen-
alty for such a singular solution due to the gauge stiffn
term. In the present continuum model this penalty per sin
vortex is actually infinite, since according to Eq.~30! it in-
volves a spatial integral over@d(r2 r̃ j )#2. Thus, in the con-
tinuum model the singular solutions of this type are proh
ited. In reality, however, we have to recall that our effecti
action ~2! descended from a microscopic lattice model f
spinons and holons in which the gauge fielda lives on the
nearest-neighbor bonds of the ionic lattice. The ionic latt
constantd therefore provides a natural short-distance cut
and thed function in Eq.~30! should be interpreted as a flu
quantumF0 piercing an elementary plaquette of the lattic
The energy cost per vortex thus becomes finite and is gi
by

Es8.
se2

2 S F0

d D 2

. ~31!

Again, for the solution to be stable,Es8 must be negligible
compared to the vortex energy~23!. This implies

s!
1

8p2e2 S d

l D 2

, ~32!

which is a much more stringent condition than Eq.~29! since
in cupratesd!l.

When condition~32! is satisfied it is permissible to ne
glect thef gaugeterm in the effective action~2! and it becomes
fully equivalent to Eq.~4! as far as the vortex solutions ar
concerned. Equation~32! gives the precise meaning to th
requirement of the weak stiffness of the gauge field loos
stated when deriving the effective action~4!.

B. Microscopic considerations

As mentioned in the introduction, the gauge fielda has no
dynamics in the originalU(1) microscopic model, as it only
serves to enforce a constraint on spinons and holons.
stiffness term~3! in the effective theory was assumed to ari
in the process of integrating out the microscopic degree
freedom.30,31 While such a term is certainly permitted b
symmetry, assessing its strengths is a nontrivial issue since
even deep in the superconducting phase neither holons
6-7
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spinons are truly gapped. Thus, in general, integrating
these degrees of freedom may lead to singular and nonl
interactions between the condensate and the gauge field
our knowledge, the procedure has not been explicitly p
formed for theU(1) model and the precise form or magn
tude of the gauge stiffness term is unknown. Gene
considerations35 suggest that the gauge stiffness term is n
ligible in the class of models with exact localU(1) symme-
try connecting the phases of holons and spinons.

Consider now an intermediate representation of the pr
lem where only high-energy microscopic degrees of freed
have been integrated out. In the presence of a cutoff this
well defined procedure even for gapless excitations, as
plicitly shown by Kwon and Dorsey39 for a simple BCS
model. The corresponding effective Lagrangian density
the presentU(1) model can be written as

Leff5
kD

m

2
~]mf22am!21

kb
m

2
~]mu2am2eAm!22 f amp

1~]mf22am!Jsp
m 1~]mu2am2eAm!Jh

m

1Lsp@csp,csp
† ;rD#1Lh@ch ,ch

† ;rb#1LEM@Am#.

~33!

The Greek indexm runs over time and two spatial dimen
sions,k i

0 are compressibilities of the holon and spinon co
densates, while

k i
j522~r i !

2, i 5D,b, j 51,2 ~34!

are the respective phase stiffnesses.Jsp
m and Jh

m are spinon
and holon three currents, respectively, andLsp andLh are the
low-energy effective Lagrangians for the fermionic spin
field csp and bosonic holon fieldch . LEM is the Maxwell
Lagrangian for the physical electromagnetic field. Thus,Leff
describes an effective low-energy theory of spinons and
lons coupled to their respective collective modes and a fl
tuatingU(1) gauge field. A similar theory has been recen
considered by Lee.20

The precise form of the microscopic LagrangiansLsp and
Lh is not important for our discussion. The salient featu
which we exploit here is that only the amplitude of the r
spective condensate field enters intoLsp andLh . Coupling to
the phases and the gauge field is contained entirely in
Doppler shift terms@second line of Eq.~33!#. Such form of
the coupling is largely dictated by the requirements of
gauge invariance and the particular form of Eq.~33! can be
explicitly derived by gauging away the respective phase f
tors from thec fields.29,39

The gauge fieldam enters the effective Lagrangian~33!
only via two gauge invariant terms: (]mf22am) and (]mu
2am2eAm), which may be interpreted as the three velo
ties of the spinon and holon condensates, respectively.
thermore, the only coupling between holons and spin
arises fromam . Therefore, if we now proceed to integra
out the remaining microscopic degrees of freedom fromLeff ,
the two velocity terms will not mix. This consideration su
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gests that upon integrating out all of the microscopic degr
of freedom, the resulting gauge stiffness term will be of t
form

f gauge8 5
sD

2
@¹3~2a2¹f!#21

sb

2
@¹3~a1eA2¹u!#2.

