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Local spin correlations in Heisenberg antiferromagnets
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We use linked cluster series expansion methods to estimate the values of various short distance correlation
functions inS51/2 Heisenberg antiferromagnets atT50, for dimensiond51,2,3. The method incorporates
the possibility of spontaneous symmetry breaking, which is manifest ind52,3. The results are important in
providing a test for approximate theories of the antiferromagnetic ground state.
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I. INTRODUCTION
This paper deals with the problem of calculating corre

tion functions, atT50, for theS51/2 Heisenberg antiferro
magnet

H52J(̂
i j &

Si•Sj , ~1!

where the sum is over all nearest neighbor pairs. We c
sider explicitly the linear chain (d51), the square lattice
(d52) and the simple cubic lattice (d53). The correlation
functions~correlators! are defined as

C~r ![4^Si•Si 1r&05Cl~r !12Ct~r !, ~2!

where the average is a ground state expectation value,r is the
distance between sites in units of the lattice parameter,
the factor 4 is included for convenience. It is also conveni
to separate the correlator into a longitudinal partCl(r ) and a
transverse partCt(r )

Cl~r ![4^Si
zSi 1r

z &0 , ~3a!

Ct~r ![2^Si
xSi 1r

x 1Si
ySi 1r

y &05^Si
1Si 1r

2 1Si
2Si 1r

1 &0 .
~3b!

Cl and Ct will differ if the Hamiltonian is generalized to
include Ising anisotropy

H52J(̂
i j &

@Si
zSj

z1l~Si
xSj

x1Si
ySj

y!# ~4!

as we shall do, or if the ground state of the isotropic Ham
tonian exhibits spontaneous symmetry breaking. We s
see that this occurs in dimensiond.1.

The correlators characterize the nature of the ground s
of the system, and hence an accurate knowledge of t
values can be important for testing approximate anal
theories. Surprisingly, apart from the one-dimensional~1D!
case, knowledge of their values is limited.

We use the method of linked cluster expansions in wh
the Hamiltonian is written as

H5H01lV ~5!

with the Ising part taken as the unperturbed Hamiltonian
the remainder as a perturbation. To improve the converge
of the series and to check the reliability of the series extra
lation, we also include a local staggered field te
0163-1829/2001/63~6!/064425~9!/$15.00 63 0644
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z in H0, and subtract it fromV, and adjust the

strengtht to get best convergence in the series. The ba
idea of the method has been discussed before1,2 so we only
give brief details here. The ground state energy for a lat
of N sites can be written as a sum of contributions from
connected clusters as

E0~l!5(
a

Ca
Nea~l!, ~6!

whereCa
N is the embedding constant for clustera andea(l)

is a ‘‘cumulant energy’’ of clustera, as defined below. The
ground state energy for a finite clusterb can be written in a
similar way, in terms of the cumulant energies of its subcl
ters,

E0
b~l!5(

a
Ca

bea~l!. ~7!

These equations allow the cumulant energies to be de
mined recursively. The cluster energies are obtained as
turbation series inl through an efficient computerize
Rayleigh-Schro¨dinger perturbation algorithm. To comput
series for the correlatorC(r ) in powers ofl we add a field
term toH

H5H01lV1h(
i

Si•Si 1r , ~8!

compute the ground state energy in the form

TABLE I. Estimates of the total correlatorsC(r ) for the isotro-
pic S5

1
2 antiferromagnetic chain@Eq. ~4! in text# from exact diago-

nalizations~Ref. 8! and series~the present work!.

Exact diagonalization Series expansion
r 1 finite size scaling~Ref. 8! evaluated atl51

1 -1.7724~6! -1.773~2!

2 0.72795~6! 0.730~3!

3 -0.6027~3! -0.588~15!

4 0.4158~10! 0.408~20!

5 -0.3705~10! -0.38~3!

6 0.2946~12! 0.32~4!

7 -0.2697~20!

8 0.2280~20!
©2001 The American Physical Society25-1
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TABLE II. Coefficients of correlator series for theS5
1
2 antiferromagnetic chain forr 54.

