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Green’s function approach to the neutron-inelastic-scattering determination of magnon dispersion
relations for isotropic disordered magnets
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To determine the neutron inelastic coherent scatteifl§) cross section for disordered magnets a system
of equations of motion for the Green functiof&F) related to the localized-spin correlation functions
(SkSr/), (SrSw/), and(SkSy.) has been exploited. The higher-order Green functions are decoupled using a
symmetric “equal access'(EA) form of the random-phase approximatiéRPA) decoupling scheme. The
quasicrystal approximation was applied to construct the space-time Fourier transforrﬁ@%Gﬁu)) related
to neutron scattering. On assuming isotropy of the magnetic structure and a short range coupling between the
spins (on the sphere approximatipme have found an explicit analytic form of this function. Poles of the
<G5_(a))> determine the dispersion relatien= wq for elementary excitations, such as they are seen in the
NIS experiment—the positions of the NIS profile maxima in &€ space. Single formula for the dispersion
relations derived here covers a variety of isotropic spin structures: in particular disordered “longitudinal”
ferromagnets ¢ ~Q?, Q—0), disordered “transverse” spin structuras£ Q, Q—0), and some intermedi-
ate cases. It should be emphasized that in particular it works for transverse antiferromagnets. For the system of
spins coupled identically—the Kittel-Shore-Kac model magnet—the magnetization and the magnetic suscep-
tibility calculated within the present EA-RPA approach do agree with the results of exact calculations. It
provides an interesting insight into the nature of the RPA treatment of the localized spin dynamics in magnets.
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[. INTRODUCTION thermal average of the operatgrH is the Hamiltoniant is
time, B=1/kgT, and T is the temperature of the system.

The random phase approximatiéRPA) in the Green’'s There appears in the equation a three-point GF, which is
function (GF) theory is a theoretical framework both conve- difficult to determine. The original Tyablikov's version of
nient and effective for interpretation and forecasting of vari-the RPA is given by the following decoupling scheme for
ous characteristics of matter. For ordered crystalline systenthis GF:
even with a relatively simple version of the RPA one can
achieve a fairly good description. On the other hand disor-  ((S{(1)S(1),S.,(t')))=(SH{((S"(1),S.(t'))). (2)
dered systems, very fashionable today, are more
demanding—here one has to look for a more general formuThe ferromagnet in the RPA shows the spin-wave type of the
lation of the theory. In this work we introduce a generaliza-magnetic susceptibility at low temperaturg(0)— x(T)
tion of the usual RPA procedure for crystalline magnets~T*? while just below theTc it shows the mean-field-
which allows us to evaluate the neutron inelastic scatteringpproximation(MFA) behavior with the critical indexs
cross section, and some other characteristics, for magnets i1/2. One can see that fluctuations related toSheperator
general, including disordered ones. are not included in such approximation.

The RPA in the theory of spin-spin correlations, intro- There were several attempts to generalize this decoupling
duced by TyablikoV, and quoted by Zubarev in his treafise scheme for perfect crystals, aimed at more realistic model of
on the Green’s functions method, concerned originally spingrystalline ferromagnets. A general idea behind them was to
S=1/2 localized at the lattice sitds coupled isotropically, ~create a linear combination of all two-point Green’s func-

aa' _ oaa’ ; - ; tions one can set up from the three or four-point GF’s in-
Jy, =0™ Ji-i, and feromagnetically. Using this method volved, and then multiply each two-point GF by the properly

one can determine the spin-spin correlation functions and us\re\;eighted thermal average of the operators not included

them to calculate such characteristics as magnetization, mage ed in the previous step. The Caﬁegeneralization of

Sfcfl.:s Sslcjasc(t?i(ce)ztllglllcl)t)goﬁ?gngeﬁgslgoIggll\?ztl[(r:]esgzﬁzi@gsgf mot_he Tyablikov decoupling consists in introducing the decou-
tion for the two-point(or two-spin GF given below(in stan- pling factor weighting expected deviations of tfefrom the

dard notation for spin operators value S, and results in a more satisfactory behavior of the
magnetization vsT, than the former one. Several other in-
L B genious methods of decoupling have been proposed, and the
G, (t—=t)={S"(1),5.(t))) review of them and their motivations has been given in the
_ ) . - paper of Kumar and GupfaHere let us explicitly mention
=—i0(t=t'){[S(1),S.(t))r. (1  only the decoupling procedure introduced later by Czachor
and Holas, which is such as the one given by the E2). but
where[ S (1),S;,(t')] is the commutator of the spin opera- with the right-hand sidéRHS) multiplied by the magnetiza-
tors involved, (x)r=tr{x exp(— BH) Jtr{exp(~BH)] is the tion dependent factok({S?)t). With an appropriate choice

0163-1829/2001/68)/06441912)/$15.00 63 064419-1 ©2001 The American Physical Society



ANDRZEJ CZACHOR AND HOUSNI AL-WAHSH PHYSICAL REVIEW B63 064419

of this factor one has the critical indices for the ferromag-operators are treated on equal footing. In this way we

netic phase transition such as the ones in the static scalirgchieve a rather general description of the spin-spin correla-

theory. tions in disordered magnets and give the form of the disper-
To account for weak deviations from periodicity in de- sion relations of the elementary excitations in them, such as

fected crystals, the propagator-based perturbation schemdbey are seen in the NIS experiment.

the ATA (averagel-matrix approximationand CPA(coher- As the calculation is rather cumbersome, in order to de-

ent potential approximatiorhave been invented; see the re- rive analytically the(GS’(w)) we seek we have introduced

view papers of Elliot, Krumhansl, and Ledttand Korenblit  the following simplifying assumptions.

and Shendef.The NIS cross section can be calculated using (8 Coupling between the spins is isotropic®®,

them and finite width of the NIS profile appears here due to 57’3 hereR R’ spi ii ¢ RR
the so called multiple scattering. - rRry, WHETER, R SpIN-pOSItion vectors.