~35!

Clearly, such a term is permitted by the gauge symme
Furthermore, we note that for smooth~i.e., vortex-free! con-
figurations of phases the gradient terms will contribute no
ing and we recover the gauge term considered in Ref. 3

In the presence of a vortex inf or u the f gauge8 term will
contribute formally divergent energy. Regularizing this
the lattice, as discussed above Eq.~31!, this energy will be-
come finite and can be interpreted simply as the energy
the spinon or holon vortex core states, which have been
tegrated out. In the microscopic theory~33! such energy
would arise upon solving the relevant fermionic or boso
vortex problem.

We stress that, as concluded in the preceding subsec
the main theoretical obstacle to the formation of a sin
quantized holon vortex in the original SNL theory was t
appearance of a formally divergent contribution in thef gauge
term ~3!. The argument above suggests thatf gaugein Eq. ~2!
should be replaced by Eq.~35!, in which such formally di-
vergent contribution appears forarbitrary vortex configura-
tion and upon regularization has a simple physical interp
tation in terms of the energy of the vortex core states. Us
of the physically motivated term~35! in place of Eq.~3!
therefore removes the bias against the singly quantized h
vortex solution, which appears to be realized in real mat
als. With Eq.~35! any bias between the holon and spin
vortex solutions can result only from the difference betwe
the two stiffness constantssD and sb . It is reasonable on
physical grounds to assume that constantssD andsb are of
the similar magnitudes. Furthermore, on the basis of Ref
we expect these constants to be negligibly small in the ph
cally relevant models. Consequently we expect that negl
ing the f gaugeterm as in our derivation of effective action~4!
will result in accurate determination of the phase diagram
the state in the vortex core.

C. Vortex core states

The phenomenological theory based on the effective
tion ~4! does not allow us to address the interesting ques
of the nature of the fermionic states in the vortex core. To
this we need to consider the microscopic Lagrangian den
~33!. While the fully self-consistent calculation is likely to b
prohibitively difficult, one can obtain qualitative insights b
first solving the GL theory~4! as described in Sec. II, an
then using the order parametersrD andrb as an input to the
fermionic and bosonic sectors of the theory specified by
~33!. The work on a detailed solution of this type is
progress. Here we wish to point out some interesting featu
of such a theory and argue that it may indeed exhibit str
ture in the low-energy spectral density similar to that fou
experimentally.3,6
6-8
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It is instructive to integrate out the gauge fluctuatio
from the Lagrangian~33! as first discussed by Lee.20 Since
Leff is quadratic inam the integration can be explicitly per
formed resulting in the Lagrangian of the form

Leff8 5
1

2
Km~vs

m!22 f amp1LEM

2
2kb

m

4kD
m1kb

m~vs
mJsp

m !1
4kD

m

4kD
m1kb

m~vs
mJh

m!

1Lsp1Lh2
1

2

1

4kD
m1kb

m ~2Jsp
m 1Jh

m!2, ~36!

whereKm54kD
mkb

m/(4kD
m1kb

m) and

vs
m5S ]mu2

1

2
]mf2eAmD ~37!

is the physical superfluid velocity. The first line reproduc
the GL effective action~4! for the condensate fields, th
second line describes the Doppler shift coupling of the
perfluid velocity to the microscopic currents, and the th
line contains spinon and holon pieces with addition
current-current interactions generated by the ga
fluctuations.20

We now discuss the physical implications of Eq.~36! for
the two types of vortices. We focus on the static solutio
~i.e., we ignore the time dependences of various quanti
e.g., takingvs

050) of Leff8 in the presence of a single isolate
vortex. We are interested in the local spectral function o
physical electron. This is given by a convolution in the e
ergy variable of the spinon and holon spectral functions. A
cording to the analysis presented in Ref. 28, at low temp
tures the electron spectral function will be essentially eq
to the spinon spectral function. Convolution with the hol
spectral function which is dominated by the sharp coher
peak due to the condensate merely leads to a small broa
ing of the orderT. In the following we therefore focus on th
behavior of spinons in the vicinity of the two types of vor
ces.

