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Green’s function approach to the neutron-inelastic-scattering determination of magnon dispersion
relations for isotropic disordered magnets

Andrzej Czachor and Housni Al-Wahsh
Institute of Atomic Energy, S´wierk, 05-400 Otwock, Poland

~Received 22 January 1999; revised manuscript received 13 October 2000; published 23 January 2001!

To determine the neutron inelastic coherent scattering~NIS! cross section for disordered magnets a system
of equations of motion for the Green functions~GF! related to the localized-spin correlation functions
^SR

1SR8
2 &, ^SR

2SR8
2 &, and^SR

z SR8
2 & has been exploited. The higher-order Green functions are decoupled using a

symmetric ‘‘equal access’’~EA! form of the random-phase approximation~RPA! decoupling scheme. The
quasicrystal approximation was applied to construct the space-time Fourier transformed GF^GQ

12(v)& related
to neutron scattering. On assuming isotropy of the magnetic structure and a short range coupling between the
spins ~on the sphere approximation! we have found an explicit analytic form of this function. Poles of the
^GQ

12(v)& determine the dispersion relationv5vQ for elementary excitations, such as they are seen in the
NIS experiment—the positions of the NIS profile maxima in thev-Q space. Single formula for the dispersion
relations derived here covers a variety of isotropic spin structures: in particular disordered ‘‘longitudinal’’
ferromagnets (v;Q2, Q→0), disordered ‘‘transverse’’ spin structures (v;Q, Q→0), and some intermedi-
ate cases. It should be emphasized that in particular it works for transverse antiferromagnets. For the system of
spins coupled identically—the Kittel-Shore-Kac model magnet—the magnetization and the magnetic suscep-
tibility calculated within the present EA-RPA approach do agree with the results of exact calculations. It
provides an interesting insight into the nature of the RPA treatment of the localized spin dynamics in magnets.

DOI: 10.1103/PhysRevB.63.064419 PACS number~s!: 75.50.Kj, 65.40.2b
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I. INTRODUCTION

The random phase approximation~RPA! in the Green’s
function ~GF! theory is a theoretical framework both conv
nient and effective for interpretation and forecasting of va
ous characteristics of matter. For ordered crystalline syst
even with a relatively simple version of the RPA one c
achieve a fairly good description. On the other hand dis
dered systems, very fashionable today, are m
demanding—here one has to look for a more general for
lation of the theory. In this work we introduce a generaliz
tion of the usual RPA procedure for crystalline magne
which allows us to evaluate the neutron inelastic scatte
cross section, and some other characteristics, for magne
general, including disordered ones.

The RPA in the theory of spin-spin correlations, intr
duced by Tyablikov,1 and quoted by Zubarev in his treatis2

on the Green’s functions method, concerned originally sp
S51/2 localized at the lattice sitesl, coupled isotropically,

Jll 8
aa85daa8Jl 2 l 8 and ferromagnetically. Using this metho

one can determine the spin-spin correlation functions and
them to calculate such characteristics as magnetization, m
netic susceptibility, and neutron inelastic scattering~NIS!
cross section. To do it one has to solve the equation of
tion for the two-point~or two-spin! GF given below~in stan-
dard notation for spin operators!

Gll 8
12

~ t2t8![^^Sl
1~ t !,Sl 8

2
~ t8!&&

52 iu~ t2t8!^@Sl
1~ t !,Sl 8

2
~ t8!#&T , ~1!

where@Sl
1(t),Sl 8

2(t8)# is the commutator of the spin opera
tors involved, ^x&T5tr@x exp(2bH)#tr@exp(2bH)# is the
0163-1829/2001/63~6!/064419~12!/$15.00 63 0644
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thermal average of the operatorx, H is the Hamiltonian,t is
time, b51/kBT, and T is the temperature of the system
There appears in the equation a three-point GF, which
difficult to determine. The original Tyablikov’s version o
the RPA is given by the following decoupling scheme f
this GF:

^^Sl
z~ t !Sl 8

1
~ t !,Sl 9

2
~ t8!&&>^Sl

z&T^^Sl 8
1

~ t !,Sl 9
2

~ t8!&&. ~2!

The ferromagnet in the RPA shows the spin-wave type of
magnetic susceptibility at low temperature:x(0)2x(T)
'T3/2, while just below theTC it shows the mean-field-
approximation~MFA! behavior with the critical indexb
51/2. One can see that fluctuations related to theSz operator
are not included in such approximation.

There were several attempts to generalize this decoup
scheme for perfect crystals, aimed at more realistic mode
crystalline ferromagnets. A general idea behind them wa
create a linear combination of all two-point Green’s fun
tions one can set up from the three or four-point GF’s
volved, and then multiply each two-point GF by the prope
weighted thermal average of the operators not includ
omitted in the previous step. The Callen3 generalization of
the Tyablikov decoupling consists in introducing the deco
pling factor weighting expected deviations of theSz from the
value S, and results in a more satisfactory behavior of t
magnetization vs.T, than the former one. Several other i
genious methods of decoupling have been proposed, and
review of them and their motivations has been given in
paper of Kumar and Gupta.4 Here let us explicitly mention
only the decoupling procedure introduced later by Czac
and Holas,5 which is such as the one given by the Eq.~2! but
with the right-hand side~RHS! multiplied by the magnetiza-
tion dependent factork(^Sz&T). With an appropriate choice
©2001 The American Physical Society19-1
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ANDRZEJ CZACHOR AND HOUSNI AL-WAHSH PHYSICAL REVIEW B63 064419
of this factor one has the critical indices for the ferroma
netic phase transition such as the ones in the static sca
theory.

To account for weak deviations from periodicity in d
fected crystals, the propagator-based perturbation sche
the ATA ~averageT-matrix approximation! and CPA~coher-
ent potential approximation! have been invented; see the r
view papers of Elliot, Krumhansl, and Leath,6 and Korenblit
and Shender.7 The NIS cross section can be calculated us
them and finite width of the NIS profile appears here due
the so called multiple scattering.

