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Resonant spin-dependent tunneling in spin-valve junctions in the presence
of paramagnetic impurities
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The tunnel magnetoresistance~TMR! of F/O/F magnetic junctions (F ’s are ferromagnetic layers andO is
an oxide spacer! in the presence of magnetic impurities within the barrier, is investigated. We assume that
magnetic couplings exist both between the spin of the impurity and the bulk magnetization of the neighboring
magnetic electrode, and between the spin of the impurity and the spin of the tunneling electron. Consequently,
the resonant levels of the system formed by a tunneling electron and a paramagnetic impurity with spinS
51 are a sextet, and the resonant tunneling depends on the direction of the tunneling electron spin. At low
temperatures and zero bias voltage, the TMR of the considered system may be larger than that of the same
structure without paramagnetic impurities. It is calculated that an increase in temperature leads to a decrease in
the TMR amplitude due to excitation of spin-flip processes resulting in mixing of spin-up and down channels.
It is also shown that asymmetry in the location of the impurities within the barrier can lead to asymmetry in
I (V) characteristic of impurity-assisted current. Two mechanisms responsible for the origin of this effect are
identified. The first one is due to the excitation of spin-flip processes at low voltages and the second one arises
from the shift of resonant levels inside the insulator layer under high applied voltages.

DOI: 10.1103/PhysRevB.63.064429 PACS number~s!: 75.70.2i, 73.40.Gk, 73.40.Rw, 85.30.Mn
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I. INTRODUCTION

The observation of the large tunneling magnetoresista
effect at room temperature in tunnel junctions of the fo
M /O/M 8 ~whereM andM 8 are magnetic metals andO is an
oxide tunnel barrier! has stimulated a renewed interest f
these systems.1–3 In addition to the fundamental interest fo
spin-polarized transport, these structures are also forese
potential candidates for sensitive magnetic sensors
memory cells in random access memory devices. The
model of spin-dependent tunneling in the framework of cl
sical quantum mechanics was proposed by Słonczew4

However, in this approach no scattering of electrons in
magnetic metallic electrodes was taken into account. T
model has been subsequently developed in Refs. 5,6 by u
the Kubo formalism of linear response. The effects of ela
impurity scattering inside the metallic layers and at int
faces between the dielectric and conductive layers could
be incorporated in the model. On the other hand, it is w
known7 that the presence of impurities inside the poten
barrier can lead to the mechanism of resonant tunne
when the localized electronic states within the gap of
insulator formed by embedded atoms lie close to the che
cal potential of the system. This situation was qualitativ
studied in a mesoscopic semiconductor system8 in the case of
one- and two-impurity resonant channels by means of a c
sical quantum-mechanical treatment. The same approach
been used in Ref. 9 and applied to impurity-assisted tun
ing magnetoresistance~TMR!. The numerical analysis of thi
problem which was carried out in Refs. 10,11 should also
mentioned. In Ref. 9 only the case of spinless impurities w
considered, and the author came to the conclusion that
TMR amplitude decreases due to impurity-assisted tun
ing. The problem of paramagnetic impurity-assisted tunn
0163-1829/2001/63~6!/064429~13!/$15.00 63 0644
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ing in tunnel magnetic junctions was investigated recently
Ref. 12, but two essential physical features have not b
treated properly in this work. First, only one resonance ch
nel, corresponding to the highest spin state of the impur
has been considered as an additional contribution of impu
scattering to the tunnel current. The possible inelastic na
of such a spin-flip process has not been taken into acco
and as a result the so-called zero-bias anomaly is not tra
in the obtained temperature dependence of magnetor
tance. Secondly, the linewidths of impurity levels have n
been considered, but as it will be shown below they do
pend on the position of the impurity atom inside the barr
as well as on the magnetic configuration of the magne
layers. Moreover, these linewidths actually define the va
of the tunneling conductance and the amplitude of the TM
for spin-conserving and spin-flip resonant tunneling. An
tempt at an analysis of the same problem has also been
dertaken in Refs. 13,14, but the microscopic mechanism
electron scattering on the paramagnetic impurity was a
not taken into account.

In this paper, we propose a renewed study of the prob
of impurity-assisted tunneling in spin-valve junctions of t
form F1 /O/F3, whereF ’s are ferromagnetic electrodes an
O is an insulating barrier with embedded paramagnetic
purities that incorporates the effect of both elastic and n
elastic spin-flip scattering due to the exchange interac
between the itinerant electrons forming the tunneling curr
and the localized spins of impurities. It will be shown th
nonelastic scattering has an essential impact not only on
temperature variation of the TMR~which is a well-
established result15! but also on theI –V characteristics of the
considered structures. The latter effect was predicted in R
15, where the TMR dependence on the electron scatterin
interfacial magnons was investigated.
©2001 The American Physical Society29-1
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II. MODEL

A. Kubo formula and general expression for the conductivity
of the system

The following simplified model is adopted throughout t
paper. First of all, the thickness of an oxide layer is suppo
to be much smaller than its in-plane dimension and the
terfaces are assumed to be flat, so that they may be co
ered as homogeneous in thexy plane~parallel to the inter-
faces!. We also denote the axis perpendicular to thexy plane
as thez axis. Within each layer, the electrons are describ
as a free-electron gas and they undergo scattering on
three-dimensional~3D! d function impurity potential within
the insulating barrier. In the present article we have no
tention of incorporating the features of the possible inter
cial roughness as well, which always takes place and c
cally depends on the conditions of a preparation of
insulator layer. We only note that from a theoretical point
view, the influence of electron scattering at the metal/ox
interface due to interfacial roughness was investigated in
earlier work.6 It was shown that two contributions to th
tunnel current exist, one is due to a specular transmis
through the barrier~ballistic conductance! and the other one
is due to tunneling assisted by interfacial scattering~diffu-
sive conductance!. In the present article we focus our atte
tion on the resonant impurity scattering and will not take in
consideration the contribution of the diffusive conductan
Nevertheless, this in no way affects the qualitative conc
sions made further in the text and if necessary, both mec
nisms of interfacial and impurity-assisted scattering can
treated simultaneously. Thus, within these approximatio
the Hamiltonian of the system has the form

Ĥ5Ĥ01Ĥ int ,

where

Ĥ052
\2

2m~z!
D1U~z!22mBHz

eff~z!~ ŝz1Ŝz
i !

Ĥ int5(
i

a0
3d~r2ci !$«02J~sSi !%. ~1!

Here the summation is performed over the location of im
rities ci inside the barrier,a0 is the lattice constant,«0 de-
notes the scattering potential amplitude on the impurity,J is
the amplitude of thes-d-type exchange interaction between
conduction electron spins and the impurity spinSi , U(z) is
a model steplike potential seen by the conduction electro
represented in Fig. 1. The potential profile is assumed
depend on the orientation of magnetizations of ferromagn
layers. We take into account the exchange splitting of thd
band by introducing different valuesVm

1,3 for the position of
the bottom of the conduction band inF1 andF3, depending
on the mutual orientation of magnetization in the layers a
the spinm5↑,↓ of the conduction electron.

Hz
eff(z) represents the effective field acting on impur

and electron spins inside the barrier. The origin of this fi
is the superexchange between the spins in the bulk of fe
magnetic layer and in the insulating layer. We suppose
06442
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the impurity ion and a hopping electron form the interme
ate resonance quantum state with the finite but long eno
life-time and with total spin (s1S). It is possible due to the
exchange interaction between the spin of electron and
spin of impurity, which is characterized by the parameterJ.
But in addition to this interaction, the weaker one exists b
tween the total spin (s1S) and itinerant electrons in the bul
of ferromagnet which is included in the Hamiltonian~1!
similar to the term proportional toHeff(z). Since we suppose
that impurity ions are located at the distance of the order o
atomic layers from the interface this interaction can be re
ized via atoms of oxygen~superexchange! and cannot be
considered as negligibly small. We suppose thatHz

eff(z) de-
creases exponentially with the distance from the interface
the depth of the oxide layer. In the case when the embed
impurity ion has, e.g., spinS51, the total system of resonan
levels will form a multiplet: one doublet and one quartet.