By inspecting Eq.~36! it is easy to see that the excitation
inside thespinon vortexwill be qualitatively very similar to
those found in the conventional vortex described by the w
couplingd-wave BCS theory.8–10 In particular, according to
Eq. ~16! we havekD;r 2, andkb; const in the core. Recall
ing furthermore thatuvsu;1/r we observe that the spino
currentJsp is coupled to a term that diverges as 1/r in the
core ~just as in a conventional vortex!, while the holon cur-
rent Jh is coupled to a nonsingular term. Thus, one m
conclude that holons remain essentially unperturbed by
phase singularity in the spinon vortex while the spinons o
the essentially conventional Bogoliubov–de Gennes eq
tions for ad-wave vortex.

In theholon vortexthe situation is quite different. Accord
ing to Eq. ~15! we havekb;r and kD; const in the core.
The spinon currentJsp is now coupled to a nonsingular term
(1/r divergence invs is canceled bykb;r ). Therefore, there
will be no topological perturbation in the spinon sector a
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we expect the spinon wave functions to be essentially un
turbed by the diverging superfluid velocity. Spinon spect
density in the core should be qualitatively similar to that
outside the core. This is our basis for expecting a pseu
gaplike spectrum in the core of a holon vortex.

We now address the possible origin of the experimenta
observed vortex core states3,6 within the present scenario fo
a holon vortex. To this end consider the effect of the l
term in Eq.~36! which we ignored so far. Upon expandin
the binomial the temporal component is seen to contai
density-density interaction of the formJsp

0 Jh
0 , whereJh

0 is the
local density ofuncondensedholons. Since the holon orde
parameter vanishes in the core and the electric neutrality
tates that the total density of holons must be approxima
constant in space, we expect that uncondensed holon de
will behave roughly as

Jh
0~r !5 r̄b2rb~r !;

Jh
0(r ) will have a spike in the core of a holon vortex. Insof

as Jh
0(r ) can be viewed as a static potential acting

spinons, the uncondensed holons in the vortex core can
thought of as creating a scattering potential, akin to an
purity embedded in ad-wave superconductor. In fact, for
mally the spinon problem is identical to the problem of
fermionic quasiparticle in ad-wave superconductor in zer
field in the presence of a localized impurity potential. It
known that such a problem exhibits a pair of margina
bound impurity states40 at low energies which result in shar
resonances in the spectral density inside the gap. Such s
have been extensively studied theoretically41–44and their ex-
istence was recently confirmed experimentally by Panet al.5

We propose here that, within the formalism of Eq.~36!, the
same mechanism could give rise to the low-energy quasi
ticle states in the core of a holon vortex. Such structure
indeed confirmed by a microscopic calculation, could e
plain the spectral features observed experimentally in
vortex cores of cuprate superconductors.3,6

IV. CONCLUSIONS

Scanning tunneling spectroscopy of the vortex cores
fords a unique opportunity for probing the underlying ‘‘no
mal’’ ground state in cuprate superconductors. The exist
experimental data on YBCO and BSCCO strongly sugg
that conventional mean-field weak-coupling theories7–13 fail
to describe the physics of the vortex core. Our main obj
tive was to develop a theoretical framework for understa
ing these spectra and the nature of the strongly correla
electronic system which emerges once the superconduc
order is suppressed. We have shown that phenomenolo
model~2! based on a modern variant of theU(1) gauge-field
slave boson theory20 contains the right physics, provided th
the gauge-field stiffness is vanishingly small. The latter
sumption is consistent with the general arguments involv
local gauge symmetry.35 In such a theory the gauge field ca
be explicitly integrated out, resulting in the effective actio
~4! which contains one phase degree of freedom represen
the phase of a Cooper pair and two amplitude degree
6-9
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freedom representing the holon and spinon condensates
Analysis of the effective theory~4! in the presence of a