Another trend of investigations concerning the NIS and (b) The system is globally isotropic, i.e., the observables

the energy spectra of elementary excitations has appeared fg?penld tonly on the Ilt_'-zng'gh 0; thehsc?ttermg Vec?#tLQJ'
ferromagnets far from crystalline order—for amorphous | (©) In _errs]tp:ln co;ut)hlng])(_ 'S;datsn‘z; range—only between
ferromagnet§:® Wave vector is not “a good quantum num- ¢ an neighoors a the (ljxe' tl's a d tered
ber” to label elementary excitations in such nonperiodic sys- owever, once the derivation procedures areé mastered,
tem, but one can introduce it as the scattering ve@tof the some of these assumptions can qbwou_sly be re_leased, to
neutron scattering experiment. One aims in such case gfover more realistic situations, including possibly the
rectly at the(time and space Fourier transform of the GFALITA theory of crystalline antlferromagnets._ .
involved) function(Gé’(w)) appearing in the NIS formula. It is assumed here that the system considered is stable,

Also, it seems imperative to account here for departure fromi & it is in the state of thermodynamic equilibrium. It means

isotropic interspin coupling—to allow for an occurrence of that we are not discussing the spin-glass-like nonergodic ir-
: . . . reversible systems; see, e.g., Refs. 17 and 18.

some central coupling or antisymmetric coupling. The GF

equation of motion for such an amorphous ferromagnet can

be approximately solved in the approximation similar to the Il. BASIC NOTIONS FOR THE NEUTRON INELASTIC

quasicrystal approximatiofQCA) of Hubbard and Beeb{ SCATTERING

and in the average local information transfer approximation

(ALITA) of Czachor! It leads to magnon dispersion rela-

tions, to be seen in the neutron inelastic coherent scatterin

Interestingly, the spectrum of Ising local fields is broad due

to disorder, and just this spectrum, properly deformed, ap- 1

pears in the ALITA as theQ-const NIS profile for such __ - aa’ caca’ _ z

amorphous ferromagnets. H ZRER:, Jrr SRSr HER: Sk ©
Traditionally the discussion of elementary excitations in

antiferromagnets was focused on the low-temperaturevhere S;, a=Xx,y,z are the components of spin operator

excitations—the spin waves in AF crystals. Halperin andassigned to the poirR (we depart here from lattice vectors

Hohgnber(}f established the form of the magnon dispersion, periodic structurés‘]g";: stays for the interspin cou-

relations for isotropic and planar magnets in the long-wave , o _

limit, using hydrodynamic arguments. Lee and Biex-  Pling, Jrg =0, andH = yH* represents magnetic field with

tended the Callen’s approach to evaluate the magnon energy~9#s in the usual notation. Let us introduce the raising

spectrum, sublattice magnetization, and other characteristi@d lowering spin operatoS; = Sg+iSf, with usual com-

of the two-sublattic&s= 1/2 antiferromagnet. Singét al.in- ~ mutation relations:

troduced the GF technique to determine the impact of impu-

rities on the AF magnon spectthRecently the RPA was [Sk S/ 1=2SROrr'» [Ski Sr]=*2Sg kR -

used by Singtet al® and by Prataet all® to evaluate the

r_nagnetic chara_cteristics for highly anisotropic crystalline an- The neutron inelastic coherent scattering cross section
tiferromagnets in a broad temperature range.

In the present paper we formulate the theory of neutror‘ENlS) can be expressed in terms of the fifeand position

. ) 4 =
inelastic scattering in the systems of localized s8rsl/2, R) deeendent correlation functpns{SR(t),SR,(t )>,_

in particular in disordered isotropic magnets. It should belSr(1),Sg/(t')), or the corresponding Green's function
noted that this theory work&@mong other casggor trans- (GF), a

verse antiferromagnetic structurealthough it has been for-

mulated without the usual crystalline assumption of the ex- d?¢™N'S ) L _ . _

istence of two spin sublattices. It is formulated in terms of MN_FQ[””(GQ (wtie))+Im(Gq " (w+ie))],

the GF’s involving the well-known localized-spin operators (4)

S and spin raising and lowering operat@$ ,Sg , SO it is

directly accessible to intuition, transparent, and can be easilwhereQ is the neutron scattering vector amds the neutron
extended to cover a number of magnetic systems. We applgnergy (frequency change in the scattering process. Here
a very symmetric form of the RPA decoupling where all spinone assumes identical coupling of the neutron probe to dif-

In order to remind basic notions let us consider the system
f localized vector spins S=1/2 characterized by the
eisenberg-type Hamiltonian
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ferent spinsFq is the magnetic form factor averaged over . , b g e
all spins and there appears the time and space Fourier trans- wGRORf(w):2<SRO>T5ROR’+; Jryr{{(Sr,Sk+Sr))
form of the relevant GF

—(Sh,S% Sa )+ HG R (@),

G;;,(w)zf dté“'Gpq (1), (5)
L G (@)= 2 Irl((Sk Sk S~ ((Sr Sk S}
(Gg (w)=y 2 eV R MGea(w), (5
RR ~HGp o (w), (10)
and similar expression fc(rG(3+(w)>. The G;;(t,t’) is in
the present paper closely related to trce;g,(t,t'): z-

_ o
Grp (0)=GL(—w), see Ref. 19, so we shall usually Cirgr (@)=~ (Sg, ) 70R 1/2§R: Iral ((SrSe 1S ))
. . + - ' 4 —
meHntlop only the functlonﬁiFiR,(t,t ) and(Gq (w)). (2 S5 .S

aving calculated th¢Gg, (w)) one can, to a good ap- 0
proximation, evaluate also the spectrum of magnetic excitafill now the procedure is exact, but as anticipated we have
tions (density of states while the poles of the{Ga_(w» arrived at the little-known three-point GF's. To be able to
determine the Q-projected” dispersion relations for these proceed further in this work and possibly in the following
excitations. A justification for such a procedure was given inones, let us postulate direct generalization of the original
Ref. 11. RPA decoupling

ll. GF EQUATIONS OF MOTION FOR ISOTROPIC ((SR,SRSr)) = KRER(SR ) TCRR + KRR (SRITCR R
MAGNETIC SYSTEMS (11)