Power ofl C(4) Cl(4) Ct(4)

0 1.000000000 1.000000000 0.000000000
2 -2.000000000 -2.000000000 0.000000000
4 2.000000000 5.00000000031021 7.50000000031021

6 2.50000000031021 2.375000000 -1.062500000
8 -1.265625000 -2.250000000 4.92187500031021

10 3.28125000031021 5.54687500031021 -1.13281250031021

12 -4.29687507031022 -1.86523437531021 7.17773434231022

14 1.22558591031021 2.44140676631022 4.90722616931022

16 6.08520929831022 7.09915658431022 -5.06973642731023

18 5.31183023831023 4.90281021231022 -2.18581359431022

20 -9.65631892931023 2.49370699231022 -1.72966944231022

22 7.88434105931023
rk
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E0~l,h!5E0~l!1hNC~r !/41O~h2!, ~9!

and hence extract series inl for C(r ). For the longitudinal
correlator the field term ish( iSi

zSi 1r
z . Examples are given in

the following sections.
Two important questions are not addressed in this wo

~i! the behavior of correlators at large distances, and
asymptotic behavior and associated critical exponents;~ii !
correlators at finite temperature.

II. THE ONE-DIMENSIONAL CASE

The S5 1
2 antiferromagnetic Heisenberg chain is exac

solvable by the Bethe ansatz,3,4 and the ground state energ

FIG. 1. CorrelatorsC(r ) for the S5
1
2 antiferromagnetic chain

for r 51,2, . . . ,6. Thefull lines give the total correlatorC(r ), the
dashed lines give 3Cl(r ). Curves for differentr are labeled at the
right hand edge. The circles atl51 are the values from the finite
lattice calculations~Ref. 8!. Note that at the isotropic pointl51
the longitudinal and transverse correlator are equal.
06442
:
e

and elementary excitations are given by simple analytic
pressions. However the wavefunction is sufficiently comp
that little exact information is available on correlators. In fa
only the first two are known exactly, and are

^Si•Si 11&5
1

4
~124 ln 2!520.443147 . . . ,

~10!

^Si•Si 12&5
1

4
„1216 ln 219z~3!…50.182039 . . . .

The first result comes from the ground state energy,5 while
the second is obtained6 via the strong coupling limit of the
Hubbard model. There is no spontaneous symmetry brea

FIG. 2. Correlators for nearest and next-nearest neighbors
the square lattice, for varying anisotropy parameterl. Full lines
denote the total correlatorC(r ), dashed lines the longitudinal cor
relatorCl(r ), and dotted lines the transverse correlatorCt(r ).
5-2
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TABLE III. Nonzero coefficients of various correlator series for theS5
1
2 antiferromagnet on the square lattice (t50).

Power ofl C(r ) Cl(r ) Ct(r )

r5(1,0)
0 -1.000000000 -1.000000000 0.000000000
1 -6.66666666731021 0.000000000 -3.33333333331021

2 3.33333333331021 3.33333333331021 0.000000000
3 7.40740740731023 0.000000000 3.70370370431023

4 -5.55555555631023 -5.55555555631023 0.000000000
5 -1.89788359831022 0.000000000 -9.48941798931023

6 1.58156966531022 1.58156966531022 0.000000000
7 -1.32034055431022 0.000000000 -6.60170277031023

8 1.15529798531022 1.15529798531022 0.000000000
9 -6.23701298531023 0.000000000 -3.11850649231023

10 5.61331168931023 5.61331168931023 0.000000000
11 -5.80660991331023 0.000000000 -2.90330495731023

12 5.32272575731023 5.32272575731023 0.000000000
13 -4.23143500331023 0.000000000 -2.11571750231023

14 3.92918965931023 3.92918965931023 0.000000000

r5(1,1)
0 1.000000000 1.000000000 0.000000000
2 -2.22222222231021 -4.44444444431021 1.11111111131021

4 3.44444444431022 4.56790123531023 1.49382716031022

6 7.31435290231024 -1.97903530131022 1.02608941531022

8 -1.58206057531023 -1.47501580231022 6.58404872431023

r5(2,0)
0 1.000000000 1.000000000 0.000000000
2 -3.33333333331021 -4.44444444431021 5.55555555631022

