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Local spin correlations in Heisenberg antiferromagnets
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We use linked cluster series expansion methods to estimate the values of various short distance correlation
functions inS=1/2 Heisenberg antiferromagnetsTat 0, for dimensiond=1,2,3. The method incorporates
the possibility of spontaneous symmetry breaking, which is manifedt=2,3. The results are important in
providing a test for approximate theories of the antiferromagnetic ground state.
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_ . INTRODUCTION _ t2;(—1)'S* in Hy, and subtract it fromV, and adjust the
This paper deals with the problem of calculating correla~gyengiht to get best convergence in the series. The basic

tion functions, aff =0, for theS= 1/2 Heisenberg antiferro- je5 of the method has been discussed béfose we only

magnet give brief details here. The ground state energy for a lattice
of N sites can be written as a sum of contributions from all
H=2J> S-S, (1)  connected clusters as
()
where the sum is over all nearest neighbor pairs. We con- Eo(N\)=2, CcNe,(\), (6)

sider explicitly the linear chaind=1), the square lattice
(d=2) and the simple cubic lattical&3). The correlation

N . .
functions(correlators are defined as whereC,, is the embedding constant for clusteande,,(\)

is a “cumulant energy” of cluster, as defined below. The
C(N=4S-S.)o=Ci(r)+2C(r), ) ground state energy for a finite clust@rcan be written in a

similar way, in terms of the cumulant energies of its subclus-
where the average is a ground state expectation valsghe  terg,

distance between sites in units of the lattice parameter, and
the factor 4 is included for convenience. It is also convenient 8 s
to separate the correlator into a longitudinal f&aytr) and a Eo(M)= 20:4 Ci€a(N). @)
transverse par€(r)
These equations allow the cumulant energies to be deter-

Ci(r)=4(SS{.)o. (3@  mined recursively. The cluster energies are obtained as per-
L . turbation series inA through an efficient computerized
Ci(r)=2(S'S+99.)0=(S' S+ +S Siro- Rayleigh-Schrdinger perturbation algorithm. To compute

(3b) series for the correlatdZ(r) in powers ofA we add a field

C, and C, will differ if the Hamiltonian is generalized to term toH
include Ising anisotropy

H=Ho+A\V+hY S-S, ®)
H=232 [SIS+N(S'S'+99)] 4 |
() compute the ground state energy in the form

as we shall do, or if the ground state of the isotropic Hamil-

tonian exhibits spontaneous symmetry breaking. We shall TABLEI Estimates of the total correlato(r) for the isotro-

see that this occurs in dimensidi 1. pic S=3 5 antiferromagnetic chaifEg. (4) in text] from exact diago-
The correlators characterize the nature of the ground stafélizations(Ref. 8 and seriesthe present work

of the system, and hence an accurate knowledge of their

values can be important for testing approximate analytic Exact diagonalization Series expansion
theories. Surprisingly, apart from the one-dimensiod&) ' + finite size scalingRef. § evaluated ah =1
case, knowledge of their values is limited. -1.77246) -1.7732)
We use the method of linked cluster expansions in WhICl‘Q 0.7279%6) 0.7303)
the Hamiltonian is written as 3 -0.60273) -0.58415)
H=Hg+\V 5 2 0.415810) 0.40820)
5 -0.370510) -0.383)
with the Ising part taken as the unperturbed Hamiltonian an@ 0.294612) 0.324)
the remainder as a perturbation. To improve the convergence -0.269720)
of the series and to check the reliability of the series extrapos 0.228@20)

lation, we also include a local staggered field term
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TABLE II. Coefficients of correlator series for tf&t% antiferromagnetic chain far=4.

