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Structural, transport, and magnetic measurements on the sysi&@Vie; _,W,0q (0=<x=<1) have been
used to monitor the transition from itinerant-electron ferromagnetism jreBtoQ; to localized-electron
antiferromagnetism in gFeWQ,;. An anomalous expansion of the cell volume with increasinmgflects the
progressive localization of the minority-spin electrons. The percolation threshold for itinefaatectrons
occurs in the interval 0.75x<0.85, and compositions in the range €:8<1.0 exhibit spin-glass behavior.
For x=<0.5, antiferromagnetic coupling across antiphase boundaries produddsHahysteresis loop that,
although having a low remanence and coercivity, nevertheless saturates by 10 kOe. A peculiar field depen-
dence of the Weiss constant of the paramagnetic molar susceptibility disappeasd@5. Transport and
structural data are consistent with a relative stabilization otifer™ band relative to thé,,. i, 7* bands at
lower temperatures and higher valuesxof
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INTRODUCTION acter of theT-x phase diagram?

. While the work was in progress, Kobayastial.™ pub-
Ordering of the Fe and Mo or W atoms on the octahedrafigheq an investigation of the evolution wighof the magne-

B sites of the perovskite structure occurs in bottF8MoQ;  tgresistance in the SreMo,_,W, O, system. They reported
and SpFeWQ,.'™ SpFeWQ contains well-ordered B& (1) an increase with in the degree of order of thB-site

and WP" ions; it is an antiferromagnetic insulator with a atoms,(2) the evolution of theM-H curves(not discussexto
localized high-spin configuration at the #e ions. obtain the magnetizatiol (5 K) versusx, (3) the variation
SrL,FeMoQ;, on the other hand, is a half-metallic ferri- or of the resistivityp(T) with X, but not of the thermoelectric
ferromagnet as a result of overlapping *FEe€?* and  Powera(T), (4) the magnetic susceptibility of antiferromag-
Mo®*/Mo5"* redox coupleg.The itinerant electrons occupy a Netic SEFeWQ;, and(5) the change with in the electronic
minority-spin #* band resulting from Fe-O-Mo interactions; specific heat. Our data are in essential agreement with theirs,

L e . : but we did not obtain quite as high a degrededite order in
the majority-spin electrons give a localized siBr5/2 at ur Mo-rich samples. Like them, we found a percolation

the Fe atoms. In this compound, the saturation magne?t!;zatlo&reshold for metallic conduction and a spin-glass behavior
depends on the degree of orggr C.)f the Fe anc_i Mo atoms. beyond percolation X>>0.80) where they found, ak
Moreover, theM-H curves exhibit little hysteresis, a feature =0.85, a large, low-temperature negative magnetoresistance
that we have attributed to antiferromagnetic Fe-O-Fe interyqqciated with inducing percolation of the ferromagnetic re-
actions across antiphase boundafiase also observed a gions in a largeH. They did not address the specific ques-
remarkable increase with applied magnetic fiéldin the  {jons that motivated our study.

paramagnetic Weiss constant frofs<T. to 6>T, which An early Massbauer-spectroscopy study by Nakagawa
we interpreted to signal a shift of the itinerant-electron denyt 5111 was interpreted to reflect only Fefor x<0.5, both
sity away from the Mo toward the Fe atoms. However, thiSggd+ gnd Fé&* atx=0.7, and only F& in SLFeWQ,. How-
anomalous susceptibility may also be accounted for by @ver, the isomer shift for their “‘F&" ions is too high for
ferromagnetic impurity with & (>T..° A candidate chemi-  that valence stat? and would be better interpreted in an
cal inhomogeneity in disordered samples would be a layer oftinerant-electron model for the minority-spin electrons that
three(111) all-Fe planes rather than the double iron layer ofgjye an effective iron valence E&". Indeed, Linde et al*?
an antiphase boundary. have interpreted their recent ‘Msbauer data for
Here we report measurements on the systens,FeMoQy_ ;s as indicating rapidrelative to 108 s) valence
SpFeMo;_4W,0Os (0=x=<1) that were motivated by five fjyctuations with a mean valence ¥%&. The early data are
questions concerning the evolution from itinerant to local-consjstent with the minority-spin electrons remaining itiner-
ized behavior of the minority-spin electrons(l) Do the  ant tox=0.5 with a progressive increase of localized Fe