4 4.24691358031022 -1.66666666731022 2.95679012331022

6 3.66683253531023 -1.35393018131022 8.60306717331023

8 -3.70674151831023 -1.78606763431022 7.07696741231023

r5(3,0)
0 -1.000000000 -1.000000000 0.000000000
1 0.000000000 0.000000000 0.000000000
2 4.44444444431021 4.44444444431021 0.000000000
3 -3.88888888931022 0.000000000 -1.94444444431022

4 2.03703703731022 2.03703703731022 0.000000000
5 -4.03508965331022 0.000000000 -2.01754482731022

6 2.05405832731022 2.05405832731022 0.000000000
7 -1.40157425231022 0.000000000 -7.00787126031023

8 1.78582245131022 1.78582245131022 0.000000000

r5(4,0)
0 1.000000000 1.000000000 0.000000000
2 -4.44444444431021 -4.44444444431021 0.000000000
4 -1.17283950631022 -2.17283950631022 5.00000000031023

6 -1.33708602831023 -2.19864029631022 1.03246584631022
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in the ground state of the isotropic spin chain, and he
longitudinal and transverse correlators are equal, and ob
able directly from Eq.~2!.

The first serious attempts to obtain further results for
antiferromagnetic chain were by Bonner and Fisher,7 who
used exact diagonalizations for systems up toN510 spins,
and by Kaplan and co-workers8 who extended this toN
06442
e
in-

e

518. These results suffer from large finite-size effects, a
need to be extrapolated to the therodynamic limit via a fin
size scaling ansatz. In this way Kaplanet al. estimated the
value of correlators up to 8th neighbors, with confiden
limits of about 1% inC(8). Weshow these values in Tabl
I. Subsequently Lin and Campell9 extended the exact diago
nalizations toN530. By use of the empirical scaling relatio
5-3
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CN~r !5C`~r ! f ~r /N! ~11!

with

f ~y!5@110.28822 sinh2~1.673y!#1.75, ~12!

they estimated correlators up tor 515, i.e., 15th neighbors
However the accuracy of this scaling is perhaps doub
since it is known that there are logarithmic terms which sl
convergence.10

The development of the density matrix renormalizati
group ~DMRG! method11 allows much longer chains to b
treated with high numerical accuracy. Hallberget al.12 have
used DMRG to compute correlators for Heisenberg cha
up toN570 spins, with a scaling function similar to Eq.~11!
used to extrapolate to the thermodynamic limit. The d
were shown to be consistent with the asymptotic behavio

C~r !;~21!r~ ln r !1/2/r ~13!

FIG. 3. Comparison between series~this work! and other esti-
mates of the nearest neighbor correlator for the square lattice
varying anisotropy parameterl.
06442
l

s

a

predicted by field theory.10

We have described the series method briefly in the In
duction. Using this approach we have computed expans
in l, for both the total and longitudinal correlators for di
tancesr 51,2, . . . ,10. Themaximum order isl24 for r 51
andl16 for r 510. We note that the longitudinal correlator
and the total correlators forr even, contain only even power
of l. We also note that the series are rather erratic, both
sign and magnitude of the coefficients. This had already b
noted by Walker13 who expanded the ground state energ
and henceC(1), to order l.14 Rather than quote all serie
here we will make them available to any reader on requ
Table II shows the coefficients for the series forC(4),
Cl(4), andCt(4). We note that, as expected, the series
the transverse correlatorCt(r ) starts with a terml r .

The series have been evaluated for fixedl by means of
integrated differential approximants,14 and the values of cor-
relators forr 51,2, . . . ,6 areshown in Fig. 1. The analysis
becomes less precise as the weakly singular pointl51 is
approached. We also show in Fig. 1 the extrapolated e
diagonalization results. As can be seen from the figure,
from Table I, the agreement is very good. It is clear that
one dimension the series method is not able to match
precision of either scaled finite lattice or DMRG results, b
in higher dimension these latter methods are not competit
Furthermore, as we shall show, the series analysis can
made more precise ind>2 because the stronger singulari
at l51 can be removed by a transformation, and the Is
expansions used here are more suitable ford>2, where the
ground state has long range Nee´l order.