Power of\ C(4) Ci(4) Ci(4)

0 1.000000000 1.000000000 0.000000000

2 -2.000000000 -2.000000000 0.000000000

4 2.000000000 5.000000080* 7.500000006 10~ *

6 2.500000008 10~ * 2.375000000 -1.062500000

8 -1.265625000 -2.250000000 4.921875800 *

10 3.281250008 10 * 5.546875006 10 * -1.132812506: 10 *

12 -4.296875078 10 2 -1.86523437% 10 * 7.17773434% 10 2

14 1.225585918 10 * 2.441406766 10 2 4.90722616% 10 2

16 6.085209298 102 7.09915658% 10 2 -5.06973642% 102

18 5.311830238 10 ° 4.90281021% 10 ? -2.18581359% 102

20 -9.656318929 102 2.49370699% 10 2 -1.72966944% 102

22 7.884341058 10 °
Eo(N,h)=Eyx(N)+hNC(r)/4+0O(h?), 9) and elementary excitations are given by simple analytic ex-

pressions. However the wavefunction is sufficiently complex
that little exact information is available on correlators. In fact
only the first two are known exactly, and are

and hence extract series infor C(r). For the longitudinal
correlator the field term ibX;S’S/, , . Examples are given in
the following sections.

Two important questions are not addressed in this work: 1
(i) the behavior of correlators at large distances, and the (S-S+1)=(1-4In2)=—-0.4431%4 . . .,
asymptotic behavior and associated critical exponetits; 4
correlators at finite temperature. (10
1
II. THE ONE-DIMENSIONAL CASE (S:S+2)=;(1-16In2+9¢(3))=0.18203. . ..

The S=3 antiferromagnetic Heisenberg chain is exactly : :
The first result comes from the ground state enérgile
solvable by the Bethe ansat?.and the ground state energy the second is obtainédia the strong coupling limit of the

SRR B B B B Hubbard model. There is no spontaneous symmetry breaking
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FIG. 1. CorrelatorsC(r) for the S=3 antiferromagnetic chain A
forr=1,2,...,6. Theull lines give the total correlato€(r), the
dashed lines give G,(r). Curves for different are labeled at the FIG. 2. Correlators for nearest and next-nearest neighbors for

right hand edge. The circles at=1 are the values from the finite- the square lattice, for varying anisotropy parameterull lines
lattice calculationgRef. 8. Note that at the isotropic point=1 denote the total correlatd(r), dashed lines the longitudinal cor-
the longitudinal and transverse correlator are equal. relatorC,(r), and dotted lines the transverse correla@o(r).
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TABLE Ill. Nonzero coefficients of various correlator series for ﬂﬁe% antiferromagnet on the square lattide=Q).

Power of\ C(r) Ci(r) Ci(r)

r=(1,0)

0 -1.000000000 -1.000000000 0.000000000

1 -6.66666666% 10~ * 0.000000000 -3.333333333.0°*

2 3.333333333 10 * 3.33333333310°* 0.000000000

3 7.40740740% 103 0.000000000 3.70370376410 2

4 -5.555555556 10 3 -5.555555556 10 ° 0.000000000

5 -1.897883598 10 2 0.000000000 -9.4894179890 °

6 1.58156966% 102 1.58156966% 10 2 0.000000000

7 -1.32034055% 10 2 0.000000000 -6.6017027%010 2

8 1.15529798% 102 1.15529798% 10 2 0.000000000

9 -6.23701298% 10 0.000000000 -3.11850649210 2

10 5.613311688 1073 5.61331168% 103 0.000000000

11 -5.806609918 1073 0.000000000 -2.9033049%710 2

12 5.32272575% 103 5.32272575% 103 0.000000000

13 -4.231435008 102 0.000000000 -2.11571756210 2

14 3.929189658 10 2 3.92918965% 10 2 0.000000000
r=(1,1)

0 1.000000000 1.000000000 0.000000000

2 -2.22222222% 1071 -4.44444444% 1071 1.11111111%10°*

4 3.44444444% 102 4.56790123% 10 1.493827166 10 2

6 7.31435290% 104 -1.97903530k 10 2 1.026089415% 102

8 -1.58206057% 103 -1.47501580% 10 2 6.58404872% 103
r=(2,0)

0 1.000000000 1.000000000 0.000000000

2 -3.33333333310° ¢ -4.44444444% 1071 5.555555556 102

4 4.246913588 10 2 -1.66666666% 102 2.95679012% 10 2

6 3.66683253% 10 ° -1.35393018k 10 ? 8.60306717% 10 2

8 -3.706741518 103 -1.78606763% 10 2 7.07696741x 103
r=(3,0)