Another trend of investigations concerning the NIS a
the energy spectra of elementary excitations has appeare
ferromagnets far from crystalline order—for amorpho
ferromagnets.8,9 Wave vector is not ‘‘a good quantum num
ber’’ to label elementary excitations in such nonperiodic s
tem, but one can introduce it as the scattering vectorQ of the
neutron scattering experiment. One aims in such case
rectly at the~time and space Fourier transform of the G
involved! function ^GQ

12(v)& appearing in the NIS formula
Also, it seems imperative to account here for departure fr
isotropic interspin coupling—to allow for an occurrence
some central coupling or antisymmetric coupling. The G
equation of motion for such an amorphous ferromagnet
be approximately solved in the approximation similar to t
quasicrystal approximation~QCA! of Hubbard and Beeby10

and in the average local information transfer approximat
~ALITA ! of Czachor.11 It leads to magnon dispersion rela
tions, to be seen in the neutron inelastic coherent scatte
Interestingly, the spectrum of Ising local fields is broad d
to disorder, and just this spectrum, properly deformed,
pears in the ALITA as theQ-const NIS profile for such
amorphous ferromagnets.

Traditionally the discussion of elementary excitations
antiferromagnets was focused on the low-tempera
excitations—the spin waves in AF crystals. Halperin a
Hohenberg12 established the form of the magnon dispers
relations for isotropic and planar magnets in the long-wa
limit, using hydrodynamic arguments. Lee and Liu13 ex-
tended the Callen’s approach to evaluate the magnon en
spectrum, sublattice magnetization, and other characteri
of the two-sublatticeS51/2 antiferromagnet. Singhet al. in-
troduced the GF technique to determine the impact of im
rities on the AF magnon spectra.14 Recently the RPA was
used by Singhet al.15 and by Pratapet al.16 to evaluate the
magnetic characteristics for highly anisotropic crystalline
tiferromagnets in a broad temperature range.

In the present paper we formulate the theory of neut
inelastic scattering in the systems of localized spinsS51/2,
in particular in disordered isotropic magnets. It should
noted that this theory works~among other cases! for trans-
verse antiferromagnetic structures, although it has been for
mulated without the usual crystalline assumption of the
istence of two spin sublattices. It is formulated in terms
the GF’s involving the well-known localized-spin operato
SR

z and spin raising and lowering operatorsSR
1 ,SR

2 , so it is
directly accessible to intuition, transparent, and can be ea
extended to cover a number of magnetic systems. We a
a very symmetric form of the RPA decoupling where all sp
06441
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operators are treated on equal footing. In this way
achieve a rather general description of the spin-spin corr
tions in disordered magnets and give the form of the disp
sion relations of the elementary excitations in them, such
they are seen in the NIS experiment.

As the calculation is rather cumbersome, in order to
rive analytically thê GQ

12(v)& we seek we have introduce
the following simplifying assumptions.

~a! Coupling between the spins is isotropic:JRR8
aa8

5daa8JRR8 , whereR,R8 spin-position vectors.
~b! The system is globally isotropic, i.e., the observab

depend only on the length of the scattering vector:Q5uQu.
~c! Interspin coupling is of a short range—only betwe

close neighbors at the fixed distanceW.
However, once the derivation procedures are maste

some of these assumptions can obviously be released
cover more realistic situations, including possibly t
ALITA theory of crystalline antiferromagnets.

It is assumed here that the system considered is sta
i.e., it is in the state of thermodynamic equilibrium. It mea
that we are not discussing the spin-glass-like nonergodic
reversible systems; see, e.g., Refs. 17 and 18.

II. BASIC NOTIONS FOR THE NEUTRON INELASTIC
SCATTERING

In order to remind basic notions let us consider the sys
of localized vector spins S51/2 characterized by the
Heisenberg-type Hamiltonian

H52
1

2 (
RR8

JRR8
aa8SR

aSR8
a82H(

R
SR

z , ~3!

where SR
a , a5x,y,z are the components of spin operat

assigned to the pointR ~we depart here from lattice vector

and periodic structures!, JRR8
aa8 stays for the interspin cou

pling, JRR
aa850, andH5gHz represents magnetic field wit

g5gmB in the usual notation. Let us introduce the raisi
and lowering spin operatorsSR

65SR
x 6 iSR

y , with usual com-
mutation relations:

@SR
1 ,SR8

2
#52SR

z dR,R8 , @SR8
z ,SR

6#562SR
6dR,R8 .

The neutron inelastic coherent scattering cross sec
~NIS! can be expressed in terms of the time~t! and position
(R) dependent correlation functionŝ SR

1(t),SR8
2 (t8)&,

^SR
2(t),SR8

1 (t8)&, or the corresponding Green’s functio
~GF!, as6

d2sNIS

dVdv
;2FQ

2 @ Im^GQ
12~v1 i«!&1Im^GQ

21~v1 i«!&#,

~4!

whereQ is the neutron scattering vector andv is the neutron
energy ~frequency! change in the scattering process. He
one assumes identical coupling of the neutron probe to
9-2
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GREEN’S FUNCTION APPROACH TO THE NEUTRON- . . . PHYSICAL REVIEW B 63 064419
ferent spins,FQ is the magnetic form factor averaged ov
all spins and there appears the time and space Fourier t
form of the relevant GF

GRR8
12

~v!5E dteivtGRR8
12

~ t !, ~5!

^GQ
12~v!&5

1

N (
RR8

eiQ•~R2R8!GRR8
12

~v!, ~6!

and similar expression for̂GQ
21(v)&. The GRR8

21 (t,t8) is in
the present paper closely related to theGRR8

12 (t,t8):
GRR8

21 (v)5GR8R
12 (2v), see Ref. 19, so we shall usual

mention only the functionsGRR8
12 (t,t8) and ^GQ

12(v)&.
Having calculated thêGQ

12(v)& one can, to a good ap
proximation, evaluate also the spectrum of magnetic exc
tions ~density of states!, while the poles of thêGQ

12(v)&
determine the ‘‘Q-projected’’ dispersion relations for thes
excitations. A justification for such a procedure was given
Ref. 11.

III. GF EQUATIONS OF MOTION FOR ISOTROPIC
MAGNETIC SYSTEMS

In this section we derive the equations of motion for t
GF’s we seek and introduce a generalized form of the R
decoupling to be used here. In the case of isotropic coup
the hamiltonian of the system is of the form

H52
1

2 (
RR8

JRR8~SR
z SR8

z
1SR

1SR8
2

!2H(
R

SR
z . ~7!