Next,m(z) corresponds to the effective electron mass t
we suppose is equal tom in the ferromagnetic layers and t
m0 in the insulator. Throughout the paper, it is expressed
units of bare electron massme . We also assume that th
mass of freelike electrons in the ferromagnet only sligh
differs fromme , i.e.,m'1 and we will eliminate it from all
subsequent expressions.

We start from the Keldysh technique for Green functio
together with Kubo exact formula of linear response the
for the static conductivity which relates its real part with t
current-current correlation function and may be written
the form16

smr~r ,r 8!5
1

2kBTE2`

1`

^ j r~r 8,t8! j m~r ,t !&d~ t2t8!

5
1

2kBT S e\

2mD 2E
2`

1`

^Gmr
, ~r ,t,r 8,t8!¹J r¹J r8

3Grm
. ~r 8,t8,r ,t !&d~ t2t8!, ~2!

wherem, r denote the projections of the spin of the ele
trons, ¹J r5(¹W r2¹Q r) is the asymmetric gradient operato

FIG. 1. The potential profile seen by electron propagat
through theF/O/F junction comprising impurity defect inside th
oxide spacer.k1

m , k3
r , q2 are the momenta inside the magne

layers and oxide barrier, respectively.V1(3)
m(r) denotes the spin-

dependent conduction band bottom,U is a level of the barrier, and
«F is Fermi energy. The paramagnetic impurity is located at poinc.
The variation of the potential profile under high bias voltage
indicated by the dashed line.
9-2
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RESONANT SPIN-DEPENDENT TUNNELING IN SPIN- . . . PHYSICAL REVIEW B 63 064429
andGmr
, andGrm

. are corresponding Green functions in t
Keldysh formalism.17 ^•••& represents the quantum statis
cal averaging over the distribution of impurities and degr
of freedom of the impurity spin. This expression is mo
general and holds both for the elastic impurity and def
scattering or inelastic, including magnon and phonon, s
tering. Furthermore, in this work we restricted ourselves
the case of a low concentration of impurities and consi
the regime of only one-channel resonant tunneling thro
the impurity levels.~For the case when the current may pa
through channels with two resonant impurities see, e.g., R
8.! In view of this, we calculated, first of all, the conductivit
of an ‘‘imaginary’’ auxiliary system, comprising only on
impurity located at the given pointc. After this was done,
averaging over distribution of impurities was performed
obtained expressions and the details of this averaging pr
dure are presented below in the text in Secs. II B and II C.
evaluate the conductivity~2! we exploit the perturbation
theory by the impurity potentialH int in Eq. ~1! with the use
of the Keldysh diagrammatic technique. It may be effec
rather straightforwardly if one knows the initial fou
component Keldysh electron Green function of the unp
turbed system~for more details see Appendix A!. All these
components can easily be expressed via the retarded G
function Gmr

R corresponding to the HamiltonianH0. In our
particular case it refers to the system which is homogene
in thexy plane and is inhomogeneous only in thez direction.
Therefore it can be found by solving the following differe
tial equation:

H «1
\2

2m

]2

]z2
2

k2

2m
2U~z!J Gmr

R ~z,z8,k,«!5dmrd~z2z8!

in the mixed real-space momentum representation,5,6 where
k5(kx ,ky) is the component of the electron momentum
thexy plane of the layers andz is the coordinate perpendicu
lar to the xy plane. We should note that by definition th
conductivity~2! is defined as a linear response on the ex
nally applied electric field and does not depend onz andz8
because of the obvious condition] j (z)/]z50.

Let us now denotek1
m5A2(«2V1

m), k3
m5A2(«2V3

m) as
the momenta of electrons with energy« and spinm in the
ferromagnetic layers andq05A2m0(U2«), the imaginary
momentum inside the barrier. By introducing the functio
on x5k/q0

p1
m~x!5Ak1

m22q0
2x2, p3

m~x!5Ak3
m22q0

2x2,

q2~x!5q0A11x2,

the final expression for the conductance of the system, c
prising only one impurity located at pointc, at a given tem-
peratureT, is written as

s~T,c!5s0~T!1s imp~T,c!.

The first term is given by
06442
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s0~T!5
q0

2e2

2p\ (
m

E
2`

1`

d«S 2
] f ~«!

]« D
3E

0

x0
m xdx

2p

16p1
mp3

mm0
2q2

2e22q2w

~m0
2p1

m21q2
2!~m0

2p3
m21q2

2!
, ~3!

where x0
m5min$k1

m/q0,k3
m/q0%, f («)5@11eb(«2«F)#21 is the

Fermi function, andw5b2a is the width of the insulating
spacer. This represents the well-known result for the p
tunneling conductance.4 The second terms imp(T,c) is di-
rectly related to the impurity assisted tunneling. It is conv
nient to write it down as a sum of two contributions

s imp~T,c!5sel
imp~T,c!1ssf

imp~T,c!,

where the first term corresponds to the conductivity due
elastic spin-conserving processes of electron scattering a
impurity site and the second one summarizes all other ev
involving a change in the spin of the electron during t
tunneling through the barrier. We have derived the analyt
expressions for these two terms, which are valid under
assumptions:~i! domination of single electron scattering o
impurities over multiple scattering of two and more electro
on the same center and~ii ! absence of polarization of impu
rity spin induced by the ejection of spin-polarized electro
Then the final result for these terms is written as~the details
of its derivation are outlined further!

sel
imp~T,c!5

1

A S 2e2

p\ D E
2`

1`

d«H 2
] f ↑~«2mBHz

eff!

]«

3^~ t̂ z
↑~«!!† t̂ z

↑~«!&F↑
L~c!F↑

R~c!

2
] f ↓~«1mBHz

eff!

]«

3^~ t̂ z
↓~«!!† t̂ z

↓~«!&F↓
L~c!F↓

R~c!J , ~4!

ssf
imp~T,c!5

1

A S 2e2

p\ D 1

kBTE2`

1`

d«$ f ↑~«2mBHz
eff!

3@12 f ↓~«1mBHz
eff!#^ t̂2~«! t̂1~«!&

1 f ↓~«1mBHz
eff!@12 f ↑~«2mBHz

eff!#

3^ t̂1~«! t̂2~«!&%
1

2
$F↑

L~c!F↓
R~c!

3F↓
L~c!F↑

R~c!%.

Here A is the junction area,F↑(↓)
L (c) and F↑(↓)

R (c) are the
probabilities of tunneling of the electron from the left o
from the right electrode to impurity, located at pointc. Omit-
ting the exponentially small terms, the expression for th
probabilities can be written as

Fm
L ~c!5E

0

xmax
m xdx

2p

2p1
mm0

2q0
2

~m0
2p1

m21q2
2!

e22q2(c2a),
9-3
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Fr
R~c!5E

0

xmax
r xdx

2p

2p3
rm0

2q0
2

~m0
2p3

r21q2
2!

e22q2(b2c).