In this section we derive the equations of motion for thewhere thex factors can depend on temperature and external
GF’s we seek and introduce a generalized form of the RPAjeld and are to be determined independently. It is an exten-
decouph_ng tp be used here. In_the case of isotropic couplingion of the step introduced in the Ref. 5 for ferromagnets.
the hamiltonian of the system is of the form There was only one such kappa-factor there and its presence

. permitted one to adjust the critical indices to those of the
- static scaling theory.
H==52 Jre(SSutSiS)-HXY S (@ 9 meow
RR’
L IV. EQUAL-ACCESS DECOUPLING AND THE

To evaluate functiofs;, (t,t") and related ones one has CANONICAL SET OF THE GF EQUATIONS

to solve the GF equations of motion derived using the stan-

dard recipe for Heisenberg operatoiss=|[x, H]: Having introduced, for the sake of further developments,

this very general idea of decoupling, we shall examine here

idSg, its symmetric version, i.e., alk%=1. Both correlation
T=[3§0a7‘f]=; Jror(SR,SR— SR, Sr) +HSR . functions showing here(SA,S.,), (Sa,Sx/), enter sym-
metrically, or have arequal accessWe can call it the EA
idsy decoupling(EA-RPA). Introducing the local field parameters
gt =2 RSk Sr— Sk S —HS,
Ro= 2 JRR(SRIT, a=+,-.2, (12
idSZRO 1 ) ) ) )
T EER: JROR(S§OS$_$OS§)' 8 we obtain the nionunlform system of linear algebraic equa-
tions for the GF’'s we seek

The (retarded Green’s functions we shall need in the present
case are 2 {[(0=H=hg) dpat Ir (S )1Cke

Cron (L=, S (1) = 716071 g, S Irgn( S T1Gkm = 2(S g

X([S3,(1),Sz () ])r, (133

a=+,—,zZ 9 , , o
_ _ _ _ > {[(o+H+hg ) Or R~ Ir,R(SR)TICRR
The equations of motion for these functions, Fourier trans- R
formed with respect to time, have been derived from @j. - - .
in the usual WaS/ +[_hR05R0R+JROR<SRO>T]GZRRI}_01 (13b)
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2 [ Pr,Srat Irgr( Sk, TIGke
+[Ng Sr,r— Iryr(Sr,) TIGRR ~ 20 SR RCRr}
= 2<S§O>T5ROR, . (13C)

Using the last equation we can elimin:ﬁé;R, . First, let us
rewrite it in a convenient short fashion

-1 - +- + -— -
G;R':Z (% ARR’GR”R’_ARR’GR”R’> _<SR>T5RR’}!
(14
where
[e3 1 o 4
Arp="— E[hR5RRﬂ_<SR>TJRR']- (15

On substituting Eq(14) into Egs.(13a and(13h) one has

% {lo(w—H=h ) Srrr+ o(Sk ) 1Irgrr—Bg rr]Crrr

++

+Bp G} = 20(SR ) 10Rymr — 2A§0R,<s;,>T ,

E {BI;(;R,/G;,TR, + [(,!)( w+ H + héo) 5ROR//
R

- w<SZR0>T‘]ROR”_ BQOJar]G;n_Rr}
=(Sgy) 1l —hg Srrr + IR R (S ) 7], (16)

where

ap a AB
BROR,,—2§R‘, AR RARR - (17)

This set of two equations should be considered as
“canonical”—it is a prototype of the sets of equations to

PHYSICAL REVIEW B63 064419

w(0—H) (G (@)~ ((G*~(w))o)
+0((SUG"(@))g) —((B* "G*(@))g)
+<(B*+G”(w))Q>=2w<SZ)—2((A*S*)Q>,

(B™"G" (w)g)+ w(@+H)Gq ()
H(N*G™ ™ (w))g) ~ 0((SIG™ ~(w))g)
—((B™7G™(0))g)=—(S"h")+((S7IS )g),
(18

where the notation introduced in the definitidi®) of
(G4 (w)) has been used.

We have obtained in this way the equations containing
not only the “pure” GF's we seekQGS’(w)}, (Gq (w)),
but also more complicated product terms composed of other
factors involved in this problem. To turn these equations into
a tractable form, we shall take the step introduced by Hub-
bard and BeebY to study the liquid dynamics, and then used
by Czachot® to calculate the NIS cross section for other
disordered systems: each such term is to be decoupled in the
following way:

((XG))=((X)){(G)q)- (19

Such a step is exact in crystals, due to the lattice translational
invariance, thus we call it the quasicrystal approximation
(QCA). For disordered systems it is a sort of the mean field
approximation. We obtain

[o(@—H=(h)+o((I))~(Bq )Gq (@)
+(By " NGq (@))=2w(S)—2((ATS)q),
(Bq XGq (@) +[w(w+H+(h?)

—w((3)q)—(Bg ) 1(Gq (@)

:_<h*s*>+1/NR§F‘,{, Jror{Sr)T(Sri )T

appear in more complete theories, including, e.g., the aniso-

tropic coupling in the Hamiltonian (3), or some

Kg‘,é:il-factors in the decouplingll). By the appropriate
specification of labelsR— 1, b (wherel is the lattice vector
and b is the basis vectgr and on introducing the lattice
translational invarianceJRR,HJlbfi, , they represent the
starting point also for the theory of magnetic crystals in the

generalized RPA.

V. EVALUATION OF THE NIS-RELEVANT FUNCTION
(G5~ (@)

As we want to determine th(asg‘(w», let us multiply

both equations(16) by expiQ-(R—R’)) and sum over

R,R’. One obtains

Xexp(iQ-(Ry—R")), (20
where the following notation has been used:
(SH=1ND (Sp), (21)
R

<h2>51/N; hZ,
(h™S7)=1N2 he(Sq)r,
((ATST)Q)=1IN2 Ajp(Sz )T expiQ-(R-R),
RR

(IS)Q)=1N2 Jrr(SR)T expiQ-(R—R")),
RR’
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(G&P(w))=2, GE& expliQ-(R—R")),
RI

(BE)y=1IND B expliQ-(R—R")).
RR'

Introducing a different notation:Gl=(Gaf(w)>, G,
=(Gq (w)), etc., we can write the equations in this self-
explanatory short form

{Mn M1,
Mz My

(22

G,
G2

S,

The solution forG;=(G{ " (w)) is now trivial

G1=(S{M = S;M )/ M, M:(M11M22_M12M21)(- ) ® Sg
23

As it follows from Eq. (4), the NIS profile is given by the
Im G;. If the elementary excitation is undamped, the profile (b) *
is indefinitely narrow. Zero of denominator gives then the -
position of the NIS peak in the, w) space. In this way the I

dispersion relation for the excitations can be written as
M(Q,w)=0, (24 ) \

while the numerator in Eq(23) gives intensity of the NIS
peaks. ® .