To evaluate functionGRR8
12 (t,t8) and related ones one ha

to solve the GF equations of motion derived using the st
dard recipe for Heisenberg operators:i ẋ5@x,H#:

idSR0

1

dt
5@SR0

1 ,H#5(
R

JR0R~SR0

1 SR
z 2SR0

z SR
1!1HSR0

1 ,

idSR0

2

dt
5(

R
JR0R~SR0

z SR
22SR0

2 SR
z !2HSR0

2 ,

idSR0

z

dt
5

1

2 (
R

JR0R~SR0

2 SR
12SR0

1 SR
2!. ~8!

The~retarded! Green’s functions we shall need in the prese
case are

GR0R8
a2

~ t,t8![^^SR0

a ~ t !,SR8
2

~ t8!&&52 iu~ t2t8!

3^@SR0

a ~ t !,SR8
2

~ t8!#&T ,

a51,2,z. ~9!

The equations of motion for these functions, Fourier tra
formed with respect to time, have been derived from Eq.~9!
in the usual way2
06441
ns-

a-

n

A
g

-

t

-

vGR0R8
12

~v!52^SR0

z &TdR0R81(
R

JR0R$^^SR0

1 SR
z ,SR8

2 &&

2^^SR0

z SR
1 ,SR8

2 &&%1HGR0R8
12

~v!,

vGR0R8
22

~v!5(
R

JR0R$^^SR0

z SR
2 ,SR8

2 &&2^^SR0

2 SR
z ,SR8

2 &&%

2HGR0R8
22

~v!, ~10!

vGR0R8
z2

~v!52^SR0

2 &TdR0R821/2(
R

JR0R$^^SR0

1 SR
2 ,SR8

2 &&

2^^SR0

2 SR
1 ,SR8

2 &&%.

Till now the procedure is exact, but as anticipated we ha
arrived at the little-known three-point GF’s. To be able
proceed further in this work and possibly in the followin
ones, let us postulate direct generalization of the origi
RPA decoupling

^^SR0

a SR
b ,SR8

2 &&5kR0R
ab ^SR0

a &TGRR8
b2

1kRR0

ba ^SR
b&TGR0R8

a2 ,

~11!

where thek factors can depend on temperature and exte
field and are to be determined independently. It is an ext
sion of the step introduced in the Ref. 5 for ferromagne
There was only one such kappa-factor there and its pres
permitted one to adjust the critical indices to those of
static scaling theory.

IV. EQUAL-ACCESS DECOUPLING AND THE
CANONICAL SET OF THE GF EQUATIONS

Having introduced, for the sake of further developmen
this very general idea of decoupling, we shall examine h

its symmetric version, i.e., allkRR8
aa851. Both correlation

functions showing here:̂SR
b ,SR8

2 &, ^SR
a ,SR8

2 &, enter sym-
metrically, or have anequal access. We can call it the EA
decoupling~EA-RPA!. Introducing the local field parameter

hR0

a 5(
R

JR0R^SR
a&T , a51,2,z, ~12!

we obtain the nonuniform system of linear algebraic eq
tions for the GF’s we seek

(
R

$@~v2H2hR0

z !dR0R1JR0R^SR0

z &T#GRR8
12

1@hR0

1 dR0R2JR0R^SR0

1 &T#GRR8
z2 %52^SR0

z &TdR0R8 ,

~13a!

(
R

$@~v1H1hR0

z !dR0R2JR0R^SR0

z &T#GRR8
22

1@2hR0

2 dR0R1JR0R^SR0

2 &T#GRR8
z2 %50, ~13b!
9-3
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(
R

$@2hR0

2 dR0R1JR0R^SR0

2 &T#GRR8
12

1@hR0

1 dR0R2JR0R^SR0

1 &T#GRR8
22

22vdR0RGRR8
z2 %

52^SR0

2 &TdR0R8 . ~13c!

Using the last equation we can eliminateGRR8
z2 . First, let us

rewrite it in a convenient short fashion

GRR8
z2

5
1

v F S (
R9

ARR9
2 GR9R8

12
2ARR9

1 GR9R8
22 D 2^SR

2&TdRR8G ,

~14!

where

ARR9
a

52
1

2
@hR

adRR92^SR
a&TJRR9#. ~15!

On substituting Eq.~14! into Eqs.~13a! and ~13b! one has

(
R9

$@v~v2H2hR0

z !dR0R91v^SR0

z &TJR0R92BR0R9
12

#GR9R8
12

1BR0R9
11 GR9R8

22 %52v^SR0

z &TdR0R822AR0R8
1 ^SR8

2 &T ,

(
R9

$BR0R9
22 GR9R8

12
1@v~v1H1hR0

z !dR0R9

2v^SR0

z &TJR0R92BR0R9
21

#GR9R8
22 %

5^SR0

2 &T@2hR0

2 dR0R81JR0R8^SR8
2 &T#, ~16!

where

BR0R9
ab

52(
R

AR0R
a ARR9

b . ~17!

This set of two equations should be considered
‘‘canonical’’—it is a prototype of the sets of equations
appear in more complete theories, including, e.g., the an
tropic coupling in the Hamiltonian ~3!, or some

kRR8
aa8Þ1-factors in the decoupling~11!. By the appropriate

specification of labels,R→ l, b ~where l is the lattice vector
and b is the basis vector!, and on introducing the lattice

translational invarianceJRR8→Jl 2 l 8
bb8 , they represent the

starting point also for the theory of magnetic crystals in
generalized RPA.

V. EVALUATION OF THE NIS-RELEVANT FUNCTION
ŠGQ

¿À
„v…‹

As we want to determine thêGQ
12(v)&, let us multiply

both equations~16! by exp„iQ•„R2R8…… and sum over
R,R8. One obtains
06441
s

o-

e

v~v2H !^GQ
12~v!&2^„hzG12~v!…Q&

1v^„SzJG12~v!…Q&2^„B12G12~v!…Q&

1^„B11G22~v!…Q&52v^Sz&22^~A1S2!Q&,

^„B22G12~v!…Q&1v~v1H !^GQ
22~v!&

1^„hzG12~v!…Q&2v^„SzJG22~v!…Q&

2^„B21G22~v!…Q&52^S2h2&1^~S2JS2!Q&,

~18!

where the notation introduced in the definition~6! of
^GQ

12(v)& has been used.
We have obtained in this way the equations contain

not only the ‘‘pure’’ GF’s we seek:̂GQ
12(v)&, ^GQ

22(v)&,
but also more complicated product terms composed of o
factors involved in this problem. To turn these equations i
a tractable form, we shall take the step introduced by H
bard and Beeby10 to study the liquid dynamics, and then use
by Czachor20 to calculate the NIS cross section for oth
disordered systems: each such term is to be decoupled in
following way:

^~XG!Q&>^~X!Q&^~G!Q&. ~19!