The brackets ^•••& in Eq. ~4! denote thermodynamic
averaging over degrees of freedom of the impurity s
and they imply the trace with the densi
matrix r̂05Z21exp$2mBHz

effŜz /kBT%, i.e., ^ t̂m t̂ r&(«)

5Sp$r̂0 t̂m(«) t̂ r(«)%, Z being the partition function. The
quantities^( t̂ z

↑(↓))† t̂ z
↑(↓)&(«) and ^ t̂2 t̂1&(«), ^ t̂1 t̂2&(«) in

Eq. ~4! represent the scattering amplitudes of electron on
impurity center for the case of spin conserving (u in,↑&
→uout,↑&) or u in,↓&→uout,↓&) and spin-flip (u in,↑&
→uout,↓& or u in,↓&→uout,↑&) transitions averaged over th
distribution of paramagnetic impurity spin. Hereu in& and
uout& denote the initial and final states of impurity. Operato
t̂ z
↑(↓) and t̂6 are matrices acting in the subspace of impur

spin of a general dimension (2S11). They form a one-
center scattering matrix

t̂5S t̂ z
↑

t̂1

t̂2

t̂ z
↓ D

in the direct product of the linear subspaces of electron’s
impurity’s spins and are expressed as

t̂ z
↑(↓)~«!5

1

12V̂z
↑(↓)~«!G↑(↓)~«!

V̂z
↑(↓)~«!,

t̂6~«!52
1

12V̂z
↓(↑)~«!G↓(↑)~«!

Ŝ6

3
a0

3J/2

12a0
3S «01

1

2
JŜzDG↑(↓)~«!

, ~5!

where effective potentialsV̂z
↑(↓) are given by

V̂z
↑(↓)~«!5a0

3H «07
1

2
JŜz

1
1

4
Ŝ7

a0
3G↓(↑)~«!J2

12a0
3S «06

1

2
JŜzDG↓(↑)~«!

Ŝ6J .

These expression are general for an arbitrary spin numbS
of the impurity, but further in this work we examined i
details only the case ofS51. Then matricest̂ are reduced to
the dimension (333) and the partition functionZ
52 cosh(2mBHz

eff/kBT)11. In Eq. ~5! G↑(↓)(«) denote the
electron Green function at pointc:

Gm~«,c!5E
0

kmax
Gmk~«,c!

kdk

2p
,

wherekmax52Ap/a0 is a cutoff of in-plane momentum tha
stems from the finite size of Brillouin zone@we substitute the
06442
n

e

s

d

projection of the Brillouin zone onto the (kx ,ky) plane by
the circle of radiuskmax of the same square in thek i plane#.
The real and imaginary part ofGk

m(«,c) (m is the spin index!
in the leading order of magnitude are given by

ReGk
m~«,c!52

m0

q2
,

Im Gk
m~«,c!52@Fm

L ~c!1Fm
R~c!#. ~6!

Let us now explain the derivation of expression~4! and
clarify the two assumptions under which this formula
valid. To derive~4! from the starting point~2! one can first
of all examine two diagrams~a! and ~b! ~see Fig. 2! that
contribute to the spin-conserving and spin-flip parts
s imp(T,c) at second order ofJ, respectively. One may easil
verify that the general structure of these diagrams is the s
as the final result in form~4! with the mere difference tha
the one-centert matrix is reduced at first order ofJ to the
initial potential

«02~J/2!S Ŝz

Ŝ1

Ŝ2

2Ŝz
D .

Moreover, diagram~b! contains both direct and indirect pro
cesses in equal proportion with common factor 1/2 for any
the possible channelsu in,↑&→uout,↓& or u in,↓&→uout,↑&.
The thermodynamic averaging^•••& in the second-order ex
pansion is simply reduced to the averaging over the Bo
man distribution of the impurity spin in the ‘‘external’’ ef
fective magnetic fieldHz

eff which was introduced in Eq.~1!,

i.e., with the density matrixr̂0 as it was described above i

FIG. 2. Two diagrams that make contribution to the conduct
ity in the second order of the perturbation theory. Here the full lin
correspond to the electron Green functions and wavy lines de

the asymmetric gradient operator of the velocity¹J r with respect to
sitesr and r 8 of the diagram. The dashed and zig-zag lines rep
sent the equilibrium spin-spin correlation functions. The former o
correspond to the elastic spin-conserving process~a! and the latter
to the nonelastic spin-flip process~b!. ~See details in Appendix A.!
9-4
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RESONANT SPIN-DEPENDENT TUNNELING IN SPIN- . . . PHYSICAL REVIEW B 63 064429
the text. After that, it is easy to check that the total probab
ties ~with account taken of Fermi factors of electron stat!
of direct and inverse processes are equal which means
the principle of detailed equilibrium holds. In particular
leads to the vanishing of spin-flip processes in a system
zero temperature and vanishing voltage bias.

After that preliminary discussion two assumptions m
be made to justify the result~4!.

~i! We assume that the occupation electrons rare e
thus we exclude the double occupancy at an impurity site
our model. It may be justified by~a! the strong Coulomb
electron-electron interaction that make unprofitable their
rangement at the same site of a lattice and~b! the large
number of impurity centers that provides a sufficiently lar
number of one-step channels.

~ii ! We also neglect the influence of the electron curr
on the statistical distribution of paramagnetic spins inside
oxide barrier. This assumption is valid for a practical inte
sity of tunneling current which is low enough not to produ
a spin polarization of impurities by the injection of spi
polarized charge carriers. So we will consider the case
small deviation of the electron’s distribution function fro
its equilibrium value. However, even for that case it is jus
fiable to calculate the nonlinearI -V characteristic in the way
done in Sec. II D@see Eq.~17!#.

Under these assumptions, expression~4! can be obtained
by a simple substitution of the scattering potentialĤ int at the
site ci in Fig. 2 by the corresponding one-centert matrix in
accordance with Eq.~5! and assuming that averaging ov
the degrees of freedoms of the impurity is carried out
means of the unperturbed density matrixr̂0

5Z21exp$2mBHz
effŜz /kBT%. In this form, the structure of the

result~4! is similar to the one obtained in Ref. 15, where t
spin-flip scattering of electrons at interfaces of tunnel ju
tions was investigated in the framework of a tunneli
Hamiltonian and the second order perturbation theory.

B. Resonant tunneling in the case of nonmagnetic impurities

To extract the physical nature of resonant tunnel
through the impurity states contained in expression~4!, we
proceed as follows. For the sake of clarity and simplicity
consider first the case of zero-spin impurity. Then only o
element oft matrix at sitec remains

t0
↑(↓)~«!5

a0
3«0

12a0
3«0G↑(↓)~«!

.

It defines the position of a resonant level inside the gap
the dielectric band structure by finding the root of the eq
tion a0

3«0ReG↑(↓)(« i)51. From expression~6!, it follows
that the real part of the Green function ReGm(«,c) is inde-
pendent ofc and spinm up to exponentially small terms
Therefore, the position of level« i is weakly dependent both
on the position of impurity inside the barrier and on t
direction of the spin of the tunneling electron. Evident
only those impurities for which« i is close to the chemica
potential «F contribute to a significant extent to the tot
06442
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current at low bias voltage. Therefore, it is possible to e
pand the denominator int0

↑(↓)(«) in powers of (« i2«). If we
now introduce the position-dependent linewidths

Gm
L ~c!5Fm

L ~c!/ReG8~«F!, Gm
R~c!5Fm

R~c!/ReG8~«F!,
~7!

where ReG8(«F)5(]/]«)ReG(«)u«5«F
is the energy de-

rivative of the electron Green function at the Fermi lev
then we obtain the general formula for the resonant cas
impurity assisted tunneling

s imp~c!.
2e2

p\AE2`

1`

(
m,i

Gm
L ~c!Gm

R~c!