T
|

VI. SPHERE-RESTRICTED COUPLING BETWEEN SPINS

L4
¢
]

To proceed analytically further and to catch the essence of
the present approach we have to invent a simple model of a
disordered spin system, allowing us to determine the terms
involved. As the coupling between nearest neighbors is usu-
ally the strongest one, let us assume that a spin at any posi-
tion R is coupled only to its1z neighbors at a fixed distance .
W. We shall call it the ‘bn the sphere assumption(OSA).

Figure 1 shows an example of a disordered two-dimensional

(2D) structure of the OSA type. To have another example we * S

can set spins at the sites of a crystal structure of regular type: — T

fcc, bec, sc, or even hcp, allow for the nearest-neiglibidt)

coupling, and then remove a considerable part of the spins FIG. 1. Examples of 2D structures of the OSA typéa) ran-
and/or of the NN bonds in a random way. dom network of points subject to the condition that there is no

Furthermore, let us explicitly use thsotropy of the dis- point-point distance—the interspin bond—shorter than the given

ordered system to carry the body angle average in the phaQ@e W); (b) as above, but with the points situated at some sites of
factorst! to obtain the square lattice, having up to four interacting nearest neighbors at

a fixed distance. Black dots represent the spins, bars represent cou-
sin(p) pling constantslgg #0, and missing barsizg =0. Circles show
Do=expiQ-W)= T p=QWwW, (25) the “spheres” of interaction.
where the bar in the last formula stays for the body angle 2
average.(On taking this step we depart from the area of M12=<BS+)=N Y AlpAmg eXNIQ-(R—R'))

1'
[ ]

Y
[ oL

[

crystalline magnets.In the foregoing we shall mainly use RR'R"
the related function 1 , 1 ,
__ = 1 N2 A +
WOy = g @@ (he)?=Agy X (he)?,
Ap=(1-Dy)/2 ~ . 26
TR T 29 @)

After these preparations we can evaluate the terms wé&here number 1 in the RHS bracket appears as a conse-
need. Let us start witiv ;, quence of thes function in A, = 3[hi Srr — (St ) 1IrR 1-
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Isotropy, which makes all directions in thxey plane equiva-
lent, gives that the last sum in EQ7) is zero, as one can see
it best by returning to th&, and S operators. It means that
M,=0, and similarly we can prove thddl,;=(Bg ") is

PHYSICAL REVIEW B63 064419

of the determinant of the matriM, i.e., in this case for the
solutions of the equatiorv ;= 0. It has the following form:

equal to zero. In general this may be not true for crystals, ofynere

in case of long-range or anisotropic coupling. In particular

these terms could not be neglected in case of the planar fer-  , o=H+2(h%A,, % o=(h%)—((hH)?)A,.

romagnet, such as discussed by Halperin and Hohertberg.
Let us now exploit the isotropy and the OSA in thk;;
term
M11:w(w_H_<hz>)+w<(JSZ)Q>_<Ba_>- (28)

We have

1
((IS)g)=1; 2 Irr(SRITEXAIQ- (R=R))=do(h?),
RR'

(29)
and
+— 2 + - ;
(Bg >:N 2 ARORARRreXmQ'(Ro_R"))
RoRR’
=Ag(h*™h™), (30

where(h*h™)=1/NZghghg . The wholeQ dependence is
hidden in theA  and®, factors. It is useful to define at this

w’— o o— w$=0, (36
This quadratic equation has in general two roots
L1
wg=> (0 * Vol +403). (39

It is the formula fordispersion relations of elementary exci-
tations in disordered isotropic magnetic systerthe fre-
guency(energy versus the NIS scattering vect@. It has
been derived assuming the EA-RPA decoupling, the QCA
factorization, the short range OSA coupling and the isotropy
of system investigated. The notation used will soon show its
merits, when discussing special cases. It is convenient to
introduce at this place an average characteristic of the ampli-

tude of local fieldsh= \/(h?), Eq.(31), to be used below.

Special cases

(1) In case of =zero external fieldH=0, if
(h?y=((h??)—all the spins are directed along the

point, as an average measure of the local fields in the systerdirection—we have dongitudinal (ferromagnetit configu-

the configuration average of the squared local fields

1 1
2 (hghithghg) =5 2 (hp)?=(h?) (3D

NR

and similarly thesquared z-component of the local fields
{(h?)?)=1/NZghgh%, so that we can write

(h*h™)=(h?)—((h*?).
Using EQgs.(29), (30), and(32) in Eq. (28) gives

(32

My=wlo—(H+2(h*)Aq)]— [<h2> _<(hz)2>]AQ :

Similarly

Moo= w0+ (H+2(h?)Aq)]—[(h*) —((h)*)]Aq.

VII. NIS-DETERMINED DISPERSION RELATIONS

Now, as long asvi;,=0, we can easily calculate the GF
we need
G1281/M11- (35)

Poles of the GF give the “dispersion relations” for the el-

ration (thus label L), Fig. 2@), and the dispersion relation for

magnetic excitations takes on the form
Q—0

see Fig. 3, as it should be. Besides(li")=0 one might

think of the ratherunreal structure of the “longitudinal”

antiferromagnet of Fig. &) characterized byy=0.