changes withx in the lattice parameters and cell volume configurations appearing in the range 0s506<0.70 to coex-
reflect a larger cell volume for localized versus itinerant elecist within a matrix containing itinerant minority-spin elec-

trons as anticipated from the virial theorett2? How do the  {rgns.

transport properties change withand temperaturd from

electronic conduction in a* band to hole conduction via EXPERIMENTAL PROCEDURES, RESULTS, AND
the FET/FE" couple?(3) As the 7* band narrows with DISCUSSION

increasingx, is an increase in the orbital angular momentum
of the minority-spin electrons reflected in theH hysteresis
loop?(4) How does the field dependence of the paramagnetic Compounds of the system $eMo, _,W,05 (0<x=<1)
molar susceptibility depend ox? and(5) what is the char- were prepared from powders of Srgd~e,0;, MoO;, and

IlO

A. Synthesis
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TABLE I. The synthesis conditions and structural properties ofratio C/\/Ea decreases from a value 1.0828.0003 atx

the system SFeMo; - W, Op(0<x=<1). =0 to an almost constant value of 0.9946.0004 forx
- =0.75. The change of cell volume with shows a sharp
Synthesis deviation from Veard's law that can be interpreted as a

X condiions  a(A) c(A) cl2a  V(AY progressive change from itinerant to localized electronic be-

0.00 1225°C(0.1h 5.5761) 7.9041) 1.00233) 2457312  havior of the minority-spin electrons in the interval €.8
0.00 1225°C(0.1H, 5.5761) 7.9061) 1.00263) 245.8112)  <0.93, see Fig. ). According to the virial theorem, which
1250°C(0.1 h states
0.25 1275C8h 5.5911) 7.8911) 0.998(33) 246.6712) 2<T>+<V>=O
0.50 1275°C(8 h) 5.61Q1) 7.9011) 0.99593) 248.6712)
0.75 1300°C(18 h 5.6311) 7.9172) 0.99424) 251.0315  for central-force fields, an increase in mean kinetic energy
0.78 1300°C(40 h) 5.6321) 7.9191) 0.99423) 251.1912) (Ty as more minority-spin electrons become localized re-
0.79 1300°C(40 ) 5.6341) 7.9211) 0.99413) 251.4312) quires an increase in the magnitud¥)| of the mean poten-
0.80 1300°C(40 ) 5.6331) 7.9251) 0.99483) 251.4712) tial energy; for antibonding electrons, an increasg\f| is
0.85 1300°C(24 h) 5.6381) 7.9321) 0.99483) 252.1412)  accomplished by an increase in the mean equilibrium Fe-O-
0.87 1325°C(36 h 5.6411) 7.93%1) 0.99423) 252.3712  Mo/W bond length. The tetragonal distortion is due to a co-
0.88 1325°C(38 ) 5.6431) 7.9361) 0.99443) 252.7117  Operative rotation of the octahedral sites aboufGi] axis;
0.89 1325°C(38 H 5.6421) 7.9341) 0.99443) 252.5612) this distortion leads to an axial ratit/y/2a>1. Therefore,
0.90 1325°C(48H 5.6391) 7.9351) 0.995G3) 252.3212  the decrease io/ J2a with increasingx to a value less than
091 1325°C(100 h 5.6451) 7.94Q1) 0.99463) 253.0212) unity must signal a lowering of thel,, relative Fo the
0.94 1325°C(124 h 5.6471) 7.9421) 0.99453) 253.2612) Ayzeipx T statgs as woulq occur for a coop.eratwe. Jahn-
095 1325°076 H 5.6461) 7.9431) 0.99483) 253.2412) Te!ler deformatlon at IocaI]zed ?éwnh.mgh-'spm cqnﬂgu-
0.96 1325°0(148 h 5.6481) 7.9471) 0.99433) 253.3512) rations; in the paramagnetic phase, spln-o_rblt coupllng_wou_ld
0.97 1325°C(124 h 5.6461) 7.9441) 0.99493) 253.2312) suppress a cooperative Jahn-Teller distortion of opposite sign
0.98 1325°C(148 h 5.6471) 7.9492) 0.99494) 253.3G15) that optimizes the orbital angular momentum. The minimum