Such a step is exact in crystals, due to the lattice translatio
invariance, thus we call it the quasicrystal approximati
~QCA!. For disordered systems it is a sort of the mean fi
approximation. We obtain

@v~v2H2^hz&!1v^~JSz!Q&2^BQ
12&#^GQ

12~v!&

1^BQ
11&^GQ

22~v!&52v^Sz&22^~A1S2!Q&,

^BQ
22&^GQ

12~v!&1@v~v1H1^hz&!

2v^~JSz!Q&2^BQ
21&#^GQ

22~v!&

52^h2S2&11/N (
R0R8

JR0R8^SR0

2 &T^SR8
2 &T

3exp„iQ•~R02R8!…, ~20!

where the following notation has been used:

^Sz&[1/N(
R

^SR
z &T , ~21!

^hz&[1/N(
R

hR
z ,

^h2S2&[1/N(
R

hR
2^SR

2&T ,

^~A1S2!Q&[1/N(
RR8

ARR8
1 ^SR8

2 &T exp„iQ•~R2R8!…,

^~JSz!Q&[1/N(
RR8

JRR8^SR
z &T exp„iQ•~R2R8!…,
9-4
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^GQ
ab~v!&5(

R8
GRR8

ab exp„iQ•~R2R8!…,

^BQ
ab&51/N(

RR8
BRR8

ab exp„iQ•~R2R8!….

Introducing a different notation:G15^GQ
12(v)&, G2

5^GQ
22(v)&, etc., we can write the equations in this se

explanatory short form

FM11 M12

M21 M22
G FG1

G2
G5FS1

S2
G . ~22!

The solution forG15^GQ
12(v)& is now trivial

G15~S1M222S2M12!/M , M5~M11M222M12M21!.
~23!

As it follows from Eq. ~4!, the NIS profile is given by the
Im G1. If the elementary excitation is undamped, the pro
is indefinitely narrow. Zero of denominator gives then t
position of the NIS peak in the (Q,v) space. In this way the
dispersion relation for the excitations can be written as

M ~Q,v!50, ~24!

while the numerator in Eq.~23! gives intensity of the NIS
peaks.

VI. SPHERE-RESTRICTED COUPLING BETWEEN SPINS

To proceed analytically further and to catch the essenc
the present approach we have to invent a simple model
disordered spin system, allowing us to determine the te
involved. As the coupling between nearest neighbors is u
ally the strongest one, let us assume that a spin at any p
tion R is coupled only to itsnR neighbors at a fixed distanc
W. We shall call it the ‘‘on the sphere assumption’’ ~OSA!.
Figure 1 shows an example of a disordered two-dimensio
~2D! structure of the OSA type. To have another example
can set spins at the sites of a crystal structure of regular t
fcc, bcc, sc, or even hcp, allow for the nearest-neighbor~NN!
coupling, and then remove a considerable part of the s
and/or of the NN bonds in a random way.

Furthermore, let us explicitly use theisotropyof the dis-
ordered system to carry the body angle average in the p
factors,11 to obtain

FQ5exp~ iQ•W!5
sin~p!

p
, p5QW, ~25!

where the bar in the last formula stays for the body an
average.~On taking this step we depart from the area
crystalline magnets.! In the foregoing we shall mainly us
the related function

LQ5~12FQ!/2 ;
Q→0

~WQ!2

12
. ~26!

After these preparations we can evaluate the terms
need. Let us start withM12
06441
of
a
s

u-
si-

al
e
e:

ns

se

e
f

e

M125^BQ
11&5

2

N (
RR8R9

ARR9
1 AR9R8

1 exp„iQ•~R2R8!…

5
1

~2N!
„12F~Q!…(

R
~hR

1!2[LQ

1

N (
R

~hR
1!2,

~27!

where number 1 in the RHS bracket appears as a co
quence of thed function in ARR8

1
5 1

2 @hR
1dRR82^SR

1&TJRR8#.

FIG. 1. Examples of 2D structures of the OSA type:~a! ran-
dom network of points subject to the condition that there is
point-point distance—the interspin bond—shorter than the gi
one (W); ~b! as above, but with the points situated at some sites
the square lattice, having up to four interacting nearest neighbo
a fixed distance. Black dots represent the spins, bars represent
pling constantsJRR8Þ0, and missing bars:JRR850. Circles show
the ‘‘spheres’’ of interaction.
9-5
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Isotropy, which makes all directions in thex-y plane equiva-
lent, gives that the last sum in Eq.~27! is zero, as one can se
it best by returning to theSR

x andSR
y operators. It means tha

M1250, and similarly we can prove thatM215^BQ
22& is

equal to zero. In general this may be not true for crystals
in case of long-range or anisotropic coupling. In particul
these terms could not be neglected in case of the planar
romagnet, such as discussed by Halperin and Hohenber12

Let us now exploit the isotropy and the OSA in theM11
term

M115v~v2H2^hz&!1v^~JSz!Q&2^BQ
12&. ~28!

We have

^~JSz!Q&[
1

N (
RR8

JRR8^SR
z &T exp„iQ•~R2R8!…5FQ^hz&,

~29!

and

^BQ
12&5

2

N (
R0RR9

AR0R
1 ARR9

2 exp„iQ•~R02R9!…

5LQ^h1h2&, ~30!

where^h1h2&[1/N(RhR
1hR

2 . The wholeQ dependence is
hidden in theLQ andFQ factors. It is useful to define at thi
point, as an average measure of the local fields in the sys
the configuration average of the squared local fields

1

N (
R

~hR
z hR

z 1hR
1hR

2!5
1

N (
R

~hR!2[^h2& ~31!

and similarly thesquared z-component of the local fiel
^(hz)2&51/N(RhR

z hR
z , so that we can write

^h1h2&5^h2&2^~hz!2&. ~32!

Using Eqs.~29!, ~30!, and~32! in Eq. ~28! gives

M115v@v2~H12^hz&LQ!#2@^h2&2^~hz!2&#LQ .
~33!

Similarly

M225v@v1~H12^hz&LQ!#2@^h2&2^~hz!2&#LQ .
~34!

VII. NIS-DETERMINED DISPERSION RELATIONS

Now, as long asM1250, we can easily calculate the G
we need

G15S1 /M11. ~35!