~«F2« i !
21Gm

2 ~c!
S 2

] f

]« Dd«,

~8!

whereGm(c)5Gm
L (c)1Gm

R(c), A is a junction area, and the
summation oni is performed over all resonant levels. For th
qualitative analysis, one may evaluate expressions~7! for
Gm

R(L)(c) approximately by considering the casek50 which
is valid if e22q0w!1. In this approximation

Gm
L ~c!5

2k1m
F m0

m0
2k1m

F21q0
2 S q0

2

2m0
De22q0(c2a)

c2a
,

Gm
R~c!5

2k3m
F m0

m0
2k3m

F21q0
2 S q0

2

2m0
De22q0(b2c)

b2c
, ~9!

and expression~8! reproduces the result of Ref. 8. To pro
ceed further, we discuss some assumptions concerning
parameters of the model. We consider the case of Co e
trodes and Al2O3 as the tunnel barrier and take typical valu
of k↑

F51.09 Å21, k↓
F50.42 Å21, m'1 for itinerant elec-

trons in Co and a typical barrier height for Al2O3 ~measured
from the Fermi level«F) U02«F53 eV with an effective
massm050.4 ~Ref. 9!, that givesq0.0.56 Å21. Assuming
the thickness of the barrierw.20 Å, one may estimate the
conductances0 of the system without impurity from Eq.~3!
by means of the approximate formula

s0.
2e2

p2\
S q0

w D(
m

k1m
F k3m

F q0
2m0

2e22q0w

~m0
2k1m

F21q0
2!~m0

2k3m
F21q0

2!
, ~10!

which leads to TMR.16%. To estimate the value of th
linewidth ~9! we consider impurities located close to the le
interface at a distance of, say, two atomic layers which c
responds to (c2a).4 Å. For spin up electrons, this give
G↑(c).0.02 eV. Further in this paper we restrict ourselv
to the case of temperature interval from 4.22300 K ~0.025
eV!. We assume that the impurity levels« i in the band gap
of the insulator form a narrow impurity band of widthD«
which spreads symmetrically with respect to Fermi level«F .
Furthermore, following Ref. 8, we introduce its density
statesn(«) per unit area and unit energy interval. We assu
that D« is of the order of 0.1 to 0.2 eV, i.e., an order
magnitude greater that the above estimated linewidth. In
context, with a good accuracy, the impurity conductance~8!
can be rewritten as
9-5



e
f
.

rit
L

he
ts

of

r a

n.

on-

A. VEDYAYEV, D. BAGRETS, A. BAGRETS, AND B. DIENY PHYSICAL REVIEW B63 064429
s imp~c!.
2e2n~«F!

\ (
m

E
2`

1`S 2
] f

]« D
3

Gm
L ~c!Gm

R~c!

Gm~c!
r~«,c!d«, ~11!

where the factor

r~«,c!5
2

p
arctanS D«

2Gm~c! D
arises from the integration of Eq.~8! over impurity levels« i
in the range of impurity band. Due to the abovemention
estimations, equalityr(«,c).1 holds with a good degree o
accuracy. In this case Eq.~11! is in agreement with Refs. 8,9

C. Resonant tunneling in the case of paramagnetic impurities

To investigate the general case of paramagnetic impu
we follow the same procedure as in the previous section.
J5s1S be the total magnetic moment of the system. W
may state that@H,Jz#50 and, therefore,Jz is a good quan-
tum number. We regard thet̂ matrix ~5! as an operator acting
on the spinor subspaceus,m&, where s56 1

2 and m5
61,0 correspond to the projection of thez component of the
electron and impurity spin, respectively~we consider the
caseS51). As long as its total magnetic moment along t
z axis Jz5sz1Sz is conserved, the matrix elemen

^s1m1u t̂ us2m2& are nonzero only if m11s15m21s2.
Therefore, it is convenient to introduce the notationtmj

s1s2

5^s1m1u t̂ us2m2&, wheremj5m11s15m21s2. These el-
ements are simply calculated from Eq.~5!. The nonzero ones
are written as

t3/2
↑↑ 5

a0
3~«02J/2!

12a0
3~«02J/2!G↑~«!

,

t23/2
↓↓ 5

a0
3~«02J/2!

12a0
3~«02J/2!G↓~«!

, ~12!

and

t̂61/25S t61/2
↑↑

t61/2
↑↓

t61/2
↓↑

t61/2
↑↑ D

corresponding to the subspacemj56 1
2 with

t1/2
↓↓ ~ t21/2

↑↑ !5
a0

3

D61/2~«!
$«01J/2

2a0
3G↑(↓)~«!~«02J/2!~«01J!%,

t1/2
↑↑ ~ t21/2

↓↓ !5
a0

3

D61/2~«!
$«02a0

3G↓(↑)~«!~«02J/2!~«01J!%,

t61/2
↑↓ 5t61/2

↓↑ 52
a0

3

A2D61/2

J, ~13!

where the denominators are
06442
d
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D61/2~«!5@12a0
3G↓~«!~«02J/2!#@12a0

3G↑~«!~«01J!#

6a0
3J@G↑~«!2G↓~«!#.

As can be seen, two poles of thet̂ matrix defined from equa-
tions a0

3ReG(«3/2)(«02J/2)51 and a0
3ReG(«1/2)(«01J)

51 correspond to two multiplets«3/2 and «1/2 with a total
angular momentumj 53/2 and j 51/2, respectively. IfJ
.0, then «3/2,«1/2, i.e., the multiplet with j 53/2 has a
lower energy than the one withj 51/2. As for nonmagnetic
impurity, we restrict ourselves by considering the regime
only one-channel resonant tunneling. We assume thatJ.0
and the lowest impurity levels« i5«3/2 corresponding to the
multiplet with j 53/2 lie close to«F . We note that the typi-
cal value of exchange couplingJ is of order 1 eV and due to
this fact we may eliminate the resonant level«1/2 from fur-
ther consideration. Then, as in the previous analysis fo
nonmagnetic impurity, only the resonant part of thet̂ matrix
~12!, ~13! at energies close to chosen«3/2 is essential for the
subsequent calculations. Expressions~12!, ~13! can be easily
written as

t63/2
↑↑(↓↓)~«!5

1

G8~«!

1

«2« i1 iG↑(↓)~c!
,

t̂1/2~«!5
1

G8~«!

1

«2« i1 ig↑~c! S 1

3

A2

3

A2

3

2

3
D ,

t̂21/2~«!5
1

G8~«!

1

«2« i1 ig↓~c! S 2

3

A2

3

A2

3

1

3
D , ~14!

where g↑(c)5 2
3 G↑(c)1 1

3 G↓(c), g↓(c)5 1
3 G↑(c)1 2

3 G↓(c)
are the inverse lifetimes of the resonant states withmj5
61/2. This result allows simple qualitative interpretatio
Let us look, for example, at quantum states withmj51/2.
From elementary quantum-mechanical theory, one may c
clude that

f1/2
↑ 5u↑,ms50&5A2

3U j 5 3

2
,mj5

1

2L
1A1

3U j 5 1

2
,mj5

1

2L ,

f1/2
↓ 5u↓,ms51&5A1

3U j 5 3

2
,mj5

1

2L
2A2

3U j 5 1

2
,mj5

1

2L . ~15!

As we have assumed, onlyu j 5 3
2 ,mj5

1
2 & gets into resonance

and, therefore, e.g.,t1/2
↑↓ ;^f1/2

↑ u t̂ uf1/2
↓ &;A2/3 in agreement

with Eq. ~14!. On the other hand,
9-6
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U j 5 3

2
,mj5

1

2L 5A2

3
u↑,ms50&1A1

3
u↓,ms51&

and, hence, its inverse lifetime is given byt1/2
215 2

3 t↑
21

1 1
3 t↓

21 .