in the c versusx curve of Fig. 1b) reflects the anomalous
1.00 1325°C(76 b 5.6481) 7.9422) 0.99434) 253.3315) increase in cell volume Witb{ngIE(X)> 0.3.

The degree oB-site ordering on the octahedral sites was
. o ) ) . not determined by Rietveld refinement of the powder x-ray
WO, ground together in stoichiometric ratios and calcined ayjtfraction patterns. Instead, a qualitative estimateBeite
900°C in air for 3 h; the products were gray fo<@<0.5  qrdering was determined by observing the experimental rela-
and red-brown for 0.5x<1.0. These products were ground tive intensity of the most intense superstructure reflection,
and pelletized into half-inch-diameter pellets 3 to 5 mmyypich is the(101) reflection forl4/mmm A monotonic in-
thick. The pellets were then annealed in a flowing mixture Of¢rease in the relative intensity of this reflection with increas-
1% H,/Ar at the temperatures and for the times indicated INing x is consistent with the observation of Kobayashal1°
Table I. All samples were then cooled in this atmosphere tQyf increasing order ag increases; the Coulomb forces re-

room temperature at a rate of 180°C/h; the pellets of theonsiple for order would be greater fofWand F&* com-
compositions 8<x=0.75 were blue-black in color while pared to ME*9*+ and FE 9+,

they were reddish-brown gray for 0.¥X%=<1.

C. Transport properties

B. Structure Since resistivity measurements on polycrystalline samples

The identification of all the phases and the determinatiorcontain a  grain-boundary = component  whereas
of room-temperature lattice constants were accomplishethermoelectric-power measurements reflect the intragrain
with a Philips APD 3520 powder x-ray diffractometer and properties, we measured the Seebeck coefficiém) for the
Cu K« radiation (. =1.54059 A); Mo was the internal stan- entire solid-solution range, Fig. 2. The measurements were
dard. The data were collected in steps of 0.020° over th@erformed with a laboratory-built apparatus as described
range 10%<26<100°. Lattice constants were refined by a elsewheré?® Data for insulating samples such asFRWQ;
least-squares method developed by Novak and Cof¥flle. became unreliable at low temperatures due to the impedance
The lattice constants for the different compositions are foundimits of the apparatus. A correction was applied to compen-
in Table 1. sate for the small contribution te from the copper leads.

All samples were single-phase and exhibited a series of Thex=0 sample showed typicattype metallic behavior
superstructure reflections due to ordering of the Fe andvith a linear temperature dependence. The metallic compo-
Mo/W atoms on the octahedrd sites of the perovskite nentremained dominant in the=0.25 sample, but a transi-
structure. In this study, tetragonal crystal symmetry withtion from n-type to p-type conductivity was found af,,
space group4/mmm(Z=2) was observed for all composi- ~190K in thex=0.50 sample that cannot be attributed to a
tions O=x=<1. As shown in Fig. 1, the lattice parameter phonon drag enhancemeit;, increases wittx and a cross-
increases monotonically withto x~0.92 whereas the pa-  over fromn-type top-type conduction at room temperature
rameter passes through a minimum neat0.3 and the axial occurs in the range 0.80x<<0.85. Forx=0.85, the conduc-
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FIG. 1. The variation with W content of (a) a, (b) ¢, (c) axial ratio c/+2a, and (d) cell volumeV for the tetragonal system
Sr,FeMo, _, W, Og.