0 -1.000000000 -1.000000000 0.000000000

1 0.000000000 0.000000000 0.000000000

2 4.44444444% 101 4.44444444% 1071 0.000000000

3 -3.88888888% 10 2 0.000000000 -1.9444444%0 02

4 2.03703703% 10 2 2.03703703% 10 2 0.000000000

5 -4.035089653 10" 2 0.000000000 -2.0175448%710 2

6 2.05405832% 10 2 2.05405832% 10 2 0.000000000

7 -1.40157425% 102 0.000000000 -7.00787128010 2

8 1.78582245% 10 2 1.78582245% 10 2 0.000000000
r=(4,0)

0 1.000000000 1.000000000 0.000000000

2 -4.44444444% 101 -4.44444444% 1071 0.000000000

4 -1.172839508 10 2 -2.17283950& 10 2 5.000000006 102

6 -1.337086028 103 -2.19864029& 10 2 1.032465846 10 2

in the ground state of the isotropic spin chain, and hence=18. These results suffer from large finite-size effects, and
longitudinal and transverse correlators are equal, and obtaimeed to be extrapolated to the therodynamic limit via a finite-
able directly from Eq(2). size scaling ansatz. In this way Kaplahal. estimated the
The first serious attempts to obtain further results for thevalue of correlators up to 8th neighbors, with confidence
antiferromagnetic chain were by Bonner and Fishaho  limits of about 1% inC(8). We show these values in Table
used exact diagonalizations for systems upNte 10 spins, |. Subsequently Lin and Campeékxtended the exact diago-
and by Kaplan and co-workérsvho extended this td\ nalizations ta\ = 30. By use of the empirical scaling relation
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L predicted by field theory?
: We have described the series method briefly in the Intro-
duction. Using this approach we have computed expansions

~04 in \, for both the total and longitudinal correlators for dis-
i : tancesr=1,2, ...,10. Themaximum order is\?* for r=1
L Series Exp. 7 and\'® for r =10. We note that the longitudinal correlators,
....... 4x4 Finite Lattice Vi and the total correlators fareven, contain only even powers
o 1st order SW ;i | of N. We also note that the series are rather erratic, both in
0.6~ o4 order SW i sign and magnitude of the coefficients. This had already been
i noted by Walker® who expanded the ground state energy,

- ____ 3rd order SW S .
re order Lol and henceC(1), to order \.** Rather than quote all series

here we will make them available to any reader on request.
. Table Il shows the coefficients for the series 6(4),
Ci(4), andC,(4). We note that, as expected, the series for
the transverse correlat@;(r) starts with a term\".

The series have been evaluated for fixedhy means of
_ integrated differential approximantand the values of cor-
relators forr=1,2,...,6 areshown in Fig. 1. The analysis
becomes less precise as the weakly singular poiatl is
approached. We also show in Fig. 1 the extrapolated exact
1 diagonalization results. As can be seen from the figure, and

from Table |, the agreement is very good. It is clear that in

FIG. 3. Comparison between serighis work) and other esti- °N€ _d@mensio_n the series_method_ is not able to match the
mates of the nearest neighbor correlator for the square lattice, fd_?re(_:'s'on C_'f elthe_r scaled finite lattice or DMRG results, _b_Ut
varying anisotropy parametar. in higher dimension these latter methods are not competitive.

Furthermore, as we shall show, the series analysis can be
Cn(F)=C()f(r/IN) (11) made more precise id=2 because the strpnger singulari;y
atA=1 can be removed by a transformation, and the Ising
with expansions used here are more suitabledfar?2, where the
_ . 175 ground state has long range Needer.
f(y)=[1+0.28822sinf(1.673)]"", (12 We should mention here also the work of Singhal®
they estimated correlators up te=15, i.e., 15th neighbors. Who used exactly the same method as ours to compute the
However the accuracy of this scaling is perhaps doubtfuptructure factors
since it is known that there are logarithmic terms which slow
convergence’