We substitute allt̂ -matrix elements in Eq.~4! by its reso-
nance expansion~14!. To proceed further, one has to perfor
in Eq. ~4! the configuration averaging over all impurity ce
ters and thermodynamic one over all possible channels. S
pose, that the impurities are distributed uniformly in t
space in the interval@z02D,z01D# along thez direction
with the width of 2D and centerz0 which we have chosen to
be close to left~L! ferromagnetic contact. After that, it i
possible, first of all, to average the Lorentzian peaks over
distribution of impurity levels by averaging them over« i in
the range of impurity band with factorn(«F) and to perform
the thermodynamic averaging by integrating over« and ne-
glecting the dependencies ofGL(R)(c) on energy. On the
third step, the averaging over the space distribution of im
rities along thez direction should be made. Following th
outlined procedure, the total conductance~4! as a function of
temperature is written as a sum of factorized terms over
possible scattering channels

s~T!5
2e2

\ (
mr mj

Pmj

mrS mBHz
eff

kBT Dsmj

mr~z0 ,D!n~«F!1s0 ,

~16!

where

smj

mr~z0 ,D!5
1

2DEz02D

z01D

smj

mr~c!r~«F ,c!dc.

The origin of r(«F ,c) is the same as in Eq.~11! and the
explicit form of functionsPmj

mr(h) and smj

mr(c) for parallel

and antiparallel alignments of magnetization of the fer
magnetic layers is given in Appendix B. We have also us
the same notation of matrix indexes as was previously in
duced fort̂ -matrix elements.s0 is the tunnel conductance o
the pure system in accordance with Eq.~3!. FactorsPmj

mr and

smj

mr represent the thermodynamic and quantum-mechan

probabilities of the given process, respectively. Expressi
~16! are the final results of this section and their analysis
presented below~see Sec. III!.

D. Dependence of conductivity on bias-voltage

We are also interested in theI (V) characteristics of the
considered system. To derive the general formula for
current, one may simply extend expressions~4! to the case of
finite applied bias voltage. Consider, for example, the con
bution to the total currentI, coming from all possible chan
nels of the formu in,↑&→uout,↓& for tunnel electrons moving
from the left electrode to the right electrode and of the fo
u in,↓&→uout,↑& for electrons moving from right to left, re
spectively, i.e., in both cases an electron has an ‘‘up’’ p
jection of spin in the left contact and a ‘‘down’’ projection o
06442
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spin in the right one after or before scattering. From t
general concept, one may conclude that this contribution
the current can be written as

I ↑↓~V!5
1

SS 2e2

p\ D E
2`

1`

d«F↑
L~c!F↓

R~c!$^ t̂2~«! t̂1~«!&

3$ f ↑~«2mBHz
eff2eV!@12 f ↓~«1mBHz

eff!#

2^ t̂1~«! t̂2~«!& f ↓~«1mBHz
eff!

3@12 f ↑~«2mBHz
eff2eV!#%, ~17!

where it is assumed that the voltage bias is applied from
left to right direction. It is important to notice that inelast
spin-flip processes of the electron scattering on the impu
were taken into account in derivation of the Eq.~17! but they
were omitted in Ref. 12. Analogous expressions can be w
ten for all other channels. In the case under considerat
expression~17! contains two regimes of nonlinear behavi
of the I (V) characteristic. The first one reproduces a ze
bias anomaly due to excitation of spin-flip processes at
bias voltages of order of magnitudemBHz

eff ~we believe that
it is of order 5 mV!. In this range, as before, one may assu
that the resonance amplitudes^( t̂ z

↑(↓))†( t̂ z
↑(↓))& and ^ t̂2 t̂1&

are nearly independent of the energy after averaging ove
possible configurations of impurities. As a result, the volta
dependence of total current are given by formulas simila
Eq. ~16!:

I ~V,T!5
2e

\ (
mrmj

I mj

mr~V,Hz
eff!smj

mr~z0 ,D!n~«F!1s0V.

~18!

The expressions forI mj

mr(V,Hz
eff) for parallel and antiparalle

configurations are given in Appendix C. The voltage dep
dent conductances(V,T) can be obtained from Eq.~17! by
derivation with respect toV. The detailed analysis of this
physical situation is presented in the next section.

The second source of the possible nonlinear characte
I (V) dependence is the variation of potential profileU(z)
~see Fig. 1! under applied bias voltage. The latter inde
introduces corrections to Eqs.~9! and ~10! which can be
calculated with the use of Wentzel-Kramers-Brillou
~WKB! approximation,18 assuming that the applied voltag
produces a uniform electrical field inside the insulating lay
In the case of pure tunnel conductance, it is known19 that
both conductances for parallel and antiparallel configurati
increase with the increasing applied voltage so that the T
as a function ofV, defined as@ I P(V)2I AP(V)#/I AP(V),
drops significantly at voltages of order 1 eV. The contrib
tion of impurity assisted tunneling may change considera
this situation in the case of the nonuniform spatial distrib
tion of impurities, e.g., when they are distributed in the
cinity of only one electrode. In this particular situation, as w
will show, the essential variation of TMR amplitude in th
case of magnetic impurities~in contrast to nonmagnetic
ones! takes place at bias voltages comparable with impu
band widthD«.
9-7
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For the sake of simplicity, we consider, first, the case
non-magnetic impurities. In the WKB approximation, th
contribution from all impurities, located at given pointc, to
the total currentI (V) has a form similar to~9! and Eqs.~11!:

j imp~c!5
2e2

\
n~«F!(

m
E

2`

1`

d«$ f ~«2eV!2 f ~«!%

3
Gm

L ~c!Gm
R~c!

Gm
L ~c!1Gm

R~c!
r~«,V!, ~19!

where

Gm
L ~c!5

k1m
F qam0ta

21

~qa
2!21k1m

F2m0
2

e2Sa /\;

Gm
R~c!5

k3m
F qbm0tb

21

~qb
1!21k3m

F2m0
2

e2Sb /\. ~20!

Hereqb
25q0

252m0(U2«), qa
25q0

212m0 eV are imaginary
momenta of electron with energy« in the vicinity of the right
and left electrodes,qa(b)

6 5q06 1
2 (eEm0 /qa(b)

2 ), E is the
electric field in the barrier. We also introduceqc5q0
12m0 eV(b2c)/w, the imaginary momentum of electro
on the impurity center. ThenSa5(qa

32qc
3)/3m0eE, Sb

5(qc
32qb

3)/3m0eE represent the classical actions along t
path from the left contact to the pointc in the barrier and,
afterwards, from this point to the right contact, respective
ta5(qa2qc)/eE and tb5(qc2qb)/eE denote the passag
times associated with these paths. The factor

r~«,V!5
1

p
H arctanF «2«F2eVS b2c

w D1
D«

2

Gm
L ~c!1Gm

R~c!
G

2arctanF «2«F2eVS b2c

w D2
D«

2

Gm
L ~c!1Gm

R~c!
G J ,

~21!

as before, arises from the summation over all impurity lev
« i and gives the relative weight of all resonant channels w
energy«. To clarify the situation, it is sufficient to conside
the most resonant channel with energy« r5«F1eV(b
2c)/w at which r(«,V) reaches its maximum. One ma
note that« r corresponds to the resonant impurity level th
exactly coincides with Fermi energy at vanishing voltage a
it shifts linearly with the increase of applied bias depend
on the positionc of impurity inside the barrier. As state
earlier, the most interesting case takes place when the poc
is situated close to the left contact. Then one can see
GL(c)@GR(c) and, thus, j imp(c);GR(c)r(« r ,V). At bias
voltages much lower than the height of the barrierw5(U
2«F), Sb can be expanded in powers ofV:
06442
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Sb5q0~b2c!H 12
m0eV

2q0
2 S b2c

w D1•••J
which shows thatGR(c);exp(2Sb /\) is an increasing func-
tion of V in the vicinity of V50. Hence, it leads to an in
crease in differential conductivitys(V)5]I /]V under direct
bias voltage, applied to the barrier from the left to the rig
direction, and to a decrease ins(V) under reverse bias volt
age. The physical meaning of such a behavior is rather
vious. From the expression forSb it follows that due to reso-
nant levels lying close to« r electrons tunneling unde
forward bias propagate through a potential barrier the eff
tive height of which is lower than for those electrons prop
gating under reverse bias.