We should mention here also the work of Singhet al.15

who used exactly the same method as ours to compute
structure factors

Szz5
1

4 (
r 52`

`

@~21!rCl~r !24^S0
z&2# ~14!

and

S125
1

2 (
r 52`

`

~21!rCt~r ! ~15!

for the S5 1
2 antiferromagnetic chain. Our correlator serie

when summed, agree with their results.

or
TABLE IV. Values of correlators for the isotropicS5
1
2 Heisenberg antiferromagnet on the square lattice.

r Series~this work! Finite latticeb Linear spin wave theorya

C(r ) Cl(r ) Ct(r ) C(r ) C(r ) Cl(r ) Ct(r )

(1,0) -1.3386~2! -0.572~4! -0.383 -1.344,2 -1.316 -0.2136 -0.551
(1,1) 0.812~6! 0.430~6! 0.191 0.765, 0.82 0.795 0.2136 0.291
(2,0) 0.712~10! 0.408~10! 0.152 0.84, 0.71 0.673 0.2136 0.230
(3,0) -0.60~2! -0.386~10! -0.11 -0.75, -0.60 -0.526 -0.2136 -0.156
(4,0) 0.54~3! 0.376~20! 0.08 2, 0.53 0.440 0.2136 0.113

aFrom exact diagonalizations,N526 ~Ref. 17!, and projector Monte Carlo~Ref. 20!.
bFor r5(1,0) we also have results from second and third order spin-wave theory~Ref. 27!, which give for C, Cl and Ct respectively
21.3408,20.672,20.334~second order! and -1.3400, -0.575, -0.383~third order!.
5-4
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TABLE V. Nonzero coefficients of various correlator series for theS5
1
2 antiferromagnet on the simple cubic lattice (t50).

Power ofl C(r ) Cl(r ) Ct(r )

r5(1,0,0)
0 -1.000000000 -1.000000000 0.000000000
1 -4.00000000031021 0.000000000 -2.00000000031021

2 2.00000000031021 2.00000000031021 0.000000000
3 2.66666666731023 0.000000000 1.33333333331023

4 -2.00000000031023 -2.00000000031023 0.000000000
5 -1.25225675631022 0.000000000 -6.26128377831023

6 1.04354729631022 1.04354729631022 0.000000000
7 -5.01810803931023 0.000000000 -2.50905401931023

8 4.39084453431023 4.39084453431023 0.000000000
9 -3.49002075731023 0.000000000 -1.74501037931023

10 3.14101868331023 3.14101868331023 0.000000000
11 -2.40001143631023 0.000000000 -1.20000571831023

12 2.20001048431023 2.20001048431023 0.000000000

r5(1,1,0)
0 1.000000000 1.000000000 0.000000000
2 -1.60000000031021 -2.40000000031021 4.00000000031022

4 1.76654321031022 7.56790123431024 8.45432098831023

6 -3.63658852631023 -1.22643885631022 4.31390001831023

r5(2,0,0)
0 1.000000000 1.000000000 0.000000000
2 -2.00000000031021 -2.40000000031021 2.00000000031022

4 1.25135802531022 -1.10617284031023 6.80987654331023

6 -4.63276155531023 -1.26244864631022 3.99586245431023

8 -9.04256895531024 -5.55806190531023 2.32690250531023

r5(3,0,0)
0 -1.000000000 -1.000000000 0.000000000
1 0.000000000 0.000000000 0.000000000
2 2.40000000031021 2.40000000031021 0.000000000
3 -8.14814814831023 0.000000000 -4.07407407431023

4 1.55061728431023 1.55061728431023 0.000000000
5 -5.45892687631023 0.000000000 -2.72946343831023

6 1.29298004931022 1.29298004931022 0.000000000
7 -4.26117889131023 0.000000000 -2.13058944531023

r5(4,0,0)
0 1.000000000 1.000000000 0.000000000
2 -2.40000000031021 -2.40000000031021 0.000000000
4 -4.09876543231024 -1.64444444431023 6.17283950631024