The development of the density matrix renormalization
group (DMRG) method! allows much longer chains to be
treated with high numerical accuracy. Hallbegal'? have  and
used DMRG to compute correlators for Heisenberg chains
up toN= 70 spins, with a scaling function similar to Ed.1)
used to extrapolate to the thermodynamic limit. The data
were shown to be consistent with the asymptotic behavior

for the S=3 antiferromagnetic chain. Our correlator series,
C(r)~(=1)"(Inr)¥r (13)  when summed, agree with their results.

c,(1,0),¢(1,0)/3

1 o]
Sz 2 [(-DCG-4sH7T (19
1 oo
S E (—1)"Cy(r) (15)

TABLE IV. Values of correlators for the isotropS:% Heisenberg antiferromagnet on the square lattice.

r Series(this work) Finite lattic& Linear spin wave theofy

C(r) Ci(r) Cy(r) C(r) C(r) Ci(r) Ci(r)
(1,0) -1.33862) -0.5724) -0.383 -1.344~ -1.316 -0.2136 -0.551
(1,1) 0.8126) 0.4306) 0.191 0.765, 0.82 0.795 0.2136 0.291
(2,0) 0.71210) 0.40810) 0.152 0.84, 0.71 0.673 0.2136 0.230
(3,0) -0.6@2) -0.38410) -0.11 -0.75, -0.60 -0.526 -0.2136 -0.156
(4,0) 0.543) 0.37620) 0.08 -, 0.53 0.440 0.2136 0.113

% rom exact diagonalization|=26 (Ref. 17, and projector Monte Carl@Ref. 20.
bFor r=(1,0) we also have results from second and third order spin-wave ttiBefy 27, which give forC, C, and C, respectively
—1.3408;-0.672;- 0.334(second ordgrand -1.3400, -0.575, -0.38&ird ordey.
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TABLE V. Nonzero coefficients of various correlator series for Ehe% antiferromagnet on the simple cubic lattide=0).

Power ofA C(r) Ci(r) Ci(r)

r=(1,0,0)

0 -1.000000000 -1.000000000 0.000000000

1 -4.000000008 10~ * 0.000000000 -2.000000080L0 *

2 2.000000008 10~ * 2.000000006 10~ * 0.000000000

3 2.66666666% 10 3 0.000000000 1.33333333310 3

4 -2.000000008 103 -2.000000006x 102 0.000000000

5 -1.252256756 10 2 0.000000000 -6.2612837%810 3

6 1.043547298 10 2 1.043547296.10 2 0.000000000

7 -5.01810803% 10 3 0.000000000 -2.5090540%910 3

8 4.39084453% 10 2 4.39084453% 10 2 0.000000000

9 -3.49002075% 103 0.000000000 -1.7450103%a0 3

10 3.141018688 102 3.14101868% 102 0.000000000

11 -2.400011438 1072 0.000000000 -1.2000057%810 3

12 2.200010484 102 2.20001048% 102 0.000000000
r=(1,1,0)

0 1.000000000 1.000000000 0.000000000

2 -1.600000008 10 * -2.400000006 101 4.000000006 10" 2

4 1.766543218010 2 7.56790123% 104 8.454320988 103

6 -3.636588528 10 ° -1.22643885610 2 4.313900018 103
r=(2,0,0)

0 1.000000000 1.000000000 0.000000000

2 -2.000000008 10 * -2.400000006 10~ * 2.000000006 102

4 1.25135802% 10 2 -1.106172846 10 ° 6.80987654% 103

6 -4.63276155% 102 -1.262448646 10 2 3.99586245% 103

8 -9.04256895% 10 4 -5.55806190% 103 2.32690250% 103
r=(3,0,0)

0 -1.000000000 -1.000000000 0.000000000

1 0.000000000 0.000000000 0.000000000

2 2.400000008 10 * 2.400000006 10 * 0.000000000

3 -8.148148148 10 ° 0.000000000 -4.0740740%410 3

4 1.550617284 102 1.55061728% 102 0.000000000

5 -5.458926876 10 3 0.000000000 -2.729463438.0 3

6 1.292980049 102 1.29298004% 102 0.000000000

7 -4.26117889% 10 3 0.000000000 -2.13058944510 3
r=(4,0,0)