tion is p-type at all temperatures; for 0.8%<1.00, a mini-  Sr,FeMoQ, would have threefold-degenerate minority-spin

mum in «(T) develops near 150 K that becomes sharperr* bands one-sixth filled; therefore, we can expedype

with increasingx. metallic behavior. The tungsten enters a§"Wwhich re-
To interpret these data, we consider the evolution of thanovesx states per formula unit per* band and x—vy)

7 band states with increasing. Perfectly ordered more are removed to form localized configurations at'Fe
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FIG. 2. The variation of the thermoelectric powefT) for differentx in the system SFeMo, _,W,O.

ions such thaty decreases to zero asincreases tx=1.  for (1-y)/(2—2x+y)>0.5 orx>1.5y. Stabilization of the
Stabilization of the minority-spird,, band relative to the d,,7* band can be expected to increase with decreasing
dy,-+i,x bands would reduce the effective number of states itemperature as well as with decreasing bandwidttx &%

the conduction band to (22x+y)/formula unit whereas the creases. Since the itinerant electrons would domiagfE)
number of electrons in the band would be<§)/formula  so long as the percolation threshold f6t-band formation is
unit. Conduction in thed,, 7* band would becomg@-type  not exceeded, the evolution of tgT) curves with increas-
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ing x can be understood fax<<0.75 from this qualitative 4 T T - T
argument. The change from metalliclike to semiconducting T
behavior in the range 0.75x<0.85, as also noted by Koba- sl | @ /‘ ]
yashiet al° from resistivity data, is consistent with a cross- ] / ]
ing of the percolation threshold for perovskites. 0

Beyond threshold for percolation of* -band states, i.e., 2r / i
for x=0.85, the thermoelectric power becomes increasingly A ]
dominated by hole conduction on the’F& e couple. At 1t / 1

. . -1
lower temperatures, the mobile holes are progressively -500 0 500

trapped out. At higher temperatures, thermal excitation of
electrons from trap states to Feappears to reduce the num-
ber of mobile charge carriers, particularly for-0.89. Atx
=0.85, variable-range hopping between itinerant-electron
clusters is probably the dominant conduction mechanism.

--x=0.25(1275°C)

G Y
“1F —x=050(1275°C) . :1// / 17

M (v, / formula unit)
o

D. Magnetic data

)

-1
-500 0 500

Magnetic data were taken with a Quantum Design dc-
SQUID magnetometer in the temperature range 51K . .
<700K and in applied magnetic fields from50 kOe to 50 40 20 0 20 40
kOe. All samples in the rangesOx=0.80 had magnetization (@
curves typical of a ferromagnet. TiM-H curves taken at 5
K were similar to those reported by Kobayagtiall® As 3
shown in Fig. 8a), the curves for &x<0.50 showed little
hysteresis whereas thxe=0.75 and 0.80 samples had hyster-
esis loops typical of that for a hard ferromagnet. Whereas ol —x=075(1300°C)
saturation is achieved by 10 kOe fe=0.50, it is not ob- - x =0.80 (1300°C)
tained even at 50 kOe for=0.75 and 0.80, Fig. (®).

We® have attributed the low remanenkk and coercivity
H.; in thex=0 sample to the presence of antiphase bound-
aries. Woodwaret al® have observed antiphase boundaries
in two double-perovskite systems. Antiferromagnetic Fe-
O-Fe interactions across an antiphase boundary would
couple ferromagnetic regions on either side antiferromag-
netically in low applied fields; but the ferromagnetic regions
are large enough for the magnetic energy in 10 kOe to over-
come the exchange energy across a boundary. Moreover, the
orbital angular momentum of itinerant electrons is strongly
suppressed, so the magnetocrystalline anisotropy is small. 2r
However, an increasing population of localized-electron
Fe" configurations and the introduction of antiferromag-