6 -1.13120767631022 -1.29704617631022 8.29192498531024
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III. THE TWO-DIMENSIONAL CASE

There has been much interest, in recent years, in the
ture of the ground state of the Heisenberg antiferromagne
the square lattice. There is considerable evidence, from e
diagonalizations16–18 and quantum Monte Carlo calcu
lations19–21that the ground state breaks rotational symme
giving rise to a staggered magnetization in some direct
This is generally referred to as a quantum Ne´el state, with
Néel type order reduced to;60% of its classical value by
quantum fluctuations. The situation is summarized in
06442
a-
n
ct

,
n.

-

cent reviews.22,23The focus has generally been on the grou
state energy and staggered magnetization, although s
short range correlators have also been computed.

In any finite system there can be no spontaneous sym
try breaking and hence the exact diagonalization and Mo
Carlo studies cannot distinguish between the longitudi
and transverse correlators for the isotropic case. Furtherm
if Cl or Ct are computed by these methods the values w
not yield correct results for the thermodynamic limit, whe
Cl5” Ct .

Other approaches, such as spin wave~SW! theory,24–27
5-5



g
e

al-
el
pi

r

ie

to

s
on
r

-
ts
so
f
re

E
rs

i
to
c
a
ig

not

the
ari-
the

ave

gi-

sh-

r-
hod
ite

ad,

ich
xi-
he
her

der

f
se

ZHENG WEIHONG AND J. OITMAA PHYSICAL REVIEW B63 064425
variational methods,28 or perturbation series about the Isin
limit 27,29 start from a broken symmetry state, which is pr
served during the calculation. It seems highly likely,
though we know of no proof, that these approaches will yi
the correct symmetry-broken state of the infinite isotro
system.

We have computed series expansions for a numbe
local correlators for the square latticeS5 1

2 antiferromagnet.
The expansions start from the Ising limit and are carr
through order 14,9,9,9,7 forC(r ), Cl(r ) with r5(0,1),
~1,1!, ~2,0!, ~3,0!, ~4,0!. The series coefficients~for t50) are
given Table III.

In analyzing the series it is advantageous to transform
new variable

d512~12l!1/2, ~16!

to remove the singularity atl51. Spin wave theory predict
a square root singularity of this type. This transformati
was first proposed by Huse30 and was also used in earlie
work on the square lattice case.27 We then use both inte
grated first-order inhomogeneous differential approximan14

and Pade´ approximants to extrapolate the series to the i
tropic pointd51 (l51). In the Appendix, we give a brie
summary of the analysis method, with an example. The
sults are shown as functions ofl in Fig. 2 for r5(1,0),~1,1!.
We also show the transverse correlator, obtained from
~3b!. In the Ising limit the total and longitudinal correlato
are equal and the transverse correlator is zero. As we
crease the transverse coupling, the longitudinal correla
decrease in magnitude while, as expected, the transverse
relators increase, while the total correlator increases in m
nitude for nearest neighbors, but is reduced for second ne

FIG. 4. Correlators for nearest and next-nearest neighbors
the simple cubic lattice. Full, dashed, and dotted lines repre
total, longitudinal, and transverse correlators, respectively.
06442
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bors. The behavior of further correlators is similar, and is
shown. It is also noteworthy that atl51 the longitudinal
and transverse correlators remain unequal, reflecting
symmetry broken ground state. In Fig. 3 we show a comp
son between our series results and other methods for
nearest neighbor correlators. For smalll all methods are in
close agreement, but near the isotropic point linear spin w
theory become poor for longitudinal~and transverse! correla-
tors, whereas exact finite lattice diagonalizations have lon
tudinal and transverse correlators equal atl51. Third order
spin-wave theory is much better, being almost indistingui
able from the series results over the whole range ofl.

In Table IV we give numerical estimates of all the cor
elators at the isotropic point, obtained by our series met
and by exact diagonalization–Monte Carlo on fin
lattices17,20and linear spin wave theory.6 We believe that the
expressions in Ref. 6 contain minor errors, and should re
for 0 andr on the same sublattice

^S0•Sr&5S21SS 12
2

N
(

k

12cosk• r

A12 l2gk
2 D 1••• , ~17!