The expression for the paramagnetic impurity assis
current at finite voltages has a structure similar to Eq.~19!
with Fermi distribution factors written in accordance wi
the general formula~17! and the integrand expression has t
form given in Appendix B, where linewidthsG↑(↓) have to
be substituted by WKB approximation~20!. In the case of
magnetic impurities the above outlined mechanism of asy
metry in I (V) characteristics due to the shift of resonan
levels essentially contributes to the voltage dependenc
TMR amplitude in question, as discussed in the next sect

III. RESULTS AND DISCUSSION

In this section we consider the temperature and bias v
age dependencies of the conductances and TMR effect o
considered structures. We investigate the case o
Co/Al2O3 /Co junction with the typical parameters that we
introduced in Sec. II:k↑

F51.09 Å21, k↓
F50.42 Å21 are the

Fermi momenta of itinerant electrons in Co,q050.56 Å21 is
the imaginary momentum in the barrier,m050.4 is the ef-
fective mass in the insulator, andw520 Å is its thickness.
We focus on the most interesting situation when impurit
are introduced in the vicinity of the left electrode at a dep
w1 inside the insulator layer. We chose a widthw1
54.06 Å which corresponds to two atomic monolayers. T
essential parameter of the model which must be define
the effective molecular fieldHz

eff acting on impurity spins.
One may suppose that it should exponentially decay in
depth of the barrier. We have, therefore, set it tomBHz

eff

55 meV ~58 K! which is two orders less than the critica
temperature in bulk Co.

Consider, first, the caseT50. It is possible to estimate
the concentration of impurity atoms so that its contribution
the resonance conductivity is comparable with the ordin
tunnel conductance of the system. One can write that
impurity density of states @see Eq. ~11!# n(«F)
5Ni /A(D«), whereNi is a total number of impurities and
D« is the width of its energy distribution. On the other han
Ni5xN and N5Aw1 /a0

3 where N is the total number of
atoms in the layer which contains the impurities,x is the
local concentration of impurities in this volume, anda0 is the
lattice constant. This yieldsn(«F)5x(w1 /a0)(1/a0

2D«). We
introduce the characteristic concentrationx0 defined so that
in the case of nonmagnetic impurity, the impurity condu
9-8
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tance~11! is equal to the tunnel conductance~10! of the spin
↑ channel in the parallel magnetic configuration of the f
romagnetic layers. Such a definition leads to

x0.
D«

p2 S 2m0a0
2

\2 D S w

w2w1
D

3S a0

w1
D k↑

Fq0m0

k↑
F2m0

21q0
2

~q0w1!exp~22q0w1!

12exp~22q0w1!
. ~22!

If we chooseD«50.2 eV, thenx056.531025. The conduc-
tance of the system atT50 can be extracted from the gen
eral expression~14!. We suppose that for both parallel an
antiparallel configurations, the left electrode has ‘‘up’’ ma
netization and, hence,Hz

eff is positive in both cases. At zer
temperature, all spin-flip processes are frozen and due to
above assumption, only the configuration of impurity sp
with ms51 is possible. As a result, only two resonan
channels from many possible ones have nonzero contribu
to conductivity, namelyu↑,ms51&↔u↑,ms51& and u↓,ms
51&↔u↓,ms51& with mj53/2 and 1/2, respectively. From
Eq. ~B1! ~see Appendix B!, it follows that the channel with
mj53/2 gives the main contribution into the conductivity
low temperatures andPs3/2

↑↑ ;G↑ andAPs3/2
↑↑ ;G↓ . So these

contributions depend on the mutual orientation of the m
netization of the ferromagnetic layers, therefore they incre
the total amplitude of the TMR. The total expression f
TMR5(sP2sAP)/sAP including all possible channels ma
be written as

TMR5

~G↑2G↓!FG↑2G↓1
x

x0
G↑S 12

1

9
G↓ /g↑D G

G↑G↓F21
x

x0
S 11

1

9
G↑ /g↑D G ,

~23!

where x is concentration,x0 is defined by Eq.~22!, g↑
5 2

3 G↑1 1
3 G↓ andG↑(↓)5k↑(↓)

F q0
2/(k↑(↓)

F2 m0
21q0

2) are the tun-
neling density of states for↑(↓) spin electrons. The depen
dence of TMR effect versus the polarizationP5(k↑

F

2k↓
F)/(k↑

F1k↓
F) is shown in Fig. 3 in comparison with th

nonresonant tunnel conductance atx50. The total TMR am-
plitude is larger than the TMR due to direct tunneling,
accordance with considerations written above. For a gi
polarizationP50.44 in case of chosen parameters, the c
tribution of the impurity assisted tunneling leads to a stro
enhancement in TMR amplitude~typically by a factor 2, see
Fig. 3!.

We note, that in the case of nonmagnetic impurities d
tributed in the vicinity of only one contact, the resonant im
purity conductances imp;G↑1G↓ is equal for both paralle
and antiparallel configurations and, therefore, in this ca
the mechanism of impurity-assisted tunneling is not able
enhance the TMR effect. The enhancement of TMR am
tude in the case of paramagnetic impurities is essentially
to the presence of a ferromagnetic exchange coupling
tween the magnetization in ferromagnetic electrode and
impurity spins which tends to induce a ferromagnetic or
06442
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in the plane of impurities and, as a result, leads to the p
erence of impurity spin to be found in the quantum state w
ms51.

The temperature dependencies of resonant conducta
for parallel and antiparallel configurations in the interv
from 4.2–300 K are presented in Fig. 4. In the case of p
allel alignment,s imp

P (T) is nearly independent on the tem
perature, but in the antiparallel situation, there is a 50%
crease in impurity conductances imp

AP(T). This originates
from the thermal excitation of both spin-flip and spi
conserving processes which are frozen at zero tempera
For AP configuration, the processu↑,ms50&→u↓,ms51&
was forbidden at 0° K but now, it is allowed and gives
large contribution into the current since it is proportional

FIG. 3. Tunnel magnetoresistance atT50 as a function of po-
larizationP5(k↑

F2k↓
F)/(k↑

F1k↓
F) under fixedk↑

F51.09 Å21. Other
parameters areq050.56 Å21, m050.4. Solid line corresponds to
the case of impurity concentrationx5831025, dashed line repre-
sents the case of absence of impurities.

FIG. 4. Tunnel magnetoresistance as a function of the temp
ture.~Inset: conductances for the parallel and antiparallel configu
rations.! The parameters arek↑

F51.09 Å21, k↓
F50.42 Å21, q0

50.56 Å21, m050.4. Concentration of impuritiesx5831025.
9-9
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the product of the largest density of statesG↑G↑ . As a con-
sequence, the TMR effect decreases with increasing of
temperature.

We have also calculated the dependence of the differe
conductance on bias voltage according to Eqs.~18! and~19!.
These dependencies atT54.2 K andT577 K are presented
in Fig. 5. A new effect is predicted: the voltage depende
of the conductance in the antiparallel alignment of magn
zation in ferromagnetic layers is asymmetric under forw
and reverse bias voltage when the paramagnetic impur
inside the insulator layer are distributed close to only one
the interfaces and are bound by exchange interaction
magnetization of the nearest ferromagnetic layer.