(2) If H—0, (h?=((h*?=0 and(h*)=0 (isotropy in
the x-y plane, we havetransversemagnetic configurations
including asa special casehe antiferromagnetic configura-
tion shown in Fig. 2b), and the dispersion relation is

waT‘Q=F1\/AQ -~ Q (40)
Q—0

(3) Note that the single dispersion relation—formula
(38—derived here covers both pure cases—Ilongitudinal and
transverse—as well as sonietermediate caseslnterest-
ingly, it follows that at smallQ we usually have the fre-
quency w proportional toQ; the quadratic dependence ap-
pears under strictly longitudinalferromagneti¢ condition
(h?)=((h??2); see Fig. 3. Note that, for disordered magnets
at H=0, only this longitudinal configuration characterized
by w~Q? can at the long-wave limit be qualitatively distin-
guished with neutrons from the others: all other ones provide

ementary excitations, such as seen in the NIS experiment. Te~ Q.

be quite precise, at the GF pole positidR, o) one has to

(4) Transverse configuration in the fietteserves special

expect the delta-function-like peak of the inelastically scat-attention. Having in mind the NIS scattering formg, we
tered neutrons. More practically, maxima of the NIS profilescan see that one can think of the following dispersion rela-
should occur there. It follows that we have to look for rootstions:
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Tt 1 i
@ - LR YR =1 (B /(R =1)
h 12 —
g Tt o
] 0.7, 0.75)
@  (F)#0, FY=(F)), o=aL, 7
0.6 — 770, 0)
“— >« > 04
0.2 —
H > D>« .
0.0 T T T T T T
, 0 l 4|, 6| ; 1|O 12
®  FY=0, (FP)=0, o=ar, 0

FIG. 3. Magnon dispersion relatior{86) at H—0 [more pre-
cisely, the geometric place of the NIS peaksi(w—wg) in the
T T T T T (Q,w) plang for longitudinal (L), transvers€T), and an interme-

diate case. Local field characteristics are given in brackets.

7, L I Pq + -
n ¢¢¢ \LJ« $1=20(S)+ 52 hR(SR>T—W% (Sh)rIrr(Sp)T
=2((SHw+(E"")Ag), (43)
() (F)=0, (B)y=((H")), =0 where

FIG. 2. Some spins configurations with respect to the magnetic _ _q e _q . .
field H—0, corresponding to the dispersion relatiai38), sche- (ET7)=(N) ; hr(Sg)7T=(N) 2, <SR>TJRR’<SR’>T'
matically: (a) Longitudinal (ferromagnetig;, (b) transversda spe- RR (44)
cial case of a “pure” antiferromagngt(c) longitudinal antiferro-

magnet (unstablg. Statistical characteristics of local fields |t follows that(E* ~) is a mean-field estimate of the thermal

responsible for these configurations are given for each case.  value of thefluctuation termof the Hamiltonian. Putting
things together, we have
1 H
w= E[Hi\/H2+4w%Q] ~ Qz. (41) 2<Sz>w+2<E+7)AQ
Q-0 <GS )= (45

- (0—wd)(w—wg)
It suggests that at some conditions we may have the gap-less

dispersion relation shown in Fig. 4 also at the presence of thene can see that the NIS intensity depends crucially on the

external field. type of magnetism of the system. It can be calculated directly
for purely transverse and longitudinal configurations.
VIII. INTENSITY OF THE NIS PEAKS In the case of dransverse configuratiothe (E*~) can

. . be estimated from the condition that at the absence of exter-
To know about intensity of the neutron peaks we have G5 field the magnetization of the system is to be zero:

determine the numerator of the GF involved (S)=0. First let us decompose tI*(Gé’) into its simple

S1=20(SH)—2((A*S )o) fraction form, using Eq(37)
1 _ E" o 1
=2w(S") - NE [—hg Srr +(SR)TIRr 1(S )T (Ga_)z < ~> Lo , (46
RR' h? W-0TQ OTOTQ
X exp(i Q- (R=R"). “2) Now let us return to Eq(6). On summing with respect 1Q,
The OSA gives in this case one arrives at the following general relation:
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0.8 : tion (S?) can be expressed in terms of the correlation func-
tion (S”S"). Finally, as the magnetization for thensverse
2 ] s - configuration of spins atl =0 is (S*)=0, we arrive at the
h Ty =(#)H=0) following result for(E* ~):
0.6 — = )
h 1 wT Q -
+-\_ _ | = i
| (E"7)=5 N%‘, 019 cotl-<—2_|_ ) (50)
0.4 — The scaling factoh entering here depends on temperature in
a complicated way via the thermal averag&g )+,(Sg )t in
i the definition of the local fields, Eq12),
02 4 Ta_ 2y L rpo_ 1 2 +\ /o
h*=(h >EN; thR:N%’ (I)rr{(SR)(Sr/)
4 (51
0.0 | : ‘ Where OZ)RR/ :ER”JRR/JR”R’ .
| | I The Q summation(or integration in Eq. (50) is in fact a

00 0.4 08 12 16 20 rather delicate problem in itself. Till now we treated Qe

o vectors as the scattering vectors appearing in the process of
. . . - neutron scattering. From now on in the sums of the above
FIG. 4. Transverse dispersion relations at a finite external magfype we have to treat them as ordinary variables. To arrive at
netic fieldH/h=0.2; see Eq(41). Besides the well-known branch meaningful results one has to confine oneself to a finite num-
showing atQ=0 the field-induced frequency gap, present theoryer of  points. In case of a crystal it is the numbsrof
predicts also a possibility of the gapless branch. lattice sites, i.e., the number of vecto@s distributed uni-
formly in the first Brillouin zone. In this paper thé, being a
G (o)=" Giz(w), 4 number of Ioc.allzed spins, is also as§umed to be the number
% (Go (@) ; rr (@) “n of Q vectors involved, without knowing a much about the

where, vaguely speaking, a rather uniform and dense di:strlqIStrIbutlon of the corresponding points. To give aough

) A representation of théE™ ) versus temperaturBwe assume
bution of Q points is understood, such that one can as§91mea flat dispersion relationyo=1/2. TheQ summation in Eq.