^S0
zSr

z&5S21SS 12
2

N (
k

1

A12l2gk
2D 1•••,

while for 0 andr on different sublattices

^S0•Sr&52S22SS 12
2

N (
k

12lgkcosk•r

A12l2gk
2 D 1•••,

~18!

^S0
zSr

z&5S21SS 12
2

N (
k

1

A12l2gk
2D 1•••,

where the notation is as in Ref. 6, andl is the anisotropy
parameter.

We note from Eqs.~17! and ~18! and Table IV that first
order spin-wave theory gives a longitudinal correlator wh
is independent of distance, clearly an artifact of the appro
mation. The total correlator is however consistent with t
series results. The picture is considerably improved in hig

TABLE VI. Values of correlators for the isotropicS5
1
2 Heisen-

berg antiferromagnet on the simple cubic lattice.

r Series~this work! Linear spin wave theorya

C(r ) Cl(r ) Ct(r ) C(r ) Cl(r ) Ct(r )

(1,0,0) -1.2028~3! -0.775~3! -0.214 -1.1943 -0.6866 -0.2539
(1,1,0) 0.857~2! 0.683~8! 0.087 0.8440 0.6866 0.0787
(2,0,0) 0.807~2! 0.684~8! 0.061 0.7900 0.6866 0.0517
(3,0,0) -0.768~8! -0.676~8! -0.046 -0.7317 -0.6866 -0.0226
(4,0,0) 0.755~8! 0.672~8! 0.041 0.7097 0.6866 0.0116

aFor r5(1,0,0) we also have results from second and third or
spin-wave theory~Ref. 27!, which give forC, Cl , andCt respec-
tively 21.2038,20.7756,20.2141 ~second order! and -1.2033,
-0.770~2!, -0.2165~9! ~third order!.
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TABLE VII. The results of$m/n/ l % integrated differential approximants to the series ind for Cl(r ) in the
square lattice withr5(1,1) and the strength of local staggered fieldt50 and 0.5. An asterisk denotes
defective approximant.

n $(n22)/n/ l % $(n21)/n/ l % $n/n/ l % $(n11)/n/ l % $(n12)/n/ l %

l 50 andt50
n51 0.43718 0.44015 0.43989
n52 0.43979 0.43758
n53

l 51 andt50
n51 0.44040 *
n52 0.43017

l 50 andt50.5
n51 0.36788 * 0.46865
n52 0.47864* 0.44338 0.43180 0.43299
n53 0.41540 0.41979 0.43291 0.43341 0.43303
n54 * 0.43326 0.43296
n55 0.43131

l 51 andt50.5
n51 0.05032*
n52 0.42988 0.40929 0.43366 0.43336
n53 0.41873 * 0.43335 0.43323
n54 0.42953

l 52 andt50.5
n51 0.47279 0.21519* 0.49440
n52 0.38870 0.41838 0.43031 0.43313 0.43151
n53 0.41813 0.43194 0.43094
n54 0.43053

l 53 andt50.5
n51 0.42163 0.46727*
n52 0.50773* 0.43001 0.43036 0.43108
n53 0.43944 0.43105
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order spin-wave theory where, for example, third order s
wave theory27 gives 3-figure agreement with series for all
C, Cl , andCt for nearest neighbors. We have not attemp
to carry this out for further neighbors, and are unaware
any work along these lines.

IV. THE THREE-DIMENSIONAL CASE

We have used the same series approach to calculate
relators for theS5 1

2 antiferromagnet on the simple cub
lattice. The magnetically ordered ground state will again
reflected in a difference between longitudinal and transve
correlators at the isotropic limit.