0 1.000000000 1.000000000 0.000000000

2 -2.400000008 10 * -2.400000006 101 0.000000000

4 -4.09876543% 104 -1.64444444% 1073 6.172839506 10 4

6 -1.131207678 102 -1.297046176 10 2 8.29192498% 10 4

IIl. THE TWO-DIMENSIONAL CASE cent reviews2?3The focus has generally been on the ground
state energy and staggered magnetization, although some
@hort range correlators have also been computed.

ture of the ground state of the Heisenberg antiferromagnet on |, any finite system there can be no spontaneous symme-
the square lattice. There is considerable evidence, from exagly breaking and hence the exact diagonalization and Monte
diagonalization®'® and quantum Monte Carlo calcu- Carlo studies cannot distinguish between the longitudinal
lations®~*'that the ground state breaks rotational symmetryand transverse correlators for the isotropic case. Furthermore
giving rise to a staggered magnetization in some directionif C, or C, are computed by these methods the values will
This is generally referred to as a quantumeNstate, with  not yield correct results for the thermodynamic limit, where
Neel type order reduced te-60% of its classical value by C,#C,.

quantum fluctuations. The situation is summarized in re- Other approaches, such as spin wa&gd\V) theory?*~2’
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rrrrrrrr T e T TABLE VI. Values of correlators for the isotrop%%Heisen-
C(1.1,0) ] berg antiferromagnet on the simple cubic lattice.

r Series(this work) Linear spin wave theofy

C(r) Ci(r)  Cr) C(r)  C(r) Cr)
- 1 (1,0,0) -1.20283) -0.7783) -0.214 -1.1943 -0.6866 -0.2539

i C,(1,1,0)_: (1,1,0) 0.8572) 0.6838) 0.087 0.8440 0.6866 0.0787
0 e : . (2,0,0) 0.8072) 0.6848) 0.061 0.7900 0.6866 0.0517
= T e 1 (3,0,0) -0.768) -0.6768) -0.046 -0.7317 -0.6866 -0.0226
8 I c:('i".'dlb')"i (4,0,0) 0.758) 0.6748) 0.041 0.7097 0.6866 0.0116
05 B i %orr=(1,0,0) we also have results from second and third order

L - spin-wave theoryRef. 27, which give forC, C,, andC, respec-
- C(1,0.0) 1 tively —1.2038;-0.7756;-0.2141 (second ordgr and -1.2033,
=" -0.77Q2), -0.216%9) (third ordey.

-1 == N , o ,
\_: bors. The behavior of further correlators is similar, and is not
shown. It is also noteworthy that at=1 the longitudinal

R I(f(ll’ol’o)l 1 and transverse correlators remain unequal, reflecting the
0 0.2 0.4 0.8 0.8 1 symmetry broken ground state. In Fig. 3 we show a compari-
A son between our series results and other methods for the

i nearest neighbor correlators. For smalill methods are in
FIG. 4. Correlators for nearest and next-nearest neighbors fog|ose agreement, but near the isotropic point linear spin wave
the simple cubic lattice. Full, dashed, and dotted lines represeqheory become poor for longitudinénd transverdecorrela-
total, longitudinal, and transverse correlators, respectively. tors, whereas exact finite lattice diagonalizations have longi-
tudinal and transverse correlators equal at1. Third order

variational method&® or perturbation series about the Ising spin-wave theory is much better, being almost indistinguish-

tnit 27,29 I i - .
limit start from a broker_1 symmetry state, Wh'c.h IS 'Pre-able from the series results over the whole range .of
served during the calculation. It seems highly likely, al-

thouah K f f that th h il vield In Table IV we give numerical estimates of all the corr-
ough we know ot no proot, that these approaches Will yI€10, | 34q5 at the isotropic point, obtained by our series method
the correct symmetry-broken state of the infinite isotropic

¢ and by exact diagonalization—Monte Carlo on finite
system. lattices"?°and linear spin wave theofy\We believe that the

| V\Ile havletcon;pu;ﬁd SEres Ie><tri'3_gr;3|lonst_1;or a numbter g xpressions in Ref. 6 contain minor errors, and should read,
ocal correlators for the square latti€e= ; antiferromagnet. dfor 0 andr on the same sublattice