One can distinguish two different mechanisms that g
rise to this asymmetrical behavior with respect to invers
of bias voltage. The first one, which we refer as zero b
anomaly, manifests itself at low voltages of the order of
mV ~for particular chosen parameters in our model! and is
strongly pronounced only at low temperatures~see Fig. 5, the
case ofT54.2 K). It originates from the excitations of spin
flip processes at the impurity sites. One may look at
general expression~18! and consider the case of low tem

FIG. 5. Differential conductance as a function of the bias vo
age atT54.2 and 77 K. The parameters arek↑

F51.09 Å21, k↓
F

50.42 Å21, q050.56 Å21, m050.4. Thick dashed and solid line
correspond to the conductance in the parallel and antiparallel
figurations, respectively, calculated in the WKB approximation. F
comparison, the same dependencies atT577 K, calculated by ap-
proximate formulas, are indicated by thin lines. The concentra
of impurities isx5831025.
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e

perature. An electron undergoing spin-flip scattering, m
transfer an amount of energyv052mBHz

eff to the impurity
spin thus exiting it at an higher energy level or on the co
trary may acquire this quantum of energy from it. The lat
process is impossible at low temperature. The former on
possible only if an electron moving, say, from the left co
tact possesses an excess energy of at leastv0 with respect to
Fermi level in the right contact. The only one process t
contributes to this anomaly at low temperature isf1/2

↓

→f1/2
↑ @see Eq.~15!#. For antiparallel alignment of the mag

netization, its quantum-mechanical probability is propo
tional to APs1/2

↓↑ ; 2
9 G↓

2/g↑ for electrons moving from the lef
ferromagnetic layer into the right one and is proportion
toAPs1/2

↑↓ ; 2
9 G↑

2/g↑ in the case of electrons moving from th
right to the left. For parallel configuration of magnetization
these probabilities are equal in both directions and are p
portional toPs1/2

↓↑ 5 Ps1/2
↑↓ ; 2

9 G↓G↑ /g↑ . As a result, the zero
bias anomaly atT54.2 K looks asymmetric in the case o
antiparallel configuration and is symmetric in the case
parallel alignment of magnetizations.

The differential conductances as a functions of the b
voltage atT577 K have been calculated using two differe
approximations. Thick dashed and solid lines correspond
the conductances in the parallel and antiparallel configu
tions, respectively, that have been calculated by mean
WKB approximation in accordance with expressions~17!
and ~19!. For the sake of comparison, the same depend
cies, indicated by thin lines, have been calculated by us
the approximate formulas~18!, where the dependence o

t̂ -matrix elements on the applied voltage has been neglec
The latter curves demonstrate the only zero bias anom
discussed above, which is substantially smoothed, comp
with the case ofT54.2 K. On the contrary, the WKB
scheme of calculation takes into account the variation of
potential profile inside the insulating barrier under appli
bias voltage. In view of this, the differential conductanc
calculated by this scheme exhibit a tendency to increas
the direct bias voltage and to decrease at the reverse one
was shown above~see Sec. II D!, this behavior originates
from the shift of the resonant levels inside the insulator d
to externally applied electric field. This second mechanism
the origin of nonlinear voltage dependence of impuri
assisted conductance does not relate with the excitatio
spin-flip processes. It becomes apparent at voltages of
order of 50 mV and leads to asymmetric voltage bias dep
dencies in both cases of parallel and antiparallel configu
tions.

Finally, the TMR amplitude as a function of bias voltag
is shown in Fig. 6 for a broad range of applied voltage.
nonlinear and asymmetric behavior in the range of 0.2
originates from the asymmetry of the shifts of resonant i
purity levels with respect to forward and inverse bias. T
low bias voltage anomaly at 10 mV is also strongly pr
nounced at the curve corresponding to 4.2 K. The rela
contribution of the impurity-assisted conductance to the to
current of electrons decreases when the value of applied
voltage exceeds the half width of impurity bandD«/2

-
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50.1 eV. Therefore, the TMR amplitude drops to val
.20% at 0.5 V corresponding primarily to the pure tunn
conductance.
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APPENDIX A

In this appendix we briefly demonstrate the details of
derivation Eq.~4! for the impurity conductance in the secon
order of the perturbation theory. In the Kubo formalism o
linear response the real part of a frequency-dependent
ductivity is given by the expression16

Resmr~r ,r 8,v!5
12e2bv

2v
Gmr~r ,r 8,v!.

Hereb51/kBT; m, r denote electron spins andGmr(r ,r 8,v)
is a Fourier transform of the current-current correlation fu
tion

Gmr~r ,r 8,v!5E
2`

1`

^ j r~r 8,t8! j m~r ,t !&eiv(t2t8)d~ t2t8!,

where ^•••& denote the quantum statistical averaging. F
our purposes we have calculated the static conducti
smr(r ,r 8)5(b/2)Gmr(r ,r 8,v)uv50 by means of the Keldysh
method of nonequilibrium Green functions.17 In this ap-
proach a four-component matrix Green function

FIG. 6. Tunnel magnetoresistance as a function of the bias v
age. Solid line:T54.2 K, dashed line:T577 K. The parameters
are k↑

F51.09 Å21, k↓
F50.42 Å21, q050.56 Å21, m050.4. The

concentration of impurities isx5831025.
06442
l

r

e

n-
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Gm~«!5S Gm
22~«! Gm

21~«!

Gm
12~«! Gm

11~«!
D 5S Gm

T~«! Gm
,~«!

Gm
.~«! Gm

T̃~«!
D
~A1!

is introduced into consideration~two equivalent forms of no-
tation are presented!. It is remarkable that initial equilibrium
Green functions of the unperturbed system for the giv
chemical potential«F can be expressed in terms of only r
tarded and advanced propagatorsGR(«) andGA(«)

Gm
T~«!5 f ~«2«F!Gm

A~«!1@12 f ~«2«F!#Gm
R~«!,

Gm
T̃~«!52@12 f ~«2«F!#Gm

A~«!2 f ~«2«F!Gm
R~«!,

Gm
,~«!5 f ~«2«F!@Gm

A~«!2Gm
R~«!#,

Gm
.~«!52@12 f ~«2«F!#@Gm

A~«!2Gm
R~«!#, ~A2!

where f («2«F) is the Fermi distribution function. In the
same way the set of possible spin-spin correlation functi
in the energy representation of the type^^S1uS2&&v and
^^SzuSz&&v we denote as matricesDxy(v) andDzz(v) which
have the same structure as the matrix~A1!. In the case of
noninteracting system corresponding to the ‘‘isolated’’ im
purity spin in the ‘‘external’’ magnetic fieldHz

eff the explicit
form of, e.g.,Dxy(v) is written as

Dxy
T ~v!5

^S1S2&

v22mBHz
eff1 i0

2
^S2S1&

v22mBHz
eff2 i0

,

Dxy
T̃ ~v!5

^S2S1&

v22mBHz
eff1 i0

2
^S1S2&

v22mBHz
eff2 i0

,

Dxy
. ~v!522p i d~v22mBHz

eff!^S1S2&,

Dxy
, ~v!522p i d~v22mBHz

eff!^S2S1&. ~A3!