magnetic field establishes existence of two types of vortic
spinon and holon, with contrasting spectral properties in th
core regions. Our holon vortex is singly quantized and the
fore differs in a profound way from the doubly quantize
holon vortex discussed by SNL.30,31 As indicated in Fig. 2
such a singly quantized holon vortex is expected to be st
over the large portion of the phase diagram on the und
doped side. Quasiparticle spectrum in the core of a ho
vortex is predicted to exhibit a ‘‘pseudogap,’’ similar to th
found in the underdoped normal region aboveTc . This is
consistent with the data of Renneret al.4 who pointed out a
remarkable similarity between the vortex core and the n
mal state spectra in BSCCO. Spinon vortex, on the ot
hand, should be virtually indistinguishable from the conve
tional d-wave BCS vortex and is expected to occur on
overdoped side of the phase diagram. Transition from
insulating holon vortex to the metallic spinon vortex as
function of doping is a concrete testable prediction of
present theory.

Phenomenological theory based on the effective action~4!
does not permit explicit evaluation of the electronic spec
function. To this end we have considered the correspond
microscopic theory~36! and concluded that a holon vorte
will indeed exhibit a pseudogaplike spectrum. Such qual
tive analysis furthermore suggests a plausible mechanism
the sharp vortex core states observed in YBCO~Ref. 3! and
BSCCO.6 We stress that conventional mean-field wea
coupling theories yield neither pseudogap nor the core sta
In the core of a holon vortex such states will arise as a re
of spinons scattering off of the locally uncondensed holo
in a manner analogous to the quasiparticle resonant stat
the vicinity of an impurity in ad-wave superconductor.40–44

The latter conclusion is somewhat speculative and mus
confirmed by explicitly solving the fermionic sector of th
microscopic theory~36!.

On a broader theoretical front the importance of the v
tex core spectroscopy as a window to the normal state in
T→0 limit lies in its potential to discriminate between var
ous microscopic theories of cuprates. It is reasonable to
sume that the observed pseudogap in the vortex core refl
the same physics as the pseudogap observed in the no
state. This means that the mechanism responsible for
J
S
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pseudogap must be operative on extremely short len
scales, of order of several lattice spacings. TheU(1) slave
boson theory considered in this work apparently satisfies
requirement. Obtaining the correct vortex core spectral fu
tions could serve as an interesting test for other theoret
approaches describing the physics of the underdo
cuprates.28,45,46

It will be of interest to explore the implications of th
effective theories~4! and~36! in other physical situations. O
special interest are situations where the holon conden
amplitude is suppressed, locally or globally, giving rise
‘‘normal’’ transport properties~vanishing superfluid density!
but quasiparticle excitations that are characteristic of a su
conducting state. These include the spectra in the vicinity
an impurity, twin boundary, or a sample edge. In the lat
case one might hope to observe a signature of the zero
tunneling peak anomaly~normally seen for certain geom
etries deep in the superconducting phase in the optim
doped cuprates! even aboveTc in the underdoped samples

Note added in proof.After submission of this manuscrip
we learned about complementary microscopic treatment
the spin-charge separated state in the vortex core withinU~1!
~Ref. 47! and SU~2! ~Ref. 48! slave boson theories. Th
former agrees qualitatively with our phenomenologic
theory. Reference 38 proposes a new type of vortex wh
takes advantage of the larger symmetry groupSU~2!. In a
related development Senthil and Fisher49 discussed aZ2 vor-
tex ~which is essentially equivalent to our singly quantiz
holon vortex! and proposed a ‘‘vision detection’’ experimen
based on trapping such a vortex in the hole fabricated i
strongly underdoped superconductor. Here we wish to p
out that the experiment will produce the same general o
come in a system described by theU~1! theory where the
role of a vision will be played by a flux quantum of th
fictitious gauge fielda.
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