Expansions, starting from the Ising limit, have been o
tained forC(r ), Cl(r ) for the five casesr5(1,0,0),~1,1,0!,
~2,0,0!, ~3,0,0!, ~4,0,0! to order 12,7,9,7,7 respectively. W
have again used a staggered field termt( i(21)iSi

z to im-
prove convergence. The series coefficients~for t50) are
given in Table V. The series is extrapolated in a similar w
as that for the square lattice. Figure 4 shows the nearest
next-nearest neighbor correlators as functions of the an
ropy parameters. This is qualitatively similar to Fig. 2, b
clearly shows that in 3-dimensions transverse correlators
06442
n

d
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or-

e
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-

y
nd
t-

t
re

reduced and the difference between transverse and lon
dinal correlators is increased for all values of the anisotro
parameter.

In Table VI we give numerical estimates of all correlato
at the isotropic point, and a comparison with first order sp
wave theory. It is apparent that the correlators fall off mo
slowly with distance than in the two-dimensional case,
flecting the greater stability of antiferromagnetic long-ran
order in the ground state in 3-dimensions. It is also appa
that the transverse correlators are, relatively, much weake
3-dimensions, consistent with weaker quantum fluctuatio
Linear spin-wave theory gives reasonable results for the t
correlators, but again suffers from the defect of having lo
gitudinal correlators independent of distance. Third-ord
spin-wave theory gives results for nearest neighbor corr
tors in excellent agreement with the series results.

V. CONCLUSIONS

We have used series methods to obtain numerical e
mates for short-distance ground state correlation functi
for the S5 1

2 Heisenberg antiferromagnet on square a
simple cubic lattices. Despite their importance in characte
5-7
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ing the nature of the antiferromagnetic ground state, th
appears to have been little previous work on the subject

The series approach is able to provide rather precise
mates for correlators up to at least 4 lattice spacings.
results reflect the known breaking of rotational symmetry
the ground state, in that longitudinal and transverse corr
tors remain unequal even in the isotropic Hamiltonian lim
Exact diagonalizations and Monte Carlo calculations on
nite lattices are unable to account for this and hence will
yield correct estimates for longitudinal and transverse c
elators separately. In 3-dimensions no results are avail
from diagonalizations or quantum Monte Carlo, beyo
nearest neighbors.

We have shown that first-order spin wave theory giv
rather poor estimates but second and third order spin w
theory gives excellent agreement with series results
nearest-neighbor correlators. Higher order spin wave res
have not been obtained for further correlators, to our kno
edge.

As a test of the method we also computed correlat
series for the one-dimensional case. The results were q
titatively accurate, but less precise than the DMRG meth

This approach can also be used to calculate correlator
more complex models involving competing interactions. F
example, we have studied theJ12J2 model,31 which has a
quantum critical point atJ2 /J1.0.38, where the Ne´el order
is destroyed and the system enters a magnetically disord
spin-liquid phase. We find that the difference between lon
tudinal and transverse correlators remains nonzero in
Neél phase, but vanishes at the quantum critical point, in
cating a restoration of full rotational symmetry in the grou
state at that point. We expect this method to prove usefu
other problems of this type.
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APPENDIX: SOME DETAILS OF SERIES ANALYSIS

For the reader who is not familar with series analy
techniques, we give here a brief summary.

We have employed the standard techniques of integra
differential approximants and naive Pade´ approximants14 to
extrapolate the series. The integrated differential appro
mants are a natural generalization of the Pade´ approximant,
and can approximate more general types of singularitie14

The $m/n/ l % first-order inhomogeneous differential approx
mant to a function

f ~l!5 (
n>0

anln

is a function of polynomialsPn , Qm andRl of degreen, m,
and l respectively, satisfying the differential equation:

Pn~l!
d f~l!

dl
1Qm~l! f ~l!1Rl~l!50~ln1m1 l 12!.

~A1!

Once Pn , Qm and Rl are determined order-by-order from
Eq. ~A1!, the approximant is the function which satisfies E
~A1! with the right-hand side replaced by zero. It may
found by numerical integration.

The results of integrated differential approximants for s
ries Cl(r ) in square lattice withr5(1,1) and strength of
local staggered fieldt50 and 0.5 are given in Table VII
Disregarding the outlying approximants we estima
Cl(1,1)50.43060.006, where the error is an estimated co
fidence limit.
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