Poles of the GF give the ‘‘dispersion relations’’ for the e
ementary excitations, such as seen in the NIS experimen
be quite precise, at the GF pole position (Q,vQ) one has to
expect the delta-function-like peak of the inelastically sc
tered neutrons. More practically, maxima of the NIS profi
should occur there. It follows that we have to look for roo
06441
r
,
er-

m,

To

-
s

of the determinant of the matrixM, i.e., in this case for the
solutions of the equation:M1150. It has the following form:

v22vLv2vT
250, ~36!

where

vL,Q5H12^hz&LQ, vT,Q
2 5„^h2&2^~hz!2&…LQ .

~37!

This quadratic equation has in general two roots

vQ
65

1

2
~vL6AvL

214vT
2!. ~38!

It is the formula fordispersion relations of elementary exc
tations in disordered isotropic magnetic systems—the fre-
quency~energy! versus the NIS scattering vectorQ. It has
been derived assuming the EA-RPA decoupling, the Q
factorization, the short range OSA coupling and the isotro
of system investigated. The notation used will soon show
merits, when discussing special cases. It is convenien
introduce at this place an average characteristic of the am
tude of local fields:h̃5A^h2&, Eq. ~31!, to be used below.

Special cases

~1! In case of zero external fieldH50, if
^h2&5^(hz)2&—all the spins are directed along thez
direction—we have alongitudinal ~ferromagnetic! configu-
ration ~thus label L!, Fig. 2~a!, and the dispersion relation fo
magnetic excitations takes on the form

v5vL,Q52^hz&LQ ;
Q→0

Q2; ~39!

see Fig. 3, as it should be. Besides, if^hz&50 one might
think of the ratherunreal structure of the ‘‘longitudinal’’
antiferromagnet of Fig. 2~c! characterized byv50.

~2! If H→0, ^hz&5^(hz)2&50 and^h6&50 ~isotropy in
the x-y plane!, we havetransversemagnetic configurations
including asa special casethe antiferromagnetic configura
tion shown in Fig. 2~b!, and the dispersion relation is

v5vT,Q5h̃ALQ ;
Q→0

Q. ~40!

~3! Note that the single dispersion relation—formu
~38!—derived here covers both pure cases—longitudinal
transverse—as well as someintermediate cases. Interest-
ingly, it follows that at smallQ we usually have the fre-
quencyv proportional toQ; the quadratic dependence a
pears under strictly longitudinal~ferromagnetic! condition
^h2&5^(hz)2&; see Fig. 3. Note that, for disordered magne
at H50, only this longitudinal configuration characterize
by v;Q2 can at the long-wave limit be qualitatively distin
guished with neutrons from the others: all other ones prov
v;Q.

~4! Transverse configuration in the fielddeserves specia
attention. Having in mind the NIS scattering formula~4!, we
can see that one can think of the following dispersion re
tions:
9-6
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v5
1

2
@H6AH214vT,Q

2 # ;
Q→0

H H
Q2. ~41!

It suggests that at some conditions we may have the gap
dispersion relation shown in Fig. 4 also at the presence of
external field.

VIII. INTENSITY OF THE NIS PEAKS

To know about intensity of the neutron peaks we have
determine the numerator of the GF involved

S152v^Sz&22^~A1S2!Q&

52v^Sz&2
1

N (
RR8

@2hR
1dRR81^SR

1&TJRR8#^SR8
2 &T

3exp„iQ•~R2R8!…. ~42!

The OSA gives in this case

FIG. 2. Some spins configurations with respect to the magn
field H→0, corresponding to the dispersion relations~38!, sche-
matically: ~a! Longitudinal~ferromagnetic!; ~b! transverse~a spe-
cial case of a ‘‘pure’’ antiferromagnet!; ~c! longitudinal antiferro-
magnet ~unstable!. Statistical characteristics of local field
responsible for these configurations are given for each case.
06441
ss
e

o

S152v^Sz&1
1

N (
R

hR
1^SR

2&T2
FQ

N (
RR8

^SR
1&TJRR8^SR8

2 &T

52~^Sz&v1^E12&LQ!, ~43!

where

^E12&5~N!21(
R

hR
1^SR

2&T5~N!21(
RR8

^SR
1&TJRR8^SR8

2 &T .

~44!

It follows that ^E12& is a mean-field estimate of the therm
value of thefluctuation termof the Hamiltonian. Putting
things together, we have

^GQ
12&5

2^Sz&v12^E12&LQ

~v2vQ
1!~v2vQ

2!
. ~45!

One can see that the NIS intensity depends crucially on
type of magnetism of the system. It can be calculated dire
for purely transverse and longitudinal configurations.

In the case of atransverse configurationthe ^E12& can
be estimated from the condition that at the absence of ex
nal field the magnetization of the system is to be zero
^Sz&50. First let us decompose the^GQ

12& into its simple
fraction form, using Eq.~37!

^GQ
12&5

^E12&vT,Q

h̃2
F 1

v2vT,Q

2
1

v1vT,Q
G , ~46!

Now let us return to Eq.~6!. On summing with respect toQ,
one arrives at the following general relation:

ic

FIG. 3. Magnon dispersion relations~36! at H→0 @more pre-
cisely, the geometric place of the NIS peaks'd(v2vQ) in the
(Q,v) plane# for longitudinal ~L!, transverse~T!, and an interme-
diate case. Local field characteristics are given in brackets.
9-7
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(
Q

^GQ
12~v!&5(

R
GRR

12~v!, ~47!

where, vaguely speaking, a rather uniform and dense di
bution ofQ points is understood, such that one can assum20

1/N(
Q

eiQ•~R2R8!5dRR8 . ~48!

Using this relation and the spectral intensity theorem of
GF theory2 ~let us set herekB51!

^A,B&5E dv

2p

1

exp~v/T!21
@22 ImGBA~v1 i«!#,

we obtain the configurational average of the^SR
2SR

1&T corre-
lation functions we seek. It can be given in terms of t
above GF

^S2S1&[
1

N (
R

^SR
2SR

1&T

5
1

2p E dv
1

ev/T21 S 22 Im
1

N (
R

GRR
12~v1 i«! D

5
1

2p

1

N (
Q

E dv
1

ev/T21

3„22 Im^GQ
12~v1 i«!&…. ~49!