T T T T

M (u, / formula unit)

netic regions asx approaches the percolation threshold -3 4'0 2'0 0 2'0 4'0
would introduce local anisotropies and make MeH hys- ) )
teresis loops appear more typical of a hard magnet that does(b) Magnetic Field Intensity (kOe)

not saturate even in a field of 50 kOe. Ber0.85, where the . .
ferromagnetic clusters do not percolate in zero magnetic..FIG' 3. TheM-H hysteresis loops of the ferromagnetic compo-
field, M-H hysteresis loopstes K are still found, Fig. 4; Suons(@x=0.25and 0.50 ant) x=0.75 and 0.80 of the system
they change smoothly into the anhysteretic straight line of 2 cMO—xWxOs atT=5 K. Insetsli) and(ii) in (&) show the low

y . 9 . y y ) 9 coercivities and low remanences for-0.25 andx=0.50, respec-
the antiferromagnetic phaseat 1.0. The magnetic proper- tively.
ties of the system af =5 K are summarized in Table II.

Our magnetic susceptibility data for antiferromagnetic i )
Sr,FeWQ, were identical to those given by Kobayashi PeratureT; was taken as the maximum in the ZRG(T)
et all® Figure 5 shows the molar magnetic susceptibilitycurves. A Curie temperaturg; >T; for the clusters de-
xmol(T) in @ magnetic field of 100 O&C) or in zero field creases with the cluster sizexagcreases, as can be seen in
(ZFC) for samples 0.85x=<0.95. Before any measurements the phase diagram of Fig. 6. An abrupt drop frofg
were made, the samples were heated to room temperature 1400 K for the percolating matrix td; for the isolated
remove any previous magnetic history. The data show spinelusters occurs in the interval 0.%%=<0.80, Table III.
glass behavior typical of ferromagnetic clusters coupled Although saturation was achieved in tiMe-H loops for
through an antiferromagnetic matrix. The spin-freezing temx=<0.50, the saturation magnetization increased witto
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FIG. 4. TheM-H hysteresis loops of different spin-glass com-
positions of 0.85x<1.00 in the system $FeMo,_,W,0 at T
=5K.

only about 3.Lg/formula unit, significantly below the theo-
retical spin-only momentM¢(0)=4.0ug/formula unit for
ideal B-site ordering. TheB-site ordering clearly increased

PHYSICAL REVIEW B3 064417

TABLE 1. The magnetic properties of the system
Sr,FeMo, _,W,0g at T=5 K. M(50 kOe, M,, andH; are the
magnetization at 50 kOe, the remanent magnetization, and the co-
ercivity, respectively.

M(50 kO® M, Hei

X (ms/f.u.) (ug/fu) (Ce)
0.00 2.692) 0.37 755)
0.25 3.022) 0.48 655)
0.50 3.092) 0.69 1705)
0.75 2.512) 1.15 14605)
0.78 2.442) 1.07 22305)
0.79 2.3%2) 1.00 27405)
0.80 2.232) 0.92 30505)
0.85 1.762) 0.50 38905)
0.86 1.582) 0.38 39605)
0.87 1.422) 0.29 39005)
0.88 1.302) 0.20 31005)
0.90 1.002) 0.074 183(5)
0.91 0.892) 0.046 14005)
0.92 0.802) 0.029 10405)
0.94 0.592) 0.010 5505)
0.95 0.522) 0.005 3405)
0.96 0.362) 0.001 905)
0.97 0.432) 0.003 2605)
0.98 0.312) 0 60(5)
1.00 0.232) 0 1505)

is small compared to the bandwidth, this finding is quite
remarkable. The magnitude of the effect implies, for a ho-
mogeneous system, a feedback mechanism that amplifies a
shift in electron density. Such a feedback may reside in the
sensitivity of the equilibrium Fe-O bond length to the degree
of localization of the electrons via the virial theorem. How-
ever, it could only happen with overlapping redox energies
and a bandwidth near the transition from localized to itiner-
ant electronic behavior. This anomalous behavior is retained
in the Sp_,CaFeMoQ; system, but it is suppressed by
=0.25 in the SyFeMo, _,W,Og System.