The expansions start from the Ising limit and are carrie

through order 14,9,9,9,7 fo€(r), Ci(r) with r=(0,1), 2 1—cosk-r
(1,1, (2,0, (3,0), (4,0. The series coefficientor t=0) are (SO-Sr):SZ+S 1—— E —) +..., (17
given Table lIl. Nk (1- 2292

In analyzing the series it is advantageous to transform to a

new variable 1

1—— > ——— |+,

to remove the singularity at=1. Spin wave theory predicts while for 0 andr on different sublattices

a square root singularity of this type. This transformation 2 1—x
. ; . vKCOSK - r

was first proposed by Hu¥kand was also used in earlier ($-S)=—-S*-9S 1-—> —) +.,

work on the square lattice caseWe then use both inte- N 1=\

grated first-order inhomogeneous differential approxintdnts (18

and Padeapproximants to extrapolate the series to the iso-

tropic pointé=1 (A=1). In the Appendix, we give a brief 1

surglmgry of the :Emalys?is methodl,al?/vith an exagmple. The re- (SéSf)zSZJrS( 1- Nzk: W) T

sults are shown as functions ®fin Fig. 2 forr=(1,0),(1,D. Yk

We also show the transverse correlator, obtained from Egwvhere the notation is as in Ref. 6, aRdis the anisotropy

(3b). In the Ising limit the total and longitudinal correlators parameter.

are equal and the transverse correlator is zero. As we in- We note from Eqs(17) and (18) and Table IV that first

crease the transverse coupling, the longitudinal correlatorsrder spin-wave theory gives a longitudinal correlator which

decrease in magnitude while, as expected, the transverse cig-independent of distance, clearly an artifact of the approxi-

relators increase, while the total correlator increases in magnation. The total correlator is however consistent with the

nitude for nearest neighbors, but is reduced for second neiglseries results. The picture is considerably improved in higher

ZIN

(Sh=57+S

5=1—(1-\)Y? (16)
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TABLE VII. The results of{m/n/1} integrated differential approximants to the seriegifior C,(r) in the
square lattice withr=(1,1) and the strength of local staggered fietd0 and 0.5. An asterisk denotes a
defective approximant.

n {(n—=2)/n/1} {(n—=1)/n/1} {n/n/l} {(n+1)/n/1} {(n+2)/n/1}
=0 andt=0
n=1 0.43718 0.44015 0.43989
n=2 0.43979 0.43758
n=3
=1 andt=0

n=1 0.44040 *
n=2 0.43017

=0 andt=0.5
n=1 0.36788 * 0.46865
n=2 0.47864 0.44338 0.43180 0.43299
n=3 0.41540 0.41979 0.43291 0.43341 0.43303
n=4 * 0.43326 0.43296
n=5 0.43131

I=1 andt=0.5
n=1 0.05032
n=2 0.42988 0.40929 0.43366 0.43336
n=3 0.41873 * 0.43335 0.43323
n=4 0.42953

|=2 andt=0.5
n=1 0.47279 0.21519 0.49440
n=2 0.38870 0.41838 0.43031 0.43313 0.43151
n=3 0.41813 0.43194 0.43094
n=4 0.43053

|=3 andt=0.5
n=1 0.42163 0.46727
n=2 0.50773 0.43001 0.43036 0.43108
n=3 0.43944 0.43105

order spin-wave theory where, for example, third order spirreduced and the difference between transverse and longitu-
wave theor§’ gives 3-figure agreement with series for all of dinal correlators is increased for all values of the anisotropy
C, C,, andC; for nearest neighbors. We have not attemptedoarameter.

to carry this out for further neighbors, and are unaware of In Table VI we give numerical estimates of all correlators

any work along these lines. at the isotropic point, and a comparison with first order spin-
wave theory. It is apparent that the correlators fall off more
IV. THE THREE-DIMENSIONAL CASE slowly with distance than in the two-dimensional case, re-