R (50) can be done immediately, and we havy&" ™)
UN% e QR = g (48 —h/v2 tanhh/(2v2T)). The plot, neglecting the tempera-

ture dependence df, is shown in Fig. 5. It would be inter-

Using this relation and the spectral intensity theorem of the, _.. -~ .
GF theory (et Us set herdiz=1) esting to extract the true vs T dependence from experimen

tal data on the temperature dependence of the NIS peaks.
do Let us note, that one can avoid discussing the meaning of
= ——[ - BAlw+i the Q vectors by introducing the “virtuall spectrum” of
(A,B) f 27 expaT) =1L 2ImG (@ tie)], RefQS y g p
we obtain the configurational average of {18, Sg )+ corre-
lation functions we seek. It can be given in terms of the

above GF Ar(w)= 1/N% 80— w1.0).
- + 1 —_ + . . +7
(§°S >ENE (SRSR)T Using it, the above formula fofE™ ) takes on the form
R
1 1 1 h? o\t
_ +— . _ /
—Efdwe—w,ﬁ(—ZlmN; GRR(w+|8) <E+ >=?[jdeT(w)wcotl'<ﬁ” . (50)
11 1 ) _ .
=5 NE f dwm Such a formulation offers a perspective of studying mod-
TN els characterized by various virtual spectra without any ex-
X(—2 Im(Gg‘(eris))). (49) plicit refereqce to_disp_ersion relation_s of magnetic excita-
tions or to dimensionality of systems investigated
The dw integration can be done immediately using Ep) In the same way, for the purely longitudinal spin configu-

and the usual trick: IfL/(X+ig))=—mx5(X). For S=1/2  ration we haveh?)=((h??), (E*~)=0, and one arrives at
we haveSi=1/2— Sz S} , therefore the average magnetiza- the magnetization formula
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1.0 IX. GF-METHOD CALCULATIONS VERSUS EXACT
2(S%) RESULTS FOR THE KITTEL-SHORE-KAC MODEL
V2E™) . For the ensemble dfl spinsS=1/2 coupled identically,
0.8 —

Jrr =J/IN(1- 6grr), One canexactly calculate thermody-
namic functions in the thermodynamic limit, both for Ising
spins(Kac®) and for vector spingKittel and Shoré?); see
0.6 — Ref. 23. Magnetic properties of thigttel-Shore-KadqKSK)
model magnet are of the mean field type. In case of real
. magnets the interspin coupling is obviously more compli-
cated and one has to apply approximate methods to deter-
mine their physical characteristics. The GF method, often
used and successful, is in general an approximate method,
r due to the approximations introduced by assumed decoupling
0.2 — schemes. We find it interesting to apply the method based on
the symmetric EA-RPA decouplingll) developed here to
§ this KSK model, in order to compare the results so obtained
with the exact ones.
| ' | : With the symmetric RPA decoupling@ll) and the QCA

0.0 0.5 10 . orature " factorization(19) of the GF in question we can easily evalu-

perature ate functiong21). Assuming the external field — 0, in the
FIG. 5. Neutron inelastic scatterindNIS) intensity factors vs  limit N—o one obtains

temperaturdschematically: 2(S*) for longitudinal (ferromagnet-

0.4 —

0.0 T I T

ic) configuration (L), temperature in the units offc=nJ/4; (h%)=3(S),
v2(E* ™) for transversedantiferromagneticconfiguration(T), tem- N
perature in the unith/(2v2). ARR, —J2(S*) Srr +N"HSR)], a=+,-.z,

-1 <B > 2/IN 2 ARR’AR’R" 01
R/ 4

Hto!]1 ((3S)q)=3(S") bq.0.
[fdeL(w)cot?'( ” , (52 e e e
21 ((ATS7) ) =J12((SE){(Sq) = (S5 ){(So ).

($H=5 { 2 cot HJ;?Q)

where this time the virtual-spectrum has the form | (w) (S8)= N (SE)rexpiQ-R). (54)
=1INZgé(0—w q)- R

The form essentially the same as in the case of the origi
nal RPA for ferromagnets? involving just a single GF via
the decoupling(2). (One should mention that the original
formula concerns the crystalline case with arbitrary range o
interspin coupling and th® summation there is carried there
over the Brillouin zong.Having in mind the system of three 2()
interdependent GF equatiori$3a—(13c) appearing in the <Gg’(w)>=
present approach—i.e., a mutual dependence of three corre-
lation functions:(Sg Sy, )1,(SgSr/)1,(SkSr/)7—this fact,  The dispersion relation is flat—practically, there is only one

In the plane(x,y) perpendicular to the magnetic field there is
isotropy, i.e.(Sg)=0 for a=+,— and so((A"S7)q)=0.

*t follows that M1,=0, M 3=w[w—H—=J(S*)(1—dq0)],
and from Eqgs(20) one finds the GF of the oscillator type

(55

0—wg

joyfully acceptable, is not trivial. oscillator frequency
Note that in case of the flat dispersion relation, e.g., ,
2A =1, we get from Eq(52) the result wq=H+I(SH1-3q,0- (56)

Using the formula49) one arrives immediately at the MFA
result for the magnetizatiofjust putn=N, J—J/N in Eq.

(SH= %tanl‘( (") +H ) 53 (53]
(s = %tam_(<SZ>J+H

2T
. . : . . 2T
If the spin coupling to its1 nearest neighbors & from Eq.
(12) one finds(h*) =nJ(S?) and Eq.(53) turns into the usual which for the KSK model is the exact orleet us discuss
MFA equation for the magnetization, thus into the NIS-peakshortly the features of the oscillator model involved.
intensity factor such as for ferromagnets, via the GF formula In case of ferromagnet foF<T.=J/4 andH =0 one has
(45). a finite oscillator frequency and the usual MFA magnetiza-