The construction of diagrams in the framework of t
Keldysh approach include the additional symbols1 and2
in all vertex points of the graph so that each line is associa
with the corresponding component of the electron or s
Green function. In this sense the current-current correla
function Gmr(r ,r 8,v) is related with the series of diagram
starting from the symbol1 at the pointr 8 and ending by the
symbol2 at the pointr . This fact is schematically presente
in Eq. ~2! in the form of a product of two correspondin
electron Green functions. Actually, substituting them
zero-order Green functions~A2! one will obtain the
‘‘bubble’’ part of the current-current correlator correspon
ing to the nonresonant part of the conductances0(T) @Eq.
~3!#. The rest of the series, known as the ‘‘vertex’’ corre
tion, determines the impurity-assisted conductances imp(T).
In the second order of perturbation theory there exist f
different diagrams contributing to it. Two of them are show
in Fig. 2 and other ones can be obtained from the former
substituting spin up (↑) by spin down (↓) and vice versa.
The explicit analytical expression, for example, for the d
gram in Fig. 2~b!, is written as follows

lt-
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G↑↓
(2)~r ,r 8,0!5 (

a,b56
~2ab!

J2e2

\ E E
2`

1` d«dv

~2p!2
i D xy

ab~v!

3G↓
1aS c,r 8,«1

v

2 D ¹J r8
2m

G↓
b1S r 8,c,«1

v

2 D
3G↑

a2S c,r ,«2
v

2 D ¹J r

2m
G↑

2bS r ,c,«2
v

2 D ,

where the sum overa andb takes into account four possibl
Keldysh diagrams corresponding to this graph. But one
easy see that two terms, containingDxy

22(v) andDxy
11(v),

are not essential since they cancel due to the asymm
gradient operation¹J r and¹J r8

, respectively. The other two
terms after substituting Eqs.~A2! and ~A3! and integrating
over v may be rewritten as

G↑↓
(2)~r ,r 8,0!5

2J2e2

p\ E
2`

1` d«

2p
F↑

L~c,«!F↓
R~c,«!$ f ↑~«

2mBHz
eff!@12 f ↓~«1mBHz

eff!#^S2S1&1 f ↓~«

1mBHz
eff!@12 f ↑~«2mBHz

eff!#^S1S2&%.

~A4!

Here we suppose thatr ,c,r 8 and introduce the hopping
probabilities of an electron from the bulk itinerant state
the impurity level

F↑
L~c,«!5G↑

A~c,r ,«!
¹J r

4mi
G↑

R~r ,c,«!ur5a ,

F↓
R~c,«!52G↓

R~r 8,c,«!
¹J r8
4mi

G↓
A~c,r 8,«!ur85b .

Straightforward calculations show that these quantities
not explicitly depend onr and r 8 and henceG↑↓

(2)(r ,r 8,0) is
determined only by the position ofthe impurityc. We also
note that two terms in Eq.~A4!, corresponding to the direc
and inverse process, respectively, in fact are equal to e
other after performing the thermodynamic averaging that
presses the principle of the detailed equilibrium in the s
tem. The structure of the expression~A4! is similar to that of
Eq. ~4!. Equation~A4! will reproduce this final result if one
substitutes the scattering amplitudes^S1S2& and ^S2S1&
calculated in the second order ofJ by the average product o
correspondingt matrices^ t̂1(«) t̂2(«)& and ^ t̂2(«) t̂1(«)&.
The validity of this approximation is discussed in the ma
text and it is justified in case of neglecting of a double o
cupancy of electrons with different spins at the same im
rity center.

APPENDIX B

Let w15c2a andw25b2c be the position of impurity
with respect to the left and right interfaces, respectively, a
w5b2a be the width of the insulator layer. We introduc
06442
n

ric

o

ch
-
-

-
-

d

tunneling densities of states for spin↑(↓) electronsG↑(↓)

5k↑(↓)
F q0

2/(k↑(↓)
F m0

21q0
2) and denoteg↑5 2

3 G↑1 1
3 G↓ , g↓

5 1
3 G↑1 2

3 G↓ . Then, the position-dependent quantum
mechanical probabilitiessmj

mr(c) can be found as follows.

~a! In the case of parallel configuration

s3/2(23/2)
↑↑(↓↓) ~c!5

G↑(↓)
2 e22q0w/~w1w2!

G↑(↓)

e22q0w1

w1
1G↑(↓)

e22q0w2

w2

,

s1/2(21/2)
↑↑(↓↓) ~c!5

4

9

G↑(↓)
2 e22q0w/~w1w2!

g↑(↓)

e22q0w1

w1
1g↑(↓)

e22q0w2

w2

,

s21/2(1/2)
↑↑(↓↓) ~c!5

1

9

G↑(↓)
2 e22q0w/~w1w2!

g↓(↑)

e22q0w1

w1
1g↓(↑)

e22q0w2

w2

,

s1/2
↓↑ ~c!5s1/2

↑↓ ~c!5
2

9

G↑G↓e22q0w/~w1w2!

g↑
e22q0w1

w1
1g↑

e22q0w2

w2

,

s21/2
↑↓ ~c!5s21/2

↓↑ ~c!5
2

9

G↑G↓e22q0w/~w1w2!

g↓
e22q0w1

w1
1g↓

e22q0w2

w2

.

~B1!

~b! In the case of antiparallel configuration

s3/2(23/2)
↑↑(↓↓) ~c!5

G↑G↓e22q0w/~w1w2!

G↑(↓)

e22q0w1

w1
1G↓(↑)

e22q0w2

w2

,

s1/2(21/2)
↑↑(↓↓) ~z!5

4

9

G↑G↓e22q0w/~w1w2!

g↑(↓)

e22q0w1

w1
1g↓(↑)

e22q0w2

w2

,

s21/2(1/2)
↑↑(↓↓) ~z!5

1

9

G↑G↓e22q0w/~w1w2!

g↓(↑)

e22q0w1

w1
1g↑(↓)

e22q0w2

w2

,

s1/2
↑↓(↓↑)~z!5

2

9

G↑(↓)
2 e22q0w/~w1w2!

g↑
e22q0w1

w1
1g↓

e22q0w2

w2

,
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s21/2
↑↓(↓↑)~z!5

2

9

G↑(↓)
2 e22q0w/~w1w2!

g↓
e22q0w1

w1
1g↑

e22q0w2

w2

. ~B2!

The statistical probabilitiesPmj

mr(h) are independent of the

configuration of the system. We denoteh5mBHz
eff/kT and

Z52 cosh(2h)11, then

P3/2
↑↑ ~h!5P1/2

↓↓ ~h!5Z21e2h, P1/2
↑↑ ~h!5P21/2

↓↓ ~h!5Z21,

P21/2
↑↑ ~h!5P23/2

↓↓ ~h!5Z21e22h,

P1/2
↑↓ ~h!5P1/2

↓↑ ~h!5Z21
heh

sinh~h!
,

P21/2
↑↓ ~h!5P21/2

↓↑ ~h!5Z21
he2h

sinh~h!
. ~B3!
ys

B.

o-

p

tat
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APPENDIX C

The nontrivial functionsI mj

mr are written as

I 1/2
↓↑ ~V,Hz

eff!5
~eV22mBHz

eff!~eeV/kT21!

~e(eV22mBHz
eff)/kT21!Z

,

I 1/2
↑↓ ~V,Hz

eff!5
~eV12mBHz

eff!~eeV/kT21!e2mBH/kT

~e(eV12mBHz
eff)/kT21!Z

,

I 21/2
↑↓ ~V,Hz

eff!5
~eV12mBHz

eff!~eeV/kT21!

~e(eV12mBHz
eff)/kT21!Z

,

I 21/2
↓↑ ~V,Hz

eff!5
~eV22mBHz

eff!~eeV/kT21!e22mBH/kT

~e(eV22mBHz
eff)/kT21!Z

.

All the other ones, not written above, are equal toeV
3Pm

m,m(h).
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