flecting the greater stability of antiferromagnetic long-range
We have used the same series approach to calculate cajrder in the ground state in 3-dimensions. It is also apparent
relators for theS= 3 antiferromagnet on the simple cubic that the transverse correlators are, relatively, much weaker in
lattice. The magnetically ordered ground state will again be3-dimensions, consistent with weaker quantum fluctuations.
reflected in a difference between longitudinal and transversginear spin-wave theory gives reasonable results for the total
correlators at the isotropic limit. correlators, but again suffers from the defect of having lon-
Expansions, starting from the Ising limit, have been ob-gitudinal correlators independent of distance. Third-order
tained forC(r), C(r) for the five cases=(1,0,0),(1,1,0,  spin-wave theory gives results for nearest neighbor correla-
(2,0,0, (3,0,0, (4,0,0 to order 12,7,9,7,7 respectively. We tors in excellent agreement with the series results.
have again used a staggered field ted(—1)'S to im-
prove convergence. The series coefficie(fte t=0) are V. CONCLUSIONS
given in Table V. The series is extrapolated in a similar way
as that for the square lattice. Figure 4 shows the nearest and We have used series methods to obtain numerical esti-
next-nearest neighbor correlators as functions of the anisotnates for short-distance ground state correlation functions
ropy parameters. This is qualitatively similar to Fig. 2, butfor the S=% Heisenberg antiferromagnet on square and
clearly shows that in 3-dimensions transverse correlators agmple cubic lattices. Despite their importance in characteris-
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ing the nature of the antiferromagnetic ground state, ther®leg Sushkov for stimulating our interest in this problem.
appears to have been little previous work on the subject. The computation has been performed on Silicon Graphics
The series approach is able to provide rather precise estRower Challenge and Convex machines. We thank the New
mates for correlators up to at least 4 lattice spacings. Th&outh Wales Centre for Parallel Computing for facilities and
results reflect the known breaking of rotational symmetry inassistance with the calculations.
the ground state, in that longitudinal and transverse correla-
tors remain unequal even in the isotropic Hamiltonian limit. APPENDIX: SOME DETAILS OF SERIES ANALYSIS
Exact diagonalizations and Monte Carlo calculations on fi-
nite lattices are unable to account for this and hence will not For the reader who is not familar with series analysis
yield correct estimates for longitudinal and transverse corrtechniques, we give here a brief summary.
elators separately. In 3-dimensions no results are available We have employed the standard techniques of integrated
from diagonalizations or quantum Monte Carlo, beyonddifferential approximants and naive Paagproximant¥' to
nearest neighbors. extrapolate the series. The integrated differential approxi-
We have shown that first-order spin wave theory givegnants are a natural generalization of the Pagproximant,
rather poor estimates but second and third order spin wavand can approximate more general types of singularities.
theory gives excellent agreement with series results folhe{m/n/l} first-order inhomogeneous differential approxi-
nearest-neighbor correlators. Higher order spin wave result®ant to a function
have not been obtained for further correlators, to our knowl-
edge. _ n
As a test of the method we also computed correlation f()‘)_go anh
series for the one-dimensional case. The results were quan-
titatively accurate, but less precise than the DMRG methodis @ function of polynomial®,, Q. andR, of degreen, m,
This approach can also be used to calculate correlators f@nd| respectively, satisfying the differential equation:
more complex models involving competing interactions. For

example, we have studied tidg—J, model®! which has a df(n) o nemilin
quantum critical point afl,/J;=0.38, where the Nal order Pr(M) dx FQm(MT)+RI(M)=0(x )-
is destroyed and the system enters a magnetically disordered (A1)

spin-liquid phase. We find that the difference between longi- ,

tudinal and transverse correlators remains nonzero in th€Nc€Pn, Qm and R, are determined order-by-order from
Ned phase, but vanishes at the quantum critical point, indi-£9: (A1), the approximant is the function which satisfies Eq.
cating a restoration of full rotational symmetry in the ground (A1) With the right-hand side replaced by zero. It may be
state at that point. We expect this method to prove useful ifoUnd by numerical integration.

other problems of this type. The results of integrated differential approximants for se-
ries C,(r) in square lattice withr=(1,1) and strength of
ACKNOWLEDGMENTS local staggered field=0 and 0.5 are given in Table VII.

Disregarding the outlying approximants we estimate
This work forms part of a research project supported by &,(1,1)=0.430+ 0.006, where the error is an estimated con-
grant from the Australian Research Council. We thank Drfidence limit.
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