The dv integration can be done immediately using Eq.~46!
and the usual trick: Im„1/(X1 i«)…52pd(X). For S51/2
we haveSR

z 51/22SR
2SR

1 , therefore the average magnetiz

FIG. 4. Transverse dispersion relations at a finite external m

netic fieldH/h̃50.2; see Eq.~41!. Besides the well-known branc
showing atQ50 the field-induced frequency gap, present theo
predicts also a possibility of the gapless branch.
06441
ri-

e

tion ^Sz& can be expressed in terms of the correlation fu
tion ^S2S1&. Finally, as the magnetization for thetransverse
configuration of spins atH50 is ^Sz&50, we arrive at the
following result for^E12&:

^E12&5
h̃2

2 F 1

N (
Q

vT,Q cothS vT,Q

2T D G21

. ~50!

The scaling factorh̃ entering here depends on temperature
a complicated way via the thermal averages^SR

1&T ,^SR
2&T in

the definition of the local fields, Eq.~12!,

h̃2[^h2&[
1

N (
R

hR
1hR

25
1

N (
RR8

~J2!RR8^SR
1&^SR8

2 &,

~51!

where (J2)RR85(R9JRR9JR9R8 .
The Q summation~or integration! in Eq. ~50! is in fact a

rather delicate problem in itself. Till now we treated theQ
vectors as the scattering vectors appearing in the proces
neutron scattering. From now on in the sums of the ab
type we have to treat them as ordinary variables. To arriv
meaningful results one has to confine oneself to a finite nu
ber of Q points. In case of a crystal it is the numberN of
lattice sites, i.e., the number of vectorsQ distributed uni-
formly in the first Brillouin zone. In this paper theN, being a
number of localized spins, is also assumed to be the num
of Q vectors involved, without knowing a much about th
distribution of the correspondingQ points. To give arough
representation of thêE12& versus temperatureT we assume
a flat dispersion relation,LQ51/2. TheQ summation in Eq.
~50! can be done immediately, and we have^E12&
5h̃/& tanh„h̃/(2&T)…. The plot, neglecting the tempera
ture dependence ofh̃, is shown in Fig. 5. It would be inter-
esting to extract the trueh̃ vs T dependence from experimen
tal data on the temperature dependence of the NIS peak

Let us note, that one can avoid discussing the meanin
the Q vectors by introducing the ‘‘virtualT spectrum’’ of
Ref. 5

DT~v!51/N(
Q

d~v2vT,Q!.

Using it, the above formula for̂E12& takes on the form

^E12&5
h̃2

2 F E dvDT~v!v cothS v

2TD G21

. ~508!

Such a formulation offers a perspective of studying mo
els characterized by various virtual spectra without any
plicit reference to dispersion relations of magnetic exci
tions or to dimensionality of systems investigated

In the same way, for the purely longitudinal spin config
ration we havê h2&5^(hz)2&, ^E12&50, and one arrives a
the magnetization formula

g-
9-8
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^Sz&5
1

2 F 1

N (
Q

cothS H1vL,Q

2T D G21

5
1

2 F E dvDL~v!cothS H1v

2T D G21

, ~52!

where this time the virtualL-spectrum has the formDL(v)
51/N(Qd(v2vL,Q).

The form essentially the same as in the case of the o
nal RPA for ferromagnets,1,2 involving just a single GF via
the decoupling~2!. ~One should mention that the origina
formula concerns the crystalline case with arbitrary range
interspin coupling and theQ summation there is carried ther
over the Brillouin zone.! Having in mind the system of thre
interdependent GF equations~13a!–~13c! appearing in the
present approach—i.e., a mutual dependence of three c
lation functions: ^SR

1SR8
2 &T ,^SR

2SR8
2 &T ,^SR

z SR8
2 &T—this fact,

joyfully acceptable, is not trivial.
Note that in case of the flat dispersion relation, e

2LQ51, we get from Eq.~52! the result

^Sz&5
1

2
tanhS ^hz&1H

2T D . ~53!

If the spin coupling to itsn nearest neighbors isJ, from Eq.
~12! one findŝ hz&5nJ^Sz& and Eq.~53! turns into the usua
MFA equation for the magnetization, thus into the NIS-pe
intensity factor such as for ferromagnets, via the GF form
~45!.

FIG. 5. Neutron inelastic scattering~NIS! intensity factors vs
temperature~schematically!: 2^Sz& for longitudinal~ferromagnet-
ic! configuration ~L!, temperature in the units ofTC5nJ/4;
&^E12& for transverse~antiferromagnetic! configuration~T!, tem-

perature in the unitsh̃/(2&).
06441
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IX. GF-METHOD CALCULATIONS VERSUS EXACT
RESULTS FOR THE KITTEL-SHORE-KAC MODEL

For the ensemble ofN spinsS51/2 coupled identically,
JRR85J/N(12dRR8), one canexactly calculate thermody-
namic functions in the thermodynamic limit, both for Isin
spins ~Kac21! and for vector spins~Kittel and Shore22!; see
Ref. 23. Magnetic properties of thisKittel-Shore-Kac~KSK!
model magnet are of the mean field type. In case of r
magnets the interspin coupling is obviously more comp
cated and one has to apply approximate methods to de
mine their physical characteristics. The GF method, of
used and successful, is in general an approximate met
due to the approximations introduced by assumed decoup
schemes. We find it interesting to apply the method based
the symmetric EA-RPA decoupling~11! developed here to
this KSK model, in order to compare the results so obtain
with the exact ones.

With the symmetric RPA decoupling~11! and the QCA
factorization~19! of the GF in question we can easily eval
ate functions~21!. Assuming the external fieldH→0, in the
limit N→` one obtains

^hz&5J^Sz&,

ARR8
a

52J/2@^Sa&dRR81N21^SR
a&#, a51,2,z,

^BQ
ab&[2/N (

RR8R9
ARR8

a AR8R9
b

50,

^~JSz!Q&5J^Sz&dQ,0 ,

^~A1S2!Q&5J/2~^SQ
1&^SQ

2&2^S0
1&^S0

2&!,

^SQ
a &5N21(

R
^SR

a&T exp~ iQ•R!. ~54!

In the plane~x,y! perpendicular to the magnetic field there
isotropy, i.e.,̂ SQ

a &50 for a51,2 and so^(A1S2)Q&50.
It follows that M1250, M115v@v2H2J^Sz&(12dQ,0)#,
and from Eqs.~20! one finds the GF of the oscillator type

^GQ
12~v!&5

2^Sz&
v2vQ

. ~55!

The dispersion relation is flat—practically, there is only o
oscillator frequency

vQ5H1J^Sz&~12dQ,0!. ~56!