: (57)
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tion (>0 and specific hea€,>0. For T>T. and H nets. Some general features of such materials have been
=0 there iswg=J(S?)7="0. One has to read it as an indica- emphasized’ For example, it is intuitively obvious, that the
tion, that above E the oscillator simply does not exishere  notion of a magnetic domain may lose its meaning in amor-
is no mechanism capable of absorbing energy, tbys0.  phous antiferromagnets. As far as elementary excitations are
This is true for a ferromagnet in the paramagnetic region ofoncerned it has been even argued that long range amor-
temperature and for the KSK antiferromagnet at all temperaphous antiferromagnetism cannot appear at all—rather, such
tures.[Note that just taking the mathematical limitl,—0  an order_can establish itself only over a few interatomic
would lead to opposite resulE,— const at any temperature distanceg®
(the Dulong-Petit lay because oscillator has infinite num-  As far as they do exist, the elementary excitations in non-
ber of energy levels and can absorb energy at any temperfgrromagnetic amorphous systems are expected to be heavily
ture] With H—0 andJ<O0 in Eg. (53) one arrives at the damped, so it can be difficult to determine the corresponding
paramagnetic type of the susceptibility at all temperaturesgispersion relations even in the lin@t— 0. And indeed, due
such as it is for the KSK modéf. to these difficulties till now there are no reliable data on

Summing up, for the KSK model the GF-RPA-QCA pro- magnetic elementary excitations in nonferromagnetic amor-
cedure provides correct results for magnetization and specifighous systems. Therefore, let us only mention magnetic sys-
heat vsT. At T<T. the mathematical formalism provides tems of such a type investigated till now—they may be good
these results automatically. At>T. andH=0 the oscilla- targets for the future NIS attempts to observe such excita-
tor frequency is zero and the argument for zero specific hedtons.
is a logical one—there is no oscillator to absorb energy. With As it has been shown by Burke and Rainféfdsome
H>0 the oscillator reappears, one has the field-inducedeCr alloys evolve towards antiferromagnetic properties
magnetization proportional to the field and the usual MFAclose to a critical concentration.
magnetic susceptibility—see Ref. 23. A search for high energy excitations in the MNi,, al-

loy, which is an itinerant antiferromagnet, has been
undertaker?, till now without decisive results.
X. EXPERIMENTAL SITUATION According to Hasegav®, the Mn-base glassy alloys

“The existence of spin waves in amorphous ferromagnetshould display AF properties. The AF properties of the
is now firmly established”—this phrase of Cddyis valid ~Pd&Mn seem to support such a suggestidn.
also now. Neutron inelastic scatterir@®llS) experiments The properties of amorphous invar7gdi,oZn; o are rather
have confirmed the theoretically predicted-Q? form of ~ complex, but some AF features can be seen in tflem.
the dispersion relation for ferromagnets at small scattering L€t Us also assess the range of applicability of the ap-
vectorsQ. At larger Q values the NIS profiles are usually Proximations used. o I
very broad, so one has to think of heavily damped spinne random phase approximatiéRPA) of Tyablikov,” Eq.
waves of short wavelengths. (2), is expllqltly aimed at ferromagnets and leads directly to

The theory of neutron inelastic scatterifiglS) for amor- ~ the mean field results. The equal-access random-phase ap-
phous ferromagnets has been developed long ago, startifjoXimation(EA-RPA) introduced in this paper,
from the RPA(see Ref. 11 for earlier referenge3he nov-
elty of the present work is not related to its ferromagnetic ((Sg(t)S'B,(t),S,;,,(t’)»:(S;)T«Sg,(t),sg,,(t’)))
version, which is just a typical MFA description—it is its
ability to cover the NIS for a wide class of disordered mag- +(SET((SA(), Sra(t))),
nets, in particular for systems with dominant contribution of
antiferromagneti¢AF) interspin coupling. It is so due to the is a natural extension of the RPA, conserving more informa-
“equal access” extension of the RPA, which includes widertion on the spin-spin correlation, than the original RPA. In
class of spin-spin correlations, than it had been in the origicase of ferromagnetic coupling it leads directly to the RPA
nal formulation of the RPARefs. 1 and 2aimed at ferro-  description. It covers a multitude of spin systems including
magnets. Three local field characteristics introduced here—antiferromagnets, but its basic physics and range is of the
(h?),{h?) ((h?)?)—allow one to foresee the dispersion rela- MFA type. It can probably be improved to adjust its critical
tions also for the AF-type elementary excitations, such agndices to the indices of the static scaling theory, using the
they are seen via NIS for disordered spin systems with intermethod developed earlier by Czachor and Hbls the
spin coupling of short rangDSA). Conversely, having the RPA.
NIS determined dispersion curves one could estimate the The quasicrystal approximatidiQCA) introduces a cer-
above local field characteristics. In formulating our predic-tain uniformization of the spin-spin correlations in space by
tions we implicitly assume that in spite of the possible con-the substitution in Eq(19): 2 g Grr exdiQ(R—R')=(Gq);
tribution of the AF interspin coupling the system consideredwe can see that the site dependent quantity of the LHS is
has a rather uniquely determined ground-state configuratioapproximated here by a site-independent “typical” quantity
of spins—that its behavior is not dominated by spin-glass{Gg). It means that the QCA can break for evidently non-
like effects. uniform systems.

There are several papers on the structure, magnetization The “on the sphere approximation{OSA) of Sec. VI
and related properties of nonferromagnetic amorphougmposes a short-range interspin coupling, which is improper
magnets—antiferromagnets, speromagnets and asperomaghenever the physical coupling is of the long-range type.
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Still, the difference should mainly show up in the high-
energy wiggles in the dispersion relations measured at largt (a)
scattering vector®. It can easily be omitted, at the price of
having a less explicit» vs Q dependence.

It seems, both the experimental and, to some extent, th(DOS
conceptual problems with elementary excitations in nonfer-
romagnetic amorphous systems have in recent years dampe N(N-3)/2
experimental efforts in this field. Hopefully, the present pa-
per, with its average-local-field description of the neutron
inelastic scattering in such systems, will encourage future N-1
experimental attempts to observe magnetic excitation spectr
in these materials.