Alternatively, the anomalous character illustrated in Fig. 7
can be attributed to a chemical inhomogenée found no
evidence for an impurity phas@ssociated with the lack of
ideal long-range order of the Fe and Mo atoms. If the chemi-
cal inhomogeneity introduces a local ferrimagnetic moment
M’ having a Curie temperatufE.>T,, then the measured
molar susceptibilityyneas Xmor™ (M '/H), wherex o is the
intrinsic molar magnetic susceptibility. For a smiglll and a
large applied fieldH, (M'/H) is negligible compared to
Xmol,» SO @ measurement in 50 kOe approaches the intrinsic

with x in this interval as was also found by Kobayashi y.. In a lower field H=2.5kOe), anM’'=8.21 emu/mol

et all®

(0.0015ug/formula uniy would add an ¥'/H) term ca-

The field dependence of the paramagnetic inverse molgsable of giving xmeass the character of the 2.5 kOe curve

susceptibility y,,o(T) of SL,FeMoQ; is shown in Fig. 7 for
300K=T=<700K. The Weiss constaritis seen to shift, for
x=0, from §<T_ to 6>T.. Since the magnetic energy for a
shift of the density of minority-spin electrons from Mo to Fe

in Fig. 7. Measurement oM versusH at 600 K from
0 to 50 kOe and back gave a straight line that passed
through zero within our experimental error, but &A’
~0.0015g/formula unit is at the limit of our resolution.
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10F e TABLE Ill. The type of magnetic behavior and magnetic tran-
- FC (H = 100 Oe) sition temperatures of compositions in  the system
B 8 o x=085 . SrFeMo, _,W,06(0=<x=<1). F, SG, SP, and AF refer to ferromag-
£ : xfgg; netism, spin glass, superparamagnetic clusters, and antiferromag-
S5 6 . i;0‘90 T netism, respectivelyT;, T , T., and Ty are the spin-glass freez-
£ o x =095 ing temperature, the Curie temperature of ferromagnetic clusters,
L 4 T the Curie temperature of long-range ferromagnetic order, and the
'g' ol °, i Neel temperature, respectively.
b °°o°°°
ok 33800000220000000000000 - Type of
al ZEC j magnetic T, (K)
— .
E 3 ° ng’g; X behavior (100 08 TE(K) Te(K) Tn(K)
L o x=0. -
3 o a x=0.88 0.00 F 4122)
£ 2} t x=0.90 - 0.25 F 3982)
9 & °°o° o x=0.95 0.50 F 3982)
sif 0o T 0.75 F 3922)
0,
£ ® °°Oo
X0 633050e00a08iRinnsanenn - 0.78 F 2382)
N 1 1 1 0.79 F 2302)
0 100 200 300 0.80 F 2022)

0.85 SG+SP 5@1) 192(2)
0.86 SG+SP 511) 1952)

FIG. 5. The variation of the ZFC and FGE1000e) molar ~ 087 SGFSP - 461)  1922)
susceptibility y,o(T) for different compositions of 0.85x=<0.95 0.88 SG-SP 421) 188(2)
in the system SFeMo,_,W,O;. The spin-glass freezing transiion 090  SG-SP 341) 1802)
is indicated for some of the compositions. 091  SG-SP 341) 1782

0.92 SG+SP 341) 16812)

094 SGFSP 361) 154(2)

0.95 SGFSP 361) 140(2)

0.96 SG 381)

0.97 SG 381)

0.98 SG 381)

1.00 AF 391)

Temperature (K)

500 |

400 +
A candidate chemical inhomogeneity would be the fol-

lowing. At an antiphase boundary, twi@11) all-Fe planes
may be nearest neighbors; they would be negatively charged
with respect to the local charge neutrality. The exchange of
adjacent(111) Mo and Fe layers on one side would produce
three (111) all-Fe planes; the added negative charge in the
triple Fe layers would be more than compensated by a posi-
tive double all-Mo layer. Such an exchange would increase
the electrostatic Madelung energy associated with the defect.
Strong 180° Fe-O-Fe antiferromagnetic superexchange inter-
actions between the three all-Fe layétaFeG has aTy
=750K) would give a local ferrimagnetic momeri!’.
Such a chemical inhomogeneity would not show up as a
structural second-phase impurity, but it could influence the
paramagnetic susceptibility.