Using the formula~49! one arrives immediately at the MFA
result for the magnetization@just put n5N, J→J/N in Eq.
~53!#

^Sz&5
1

2
tanhS ^Sz&J1H

2T D , ~57!

which for the KSK model is the exact one. Let us discuss
shortly the features of the oscillator model involved.

In case of ferromagnet forT,TC5J/4 andH50 one has
a finite oscillator frequency and the usual MFA magnetiz
9-9
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tion ^Sz&.0 and specific heatCV.0. For T.TC and H
50 there isvQ5J^Sz&T50. One has to read it as an indic
tion, that above TC the oscillator simply does not exist, there
is no mechanism capable of absorbing energy, thusCV50.
This is true for a ferromagnet in the paramagnetic region
temperature and for the KSK antiferromagnet at all tempe
tures.@Note that just taking the mathematical limitvQ→0
would lead to opposite result:CV→const at any temperatur
~the Dulong-Petit law!, because oscillator has infinite num
ber of energy levels and can absorb energy at any temp
ture.# With H→0 and J,0 in Eq. ~53! one arrives at the
paramagnetic type of the susceptibility at all temperatu
such as it is for the KSK model.23

Summing up, for the KSK model the GF-RPA-QCA pr
cedure provides correct results for magnetization and spe
heat vsT. At T,TC the mathematical formalism provide
these results automatically. AtT.TC andH50 the oscilla-
tor frequency is zero and the argument for zero specific h
is a logical one—there is no oscillator to absorb energy. W
H.0 the oscillator reappears, one has the field-indu
magnetization proportional to the field and the usual M
magnetic susceptibility—see Ref. 23.

X. EXPERIMENTAL SITUATION

‘‘The existence of spin waves in amorphous ferromagn
is now firmly established’’—this phrase of Coey24 is valid
also now. Neutron inelastic scattering~NIS! experiments
have confirmed the theoretically predictedv;Q2 form of
the dispersion relation for ferromagnets at small scatte
vectorsQ. At larger Q values the NIS profiles are usual
very broad, so one has to think of heavily damped s
waves of short wavelengths.

The theory of neutron inelastic scattering~NIS! for amor-
phous ferromagnets has been developed long ago, sta
from the RPA~see Ref. 11 for earlier references!. The nov-
elty of the present work is not related to its ferromagne
version, which is just a typical MFA description—it is it
ability to cover the NIS for a wide class of disordered ma
nets, in particular for systems with dominant contribution
antiferromagnetic~AF! interspin coupling. It is so due to th
‘‘equal access’’ extension of the RPA, which includes wid
class of spin-spin correlations, than it had been in the or
nal formulation of the RPA~Refs. 1 and 2! aimed at ferro-
magnets. Three local field characteristics introduced her
^hz&,^h2&,^(hz)2&—allow one to foresee the dispersion rel
tions also for the AF-type elementary excitations, such
they are seen via NIS for disordered spin systems with in
spin coupling of short range~OSA!. Conversely, having the
NIS determined dispersion curves one could estimate
above local field characteristics. In formulating our pred
tions we implicitly assume that in spite of the possible co
tribution of the AF interspin coupling the system consider
has a rather uniquely determined ground-state configura
of spins—that its behavior is not dominated by spin-gla
like effects.

There are several papers on the structure, magnetiza
and related properties of nonferromagnetic amorph
magnets—antiferromagnets, speromagnets and aspero
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nets. Some general features of such materials have b
emphasized.24 For example, it is intuitively obvious, that th
notion of a magnetic domain may lose its meaning in am
phous antiferromagnets. As far as elementary excitations
concerned it has been even argued that long range a
phous antiferromagnetism cannot appear at all—rather, s
an order can establish itself only over a few interatom
distances.25

As far as they do exist, the elementary excitations in n
ferromagnetic amorphous systems are expected to be he
damped, so it can be difficult to determine the correspond
dispersion relations even in the limitQ→0. And indeed, due
to these difficulties till now there are no reliable data
magnetic elementary excitations in nonferromagnetic am
phous systems. Therefore, let us only mention magnetic
tems of such a type investigated till now—they may be go
targets for the future NIS attempts to observe such exc
tions.

As it has been shown by Burke and Rainford,26 some
FeCr alloys evolve towards antiferromagnetic propert
close to a critical concentration.

A search for high energy excitations in the Mn73Ni27 al-
loy, which is an itinerant antiferromagnet, has be
undertaken,27 till now without decisive results.

According to Hasegava,28 the Mn-base glassy alloy
should display AF properties. The AF properties of t
Pd3Mn seem to support such a suggestion.29

The properties of amorphous invar Fe70Ni20Zn10 are rather
complex, but some AF features can be seen in them.30

Let us also assess the range of applicability of the
proximations used.
The random phase approximation~RPA! of Tyablikov,1 Eq.
~2!, is explicitly aimed at ferromagnets and leads directly
the mean field results. The equal-access random-phase
proximation~EA-RPA! introduced in this paper,

^^SR
a~ t !SR8

b
~ t !,SR9

2
~ t8!&&5^SR

a&T^^SR8
b

~ t !,SR9
2

~ t8!&&

1^SR8
b &T^^SR

a~ t !,SR9
2

~ t8!&&,

is a natural extension of the RPA, conserving more inform
tion on the spin-spin correlation, than the original RPA.
case of ferromagnetic coupling it leads directly to the RP
description. It covers a multitude of spin systems includi
antiferromagnets, but its basic physics and range is of
MFA type. It can probably be improved to adjust its critic
indices to the indices of the static scaling theory, using
method developed earlier by Czachor and Holas5 for the
RPA.

The quasicrystal approximation~QCA! introduces a cer-
tain uniformization of the spin-spin correlations in space
the substitution in Eq.~19!: SR8GRR8 exp@iQ(R2R8)5^GQ&;
we can see that the site dependent quantity of the LHS
approximated here by a site-independent ‘‘typical’’ quant
^GQ&. It means that the QCA can break for evidently no
uniform systems.

The ‘‘on the sphere approximation’’~OSA! of Sec. VI
imposes a short-range interspin coupling, which is impro
whenever the physical coupling is of the long-range ty
9-10
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Still, the difference should mainly show up in the hig
energy wiggles in the dispersion relations measured at la
scattering vectorsQ. It can easily be omitted, at the price o
having a less explicitv vs Q dependence.