Xl. SUMMARY AND DISCUSSION

To solve the problem of neutron scattering in a disordered 1
magnet—in general a disordered set of localized spins
coupled randomly—one has to take into account a greate | i
variety of spin-spin correlations than in case of ferromagnets. 0 1 2 3 4 5
To do so, we have first introduced a generalized RPA decou: AEL/(J/Z)
pling (11) of the three-spin correlation functior(&reen’s
functiong involved. We claim that in doing so we have en-
tered a reasonable and promising way towards improving the
GF method for the solid state calculations, the way more
systematic than those quoted in the Introduction. On assum
ing then an equivalent and symmetric role of two different
two-spin correlation functions pertinent to the problem one
has the symmetric “equal access” form of the RPA decou-
pling (EA-RPA). At this step one obtains the “canonical” N
set(16) of two equations of motion for the 2 two-spin GF'’s,
<Gg’(w)), (Grpr)» We seek. To solve it analytically for the
NIS-relevant Fourier-transform of the GF’'s involved—the
<G5’(w)) and (G, (w)) (whereQ is the length of the
neutron scattering vector anglrepresents the energy change . e e e
in scattering—we have adapted the quasicrystal factoriza-
tion (QCA) of the Q transformgsuch as in Eq(19)] of the
products of terms involved in the equations into the products
of the Q-transformed terms, and assumed an overall isotropy I

(b)

"DOSH

of the system. Finally, in the case of the nearest-neighbol 0 1 2 3 4 5
on-the-sphere interspin couplif®SA) one succeeds in the AE,,/((SZ)J)
factorization of terms involved into th&-dependent and

w-dependent factors, EqR7)—(30), and an explicit expres- FIG. 6. Density of states, schematically, for the KSK model of

sion (35) for the GF has been found. On looking at the rootsN spins S=1/2 interacting identicallyJrr =J/N(1— 6rr), and
of its denominator one finds the formula6) for the disper-  ferromagnetically,J>0. (a) Exact solution(Ref. 23: AE=E_
sion relationswg of magnetic excitations of the system, such —Eo=1/2JL[1+(L—1)/N]; degeneracy: d=M-(-1), L
as they can be seen in neutron scattering. Here a quadraticd,1,2 - - . . (b) Quasi-DOS of the harmenic oscillator type, ap-
equation for thewg, function does appear, its parameters be-Pearing in the GF-RPA-QCA procedure of this workE=E,
ing dependent on the configuration averaged, (h?), and ~Eo=nwg, n=01.2....d,=N, where the oscillator frequency
<(hZ)2> of the local fieldshg in the system and on the exter- “Q is given by Eq.(56). Dls.te}nce betwgen the energy Ievgls is here
nal magnetic field. We would like to emphasize that thiStemperature-dependent—lt is proportional to the magnetiza8gn

. ) . ' . ., of the Eq.(57).
single equatiortakes on the form of dispersion relation valid
for a number of spin configurations, including apecial
caseslongitudinal ferromagnetic and transverse antiferro-antiferromagnet—this characteristic depends entirely on the
magnetic ones, and intermediate configurations as well, danterplay between the above mentioned local field averages.
pending on the values of the above mentioned fields. Itt is a conceptually important feature. One should add, how-
should also be emphasized that in our approach we do naiver, that the antiferromagnetic spin configuration is just one
have to introduce the concept of different sublattices for dif-of manytransverseconfigurations, all of them being charac-
ferent spin orientations in order to arrive at the dispersiornterized by such a dispersion in the long wave limit.
curvesQ~Q in the smallQ limit, such as for crystalline The NIS profiles predicted here are of tl¢w— wq)-
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function type. To calculate their intensiti€s0) and(52), we  representation of macroscopic physical characteristics of sys-
had to extend the idea of the scattering vecoso that it  tems investigated. Besides, the accord of the GF calculations
could be treated as the usual summation or integration variwith the exact ones for the KSK model shows that in the GF
able. The NIS peak intensity vs. temperature was found to beethod it makes some sense to use hevectors as the
proportional to the mean-field-approximation magnetizationrsummation(or integration variables to calculate thermody-
for longitudinal ferromagnets, while in case of transversenamic functions, although they were originally introduced
spin structures the temperature decline of the peak intensitjmerely as scattering vectors for the NIS experiment. How-
is a problem in itself and has only roughly been assessed tikver, this point requires further attention.
now. The agreement of the RPA-evaluated magnetic suscepti-
We have carried out our GF calculations also for the KSKbility with the exact result in the case of the KSK interspin
system of spins interacting identically with each other andcoupling may suggest that the RPA becomes exact in case of
found that, as far as the thermodynamic functions are conlong range interactions. There is no ground for such a gen-
cerned, the results are such as the exact 6hiss an in-  eral claim, though. For example, in case of coulomb inter-
triguing situation: the GF method, which is in principle ap- acting electron gaswhich is obviously the longest-range
proximate due to the decouplin@l) and substitutes the physical interaction in three dimensions we hakangerth
actual KSK system by a system of harmonic oscillatorsand Perdow* have obtained the agreement of some RPA-
leads nevertheless to correct results for observables. The caralculated characteristics with the exact results, but only at
responding densities of statd30S) for both procedures are long wavelength limitwave vectork— 0).
known and they are basically different; see Fig. 6. One Experience of this work suggests that it is worthy and
should ask the following question: how can this coincidencdeasible to use the generalized RPA-decoupling introduced
of results happen? here to set up a description of magnetism in disordered sys-
The answer lies in temperature dependence of the GRems more profound than given here, such as an extension of
introduced frequencywq, Eg. (56), which represents the the ALITA (Ref. 11 to link broad NIS profiles to some
separation between energy levels of the oscillators. It essewlistributions of local fields, or, following Czachor and
tially means that thescillator density of states obtained in Holas® a refined version of the theory of neutron scattering
the GF method is not a true DOS for the KSK systitiis an  in crystalline antiferromagnets including the static scaling
auxiliary function, self-tailored by the GF method itself so, indices, and others. Some work along these lines is under-
that the oscillator system witfi-dependent frequency pro- way.
vides correct macroscopic characteristics. Some ideas of the present work have been shortly pre-
This example throws an interesting light on the way thesented at the 2nd European Conference on Neutron Scatter-
GF method can adjust and “upgrade” itself to build up a fair ing in Budapes{ENSC’'98, Ref. 32
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