300

T(K)

200

100 |

(1] 0 R 5 ) s s L L E
0.0 0.2 0.4 0.6 0.8 1.0 CONCLUSIONS

W Content, x

The five questions that motivated this work have been
FIG. 6. The electronic and magnetic phase diagram of the te@nswered as follows. _ o _

tragonal system S$FeMo,_,W, 0 (0<x<1). FM=ferromagnetic (1) The transition from itinerant to localized minority-spin

metal, PM=paramagnetic metal, Pjparamagnetic insulator, €lectrons pdeUf?eS an anomaloy_s expansionxwththe cell

SP=superparamagnetic, ~ S&épin-glass  insulator, and Vvolume as predicted from the virial theorem.

AFl =antiferromagnetic insulator. (2) The evolution of the thermoelectric powa(T) with

064417-7



R. I. DASS AND J. B. GOODENOUGH PHYSICAL REVIEW B3 064417

140 — y ' T . r \ T However, with the development of antiferromagnetic inclu-
sions and localized Bé configurations as increases to the
percolation threshold for itinerant* electrons, a strong an-

. isotropy develops and saturation is not achieved by 50 kOe.
— H=2500 Oe (FC) TheM-H curves evolve smoothly to that of an antiferromag-
net only atx=1.0, and a spin-glass freezing temperaftye
extrapolates smoothly to the Bletemperaturel =39 K of
thex=1.0 compound.

(4) The field dependence of the paramagnetic inverse mo-
lar susceptibilityxg]gl(T) found atx=0 is suppressed by
=0.25, which contrasts with the Sr,CaFeMoQ; system.
This observation is consistent with a shift of the minority-
spin electron density toward the Fe subarray with the intro-
duction of W' near neighbors and with the dsbauer data
of Nakagawaet al,'! which showed an increase of 0.19
+0.05 mm/s in the isomer shifts betwees 0 andx=0.2. If
the anomalous paramagnetic susceptibility offMoQ; is
due to chemical inhomogenetities, it may be suppressed by
the greater degree of atomic order in the samples containing
tungsten.

0 - . ) . . . L (5) The phase diagram of Fig. 6 shows retention of the
300 400 500 600 700 ferromagnetic Curie temperatufie, near 400 K tox=0.75
Temperature (K) and spin-glass behavior for &< 1.0, which indicates a
percolation threshold for itinerant minority-spin electrons

FIG. 7. The variation of the paramagnetic inverse molar suscepnear x=0.80. The spin-glass compositions exhipitype
tibility xma(T) with temperature for SFeMoGQ; (1225°0Q in H  conductivity on the F&/F&" couple of the matrix of
=2500 Oe and 50 kOe. localized-electron configurations; a change frortype to

o . p-type itinerant-electron conduction with increasirngand
x shows a change fromrtype ton-type with increasing tem-  gecreasing temperature can be interpreted as a relative stabi-
perature at aTy, that increases monotonically Witk jization of thed,, relative to thed,,.,, 7* electrons. Only
throughout the compositional range €:2<0.75 where the  the x—1.0 composition showed antiferromagnetic behavior
m* electrons percolate through the structure. This changgith the spin-freezing temperatufg of the spin-glass phase

signals a stabilizatipn of thelxxw* band relative to the extrapolating appropriately 6y of the x=1.0 sample.
dy,+i,x 7 bands with decreasing temperature and as the

pand narrows with increasing ‘I_'h|5 relative band stabiliza- ACKNOWLEDGMENTS
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