It seems, both the experimental and, to some extent,
conceptual problems with elementary excitations in non
romagnetic amorphous systems have in recent years dam
experimental efforts in this field. Hopefully, the present p
per, with its average-local-field description of the neutr
inelastic scattering in such systems, will encourage fut
experimental attempts to observe magnetic excitation spe
in these materials.

XI. SUMMARY AND DISCUSSION

To solve the problem of neutron scattering in a disorde
magnet—in general a disordered set of localized sp
coupled randomly—one has to take into account a gre
variety of spin-spin correlations than in case of ferromagn
To do so, we have first introduced a generalized RPA dec
pling ~11! of the three-spin correlation functions~Green’s
functions! involved. We claim that in doing so we have e
tered a reasonable and promising way towards improving
GF method for the solid state calculations, the way m
systematic than those quoted in the Introduction. On ass
ing then an equivalent and symmetric role of two differe
two-spin correlation functions pertinent to the problem o
has the symmetric ‘‘equal access’’ form of the RPA deco
pling ~EA-RPA!. At this step one obtains the ‘‘canonical
set~16! of two equations of motion for the 2 two-spin GF’
^GQ

12(v)&, ^GRR8
22&, we seek. To solve it analytically for th

NIS-relevant Fourier-transform of the GF’s involved—th
^GQ

12(v)& and ^GQ
22(v)& ~where Q is the length of the

neutron scattering vector andv represents the energy chan
in scattering!—we have adapted the quasicrystal factoriz
tion ~QCA! of the Q transforms@such as in Eq.~19!# of the
products of terms involved in the equations into the produ
of theQ-transformed terms, and assumed an overall isotr
of the system. Finally, in the case of the nearest-neigh
on-the-sphere interspin coupling~OSA! one succeeds in th
factorization of terms involved into theQ-dependent and
v-dependent factors, Eqs.~27!–~30!, and an explicit expres
sion ~35! for the GF has been found. On looking at the roo
of its denominator one finds the formula~36! for the disper-
sion relationsvQ of magnetic excitations of the system, su
as they can be seen in neutron scattering. Here a quad
equation for thevQ function does appear, its parameters b
ing dependent on the configuration averages^h2&, ^hz&, and
^(hz)2& of the local fieldshR

a in the system and on the exte
nal magnetic field. We would like to emphasize that th
single equationtakes on the form of dispersion relation val
for a number of spin configurations, including asspecial
cases longitudinal ferromagnetic and transverse antifer
magnetic ones, and intermediate configurations as well,
pending on the values of the above mentioned fields
should also be emphasized that in our approach we do
have to introduce the concept of different sublattices for d
ferent spin orientations in order to arrive at the dispers
curvesV'Q in the smallQ limit, such as for crystalline
06441
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antiferromagnet—this characteristic depends entirely on
interplay between the above mentioned local field averag
It is a conceptually important feature. One should add, ho
ever, that the antiferromagnetic spin configuration is just o
of manytransverseconfigurations, all of them being charac
terized by such a dispersion in the long wave limit.

The NIS profiles predicted here are of thed(v2vQ)-

FIG. 6. Density of states, schematically, for the KSK model
N spins S51/2 interacting identically,JRR85J/N(12dRR8), and
ferromagnetically,J.0. ~a! Exact solution~Ref. 23!: DE5EL

2E051/2JL@11(L21)/N#; degeneracy: dL5(L
N)2(L21

N ), L
50,1,2, . . . . ~b! Quasi-DOS of the harmonic oscillator type, a
pearing in the GF-RPA-QCA procedure of this work.DE5En

2E05nvQ , n50,1,2, . . . ,dn5N, where the oscillator frequency
vQ is given by Eq.~56!. Distance between the energy levels is he
temperature-dependent—it is proportional to the magnetization^Sz&
of the Eq.~57!.
9-11
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function type. To calculate their intensities~50! and~52!, we
had to extend the idea of the scattering vectorQ so that it
could be treated as the usual summation or integration v
able. The NIS peak intensity vs. temperature was found to
proportional to the mean-field-approximation magnetizat
for longitudinal ferromagnets, while in case of transve
spin structures the temperature decline of the peak inten
is a problem in itself and has only roughly been assessed
now.

We have carried out our GF calculations also for the K
system of spins interacting identically with each other a
found that, as far as the thermodynamic functions are c
cerned, the results are such as the exact ones.23 It is an in-
triguing situation: the GF method, which is in principle a
proximate due to the decoupling~11! and substitutes the
actual KSK system by a system of harmonic oscillato
leads nevertheless to correct results for observables. The
responding densities of states~DOS! for both procedures are
known and they are basically different; see Fig. 6. O
should ask the following question: how can this coinciden
of results happen?

The answer lies in temperature dependence of the
introduced frequencyvQ , Eq. ~56!, which represents the
separation between energy levels of the oscillators. It es
tially means that theoscillator density of states obtained i
the GF method is not a true DOS for the KSK system. It is an
auxiliary function, self-tailored by the GF method itself s
that the oscillator system withT-dependent frequency pro
vides correct macroscopic characteristics.

This example throws an interesting light on the way t
GF method can adjust and ‘‘upgrade’’ itself to build up a fa
ys

.,

C
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representation of macroscopic physical characteristics of
tems investigated. Besides, the accord of the GF calculat
with the exact ones for the KSK model shows that in the
method it makes some sense to use theQ vectors as the
summation~or integration! variables to calculate thermody
namic functions, although they were originally introduc
merely as scattering vectors for the NIS experiment. Ho
ever, this point requires further attention.

The agreement of the RPA-evaluated magnetic susce
bility with the exact result in the case of the KSK intersp
coupling may suggest that the RPA becomes exact in cas
long range interactions. There is no ground for such a g
eral claim, though. For example, in case of coulomb int
acting electron gas~which is obviously the longest-rang
physical interaction in three dimensions we have! Langerth
and Perdow31 have obtained the agreement of some RP
calculated characteristics with the exact results, but only
long wavelength limit~wave vectork→0!.

Experience of this work suggests that it is worthy a
feasible to use the generalized RPA-decoupling introdu
here to set up a description of magnetism in disordered
tems more profound than given here, such as an extensio
the ALITA ~Ref. 11! to link broad NIS profiles to some
distributions of local fields, or, following Czachor an
Holas,5 a refined version of the theory of neutron scatteri
in crystalline antiferromagnets including the static scali
indices, and others. Some work along these lines is un
way.

Some ideas of the present work have been shortly p
sented at the 2nd European Conference on Neutron Sca
ing in Budapest~ENSC’98, Ref. 32!.
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